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SUMMARY 
 
A strategy for solving problems involving simultaneously occurring large deflections, elastic-plastic material 
behaviour, and primary creep is described. The incremental procedure involves a double iteration loop at each 
load level or time. In the inner loop the material properties are held constant and the non-linear equilibrium 
equations are solved by the Newton-Raphson method. These equations are formulated in terms of the tangent 
stiffness. In the outer loop the plastic and creep strains are determined and the tangent stiffness properties are 
updated with use of a subincremental algorithm. The magnitude of each time subincrement is determined such 
that the change in effective stress is less than a preset percentage of the effective stress. The strategy is 
implemented in a computer program, BOSOR5, for the analysis of shells of revolution. Examples are given of 
elastic-plastic deformations of a centrally loaded flat plate and elastic-plastic-creep deformations of a beam in 
bending. The major benefits of the subincremental technique are the increased reliability with which problems 
involving non-linear plastic and time-dependent material behaviour can be solved and the greatly relaxed 
requirement on the number of load or time increments needed for satisfactory results. 
 
INTRODUCTION 
 
The high speed digital computer has enabled analysts to construct elaborate models of structures, including 
large deflection effects and material non-linearity. There are several recent excellent surveys of the various 
approaches: Tillerson et al [1] review numerical methods used to solve non-linear equations; Armen [2] 
describes several analytical models of multi-axial plasticity; Nickel1[3] gives a survey of techniques for 
treatment of creep and reviews many widely used computer programs in which creep is included; Hunsaker et al 
[4] present comparisons between test and theory for currently used models of elastic-plastic material behaviour. 
Therefore a review of methods will not be included here. 
 
The purpose of this paper is to explain in detail a ‘subincremental’ numerical strategy for the solution of 
problems in which large deflections, plasticity, and primary creep are simultaneously present. This strategy is an 
extension of a procedure described in Reference 5. It includes modifications for the solution of problems 
involving primary creep without the occurrence of numerical instability. The method has been incorporated into 
the BOSOR5 computer program for analysis of shells of revolution [6], and it can be used for more general 
configurations. Huffington [7] was the first to point out the advantage of using a subincremental method. Nayak 
and Zienkiewicz [8] and Stricklin et al [9] have incorporated versions of it into their computer programs. 
 
THE SUBINCREMENTAL METHOD 
 
Before a detailed description of the analysis is presented a brief explanation will be given of what the 



‘subincremental’ technique is and why it is needed. 
 
In practically all non-linear analyses the load is applied incrementally and the response is determined for each 
value of the load. Each load level involves the solution of a system of simultaneous algebraic equations, the 
rank of this system being equal to the number of degrees-of-freedom in the discretized mathematical model. Let 
us henceforth refer to this system of simultaneous equations as ‘System A’. In most analyses in which material 
non-linearity is included, the iteration loop for the solution of System A contains calculations for determination 
of the plastic strain components. Usually these quantities are obtained in a one-step process in which the total 
increments of strain accumulated from one load level to the next are allocated among elastic, plastic, and 
possibly creep components. The relative magnitudes of the various components are known, at least as the load 
step begins, because the analysis contains a flow theory and the position of each material point in stress space is 
known from the converged results associated with the previous load level. The direction of plastic flow for each 
material point is generally considered to be constant for the entire load increment. For example, it may be 
assumed that this direction is parallel to the normal to the yield surface at a location in stress space determined 
by the converged result at the previous load level. Determination of the plastic strain components requires in the 
general three-dimensional case solution of a set of six simultaneous equations at each material point and in the 
case of axisymmetric deformations of thin shells the solution of two simultaneous equations at each material 
point. We shall henceforth refer to this small system of simultaneous equations as ‘System B’. 
 
The analysis presented here differs from most other analyses in two respects. The calculation of the plastic and 
creep strain components is removed from the iteration loop in which System A is solved, and a subincremental 
approach is used for calculation of the plastic and creep strain components so that the direction of flow is 
permitted to change continuously within a single load interval. 
 
The removal of the calculations involving plastic flow from the iteration loop for the solution of System A 
removes an objection pointed out by Tillerson et al [1] to the use of the Newton-Raphson method for problems 
involving elastic-plastic material. They found that the ‘Newton-Raphson’ procedure failed to converge if they 
used the tangent stiffness approach because of indications of alternative loading and unloading from iteration to 
iteration. Since the coefficients of their System A changed in a discontinuous manner in successive iterations, 
their strategy could not really be called a Newton method. In the present analysis the Newton-Raphson method 
is used with success. 
 
In the subincremental process the total increments of strain accumulated from one load level to the next are 
divided into subincrements of a certain magnitude. For each subincrement the direction of plastic flow is 
considered to be constant, given by the normal to the yield surface at a location in stress space determined by 
the result at a previous subincrement. For each strain subincrement the stress subincrements are determined 
from the flow law and the given relationship between effective stress subincrement and effective plastic strain 
subincrement (the uniaxial stress-strain curve). Thus, the equation System B is solved for each subincrement 
and each material point. 
 
THE NEED FOR THE SUBINCREMENTAL METHOD 
 
Why is the subincremental method needed? This question can perhaps be best answered with reference to the 
equations which form the simultaneous System B (creep neglected), etc., etc. (See the paper for more text and 
for the references. See the figures below and the paper for discussions of them.) 
 



 

 
 
Fig. 2 Paths followed in stress space and strain space by a material point in an internally pressurized 
torispherical vessel head of mild steel. (from International Journal for Numerical Methods in Engineering, Vol. 
11, 683-708, 1977) 
 
 



 
 
Fig. 3 Paths followed in stress space and strain space by a material point in a circular flat plate with a 
concentrated load, P. (from International Journal for Numerical Methods in Engineering, Vol. 11, 683-708, 
1977) 
 



 
 
Fig. 4 Accumulated creep strain predicted with use of the strain hardening model. (from International Journal 
for Numerical Methods in Engineering, Vol. 11, 683-708, 1977) 
 
 



 
 
Fig. 5 Flow chart of the double-iteration loop used in BOSOR5 for problems in which both material and 
geometrical nonlinearities exist. (from International Journal for Numerical Methods in Engineering, Vol. 11, 
683-708, 1977) 
 
 



 
Fig. 13 Extreme fiber stress and creep strain in the titanium beam as functions of time predicted with the use of 
various time increments. . (from International Journal for Numerical Methods in Engineering, Vol. 11, 683-708, 
1977) 
 
 


