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ABSTRACT

A minimum-weight design of a T-stiffened panel is found with the PANDA?2 program. The panel, subjected to
axial compression, in-plane shear, and normal pressure, is designed for service in its locally postbuckled state.
A program called STAGSMODEL has been written for transforming output from PANDAZ2 to input for
STAGS, a general-purpose nonlinear finite element code. STAGS is then used to evaluate the optimum design.
Agreement between results obtained with PANDA?2 and STAGS is reasonable for this very complex, very
nonlinear problem. Therefore, PANDA?2 qualifies as a preliminary design tool for panels operating in their
locally postbuckled states.

INTRODUCTION

There is an extensive literature on the buckling and postbuckling behavior of stiffened plates and shells. This
literature covers metallic panels and panels fabricated from laminated composite materials. Leissa [1] has
gathered results from almost 400 sources on the buckling and postbuckling behavior of flat and cylindrical
panels made of composite material with various stacking sequences and boundary conditions and subjected to
various in-plane loads. The emphasis in his survey is on theoretical results, although some experimental results
are included. He includes several examples in which the effect of transverse shear deformation is explored.
Emphasis is given also to the effects of anisotropy on bifurcation buckling and on postbuckling behavior.
Wiggenraad [2] surveys the literature on design of composite panels permitted to buckle locally under operating
loads. Included in his survey are damage tolerance, fatigue, and optimization. Arnold and Parekh [3] emphasize
in their survey and theoretical development the effect of in-plane shear load on the postbuckling behavior of
stiffened, composite cylindrical panels. Surveys of earlier work on buckling of stiffened panels and shells
appear in [4-6].

Among the foremost contributors of information about buckling of stiffened shells are Singer and his colleagues
at the Technion in Haifa, Israel. In particular, the Baruch-Singer theory [7] for averaging the properties of
stiffeners over a shell surface while retaining the important eccentricity effects has been incorporated into many
widely used computer programs for the stress, vibration, and buckling analysis of stiffened shells.

The literature in the field of buckling of stiffened shells can be divided into three categories, one in which test



results are emphasized, a second in which structural analysis is emphasized, and a third in which optimum
designs are obtained. References [8-18] feature test results for plates, shells, and stiffeners made of laminated
composite material; [19-26] feature structural analysis with structural properties fixed; and [27-38] feature
structural analysis with optimum configurations sought in most cases via the widely used optimizers CONMIN
or ADS, written by Vanderplaats and his colleagues [39-41].

This is just a sample of the literature on the subject. The reader is referred to the surveys given in [1-6] and
references cited there for other sources.

CAPABILITIES OF PANDA2

PANDAZ? finds minimum weight designs of laminated composite flat or curved cylindrical panels or cylindrical
shells with stiffeners in one or two orthogonal directions. Stiffeners can be blades, tees, angles, or hats. Truss-
core sandwich panels can also be handled. The panels or shells can be loaded by as many as five combinations
of in-plane loads, edge moments, normal pressure, and temperature. The material properties can be temperature-
dependent. The axial load can vary across the panel. The presence of overall (bowing) imperfections as well as
local imperfections in the form of the local buckling mode are included. Constraints on the design include
crippling, local and general buckling, maximum displacement under pressure, maximum tensile or compressive
stress along the fibers and normal to the fibres in each lamina, and maximum in-plane shear stress in each
lamina.

Local and general buckling loads are calculated with use of either closed-form expressions or with use of
discretized models of panel cross sections. The discretized model is based on one-dimensional discretization
similar to that used in the BOSOR4 computer code [42]. An analysis branch exists in which local postbuckling
of the panel skin is accounted for. In this branch a constraint condition that prevents stiffener popoff is
introduced into the optimization calculations. The postbuckling theory incorporated into PANDA? is similar to
that formulated by Koiter for panels loaded into the far-post-buckling regime [43].

PANDAZ2 can be run in five modes: simple analysis of a fixed design, optimization, test simulation, design
sensitivity, and load-interaction. Plots of decision variables, margins, and weight versus design iterations can be
obtained following use of PANDA? in the optimization mode. Plots of user-selected behaviors versus load can
be obtained following use of PANDAZ2 in the test-simulation mode. Plots of margins versus a user-selected
design variable can be obtained following use of PANDAZ?2 in the design sensitivity mode. Plots of in-plane load
interaction curves and margins versus load combination number can be obtained following use of PANDA?2 in
the load-interaction mode.

There is a processor in the PANDA?2 system that automatically generates an input file for the STAGS computer
program [22, 23]. Thus, STAGS, which is a general-purpose nonlinear finite element analyzer, can easily be
used to check the load-carrying capacity of panels designed with PANDAZ2.

Note that the theory on which PANDA? is based is valid only if the panel is either unstiffened or, if stiffeners
exist in either or both coordinate directions, there are several of them within the span of the panel. One cannot
accurately determine the behavior of a panel with only one stiffener, for example. The panel, if axially stiffened,
for example, has a 'field' of equally spaced, identical stringers.



In PANDAZ? local buckling behavior is predicted from analysis of a single module that is assumed to repeat
several times over the width of the panel. A single discretized module is displayed at the bottom of Fig. 1. The
entire panel shown in Fig. 1 has three modules across its width.

A panel module consists of one stiffener plus skin of width equal to the spacing between stiffeners. The single
module is considered to be composed of segments, each of which has its own laminated wall construction. The
reference surface for each segment of the panel module is the middle surface of that segment. Details
concerning the one-dimensional discretization (strip method) are provided in [42].

General instability is predicted from a model in which the stiffeners are 'smeared' in the manner of Baruch and
Singer [7] over the width (stringers) and length (rings) of the panel. More details about PANDA?2 appear in [44-
47].

The following text about STAGS (4.0 Description of STAGS [18 — 21) is taken from the PANDA2 2007 paper,
“Optimization of an axially compressed ring and stringer stiffened cylindrical shell with a general
buckling modal imperfection”, AIAA 48th Structures, Structural Dynamics, and Materials Conference, AIAA
Paper 2007-2216, 2007
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4.0 DESCRIPTION OF STAGS [18-21] (Most of the text in this section “4.0” was written by Dr. Charles C.
Rankin, email address = crankin@rhombuscgi.com. Dr. Rankin is one of the developers of the STAGS general
purpose finite element computer program.)

In most of the PANDA?2 references listed under [1] and in [22, 23] and in this paper optimum designs obtained
by PANDAZ? are evaluated later via STAGS models.

STAGS (STructural Analysis of General Shells [18-21]) is a finite element code for general-purpose
nonlinear analysis of stiffened shell structures of arbitrary shape and complexity. Its capabilities include
stress, stability, vibration, and transient analyses with both material and geometric nonlinearities permitted in all
analysis types. STAGS includes enhancements, such as a higher order thick shell element, more advanced
nonlinear solution strategies, and more comprehensive post-processing features such as a link with STAPL, a
postprocessor used to generate many of the figures in this paper: figures that display the STAGS model, such as
Figs. la-c and 2, for example.

Research and development of STAGS by Rankin, Brogan, Almroth, Stanley, Cabiness, Stehlin and others of the
Computational Mechanics Department of the Lockheed Martin Advanced Technology Center has been under
continuous sponsorship from U.S. government agencies for the past 40 years. During this time particular
emphasis has been placed on improvement of the capability to solve difficult nonlinear problems such as the
prediction of the behavior of axially compressed stiffened panels loaded far into their locally postbuckled states.
STAGS has been extensively used worldwide for the evaluation of stiffened panels and shells loaded well into
their locally postbuckled states. See [21], for example.

A large rotation algorithm that is independent of the finite element library has been incorporated into
STAGS [20B]. With this algorithm there is no artificial stiffening due to large rotations. The finite elements in



the STAGS library do not store energy under arbitrary rigid-body motion, and the first and second variations of
the strain energy are consistent. These properties lead to quadratic convergence during Newton iterations.

Solution control in nonlinear problems includes specification of load levels or use of the advanced Riks-
Crisfield path parameter [21] that enables traversal of limit points into the post-buckling regime. Two load
systems with different histories (Load Sets A and B) can be defined and controlled separately during the
solution process. Flexible restart procedures permit switching from one strategy to another during an analysis,
including shifts from bifurcation buckling to nonlinear collapse analyses and back and shifts from static to
transient and transient to static analyses with modified boundary conditions and loading. STAGS provides
solutions to the generalized eigenvalue problem for buckling and vibration from a linear (Fig. 24) or
nonlinear (Figs. 26, 27) stress state.

Quadric surfaces can be modeled with minimal user input as individual substructures called "shell units" in
which the analytic geometry is represented exactly. "Shell units" can be connected along edges or internal grid
lines with partial or complete compatibility. In this way complex structures can be assembled from relatively
simple units. Alternatively, a structure of arbitrary shape can be modeled with use of an "element unit".

Geometric imperfections can be generated automatically in a variety of ways, thereby permitting imperfection-
sensitivity studies to be performed. For example, imperfections can be generated by superposition of several
buckling modes determined from previous linear and nonlinear STAGS analyses of a given case. (See
Parts 4-7 of Table 9 and Figs. 24, 26, and 27, for example).

A variety of material models is available, including both plasticity and creep. STAGS handles isotropic and
anisotropic materials, including composites consisting of up to 60 layers of arbitrary orientation. Four plasticity
models are available, including isotropic strain hardening, the White Besseling (mechanical sublayer model),
kinematic strain hardening, and deformation theory.

Two independent load sets, each composed from simple parts that may be specified with minimal input, define
a spatial variation of loading. Any number of point loads, prescribed displacements, line loads, surface tractions,
thermal loads, and "live" pressure (hydrostatic pressure which remains normal to the shell surface throughout
large deformations) can be combined to make a load set. For transient analysis the user may select from a menu
of loading histories, or a general temporal variation may be specified in a user-written subroutine.

Boundary conditions (B.C.) may be imposed either by reference to certain standard conditions or by the use of
single- and multi-point constraints. Simple support, symmetry, anti-symmetry, clamped, or user-specified B.C.
can be defined on a "shell unit" edge. Single-point constraints that allow individual freedoms to be free, fixed,
or a prescribed non-zero value may be applied to grid lines and surfaces in "shell units" or "element units". A
useful feature for buckling analysis allows these constraints to differ for the prestress and eigenvalue analyses.
Langrangian constraint equations containing up to 100 terms may be defined to impose multi-point constraints.

STAGS has a variety of finite elements suitable for the analysis of stiffened plates and shells. Simple four node
quadrilateral plate elements with a cubic lateral displacement field (called "410" and "411" elements) are
effective and efficient for the prediction of postbuckling thin shell response. A linear (410) or quadratic (411)
membrane interpolation can be selected. For thicker shells in which transverse shear deformation is important
(and for the thin-shell cases described in this paper), STAGS provides the Assumed Natural Strain (ANS)
nine node element (called "480" element). A two node beam element compatible with the four node



quadrilateral plate element is provided to simulate stiffeners and beam assemblies. Other finite elements
included in STAGS are described in the STAGS literature [18-21].

5.0 WHY MUST STAGS OR SOME OTHER GENERAL-PURPOSE CODE BE USED TO CHECK
OPTIMUM DESIGNS FROM PANDA2?

PANDAZ2 uses many approximations and “tricks” in models for stress and buckling. Some of these are
described in Sections 8 - 10 of [1K]. For example, knockdown factors are derived to compensate for the
inherent unconservativeness of smearing stiffeners [1K] and to account for the effects of transverse shear
deformation [1A]. The effect of initial local, inter-ring, and general imperfections in the shapes of critical local,
inter-ring, and general buckling modes are accounted for in an approximate manner as described in [1D] and
[1E]. The distribution of prebuckling stress resultants in the various segments of a discretized skin-stringer
module [1A and Fig. 4 in this paper] and of a “skin”-ring discretized module [1G] of an imperfect and therefore
initially bent stiffened shell are approximate. For example, stabilizing (tensile) axial and hoop resultants in the
panel skin that arise from prebuckling bending of an initially globally imperfect shell are neglected in order to
avoid the production of unconservative optimum designs.

PANDAZ2 has been developed over the years with the philosophy that the use of many relatively simple
approximate models will lead to optimum designs that are reasonable and for which no complicated
“combined” modes of failure will inadvertently be missed. Because of the approximate nature of these
multiple simple PANDA?2 models, one MUST use STAGS or some other general-purpose finite element code
to evaluate optimum designs obtained by PANDAZ2.

The particular advantage of using STAGS is that there exists a PANDA?2 processor called STAGSUNIT [1I]
that automatically generates input files, *.bin and *.inp, for STAGS. As described in [11I], the processor
STAGSUNIT is written in such a way that "patches" (sub-domains) of various portions of a complete panel or
shell can be analyzed with STAGS. The correct prebuckled state of a perfect panel is preserved
independently of the size of the "patch" to be included in the STAGS sub-domain model. The minimum
size "patch" must contain at least one stiffener spacing in each coordinate direction. In a stringer-stiffened shell
stringers are always included along the two straight edges of the "patch". There may or may not be rings
running along the two curved edges of the "patch", depending on input to STAGSUNIT provided by the user of
PANDAZ2. Stiffeners that run along the four boundaries of the "patch" have half the stiffness and half the
loading of those that lie within the "patch". It is primarily this characteristic of the STAGS models produced
by STAGSUNIT that preserves the correct prebuckled state of the “patch” independently of its size.

The STAGS models are constructed by the PANDA?2 processor, STAGSUNIT, in such a way that all stiffeners
are connected only to the panel skin. That is, where stiffeners intersect they simply pass through one another
with no constraints between them along their lines of intersection, if any. This is a conservative model with
respect to buckling. The same model is used in PANDA?2. The STAGSUNIT processor can generate models in
which all stiffeners may be composed of shell units, one or more sets of stiffeners may be composed of beams,
or one or more sets of stiffeners may be “smeared” as prescribed by Baruch and Singer [12].
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0.167. From Computers & Structures, Vol. 55, No. 5, pp. 819 — 856, 1995.
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Fig. 33 Contours of normal displacement w at the highest load factor reached in the nonlinear STAGS run: PA
=0.943. From Computers & Structures, Vol. 55, No. 5, pp. 819 — 856, 1995



