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ABSTRACT

The phenomenon of plastic buckling is first illustrated by
the behavior of a fairly thick cylindrical shell, which under
axial compression deforms at first axisymmetrically and later
nonaxisymmetrically. Thus, plastic buckling encompasses two
modes of behavior, nonlinear collapse at the maximum point in
in a load vs deflection curve and bifurcation buckling. Accurate
prediction of critical loads corresponding to either mode in the
plastic range requires a simultaneous accounting for moder-
ately large deflections and nonlinear, irreversible, path-depend-
ent material behavior. A survey is given of plastic buckling
which spans three areas: asymptotic analysis of post-bifurca-
tion behavior of perfect and imperfect simple structures,
general nonlinear analysis of arbitrary structures, and non-
linear analysis for limit load collapse and bifurcation buckling
of shells and bodies of revolution. A discussion is included of
certain conceptual difficulties encountered in plastic buckling
models, in particular those having to do with material loading
rate at bifurcation and the apparent paradox that use of de-
formation theory often leads to better agreement with tests on
structures with very simple prebuckling equilibrium states than
does use of the more rigorous incremental flow theory. In the
survey of general nonlinear structural analysis emphasis is given
to formulation of the basic equations, various elastic-plastic
material models, and strategies for solving the nonlinear equa-
tions incrementally. In the section on buckling of axisym-
metric structures, numerous examples including comparisons
of test and theory reveal that critical loads are not particularly
sensitive to initial imperfections when the material is stressed
beyond the proportional limit. A final summary includes sug-
gestions for future work.
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INTRODUCTION
WHAT IS PLASTIC BUCKLING?

To most engineers the word “buckling’ evokes an image of
failure of a structure which has been compressed in some way.
Pictures and perhaps sounds come to mind of sudden, castas-
trophic collapse involving very large deformations. From a
scientific and engineering point of view, the interesting phases
of buckling phenomena generally occur before the deforma-
tions are very large, when to the unaided eye, the structure ap-
pears to be undeformed or only slightly deformed.

In static analysis of perfect structures, there are two phe-
nomena loosely termed “‘buckling”: collapse at the maximum
point in a load vs deflection curve and bifurcation buckling.
These are illustrated in Figs. 1 and 2. The axially compressed
cylinder shown in Fig. 1 deforms approximately axisym-
metrically along the path OA until a maximum or limit load
A, is reached at point A. If the axial load X is not sufficiently
relieved by the reduction in axial stiffness, the perfect cylinder
will fail at this limit load, foliowing either the path ABC along
which it continues to deform axisymmetrically, or some other
path ABD along which it first deforms axisymmetrically from
A to B and then nonaxisymmetrically from B to D. Limit point
buckling, or “snap-through’’, occurs at point A and bifurcation
buckling at point B. The equilibrium path OABC correspond-
ing to the axisymmetrical mode of deformation is called the
fundamental path and the post-bifurcation equilibrium path
BD, corresponding to the nonaxisymmetrical mode of de-
formation, is called the secondary path. The significance of the
word “plastic” in the title is that buckling of either type occurs
at loads for which some or all of the structural material has
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FIG. 1 LOAD-END SHORTENING CURVE WITH LIMIT POINT A, BIFURCATION POINT B,
AND POST-BIFURCATION EQUILIBRIUM PATH, BD. (PHOTOGRAPHS COURTESY SOBEL
AND NEWMAN [237]).

been stressed beyond its proportional limit. The example in
Fig. 1 is somewhat unusual in that the bifurcation point B is
shown (correctly) to occur after the collapse point has been
reached. In this particular case, therefore, bifurcation buckling
is of less engineering significance than axisymmetric collapse.

A more commonly occurring situation is illustrated in Fig.
2(a). The bifurcation point B is between O and A. If the
fundamental path OAC corresponds to axisymmetrical de-
formation and BD to nonaxisymmetrical deformation, then
initial failure of the structure would generally be characterized
by rapidly growing nonaxisymmetrical deformations. In this
case the collapse load of the perfect structure A, is of less
engineering significance than the bifurcation point, A..

In the case of real structures which contain unavoidable
imperfections, there is no such thing as bifurcation buckling.
The actual structure will follow a fundamental path OEF, with
the failure corresponding to “snap-through’ at point E at the
collapse load A,. However, the bifurcation buckling analytical

model is valid in that it is convenient and often leads to a good
approximation of the actual failure load and mode. For more
general background on buckling of perfect and imperfect
structures, see Ref. [1].

CAPSULE OF PROGRESS IN THE 1870'S IN PLASTIC
BUCKLING ANALYSIS

Recent progress in our capability to predict plastic buckling
failure can be categorized into four main areas, three of them
dealing primarily with structural modeling, and the fourth
dealing primarily with material characterization.

The three areas dealing with structural modeling are:

1. Development of asymptotic postbuckling theories and
applications of these theories to specific classes of structures,
such as simple plates, shells and panels (Refs. [2-18]).

2. Development of general-purpose computer programs for
calculation of static and dynamic behavior of structures includ-
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FIG.2 LOAD-DEFLECTION CURVES SHOWING LIMIT AND BIFURCATION POINTS.
(A) GENERAL NONLINEAR ANALYSIS. (B) ASYMPTOTIC ANALYSIS.

ing large deflections, large strains, and nonlinear material ef-
fects (Refs. [19-21]).

3. Development of special purpose computer programs for
limit point axisymmetrical buckling and non-axisymmetrical
bifurcation buckling of axisymmetric structures (Refs. [22-23] ).

Asymptotic Analysis

The elastic-plastic bifurcation and asymptotic post-buckling
analyses [2-18] rest on the theoretical foundations established
by Hill [24-27], whose formulation of the bifurcation prob-
lem applies to solids with smooth or piecewise smooth yield
surfaces and small or large strains, and Koiter [28-29] , whose
general elastic post-bifurcation theory leads to an expansion
for the load parameter X in terms of the buckling modal ampli-
tude w,, which is valid in the neighborhood of the critical bi-
furcation point in (A, wj, ) space. Hill proved that in order for
bifurcation of equilibrium paths to occur at stresses beyond
the proportional limit, the initial post-buckling path must in
general have a positive slope; plastic bifurcation buckling occurs
under increasing load. Therefore, it is crucial to determine the
post-bifurcation path until it reaches a limt load. The primary
aims of the asymptotic analyses of Refs. [2-18] are to cal-
culate limit loads for perfect and imperfect structures. These
analyses have contributed vital physical insights into the
plastic buckling process and the effect of structural or loading
imperfections on this process.

General Nonlinear Analysis

The general-purpose computer programs in widespread use
since the early 1970’s and presently being written are based
on principles of continuum mechanics established for the
most part by the late 1950s and set forth in several texts
[30-35] . The structural continuum is discretized into finite
elements as described in the texts [36-40] and various
strategies are employed to solve the resulting nonlinear prob-
lem [41-71]. The nonlinearity is due to moderately large or
very large deflections and nonlinear material behavior. Various
plasticity models are described in texts [72-76], conference
proceedings (77-78], and survey articles (79-82) . Additional
papers on the formulation, discretization, and solution of non-
linear structural problems appear in the symposia proceedings
[83-87]. The primary aim of this vast body of work, most of
which was done in the 1970’s, has been to produce reli-
able analysis methods and computer programs for use by
engineers and designers. Thus, the emphasis in the literature
just cited is not on acquiring new physical insight into buckl-
ing and post-bifurcation phenomena, but on creating tools that
can determine the equilibrium path OEF in Fig. 2 for an arbitr-
ary structure and on proving that these tools work by use of
demonstration problems, the solution of which is known. In
most cases no formal distinction is made between prebifurca-
tion and post-bifurcation regimes; in fact, simple structures
are modeled with imperfections so that potential bifurcation



points are converted into limit points. The plastic buckling
problem loses its special qualities as illuminated so skillfully

in Refs. [2-18] and becomes just another nonlinear analysis,
requiring perhaps special physical insight on the part of the
computer program user because of potential numerical traps
such as bifurcation points and limit points usually (and some-
times spuriously!) revealed by changes in the sign of the deter-
minant of a stiffness matrix.

Figures 2(a) and (b) illustrate the two very different ap-
proaches to the plastic buckling problem described in the last
two paragraphs. In the general nonlinear approach the com-
putations involve essentially 2 “prebuckling” analysis, or a
determination of the unique equilibrium states along the funda-
mental path OEF in Fig. 2(a). In the asymptotic approach
(Fig. 2b) the prebuckling state is usually statically determinate.
The secondary path BD of the perfect structure and (in the
elastic case) the limit point E on the fundamental path of the
imperfect structure are determined by expansion of the solu-
tion in a power series of the bifurcation modal amplitude
which is asymptotically exact at the bifurcation point B,

Axisymmetric Structures

The third approach to the plastic buckling problem,
development of special-purpose programs for the analysis of
axisymmetric structures, forms a sort of middle ground
between the asymptotic analysis and the general-purpose non-
linear analysis. The approach is similar to the asymptotic treat-
ment because in applications it is restricted to a special class
of structures and the distinction between prebuckling equili-
brium and bifurcation buckling is retained. It is similar to the
general nonlinear approach in that the continuum is discretized

and the nonlinear prebuckling equilibrium problem is solved
“by brute force.” The emphasis is on the calculation of the
prebuckling fundamental path, OB in Fig. 2(a), and determina-
tion of the bifurcation point B and its associated buckling
mode, not on calculation of post-bifurcation behavior BD or
of the load-deflection path of the imperfect structure. The
goals of this third approach are to create an analysis tool for
use by engineers and designers and to use this tool in extensive
comparisons with tests both to varify it and to obtain physical
insight into the plastic buckling process,

SUMMARY OF THIS SURVEY ON PLASTIC BUCKLING

Certain difficulties associated with plastic bifurcation buckl-
ing theory are discussed in the next section. Following this, the
asymptotic methods of Hutchinson, Tvergaard, and Needle-
man [2-18] are described and examples shown. The general
nonlinear approach is then summarized with emphasis on the
Total Lagrangian vs Updated Lagrangian formulations, stra-
tegies for solving nonlinear equations, and characterization
of elastic-plastic material behavior. Next, a strategy for axisym-
metric nonlinear snap-through and nonaxisymmetric bifurca-
tion buckling of elastic-plastic axisymmetric shells is described,
followed by numerous examples in which experimental and
theoretical results are compared. The chapter closes with some
recommendations for future work,

WHERE PLASTIC BUCKLING FITS INTO THE
BIG PICTURE

Since most plastic buckling analyses are probably performed
with use of general-purpose computer programs, and since
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Fig. 50 Load-deflection curves for externally pressurized, ring-stiffened, titanium cylindrical shell with and
without primary creep included in the analysis. (from PRESSURE VESSELS AND PIPING: DESIGN
TECHNOLOGY - 1982, A DECADE OF PROGRESS, S.Y. Zamrik and D. Dietrich, editors, published by
ASME; Chapter 2.4 “Plastic Buckling” by David Bushnell, pp. 47-117)
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Fig. 74 Externally pressurized steel ellipsoidal shell with internal rings welded to it. (from PRESSURE
VESSELS AND PIPING: DESIGN TECHNOLOGY - 1982, A DECADE OF PROGRESS, S.Y. Zamrik and
D. Dietrich, editors, published by ASME; Chapter 2.4 “Plastic Buckling” by David Bushnell, pp. 47-117)
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Fig. 77 Pre-buckling deflections with increasing external pressure and comparison with and without the weld

(a)

cool-down effect. (from PRESSURE VESSELS AND PIPING: DESIGN TECHNOLOGY - 1982, A DECADE
OF PROGRESS, S.Y. Zamrik and D. Dietrich, editors, published by ASME; Chapter 2.4 “Plastic Buckling” by

David Bushnell, pp. 47-117)
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Fig. 78 Predicted bifurcation buckling modes and pressures with and without the weld cool-down effect
included in the analysis. (from PRESSURE VESSELS AND PIPING: DESIGN TECHNOLOGY - 1982, A
DECADE OF PROGRESS, S.Y. Zamrik and D. Dietrich, editors, published by ASME; Chapter 2.4 “Plastic
Buckling” by David Bushnell, pp. 47-117)



