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BOSOR4: PROGRAM FOR STRESS, BUCKLING, AND VIBRATION OF COMPLEX
SHELLS OF REVOLUTION

David Bushnell
Lockheed Missiles & Space Co., Inc.

INTRODUCTION

A comprehensive computer program, designated BOSOR4, for analysis
of the stress, stability and vibration of segmented, ring-stiffened,
branched shells of revolution and prismatic shells and panels is
described. The program performs large-deflection axisymmetric
stress analysis, small-deflection nonsymmetric stress analysis,
modal vibration analysis with axisymmetric nonlinesr prestress in-
cluded, and buckling analysis with axisymmetric or nonsymmetric
prestress. One of the main advantages of the code is the provision
for realistic engineering details such as eccentric load paths,
internal supports, arbitrary branching conditions, and a "library’
of wall constructions. The program is based on the finite
difference energy method which is very rapidly convergent with
increasing numbers of mesh points., Overlay charts and core storage
requirements are given for the CDC 6600, IBM 370/165, and UNIVAC
1108/1110 versions of BOSOR4, Several examples are included to
demonstrate the scope and practicality of the program. Some hiats
&re given to help the user generate appropriate analytical models,
Ar dppendix contains the user's manual for BOSOR4.

_ Table 1 shows the characteristics and status of BOSOR4. The
@rbgr@ﬁv;s currently in widespread use and is maintained by the
develdper. Notices of any bugs found are promptly circulated to
all known users and data centers that have acquired BOSOR4.

The BOSOR4 program was developed in response to the need for a
tool which would help the engineer to design practical shell
#trucklirEs. An important class of such shell structures includes
segménted, ring-stiffened branched shells of revolution. These
shelld may have various meridional geometries, wall constructions,
boundary conditions, ring reinforcements, and types of loading,
including thermal loading., An example is shown in Fig, 1. The
meridian of the shell of revolution consists of six segments with
various geometries and wall constructions, The first segment
(nearest the bottom, end "A") is a monocoque ogive with variable
thickness; the second is a conical shell with three layers of
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Table 1 BOSOR4 at a Glance

Keywords: shells, stress, buckling, vibration, nonlinear, elastic,
ghells of revolution, ring-stiffened, branched, composites,
discrete model

Purpose: To perform stress, buckling, and modal vibration analyses
of ring-stiffened, branched shells of revolution loaded either
axisymmetrically or nonsymmetrically. Complex wall construc-
tion permitted,

Date: 1972; most recent update 1975

Developer: David Bushnell, 52-33/205

Lockheed Missiles & Space Co., Inc,
3251 Hanover Street

Palo Alto, Ca, 94304

Tel: (415) 493-4411, ¥45491 or 43851

Method: Finite difference energy minimization; Fourier superposi-
tion in circumferential variable; Newton method for solution
of nonlinear axisymmetric problem; inverse power iteration
with spectral shifts for eigenvalue extraction; Lagrange
multipliers for constraint conditions; thin shell theory.

Restrictions: 1500 degrees of freedom (d.o.£.) in nonaxisymmetric
problems; 1000 d.o.f. in axisymmetric prebuckling stress
analysis; Maximum of 20 Fourier harmonics per case; Knockdown
factors for imperfections not included; Radius/thickness
should be greater than about 10.

Language: FORTRAN IV

Documentation: BOSORG User's Manual [1] and about 10 journal
articles with numerous examples.

Input: Preprocessor written by SKD Enterprise, 9138 Barberry Lane,
Hickory Hills, Illinois 60457 for free-field imput. Required
for input are shell segment geometries, ring geometries, num-
ber of mesh points, ranges and increments of circumferential
wave numbers, load and temperature distributionms, shell wall
construction details, and constraint conditiomns.

Output: Stress resultants or extreme fiber stresses, buckling
loads, vibration frequencies; list and plots.

Hardware; UNIVAC 1108/110, CDC 6600/7600, IBM 360/370; SC4020 and
CALCOMP plotters

Usage: About 100 institutions have obtained BOSOR4, It is cur-
rently being used on a daily basis by many of them,

Run Time: Typically a job will require 1-10 minutes of computer
time.

Availability: CDC and UNIVAC versions from developer (see above);
IBM version from Prof. Victor Weingarten, Dept. of Civil Eng.,
Univ. of Southern Calif., University Park, Los Angeles, Calif.
90007; Price: $300. In addition to the Software Series partici~
pating networks mentioned in this volume, BOSOR4 may be run
through the following data centers:

McDonnell~Douglas Automation, Huntington Beach, Calif.
Control Data Corp., Rockville, Md.

Westinghouse Telecomputer, Pittsburgh, Penna.
Information System Design, Oakland, Calif.

Boeing Computer Service, Seattle, Wash.
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temperature-dependent, orthotropic material; the third is a layerxed,
fiber-wound cylinder; the fourth is a toroidal segment with eccen-
tric rings and stringers; the fifth is a spherical segment with
eccentric rings and stringers; and the sixth is a flat plate with
sandwich construction and eccentric meridional stiffeners. The
reference surface is indicated by the dark dash-dot line. It is
seen that the meridian of the composite shell structure is dis-
continuous between the first and second segments, the d and
third segments, and the third and fourth segments. In the analysis
these discontinuities are accounted for. The shell is supported at
the end "A" by a ring which is restrained as shown: axial and
radial displacements u* and w* are not permitted at the point A",
which is located a specified distance from the beginning of the
reference surface, In the analysis of actual shell structures it

is important that support points, junctures, and ring reinforcements
be accurately modeled, Seemingly insignificant parameters sometimes
have a large effect on the stress, buckling loads, and vibration
frequencies, The shell is reinforced by 6 rings of rectangular
crogs section, the centroids of which are shown in the figure.

These ringa are treated as discrete elaatic structures in the
analysis, The shell ia submitted to uniform external pressure (not
shown), line loads applied at the first and second rings, and the
thermal environment depicted on the second segment.

Figures 2 and 3 show computer-generated plots from a linear
buckling analysis and free vibration analysis, Normal displacement
components w of the modes are shown for the lowest three elgenvalues
corresponding to circumferential harmonics m « 4, 6, 8, 10, 12 and 14.
The reglons of the six shell segments are indicated in Fig. 2, In
the buckling analysis the uniform pressure is the eigenvalue para-
meter, all other mechanical and thermal loads being held fixed, In
the vibration analysis the external pressure is 40 psi and all loads
are held fixed. Calculation of the 18 eigenvalues requires 8 min
for the buckling analysis and 6 min for the vibration analysis.
Computations were performed on the UNIVAC 1108, in double precision,
There are 460 degrees of freedom in the discrete model.

BOSOR4 has been in use at Lockheed and elsewhere since 1972,
During that time it has been used in several projects, some of them
involving rather complex shells of revolution., An example is shown
in Fig. 4, which depicts a somewhat idealized model of a cryogenic
cooler, The axisymmetric structure consists of a series of fiberglas
tubes from which are suspended two axisymmetric cryogenic tanks. The
object of this study was to determine the natural frequencies of
the cooler corresponding to beam-type modes (n=1 circumferential
wave). The discretized model 1s shown in Fig. 5 and the first four
vibration modes in Fig. 6.
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Fig. 6 First four lateral (n=1) vibration modes with BOSOR4 model
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SCOPE OF THE BOSOR4 COMPUTER PROGRAM

The BOSOR4 code performs stress, stability, and vibration analyses
of segmented, branched, ring-stiffened, elastic shells of revolu-
tion with various wall constructions. Figure 7 shows some examples
of branched structures which can be handled by BOSOR4. Figure 7a
Tepresents part of a multiple-stage rocket treated a8 a shell of
seven segments; Fig. 7b represents part of a ring-stiffened cylin-
der in which the ring is treated as two shell segments branching
from the cylinder; Fig. 7c shows the same ring-stiffened cylinder,
but with the ring treated as 'discrete', that {s the ring cross
section can rotate and translate but not deform, as it can in the
model shown in Fig. 7b, Figures 7d-f represent branched prismatic
shell structures, which can be treated as shells of revolution
with very large mean circumferential radii of curvature, as des-
cribed in [2] and later in this paper,
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The program is very general with respect to geometry of
meridian, shell-wall design, edge conditions, and loading. It has
been thoroughly checked out by comparisons with other known solu-
tions and tests and by extensive use at a number of different
institutions over the past three years. The BOSOR4 capability is
summarized in Table 2. The code represents three distinct analyses:

1. A nonlinear stress analysis for axisymmetric behavior of
axisymmetric shell systems (large deflections, elastic)

2. A linear stress analysis for axisymmetric and nonsymmetric
behavior of axisymmetric shell systems submitted to axisymmetric
and nonsymmetric loads

3. An eigenvalue analysis in which the eigenvalues represent
buckling loads or vibration frequencies of axisymmetric shell 8sys=-
tems submitted to axisymmetric loads. (Eigenvectors may correspond
to axisymmetric or nonsymmetric modes.)

BOSOR4 has an additional branch corresponding to buckling of non-
symmetrically loaded shells of revolution. However, this branch
is really a combination of the second and third analyses Juse
listed,

Table 2 BOSOR4 Capability Summary

Type of analysis Shelt geometry Wall construction Loading
Nonlinear axisym- Multipl M que, variable  Axi; or non-
metric stresa shells, each segment or hick thermat and/
Linear symmetric or with its own wall con- Skew-stiffened shells or mechanical line loads
stress fon, geometry, Fiber-wound shells and moments
Stability with linear and loading Layered orthotropic Axisymmetric or non-
symmietric or nonsym- Cylinder, cone, shells symnetric thermal and/

metric prestress or
with nonlinear sym-
metric prestress

Vibration with non-
linear prestress
analysis

Variable mesh point
spacing within each
segment

spherical, ogival,
toroidal, ellipsoidal,
etc,

General meridional
shape; point-by-
point input

Axial and radiaf dis-
continuities in shelt
meridian

Arbitrary choice of
reference surface

General edge
conditions

Branched shells

Prismatic shells and
composite buili-up
panels

Corrugated, with or of mechanical dis-
without skin tributed Joads
Layered orthotropic Proportional loading
with Non-proportional
dependent material foading
properties
Any of above wall
types reinforced by
stringers and/or
rings treated as
“smeared out™
Any of above wall
types further rein-
forced by rings treated
as discrete
Wall properties vari-
able along meridian
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In the BOSOR4 code, the user chooses the type of analysis to
be performed by means of a control integer INDIC:

INDIC

INDIC

INDIC

INDIC

INDIC

INDIC

INDIC

-2

-1

Stability determinant calculated for given circum-
ferential wave number N for increasing loads until
it changes sign. WNonlinear prebuckling effects
included. INDIC then changed automatically to -1
and calculations proceed as if INDIC has always
been -1.

Buckling load and corresponding wave number N
determined, including nonlinear prebuckling
effects. N corresponding to local minimum critical
load Lcr(N) is automatically sought.

Axisymmetric stresses and dispincements calculated
for a sequence of stepwise increasing loads from
some starting value to some maximum value, in-
cluding nonlinear effects. Axisymmetric collapse
loads can be calculated,

Buckling loads calculated with nonlinear bending
theory for a fixed load. Buckling loads calcu-
lated for a range of circumferential wave numbers,
Several buckling loads for each wave number can be
calculated,

Vibration frequencies and mode shapes calculated,
including the effects of prestress obtained from
axisymmetric nonlinear analysis. Several frequen-
cles and modes can be calculated for each
circumferential wave number,

Nonsymmetric or symmetric stresses and displace-
ments calculated for a range of circumferential
wave numbers. Linear theory used. Results for
each harmonic are sutomatically superposed.
Fourier series for nonsymmetric loads are auto-
matically computed or may be provided by user.

Buckling loads calculated for nonsymmetrically
loaded shells. Prebuckled state obtained from
linear theory (INDIC = 3) or read in from cards.
'Worst' meridional prestress distribution (such

as distribution involving maximum negative meri-
dional or hoop prestress resultant) chosen by
user, and this particular distribution is assumed
to be axisymmetric in the stability analysis,
which is the same as that for the branch INDIC = 1.
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The variety of buckling analyses (INDIC = -2, -1, 1, and 4) is
to permit the user to approach a glven problem in a number of
different ways. There are cases for which an INDIC = -1 analysis,
for example, will not work. The user can then resort to an INDIC =
~2 analysis, which requires more computer time, but which is
generally more reliable, Buckling of a shallow spherical cap under
external pressure is an example. 1In an INDIC = -1 analysis of the
cap, the program generates a sequence of loads that ordinarily
should converge to the lowest buckling load, with nonlinear pre-
buckling effects included, Depending on the cap geometry and the
user-provided initial pressure, however, one of the loads in the
8equence may exceed the axisymmetric collapse pressure of the cap.
This phenomenon can occur if the bifurcation buckling loads are
Just slightly smaller than the axisymmetric collapse loads. The
user can obtain a solution with use of INDIC = -2, in which the
bifurcation load is approached from below in a ‘gradual’' manuer.

The branch INDIC = 1 is provided because it is sometimes
desirable to know several buckling eigenvalues for each circum-
ferential wave number, N, and because there may exist more than
one minimum in the critical load vs N-space. This fa especially
true for composite shell structures with many segments and load
types. Such a structure can buckle in many different ways. The
designer may have to eliminate several possible failure modes, not
Just the one corresponding to the lowest pressure, for example,
The INDIC = 4 branch is provided for two reasons: The user can
calculate buckling under nongymmetric loads without having to make
two geparate runs, an INDIC = 3 run and an INDIC = 1 run., 1In
addition, this branch permits the user to bypass the prebuckling
analysis and read prebuckling stress distributions and rotations
directly from cards. This second feature 1s very useful for the
treatment of composite branched panels under uniaxial or biaxial
compression,

The BOSOR4 program, although applicable to shells of revolu-
tion, can be used for the buckling analysis of composite, branched
panels by means of a 'trick' described in detail in Ref [2). This
'erick® permits the analysis of any prismatic shell structure that
is simply-supported at particular stations along the length, Any
boundary conditions can be used along generators, In {2} many
examples are given, including nonuniformly loaded cylinders, non-
eircular cylinders, corrugated panels, and cylinders with stringers
treated as discrete, Thig paper gives other examples.

ANALYSIS METHOD
The assumptions upon which the BOSOR4 code is based are:
1, The wall material is elastic,

2. Thin shell theory holds; i,e. normals to the undeformed
surface remain normal and undeformed.
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3. The structure is axisymmetric, and in vibration analysis
and nonlinear stress analysis the loads and prebuckling or pre-
stress deformations are axisymmetric.,

4. The axisymmetric prebuckling deflections in the nonlinear
theory (INDIC = 0, -1, 2), while considered finite, are moderate;
i.e. the square of the meridional rotation can be neglected com-
pared with unity.

5. 1In the calculation of displacement and stresses in non-
symmetrically loaded shells (INDIC = 3), linear theory is used.
This branch of the program is based on standard small-deflection
analysis,

6. A typical cross sectional dimension of a discrete ring
stiffener is small compared with the radius of the ring.

7. The cross sections of the discrete rings remaln undeformed
as the structure deforms, and the rotation about the ring centroid
is equal to the rotation of the shell meridian at the attachment
point of the ring (except, of course, if the’ring is treated as a
flexible shell branch),

8. The discrete ring centroids coincide with their shear
centers.

9. If meridional stiffeners are present, they are numerous
enough to include in the analysis by an averaging or 'smearing’' of
their properties over any parallel circle of the shell structure,
Meridional stiffeners can be treated as discrete through the ‘trick!'
described in Ref. [2].

The analysis is based on energy minimization with constraint
conditions. The total energy of the system includes strain energy
of the shell segments and discrete rings, potential energy of the
applied line loads and pressures, and kinetic energy of the shell
segments and discrete rings, The constraint conditions arise from
dispiacement conditions at the boundaries of the structure, dis-
placement conditions that may be prescribed anywhere within the
structure, and at junctures between segments. The constraint con-
ditions are introduced into the energy function by means of
Lagrange multipliers,

These components of energy and constraint conditions are
initially integro — differential forms. The circumferential de-
pendence is eliminated by separation of varisbles. Displacements
and meridional derivatives of displacements are then written in
terms of the shell reference surface components uy, v§ and wi at
the finite-difference mesh points and Lagrange multipliers Ay,
integration is performed simply by multiplication of the energy per
unit length of meridian by the length of the 'finite difference
element’, to be described below.

In the nonlinear axisymmetric stress analysis the energy ex-
pression has terms linear, quadratic, cubic, and quartic in the
dependent variables ui and wi. The cubic and quartic energy terms
arise from the rotation-gsquared terms that appear in the expres-
sion for reference surface meridional strain and in the constraint
conditions, Energy minimization leads to a set of nonlinear
algebraic equations that are solved by the Newton-Raphson method,
Stress and moment resultants are calculated in a straightforward
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manner from the mesh-point displacement components through the
constitutive equations and the kinematic relations,

The results from the nonlinear axisymmetric or linear non-
symmetric stress analysis are used in the eigenvalue analyses for
buckling and vibration, The ‘prebuckling’ or ‘prestress’ meri~-
dional and circumferential stress resultants Nio and N2gQ and the
meridional rotation X, appear as known variable coefficients in
the energy expressions that govern buckling and vibration. These
expressions are homogeneous quadratic forms. The values of a
parameter (load or frequency) that render the quadratic forms
stationary with respect to infinitesimal variations of the depen-
dent variables represent buckling loads or natural frequencies.
These eigenvalues are calculated from & set of linear homogeneous
equations. More will be written about the bifurcation buckling
eigenvalue problems in the following paragraphs.

Details of the analysis are given in {1, 3 and 4}, Oaly two
aspects will be described here: the finite difference element
and the stability eigenvalue problem,

The 'Finite Difference' Element

BOSOR4 is based on the finite difference energy method. This
method is described in detail and compared with the finite element
method in [5]. Figure 8 shows a typical shell segment meridian
with finite difference mesh points, The 'u' and 'v' points are
located halfway between adjacent 'w' points. The energy contains
up to first derivatives im u and v and up to second derivatives in
W. Hence, the shell energy density evaluated at the point labeled
E (center of the length f) involves the seven points wy.j through
wi+l. The energy per unit circumferential length is simply the
energy per unit area multiplied by the length of the finite
difference element f, which is the arc length of the reference sur~
face between two adjacent u or v points., In Ref. [5] it is shown
that this formulation yields a 7 x 7 stiffness matrix correspond-
ing to a constant strain, constant curvature change finite element
that is incompatible in normal displacement and rotation at its
boundaries but that in general gives very rapidly convergent
results with increasing density of nodal points. Note that two of
the w points lie outside of the element. If the mesh spacing is

- FICTITI0US
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Fig. 8 Finite difference discretization:
the ‘finite difference element'
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constant, the algebraic equations obtained by minimization of the
energy with respect to nodal degrees of freedom can be shown to be
equivalent to the Euler equations of the variational problem in
finite form, Further description and proofs are given in Ref. [5].

Figures 9 and 10 show rates of convergence with increasing
nodal peint density for a poorly conditioned problem — a stress
analysis of a thin, nonsymmetrically loaded hemisphere with a free
edge. The finite element results were obtained by programming
various kinds of finite elements into BOSOR4. The computer time
for computation of the stiffness matrix Ky is shown in Fig. 10. A .
much smeller time for computation of the finite difference K] is
required because there are fewer calculations for each Gaussian
integration point and because there is only one Gaussian point
per finite difference element. Other comparisons of rate of con-
vergence with the two methods used in BOSOR4 are shown for buckling
and vibration problems in Ref. [5].

4
Formulation of the Stability Problem

The bifurcation buckling problem represents perhaps the most diffi-
cult of the three types of analyses performed by BOSOR4. It is
practical to consider bifurcatioun buckling of complex, ring
stiffened shell structures under various systems of loads, some of
which are considered to be known and constant, or 'fixed' and some
of which are considered to be unknown eigenvalue parameters, or
fvariable’. )

The notion of "fixed' and ‘variable' systems of loads not only
permits the analysis of structures submitted to nonproportionally
varying loads, but also helps in the formulation of a sequence of
simple or 'classical' eigenvalue problems for the solution of prob-
lems governed by 'nonclassical' eigenvalue problems, An example
is a shallow spherical cap under external pressure. Very shallow
caps fail by nonlinear collapse, or snap-through buckling, not by
bifurcation buckling, Deep spherical caps fail by bifurcation
buckling in which nonlinearities in prebuckling behavior are not
particularly important. There is a range of cap geometries for
which bifurcation buckling is the mode of failure and for which the
critical pressures are much affected by nonlinearities in pre-
buckling behavior. The analysis of this intermediate class of
spherical caps is simplified by the concept of 'fixed' and 'vari-
able' pressure,

Figure 11 shows the load deflection curve of a shallow cap in
this intermediate range. Nonlinear axisymmetric collapse (pnl),
linear bifurcation (p]p), and nonlinear bifurcation {pnb) loads are
shown, The purpose of the analysis referred to in this section is
to determine the pressure pyp. It 1s useful to consider the pres~
sure pyp a8 composed of two parts

£ v
Pp P +p

in which pf denotes a known or 'fixed' quantity, and pV denotes an
undetermined or 'variable' quantity, The fixed portion pt is an

BOSOR

il
Finite Difference (BOSOR4)
o
o "’*0--[;, .......... pwoman fde e Zeaay
/
W—-C)S_mt‘ifc Reduction; Three and Five Gouss Poinis
s} Cubic 4, v, w W Finite Eiemeny

a} IOON L0’

s, MAXIMUM NORMAL DISPLACEMENT AT EDGE (in.)

Edges Free - Mo Static Reduction;
€107 psi Two Gouss Points;
v=03 Khojosteh-Bokht
Type Elemeni;
2f Linear u,v;
Cubic w;
Finite Element
1] —n((/ ‘ : L N ,
o 20 40 60 80 00

NUMBER OF MESH POINYS

Fig. 9 Normal displacement at free edge of hemisphere with non-
uniform pressure p(s,9) = Po cos 28

107, ST

’ RGN “
2
{/ W s, Normat Edge Ouplacement

prcon 28
Edges Free

% ERROR IN w
>

~—— Finie Elgment Anatysis
With Cubie u,v, w

“--- Finte Difference (BOSOR4)

,c;;;:::\\\,

\ fo Compala . ..---
Ko oot

COMPUTER TiME N SECONDS .

3
NUMBER OF MESH POINTS

Fig. 10 Computer times to form stiffness matrix Kj and rates of
convergence of normal edge displacement for free hemisphere with
nonuniform pressure p(8,8) = po cos 2@

25



26 USERS' DOCUMENTATION

LTS /\z\ Prebuchiing

"o Postbucking

-

VOLUME DISPLACED

PRESSUARE
-~

Fig. 11 Load deflection curves for shallow spherical cap, showing bi-
furcation points from linear prebuckling curve (ptb) and nonlinear
prebuckling curve (pnb)

initial guess or represents the results of a previous iterationm,
The variable portion pV is the remainder, which can be determined
from an eigenvalue problem, as will be described. It is clear from
Fig. 11 that if pf is fairly close to Pnb the behavior in the range
p = pf + pV is reasonably linear. Thus, the eigenvalue Pab can be
calculated by means of a sequence of eigenvalue problems through
which ever and ever smaller values pV are determined and added to
the known results pf from the previous iterations, As the BOSOR4
computer program is written the initial guess pf need not be close
to the solution pyp.

In the bifurcation stability analysis it 1is necessary to de-
velop two matrices corresponding to the eigenvalue problem

Ky (n)x + MKy (mx =0, (1)

In Eq. (1) K1(n) 1s the stiffness matrix of the shell as loaded by
the fixed load system P"i K2(n) 1is the load-geometric matrix
corresponding to the prestress increment caused by the loading in-
crement pV; Ap is the eigenvalue; x, is the elgenvector; and n is
the number of full circumferential waves. Eigenvalues are extract-
ed by inverse power iterations with spectral shifts, Further
details of the theory are glven in {6}, including the treatment of
the discrete ring stiffeners and constraint conditions.
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IMPERFECTION SENSITIVITY IN BUCKLING ANALYSES

It is well known that the load-carrying capability of thin shells
18 in meny cases sensitive to initial imperfections of the geometry
of the shell wall, The question so often asked by the analyst 1s:
given the idealized structure and loading, and given the means by
which to determine the collapse or bifurcation buckling loads, what
“knockdown" factor should be applied to assure a ressonable factor
of safety for the actual imperfect structure?

In Fig. 15 1s an example of a shell-load system which ex-
hibits load carrying capability congiderably greater than that
corresponding to the lowest bifurcation elgenvalue, Postbuckling
stability is also exhibited by columns and flat plates. On the
other hand, it is well known that the critical loads of axially
compressed cylindrical shells and externally pressurized spherical

are assoclated with the gsame eigenvalue, the structure is uniformly
compressed in a membrane state, and the buckling modes have many
small waves, Very small local imperfections will tend to trigger
premature failure. The buckling loads of most practical shell
Btructures are somewhat sensitive to imperfections, but not this
sensitive. How much so is & very important question. BOSOR4 does
not caleculate "knock down® factors to account for imperfections.
With BOSOR4 the analyst can calculate buckling loads of shells with
arbitrary axisymmetric imperfections, The BOSOR4 user is urged to
tead the brief survey of imperfection sensitivity theory given in
{7] and to consult the references given there.

BOSOR4 PROGRAM ORGANIZATION

The BOSOR4 program consists of a main program MAIN and six overlays
called READIT, PRE, ARRAYS, BUCKLE, MODEL, AND PLOTI. Figure 12
gives the core storage in decimal words required for the Univac °
1108, 1BM 370, and CDC 6600 versions of BOSOR4, The Univac 1108
and IBM 370 versions are written in double precision FORTRAN 1v;
the CDC version is written in single precision FORTRAN 1V.
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CORE STORAGE REQUIRED IN DECIMAL WORDS

UHIVAC HOB/EXEC 8, DOUBLE PRECISION

COC 6300, SINGLE PRECISION:

OOUBLE PRECISION

16 ITONES,
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Fig. 12 BOSOR4 core storage requirements
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SAMPLE DESIGN PROBLEMS FOR WHICH
BOSOR%4 HAS BEEN USED
AND COMPARISON WITH TESTS

A complex design that BOSOR4 was used on is shown in Fig. 4. Other
examples corresponding to various analysis branches (INDIC) are
given in this section.

Nonlinear Stress Analysis (INDIC = 0)

Figure 13 shows part of an internally pressurized elliptical tank
which has been thickened locally near the equator for welding, The
engineering drawings called for an elliptically shaped inner sur-
face with the thickness varying as shown. The maximum stress occurs
at the outer fiber at point ¢ because there is considerable local
bending there due to the rather sudden change in direction, or
eccentricity, of the load path in the short segment ACB. The non-
linear theory gives lower stresses than the 1linear theory because
the meridional tension causes the rank to change shape in such a
way as to decrease the local excursion of the load path, thereby
decreasing the effective bending moment acting at point C. The
tank had been built and a linear analysis performed. The user of
the tank wanted to know if it would withstand a somewhat higher in-
ternal pressure than that for which it had originally been designed.
The lower stress predicted with nonlinear theory gave him enough
margin of safety to avoid the necessity of redesign.
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Fig. 13 Linear and nonlinear analysis of internally pressurized
elliptical tank
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T-ring Modeled as Branched Shell (INDIC = 0)

Figure 14 shows the discretized model and buckling loads predicted
for a range of circumferential waves N. BOSOR4 gives two minima in
the range 2 > N > 16. The minimum at § = 2 is a mode in which the
cross section does not deform, {i.e. the ring ovalization mode,
Buckling pressures calculated for this mode are very cloge to those
computed from the well known formula qop = EI(N? - 1)/e?, in which
qer 1s the critical line load in 1b/inm, (pressure integrated in the
direction of segment 1), EI is the bending rigidity of the ring,
and rc is the radius to the ring centroidal axis, The minimum at
about N = 11 corresponds to buckling of the web., 1In a test the web
crippled at about 1500 psi, The N = 2 mode was not observed be-
cause the ring was held in a mandrel that prevented the unlimited
growth of this mode. Approximately 20 sec of UNIVAC 1108 CPU time
were required for this case.
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Fig. 14 Buckling of ring treated as branched shell

Nonlinear Bifurcation Buckling (INDIC = ~2 and -1)

Point-loaded spherical caps were tested by Penning and Thurston in
1965 [8]. A configuration and predicted and experimental load-
deflection curves with bifurcation points are shown in Fig. 15.
This system is stable at and beyond the bifurcation points shown,
Figure 16 depicts a short section of the generator of a cylin-
der stiffened by external corrugations. The corrugations are cut
away in the neighborhood of a field joint ring to allow for bolting
of the two mating flanges of the ring, The cylinder is axially
compressed., Far away from the field joint the axial resultant acts
through the centroid of the corrugation-skin combination. In the
neighborhood of the field joint the load path moves radially inward,
effectively causing an axisymmetric dimple. As the axial compres~
sion is increased, hoop compressive stresses build up in the regions
reinforced by doublers. Slight asymmetry of the assembly causes
the ring to roll over axisymmetrically, which generates higher com-
pressive hoop stresses above the ring and eventually leads to buck-
ling there with many small waves around the circumference of the
eylinder. Figure 17 shows the actual failure,which agrees with the
BOSOR4 prediction, .
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Fig. 15 Point-loaded spherical cap and load~deflection curves ob-
tained from test and from BOSOR4

Fig. 16 Field joint geometry Fig, 17 Fallure as seen from
and buckle under axial load inside the corrugated cylinder
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Nonsymmetric Linear Stress Analysis (INDIC = 3)

Figure 18 gives thermal stresses in a cylinder configured and heated
nonsymmetrically as shown., The test results are from [9]. Twenty
Fourier harmonics were used for representation of the circumferen-
tial temperature distribution and calculation of the stress.

Buckling Under Nonsymmetric Loading (INDIC = &)

Figures 19 and 20 show the model and results. Figure 19 gives the
observed temperature rise distribution at buckling as reported in
{10}, Figure 20 shows the predicted prebuckling stress and dis-
placement distributions and the lowest three eigenvalues and elgen-
vectors corresponding to 20 circumferential waves. The eigenvalues
denote a factor to be multiplied by the prebuckling temperature
rise distribution at buckling in the test. Twemty Fourier har-
monics were used for the prebuckling analysis. The model consists
of 309 degrees of freedom. A total of 74 sec of CPU time on the
UNIVAC 1108 were required for execution of the case,
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Modal Vibration (INDIC = 2)

Figures 21 and 22 show the geometry and some natural vibration
modes of an aluminum ring stiffened cylinder supported by steel end
plates. The cylinder was tested by Hayek and Pallett [11] and a
previous analysis was performed by Harari and Baron [12}. The ex-
perimental results, analytical results from BOSOR4 with eight
different models, and analytical results from [12] are given in
Table 3,

One of the most important points to be made in regard to
Table 3 is that an approximate analysis can by fortuitous coinci-
dence yield very good results because of counteracting errors.
Take the bottom row of Table 3, for example. The relatively crude
model in which the rings are treated as discrete and the end plates
are omitted (modeled as simple supports--v and w restrained, u and
rotation free) leads by chance to a very good prediction (2800 cps)
of the experimental result (2802 cps). However, the stiffness of
each discrete ring is overestimated because its tross section is
not permitted to deform, If each ring is treated as a shell seg-
ment with no other changes made in the model, a new frequency of
2663 cps is obtained. This branched model is labeled (1) in
Fig. 21b. If an additional refinement is made by the addition of
the end plates, frequencies of 2682 or 2724 cps are obtained, de-
pending on the degree of constraimt assumed to exist between the
end plates and the cylinder. These models are too flexible, how-
ever, because axial bending of the cylinder wall is permitted along
the 0.375 in, lengths corresponding to the regions of intersection
of cylinder and rings. If the cylinder is treated as consisting of
six segments with 0.375 in. gaps at the areas where the rings and
cylinder intersect, and if the material in each gap is treated as
a discrete ring with undeformable cross section, the frequencies of
2750 or 2782 or 2833 cps are calculated, depending on whether the
end plates are included and, if they are, on the degree of con-
straint assumed to exist between them and the cylinder. This
segmented cylinder model is labeled (2) in Fig. 21b. The predicted
vibration mode shapes with n = 6, m = 3 for all of the models are
given in Fig. 22. The test frequency of 2802 cps is bracketed by
the results from the various models. Notice that for other modes
the test frequencies are less well predicted by the cruder discrete
ring model but that they are still bracketed (with the exception of
n=5,m=1) by use of the full range of models as just described.
The case n = 6, m = 1 i3 an example. In the n = 1 case it is im-
portant to include the end plates in order to obtain an accurate
prediction of the fundamental beam bending mode of the entire free-
free cylinder end plate system. This mode is deplcted in Fig. 22,

During the study of a particular structure the analyst should
set up various models in order to obtain upper and lower bounds on
the behavior if possible. Because of imperfectioms, it is difficult
to obtain a lower bound for buckling loads, However, since vibra-
tion frequencies and modes are not sensitive to imperfections,
vibration test results can usually be regarded as reliable and can
therefore be used to determine which models best simulate the
actual behavior,
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Table 3 Natural Frequencles for Various Models of Ring-Stiffened
Cylindex
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SOME ASPECTS OF MODELING SHELLS

Some ideas about modeling have just been given. The purpose of this
section is to give the user further hints about modeling for stress,
buckling, and vibration analyses of practical shell of revolution,

Mesh Point Allocation

The analyst may wish to know what the stresses are in a shell at
the bifurcation buckling load. If he sets up a single discretized
model for both the stress and the buckling analyses, he must allo-
cate nodal points such that stress concentrations as well as
buckling modes can be predicted with reasonable accuracy., It is
usually fairly easy to guess where the stress concentrations are,
but more difficult to predict where the shell will buckle and the
shape of the mode. Peak stresses can generally be predicted with
enough accuracy if nodal points are spaced a few wall thicknesses
apart., If a higher nodal point density is required for adequate
convergence, thin shell theory may not represent a good enough
model., Good estimates of buckling loads can usually be obtained
with more than four nodal points per half wavelength of the buckling
mode, Figure 23 depicts & ring stiffened cylinder which is sub-
mitted to external pressure. The prebuckling normal displacement
and meridional moment and the buckling modal displacement distri-
butions are also shown, Notice that mesh points are concentrated
near the T-shaped rings and at the boundary where stress concen-
trations exist. Half the cylinder is modeled with symmetry
conditions applied at the symmetry plane.
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Fig. 23 Prebuckling state and buckling mode of an externally
pressurized ring stiffened cylinder
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Modeling Discrete Rings When Local Buckling
Between Rings is Possible

Some BOSOR4 users have been concerned that occasionally buckling
loads predicted for externally pressurized ring stiffened cylinders
are unexpectedly high. In these cases the predicted buckling modes
are usually local (deflections between rings with rings at nodes in
the buckling pattern). Aside from the question of initial imperfec-
tions, there is another reason that too high buckling loads may be
calculated: 1in the actual structure the webs of ring stiffeners
probably deform conslderably in the local buckling mode, This de-
formation can be accounted for if the webs of the rings are treated
as flexible shell branches as shown in Fig. 24. The user should
include in his parameter studies such a model, at least for a sec-
tion of ring stiffened shell spanning two adjacent rings, It is
rarely necessary to include the ocutstanding flanges as shells, since
they can remain discrete rings,
Figure 25 shows a comparigson of predicted buckling pressures of
a cylinder with two models of a ring, one in which its cross section
cannot deform (labeled "Ring") and the other in which it can (label-~
ed "Branched Shell"), Reference [13] has more discussion on this
and other points about modeling discrete rings.
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Fig. 24 Cylinder with ring webs modeled ae flexible shell branches

When Stiffeners Can Be "Smeared"

1f there exists a regular pattern of reasonably closely spaced
astiffeners, their contribution to the wall stiffness of the shell
or plate might be modeled by an averaging of their extensional and
bending rigidities over arc lengths equal to the local spacings be-
tween them. Thus, the actual wall is treated as if it were ortho-
tropic. In BOSOR4 this "smearing" process accounts for the fact
that the neutral axes of the stiffeners do not in general lie in
the plane of the reference surface of the shell wall, Predictions
of buckling loads and vibration frequencies of stiffened cylinders
have been found to be very sensitive to thia eccentricity effect.

A general rule of thumb for deciding to smear out the stiffeners or
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Fig, 25 Comparison of local buckling pressures of a ring stiffened
cylinder for two models of the ring

to treat them as discrete is that for smearing there should be
about 2 to 3 stiffeners per half wavelength of the deformation
pattern. It may be appropriate to smear out stiffeners in a
buckling or vibration analysis but, because of local stress concen-
trations caused by the stiffeners, not in a stress analyses., The
stiffeners can be smeared as an analytical device to suppress local
buckling and vibration modes. In order to handle problems iavolv-
ing smeared stiffeners, a computerized analysis must include
coupling between bending and extensional energy.,

Modeling Prismatic Shell Structures

An interesting and not immediately obvious use of BOSOR4 is for

buckling and vibration analysis of prismatic shell structures, in
particular composite branched panels. This technique of using a
shell of revolution program for the treatment of structures that
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are not axisymmetric is discussed in detail in Ref [2]. Figure 26
shows various types of prismatic shell structures that can be
handled by BOSOR4. Examples involving stress and buckling of oval
cylinders, cylinders with nonuniform loads, and corrugated and
beaded panels are given in Ref. {2}, as well as a study of vibration
of a stringer stiffened shell in which the stringers are treated as
discrete, In the analysis of buckling of nonuniformly loaded cyl-
inders, the nonsymmetry of the prestress can be accounted for in
the stability analysis. In BOSOR4 the capability described in Ref.
[2] is extended to branched prismatic shell structures,
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Fig. 26 Some prismatic shell structures that can be analyzed with
use of BOSOR4
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Example of Analysis of Prismatic "Shell” Structure

Figure 27 shows two types of semisandwich corrugated construction,
bonded and riveted. The panels are treated as glant annull with
mean vadius of 2,750 in. and outer radius minus inner radius equal
to about 7.4 in. Both panels are assumed to carry an axial com-
pressive stress (panels loaded normal to plane of figure) that is
constant along the axis of the panel and over all of the little
segments shown at the top of Fig. 27, In the model on the left-
hand gide of the figure the troughs of the corrugated sheet and the
flat skin are assumed to be united by a perfect bond of zerc thick-
ness. The thickness of the panel in these areas is equal to the
sum of the thickness of the flat sheet and the corrugated sheet,

In the riveted panel the displacements and rotations of the corru-
gated sheet are constrained to be equal to those of the flat skin
only at the midlengths of the troughs, thus simulating a rivet of
zero diameter in the plane of the paper and continuous in the di-
rection normal to the plane of the paper. The computer generated
plots show the undeformed and deformed panels for buckling modes
with various wave lengths L in the direction normal to the plane of
the paper. The riveted panel is weaker in axial compression be-
caugse the rivets permit more local distortion of the cross section
than does the continuous bonding. The modes shown are more or less
general instability modes. One can calculate buckling loads for
much shorter L, such as L = 1,0 in,, in order to determine the
effect of fastening on crippling loads.
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Fig. 27 Buckling modes and loads for axially compressed bonded and
riveted corrugated panels
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Modeling Concentrated Loads on Shells

may be interested in several types of concentrated loads
Ezic;n:i{:: 1nyvarious ways., If the shell structure is to be sub-
jected to concentrated loads in the ordinary course of its service,
such as a tank supported on struts or a rocket stage with discreced
payload attach points, it {s usually provided that the concentrate
loads be applied to reinforced areas such as circumferential ;ings
or longitudinal stringers through which these loads are smoothly
diffused into the shell. Therefore, deflections are small, and a
linear analysis is generally suitable. If, however, the analyst
wants to find out what happens if the shell is accidentally poked
somewhere, the concentrated load may be applied to an unreinforced
area, and the shell may experience large deflections. Prediction
of the effect of these accidental loads may therefore require non-
linear analysis. The point-loaded spherical cap, for which a load-
deflection curve is shown in Fig. 15,is an example., In BOSOR4G a
concentrated load applied such that nonsymmetric displacements
occur is modeled as a line load with a triangular distribution
around the circumference. Figure 28 shows an example; Each load
is simulated by the area within the triangular "pulse” multiplied
by some factor provided by the user as an input datum,
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Constraint Condition Problems to Be Wary Of

There are certain commonly occuring situations in which the program
uger should take great care with regard to constraint conditions,
These involve rigid body behavior, symmetric vs. antisymmetric be-
havior at planes of symmetry in the structure, singularity condi-~
tions at poles of shells of revolution, discontinuities between
various branches and segments of a complex shell structure, and
unexpected sensitivity of predicted behavior to changes in boundary
conditions,

Rigid body displacement, Rigid body displacement of an analytical

model of a structure should not be permitted in static stress and
buckling problems. 1In such problems the shell must be held in such
& way that no constraints are introduced which are not actually pre-
sent in the real structure. The proper application of rigid body
constraint conditions requires special care in the case of non-
symmetrically loaded shells of revolution. These conditions apply
only if the displacements are axisymmetric, or 1f the displacements
vary with one circumferential wave around the circumference and

wmust be released for higher displacement harmonics.

Symmetry planes. Many problems are best analyzed by a modeling of
& small portion of the actual structure bounded by symmetyy planes.
In bifurcation buckling and modal vibration problems important
modes may be antisymmetrical at one or more of the symmetry planes.
This occurrence implies that symmetry boundary conditions should be
applied in the prestress analysis and antisymmetry conditions at
one or more of the symmetry planes in the eigenvalue analysis for
bifurcation buckling or modal vibration. Unless the program user
i8 certain about the behavior at a symmetry plane, he must make
multiple runs on the computer, testing for both symmetrical and
antisymmetrical behavior at each symmetry plane.

Singularity conditions at a pole. The problem of singularity con-
ditions arises only in the case of shells of revolution or flat
circular plates, As with rigid body modes, special conditions must
be applied for axisymmetric (n = 0) displacements or for displace-
ment modes with one circumferential wave (n = 1), Ifn 2 2 the
pole condition acts as a clamped boundary,

Constraint conditions for discontinucus domains. Practical ghell
structures are very frequently assembled so that the combined
reference surfaces of the various branches and segments of the
analytical model form a discontinuous domain., The BOSOR4 user
should be aware that the constraint conditions governing the com-
patibility relations between adjacent surfaces imply that a rigid
connection exists across the discontinuity, Thus the analytical
model is stiffer than the actual structure, Buckling loads and
vibration frequencies will be overestimated, It is likely that
local discontinuity stresses will also be overestimated,
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Unexpected sensitivity of predicted behavior to changes in boundary
conditions. Frequently, complicated shell structures are designed
and manufactured by more than one company or by more than one
organization within a company. Each company or organization is

responsible for only one particular segment of the entire structure, and

often the properties of the adjoining segments are known only ap-
proximately if at all, Therefore some conditions must be assumed
at the boundaries of each segment during the design phase of that
segment., The purpose of this section is to warn the analyst that
predictions of stress, buckling, and vibration of shells may be
very sensitive to boundary conditions even though intuition dic-
tates otherwise. Engineers interested in designing a particular
segment of a larger structure should make every effort to determine
as accurately as possible the actual boundary conditions at the ends
of “their" segment. Portions of the adjoining segments should be
included in the model, possibly with a cruder mesh. If little is
known about the adjoining structures, sensitivigy studies should bé
performed in which both upper and lower bounds on the degree of
boundary constraint are assumed,

INPUT DATA
A preprocessor has been written for BOSOR4 by means of which the

input data can be prepared in free format [14]. Figure 29 shows a
sample BOSOR4 data deck.

Fig. 29 Sample BOSOR4 data deck
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Figs, 1 - 3 from D. Bushnell, B. 0. Almroth, and F., Brogan,
"Finite-Diference Energy Method for Nonlinear Shell Analysis,"
Lomputers & Structures, Vol, 1, 1971, pp, 361-387, © 1971.

Figs. 7, 8, 11, 12, 14, 19, 20, 28, 29 and Table 2 from D,
Bushnell, "Stress, Stability and Vibration of Complex, Branched
Shells of Revolution," Computers & Structures, Vol, 4, 1974, PP
399-435, © 1974.

Figs. 9, 10 from D, Bushnell, “Finite-Difference Energy Models
versus Finite-Element Models: Two Variational Approaches in One
Computer Program,’ Numerical and Computer Methods in Structural
Mechanics, pp. 291-336, © 1973, Academic Press, New York.

Fig. 13 from D. Bushnell, "Nonlinear Analysis for Axisymmetric
Elastic Stresses in Ring-Stiffened, Segmented Shells of Revolution,"
AIAA/ASME 10th Structures, Structural Dynamics and Materials Con-
ference, pp. 104-113, © 1969, ASME,

Fig. 16, 17 from D. Bushnell, "Crippling and Buckling of
Corrugated Ring-Stiffened Cylinders," AJAA Journal of Spacecraft

and Rockets, Vol. 9, No. 5, 1972, pp. 357-363, © 1672, AIAA.

Fig. 18 from D, Bushnell and S. Smith, “Stress and Buckling of
Nonuniformly Heated Cylindrical and Conical Shells, "AIAA Journal,
Vol. 9, No. 12, Dec. 1971, pp. 2314-2321, © 1971, AIAA,

Figs. 21 through 23 and Table 3 from D. Bushnell, "Thin Shells,"
Structural Mechanics Computer Programs, University Press of Virginia,

pp. 277-358 © 1972,

Fig. 26 from D. Bushnell, "Stress, Buckling, and Vibration of
Prismatic Shells," AIAA Journal, Vol 9, No. 10, Oct. 1971, pp.
2003-2013, © 1971, AIAA.
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Fig. 27 from D. Bushnell, "Evaluation of Various Analytical
Models for Buckling and Vibration of Stiffened Shells," AIAA
Journal, Vol. 11, No, 9, 1973, pp. 1283-1291 © 1973, AlAA.
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APPENDIX A

BOSOR4 INPUT DATA

This appendix 1s organized in the following way: First there is a
page which gives some useful hints on how to set up & case; then
there are two pages which define certain input data that depend on
what type of analysis is to be performed; these two pages are fol-
lowed by seven pages describing constraint and juncture conditions;
then come three pages on load and temperature multipliers and vanges.
All of these pages just described correspond to the initial cards in
the input deck labeled "General Input--Applicable to All Segments of
Cage 1" in Fig. 29.

The remaining input data for a case are defined on pages 61 - 98,

These data are required for each segment of the structure. The data
input section is subdivided into the following subsections:

Mesh Point Distribution
Reference Surface Geometry
Discrete Ring Properties
Discrete Ring Line loads
Discrete Ring Thermal Loads
Pressure and Surface Traction
Temperature Distribution

Prestress Input Dats for the Option INDI =4, IPRE =0
Wall Construction

DO OB A e

The input data specifications are written in a style very similar to
FORTRAN. It is therefore assumed that the user is familiar with
this language.

Following the input data definition are sample input decks cor-
responding to each type of analysis. (IWwIic=1, -1,0, 2, 3, 4, -2).
The user is urged to consult these cases since they will clarify
many of the input specifications which may at first seem rather ar-
cane,

A section entitled "Possible Pitfalls and Recommended Solutions"
then follows. The user should read this section even if he has not
yet encountered a problem. There are some suggestions given there
that may help the user decide how to set up an appropriate model.

Finelly, there is a brief description of BOSOR4 output, includ-

ing sample list and plot output corresponding to the first sample
case,



