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POSSIBLE PITFALLS AND RECOMMENDED SOLUTIONS

The following 1s a compilation of items which may cause the user
of the BOSORL program some difficulty. Suggestions are given for
overcoming the difficulties.

Provision of Consistent Input Data

In the initial use of a complex program such as BOSORS it is pos-
sible that the input data may not be consistent. The user is

urged to check carefully the 1ist and plot output for errors in the
input data. In particular, boundary conditions, position of dig-
crete ring stiffeners, meridian shape, line loads, and surface loads
should be checked. Often the best way the user can familiarize
himself with the input procedures is to run cases for which he
knows the answers beforehand, A check of thesmode shapes and
stress distributions often reveals possible errors in input. It is
emphasized that the user should check the sample cases in the
BOSOR4 manual to see if they might help him to set up a new case.

Finding the Minimum Minimum Buckling Load:
Appropriate Choices for NOB, NMINB, NMAXB, INCRB

The theory on which BOSOR4 is based does not exclude the possibil-
ity that several values of circumferential wave number N may be
asgociated with minimum buckling loads. One must always find the
minimum minimum., This problem frequently arises in the calcula~-
tion of buckling loads for complex shells or ring stiffened shells.
A ring stiffened conical shell under external pressure is such a
case (Fig. Al5). Here there could be a minimum buckling load
corresponding to general instability and additional minima (at
higher values of N) corresponding to the local failure of each
conical frustrum (the bays between the rings). Physical intuition
is invaluable as a gulde for finding the absolute minimum load.
One may idealize each bay of & ring stiffened shell by agsuming
that the bay is simply supported, calculate corresponding "panel®
buckling loads with certain appropriate ranges of N, and then use
the critical loads and values of N as starting points in an in-
vestigation of the assembled structure.

It is not necessary always to increase the circumferential
wave number N by one. In the search for the minimum buckling load,
for example, one may only be certain that the N corresponding
to the minimum buckling load, N (critical), lies in the range
2<N<100. One might, therefore, choose INCRB = 10 and "zero in"
on a more accurate value in a subsequent run, The user should
ordinarily set INCRB = 0.05*% (NMINB + NMAXB) .

Experimental evidence is of course very useful in determining
a good choice of NOB, NMINB, and NMAXB. If aone is available the
aser is advised to try the following formulas:
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(1) ‘“Square" buckles for short shells or panel buckling

N = gr/L, where L is the shell meridional arc length
between nodes of the buckling mode.

(2) For monocoque deep shells, axial compression:

2 2
N = {(Nominal circumferential rad. of curve)/t] u

{3) For shallow sggerical‘cags supported rigidly at their
edges; external pressure:

2 _

N=1.8 *0&* (r/t) 5

(4) For axially compressed conical shells and frustrums:

tial radius of
se formula 2 where the circumferen
Eurvature, R, is the average of the radii at the ends.

(3) Spherical segments of any depth under axial tension

1/2
N = 1.8% ®e)Y? sn lay + 4.2 (/)%

where @) and @, are the meridional angles at the
segment beginn%ng and end, respectively.

The above list of formulas is by no means complete. Howezer, n:;iii
that (R/t:)ﬁ2 is a significant pavameter., If N is k:::: cz: :e hert
n geometry loaded in a certain way, a new v,
:ic:egi¥:7 i new R/t through the knowledge that N often seems to vary
2

as (R/t)1 (R is the circumferential radius of curvature.)
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Expetience in the use of the program will lead to further competence
in the selection of approptiate values for NOB, the initial guess at

N. Again, the user m
8t be sure that th
includes the minimum minimum buckling lo:dfnput range NMINB< N< NMAXB

Stress Resultant or Stress Discontinuities at
Junctures and Boundaries

Stress resultants and st

Junctures in all cases, :;nzzzr::ed Howener pein
notice that for some cases in :
tinuous there exist small disc
discontinuities arise from the
method leads to larger truncati
domains. If the user is partic

uous at segment
However, the user of BOSOR4 will
which these quantities should be con-
ontinuities right at junctures. These
fact that the finlte~difference energy
o? e:rors at boundaries than inside
ularly interested in str
izzzzu::e:: :gu:g::ii 1ttis urged that he concentrate m::; szigts in
Ze truncation error. In any case
B th
g:ggr::rin wr;ﬁten 830 as to minimize the effect zf bou;dar; Egigsa—
o ofo;;z : :;;eas resultants are "corrected" as described oa
an of [6]. 1In addition, " " .
Pa3 n, “extrs” mesh
1: :::::e:il:a::ﬂ::teg near the points on'junctures and gzi:;:r:::
e truncation error as small as ig f
ea
;;::u2:::1ng difficulties associated with precision roun:{Z:: ::;ZOUt
ure is more completely described in the input data BeCC10;.

Correct Modeling of Discrete Rings

It has been common in
past analyses to neglect out-of-
;zi:i?essd(terma involving 1,) which is called ":ngfizlzzz bending
ma sheI;: w:::a;:nal stiffness (terms involving GJ) in the analysis
these terms . in p:::;z:l::ngs; tThe uger is cautioned not to neglect
not to neglect the out-of-
" ut-o 1
stiffness of the discrete rings (Ix). Such neglect mzyn?:a:e::iszry

:i:: :::oiegh:; t: :he web of the ring is very thin in comparison
by aetimiie gor (he ght),“the composite shell-ring structure ma fatil
o iopel bg g sidesway” of the web, These failure modes canyb
predicee :hz d::atment of the webs as shell branches rather than :s
s Giacreriied crete rings, as described in previocus sections If
e s brete ¢ gnozzurs at a plane of symmetry, and this plane 1; used
o i oun tzrsi : analytical model, the user should set the rine
actual vaiues. :T: o:;g:d::an:éL::dr:enzity R:.eqU!l to 1/2 theig
main uncha .
Also see the note given on the page where th:g:gacrete ring input

is defined. This note h
siens s ined Largs ot 88 to do with the use of discrete rings to
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Rigid Body Displacement

For n = O and n = 1 circumferential waves, rigid body motion is
possible 1if the shell is not sufficiently constrained by the boundary
conditions, The six possible rigid body modes, three translational
and three rotational, can be prevented by choosing a geridtonal
station at which to restrain the axial displacement u and the cir-
cumferential displacement v. The BOSOR4 manual describes an input
variable, IRIGID, through which rigid body constraints are intro-
duced in order to prevent n = O and n = 1 rigid body displacements.
For n >1 these constraints are automatically released and replaced
by whatever the user has specified for 1w*, v, Iw*, Iy at the seg-
ment number and mesh point number corresponding to the meridional
location at which the rigid body constraints have been applied. In
this way rigid body displacements are prevented without introduction
of spurious styxesses.

Behavior at Apex of Shell

Certain regularity conditions exist at the apex of shells the
meridians of which intersect the axis of revolution. These condi-
tions have been satisfied to the extent which the finite difference
model permits, Because of the “half-station" spacing of u and v,
however, all of the regularity conditions are not satisfied exactly
at the apex. This truncation error leads to errors in the local
values of the stress resultants in the immediate neighborhood of the
apex. The actual stress resultants at the apex can be obtained
simply by extrapolating the solution from a region slightly away from
the apex in which it is regular.

Buckling and Vibration of Structures with Planes of Symmetry

A fairly common oversight on the part of a program user is the
failure to run a case in which buckling and vibration modes are
sought which are antisymmetric with respect to & plane of symmetry.
1f half a shell or a part of s shell is being analyzed because of

the existence of planes of symmetry, then the analyst should check
for buckling and vibration both symmetrical and antisymmetrical with
respect to the planes of symmetry. See the paragraph on "Correct Model-
ing of Discrete Rings" for how to model a discrete ring at a plane
of symmetry.

Calculation of Same Eigenvalue Twice, Eigenvalues Out of Order

In problems for which the user requires more than about 3 eigenvalues
for a given circumferential wave number N, the eigenvalue extraction
routine occasionally computes the same eigenvalue and eigenvector more
than once. It is also possible on occasion that eigenvalues will be
calculated out of order or that an eigenvalue will be missed. Un-
fortunately, there is no way to make an eigenvalue finder based on
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equations of the type used in the BOSOR4 program 100% reliable, The
calculated eigenvalues are always eigenvalues of the system, but

Multiple or Closely-Space Eigenvalues

In the case of ring stiffened shells it may turn out that eigenvalues
corresponding to vibration frequencies or buckling loads are close
together. This {s particularly true of ring stiffened cylinders
where the rings are equally spaced and rather stiff in bending com-
pared to the shell bending stiffness. With such a configuration
there are many modes in which the motion of the rings is of small
amplitude compared to that of the shell, The bays between the rings
vibrate at frequencies or buckle at loads which may approximate
those corresponding to a simply-supported cylinder of the same
geometry as the bay. Multiple or close-spaced eigenvalues corres-
pond to modes in which one or more of the bays is vibrating or
buckling while others are unaffected. True muitiple eigenvalues are
generally eliminated by use of symmetry and antisymmetry conditions
at planes of symmetry in the shell., In eigenvalue problems the user
should always analyze as small a segment of shell as possible in

order to avoid numerical difficulties associated with muleiple
eigenvalues.

Block Sizes Too Laxge

On occasion the user will encounter the diagnostic "Block size of
Segment No, ..... exceeds maximum allowable .,,,, .

What is a block? 1In BOSOR4 the stiffness, mass, and load-
8eometric matrices are stored on disk or drum in blocks. The logic
in the program is set up such that a given block must contain the in-
formation relevant to assembly of complete shell segments, The
lowest possible number of segments per block is one, of course,
Figure A16 shows a stiffness matrix configuration. Only the elements
Inside the "akyline" — the heavy 1line enclosing all non-zero elements
below and including the main dlagonal ~ are stored. The block size
is equal to the number of little squares, In prebuckling problems
the maximum block size is 2850; in stabilicy, vibration, and non-
symmetric stress problems the maximum block size {s 3333, The program
checks at the end of each segment to see if the elements correspond-

ing to the next segment will cause the block to overflow. If they do,
a new block is started,
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thin the
t occasionally happens that the number of e;:mszzsozibOth o
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Moment Resultantas and Reference Surface Location

More than one BOSOR4 user has indicated concern about the values
obtained for the moment resultants M10, M20 or Mi, M2. In this para-
graph it is emphasized that these moment resultants are the values
with respect to the reference surface, which may not necessarily be
Ehe middle surface. The magnitude of the moment resultants depends,
therefore, on the location of the reference surface relative to the
shell wall material. For example, in a uniformly loaded monocoque
cylinder, if the inner or outer surface is used as the reference
surface, the moments M1, M2 will approach the values

lMlI - 'Nllt/Z; lnz I. |N2|t/2

far away from the edges. (t = thickness; N1, N2 = gtress resultants)
Note, however, that the extreme fiber stresses are of course not
dependent on the location of the reference syrface. In this connec-
tion please recall that the commonly used formula for extreme fiber

stress
- N1 o

2

o

only applies if the shell s monocoque and if the middle surface is
used as the reference surface.

Remarks on the Hemisphere Vibration

In this sample case the control integer IRIGID i3 set equal to unity.
While this case does i{llustrate the proper mechanical use of the

IRIGID # O option to prevent rigid body motion associated with n= 0
and n = | circumferential waves, the choice of a vibration analysis for
the demonstration is a poor one, since the frequencies corresponding to
n=0and n =1 will depend upon the location of the constraints. The
frequencies and modes will correspond to the actual free-free hemi-
sphere vibrations only if the constraints are imposed such that the
center of mass of the structures does not move during vibration in the
n=0orn= 1 modes. Actually, in vibration analyses it {8 never
necessary to set IRIGID # 0, To put it more clearly, IRIGID should be
zero in vibration analyses. Note however, that this case does
illustrate the proper way to handle the problem of rigid body motion,
which must be handled in stress and stability analyses.
e TN Streds and stability analyses

Modeling Global Moments and Shear Forces

The user may wish to determine local stresses in a shell structure
caused by certain known global moments and shear forces. Figure Al7
shows one way in which the global forces might be converted into
equivalent line loads. A cylinder with an end ring is loaded by a net
shear force and moment (a). The shear force is assumed to act uni-
formly around the circumference as shown in (b). At every clrcumferen-
tial station @ , the shear force in (b) is resolved into components

121

BOSOR

Section CC
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1 V{Pos.}
8{Poa.) l -r
Detall D
c. d.

Fig. Al7 Modeling global moments and shear forces

idal axis (c). The
and tangential (S) to the ring centro

Ro;::ilﬁﬂioment M %s modeled as an axial load which varies a:oundizh;‘
c%rcumference as shown in (d). With the coordinate system shown 8

clear that

V= Vo cosf, § = So sing, H = Ho cosé

Referring to Table A2 we
th V, and S, positive and Ho negative.

:te th:t for ghis circumferential distribution of line lonislwermfgi
use n = -1 as input to BOSOR4. (NSTART = NFIN = -1, INCR o

Shear Line Loads, Concentrated or Othexrwise

BOSOR4 users have had difficulty providing t?e corte:;ei::zzbf:r shear

ds. ‘This paragraph should help to clear up N
;;::r20218 shows ag example of a ring with equal concentrated loads §
applied at6 =90° and @ =270°, 1In BOSOR4 concentrated
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+180

| | |
-270 ! \/ f y
-180 0 +90 : \l/ 36
d
Fig. Al8 Concentrated shear loads

loadseare handled by spreading them out over a
or 10°, as shown in Fig. Al8. The sign convention for shear loads
is such that positive S is in the direction of increasing circum-
ferential coordinate 8, Thus, 1f we plotted the triangular peaks
shown in Fig. A18b on a rectilinear scale, we would obtain the odd
function shown in Fig. Al8d. It {s emphasized that even thqggh_zﬁé
shear loading is symmetrical about 0=0, as seen from Fig, AlBa, it
is described by an odd function in the interval ~180°<8<180° ’In
this example, therefore, THETAM would be 180", NODD would be.2 and
the Fourier Harmonica -1 through -39 in steps of -2 would be u;ed

since negative harmonics imply that the shear force varies as sinlNIG
Also note that the entire range -180°< 0 <180° must be used, since ’
the function repeats every 360°. 1f In Fig. Al8a the S at 570° ointed
upward, then the function would be even, H

THETAM woul °
Fourier harmonics would be +0, 42, +4, ..., +38. ould be 90°, and the

finite angle, say 5°

Best Way to Run Cases with the INDIC = 1 Option

The BOSOR4 User's Manual says that with INDIC = 1

analysis is performed, Actually, this is not stri:ti;nigf b;itéing

ENDIC : 1 BOSOR4 performs a nonlinear prebuckling analysis for the
fixed"™ or "initial™ loads, P, v ( ), etc., and then another non-

linear prebuckling analysis for P+ DP, V( ) + DV( ), etc. The

prestresses and shape change (meridional rotation diaéribution Xo)

corresponding to the initial loads P, V(). etc., modify the stab?lity
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stiffness matrix. The changes in meridional and hoop stress
resultants Nyg and Ny, due to the load increments DP, DV( ), ﬁtc.,
contribute terms to the so-called "load-geometric" matrix or Lambda-~
matrix.” The critical loads are then

p = (P + (Eigenvalue)*DP)*PDIST
cr
y{) e V() + (eigenvalue)*DV( ); etc.,
c

where PDIST represents the meridional distribution of pressure. It is
best, when doing an INDIC = 1 type of buckling analysis, to observe
the following two rules:

1. MNever have both non-zero initial load and non-zero increment
for the same type of load.

EXAMPLE: P = 0.0, DP = 1.0 is O.K.

P = 50,0, DP = 1.0 is inadvisable, mainly ‘because the user
could easily err in interpreting the
eigenvalue.

ANOTHER EXAMPLE: P = 0.0, DP = -1.0

V(1) = 75.0, DV{1) = 0.0 is 0.K. because P and V(1)
are different kinds of loads.

2. Always choose loads that are small compared to the design
load of the structure. In other words, choose magnitudes of the loads
for which the prebuckling behavior really is linear. It is generally
advisable to set DP = -1.0, for example, since the eigenvalue then
represents the critical pressure directly., Remember that the actual
pressure is DP*f(s), where f(s) is the meridional distribution. (In
the examples 1t 1s tacitly assumed that £(s) = 1.0.)

Miscellaneous Suggestions

It is often advisable in buckling analyses to use INDIC = 1 with a
rather wide range for N for the fivst run through the computer (linear
buckling analysis). With this choice NVEC buckling loads "are obtained
for circumferential wavenumbers from N = NOB to N = NMAXB in steps of
INCRB. The user can obtain multiple buckling loads at a given N only
with INDIC = 1 and 4. Computer time is often saved inm this manmner,
since the wavenumber corresponding to the minimum load is often not
known a priori, even approximately. Also, there are cases for which
two minima exist, and the user must find the absolute minimum. With
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INDIC = -1, only the relative minimum will be found unless more than
one case is run, each case with its own range of N.

The capability of finding more than one buckling load at a given
N is particularly useful to the designer who wishes to find the
allowable buckling of a complex shell such as that shown in Fig, 1.
The lowest buckling pressure might correspond to buckling of the
cylinder, but at a few psi higher the ogive might buckle. Thus, the
designer would not greatly improve the overall structure by
strengthening just the cylinder. He must know the loads for which

each of the segments buckles when these segments are analyzed as part
of a larger structure,

In cases for which two eigenvalues are close together or for
which bifurcation buck

ing loads are close to axisymmetric collapse
loads, it is occasionally advisable to use INDIC = -2, 1In this way
the first vanishing point of the stability determinant is approached
gradually, and if axisymmetric collapse occurs at higher loads than
nonsymmetric buckling, the stability determindnt will change sign and
the bifurcation buckling load will be determined.

With INDIC = 4 there are two possible flows of calculations:
1f IPRE = O the prebuckling stress resultants Ny and Nyg and the
prebuckling meridional rotation X, are rvead in ditectly for a
certain number, NSTRES, of meridIonal stations. Linear interpola-
tion is performed internally for calculation of these prebuckling
quantities at all of the mesh stations of each segment., Buckling
loads (NVEC eigenvalues for each circumferential wave number
N) are then calculated for the range NOB to NMAXB in steps of INCRB.
If IPRE # O the prebuckling quantities are calculated from the linear

theory for nonsymmetr cally loaded shells, lust as if INDIC were equal
to 3. The user preselects the meridian (value of 8, called THETAS,
which he feels represents the "worst" prestress from the point of view
of stability. For example, a cylinder submitted to external pressure
which varies around the circumference will generally buckle where the
pressure has the highest ampiitude. The BOSOR4 program will use the
meridional stress distributfon at @ = THETAS in the stability calcu-
lations. 1In the stability analysis the flow of calculations for both
cases IPRE = 0 and IPRE # 0 i3 the same as that for INDIC = 1.
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BOSOR4 OUTPUT
Nomenclature of the BOSOR4 Output (Sample Units)

(Units do not have to be in in. and 1b)

ALPHAL angle from axis to beginning of spherical segment
(degrees)
ALPHA2 angle from axis to end of spherical segment
ALPHAT distance from axis to center of curvature of spherical
segment
%
AREA discrete ring cross-sectional area (in.
BETA meridional rotation, denoted X in analysis (radians)
CHIO prebuckling rotation Xo (radia?;)
cuRl meridional curvature, 1/R1 (in. ) °
CUR2 normal circumferential curvature, 1/R2 (in. ) "
CURLD s derivative of meridional curvature, (I/Rl) (in. 7)
DET stability determinant "mantissa':
Determinant = DET*10
DH eigenvalue radial line load or radial line load
increment (1b/in.)
bM eigenvalue meridional moment, or meridional moment
increment (in.-1b/in.)
DP eigenvalue pressure multiplier, or pressure increment
multiplier (psi)
DTEMP eigenvalue temperature rise multiplier, or temperature
rise increment multiplier
v eigenvalue axial line load or axial line load increment
{1bs/in.)
EICENVALUE Meaning depends upon case. (See following section)
ER discrete ring modulus of elasticity (psi)
El discrete ring radial eccentricity (in.)
E2 discrete ring axial eccentricity (in.) 2
[ discrete ring torsional rigidicy (1b-in.")
H “fixed" or initial radial line load (1b/in.)
of
number of Newton-Raphson iterations for convergence
e nonlinear axisymmetric stress analysis to within 2.1%
IX discrete ring moment of inertia about x axis (1n.4)
1Y discrete ring moment of inertia about y axis (in. )

4
IXY discrete ring product of inertia (in. )



