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STRESS, STABILITY AND VIBRATION OF COMPLEX,
BRANCHED SHELLS OF REVOLUTION

DAVID BUSHNELL

Lockheed Palo Alto Research Laboratory, Palo Alto, California, U.S.A.

Abstract-A comprehensive computer program, designated BOSOR4, for analysis of the stress, stability
and vibration of segmented, ring-stiffened, branched shells of revolution and prismatic shels and panels
is described. The program performs largedeflection axisymmetric stress analysis, small-deflecton nonsyn-
metric stress analysis, modal vibration analysis with aisymmetric nonlinear prestress included, and buckling
analysis with axisymmetric or nonsymmetric prestress. One of the main advantages of the code is the
provision for realistic engeering details such as eccentric load paths, internal supports, arbitrary branching
conditions, and a library' of wall constructions. The program is based on thefiniteffe-renoenetrmethod
which is very rapidly convergent with increasing numbers of mesh points. The organization of the program
is briefly described with flow of calculations charted for each of the types of analysis. Overlay charts and
core storage requirements are given for the CDC 6600, EBM 3701165, and UNIVAC 1108 versions of
BOSOR4. A largenumber ofcass isinchded to demonstrate thescopeand practicalityoftheprogramperiod.

INTRODUMI¶ON

THE PURPosE of this paper is to describe a computerized method of analysis for composite,
branched shells of revolution. The main advantage of the analysis method and computer
program is its direct and efficient applicability to practical engineering design problems
involving very complex shells of revolution or prismatic shell structures such as corrugated
panels or noncircular cylinders. Emphasis is placed on analytical results for a variety of
'real-world' engineering problems. Details of the analysis method are reported in Ref. [1].

Extensive literature exists on analysis and computer programs for shells and solids of
revolution. Figure 1 contains the names of many computer programs and names of
originators of other computer programs that cover this field. The names are given in a
'coordinate system' arranged such that increasingly 'general purpose' computer codes lie
increasing distances from both axes. Other codes, existingjust outside ofthe region depicted,
apply to structures that are 'almost' shells of revolution, such as shells with cutouts, shells
with material properties that vary around the circumference, or panels of shells of revolution.

The region shown in Fig. 1 is divided by a heavy line into two fields: Programs lying
within the heavy line are based on numerical methods that are essentially one-dimensional,
that is, the dependent variables are separable and only one spatial variable need be dis-
cretized; programs lying outside the heavy line are based on numerical methods in which
two spatial variables are discretized. It is generally true that analysis methods and programs
lying outside the heavy line require perhaps an order of magnitude more computer time
for a given case with given nodal point density than do those lying inside the line. This
distinction arises because the bandwidths and ranks of equation systems in two-dimensional
numerical analyses are greater than those in one-dimensional numerical analyses. Certain
of the areas in Fig. I are blank. Those near the origin correspond in general to cases for
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INCREASING GENERALITY OF ANALYSIS OR PHEN4OMENON

Flo. 1. Computer programs for shells and solids in revolution.

which closed-form solutions exist and for which slightly more general programs are clearly
applicable. The blank areas lying near the outer boundaries of the chart are for the most
part covered by more general programs such as NASTRAN, SNAP, REXBAT, STAGS,
STRUDL, and ASKA [20].

The numerals next to the program name or to the originator names correspond to
references at the end of the text. Names shown with no numerals are referenced in one or
more of the survey papers, Refs. [20-23]. These papers describe the various numerical
procedures used, and in one case (21] hint as to the availability of some of the codes.

This paper will focus on a description of the general branched shell-of-revolution
analyzer called BOSOR4. The goals of the research leading to the BOSOR4 code have
been to provide as general as possible an engineering tool within the restriction of one-
dimensional discretization; to include as much capability as possible for analysis of practical
engineering structures, which include meridional discontinuities, weld mismatches, com-
posite materials, discrete rings, sliding constraints, etc. to make the computer program
easy to use by means of logical arrangement of input data, internal diagnostics, plots, and a
complete user's manual; to make the code as efficient as possible; and to maximize its
availability by converting it and checking it out on three major systems-the Univac 1108,
the CDC 6600, and the IBM 370/165. Program tapes and manuals are available through
the author or through the COSMIC system. Described in this paper are the scope of
BOSOR4, the analysis method, and the program organization; in addition, several cases
involving nonlinear stress analysis, buckling, and vibration of segmented, branched, ring-
stiffened shells of revolution with various wall constructions are discussed.



Stress, Stability and Vibration of Coiflex, Branched Shells of Revolution

SCOPE OF THE BOSOR4 COMPUTER PROGRAM

The BOSOR4 code performs stress, stability, and vibration analyses of segmented,
branched, ring-stiffened, elastic shells of revolution with various wall constructions.
Figure 2 shows some examples of branched structures which can be handled by BOSOR4.
Figure 2a represents part of a multiple-stage rocket treated as a shell of seven segments;
Fig. 2b represents part of a ring-stiffened cylinder in which the ring is treated as two shell
segments branching from the cylinder; Fig. 2c shows the same ring-stiffened cylinder, but
with the ring treated as 'discrete', that is the ring cross section can rotate and translate but
not deform, as it can in the model shown in Fig. 2b. Figures 2d-f represent branched
prismatic shell structures, which can be treated as shells of revolution with very large mean
circumferential radii of curvature, as described in Ref. [25] and later in this paper.

r n
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FIG. 2. Examples of branched structures which can be analyzed with BOSOR4.

The program is very general with respect to geometry of meridian, shell-wall design,
edge conditions, and loading. It has been thoroughly checked out by comparisons with
other known solutions and tests. The BOSOR4 capability is summarized in Table 1. The
code represents three distinct analyses:

(1) A nonlinear stress analysis for axisymmetric behavior of axisymmetric shell
systems (large deflections, elastic)

(2) A linear stress analysis for axisymmetric and nonsymmetric behavior of axi-
symmetric shell systems submitted to axisymmetric and nonsymmetric loads

(3) An eigenvalue analysis in which the eigenvalues represent buckling loads or
vibration frequencies of axisymmetric shell systems submitted to axisymmetric
loads. (Eigenvectors may correspond to axisymmetric or nonsymmetric modes.)
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TABLE 1. BOSOR4 capability summary

Type of analysis Shell geometry Wall construction Loading

Nonlinear axisym- Multiple-segment Monocoque, variable Axisymmetric or non-
metric stress shells, each segment or constant thickness symmetric thermal and/

Linear symmetric or with its own wall con- Skew-stiffened shells or mechanical line loads
nonsymmetric stress struction, geometry, Fiber-wound shells and moments

Stability with linear and loading Layered orthotropic Axisymmetric or non-
symmetric or nonsym- Cylinder, cone, shells symmetric thermal and/
metric prestress or spherical ogival, Corrugated, with or or mechanical dis-
with nonlinear sym- toroidal, ellipsoidal, without skin tributed loads
metric prestress etc. Layered orthotropic Proportional loading

Vibration with non- General meridional with temperature- Non-proportional
linear prestress shape; point-by- dependent material loading
analysis point input properties

Variable mesh point Axial and radial dis- Any of above wall
spacing within each continuities in shell types reinforced by
segment meridian stringers and/or

Arbitrary choice of rings treated as
reference surface "smeared out"

General edge Any of above wall
conditions types further rein-

Branched shells forced by rings treated
Prismatic shells and as discrete

composite built-up Wall properties vari-
panels able along meridian

BOSOR4 has an additional branch corresponding to buckling of nonsymmetrically loaded
shells of revolution. However, this branch is really a combination of the second and third
analyses just listed.

In the BOSOR4 code, the user chooses the type of analysis to be performed by means of
a control integer INDIC:

INDIC=-2

INDIC=-I

Stability determinant calculated for given circumferential wave number
N for increasing loads until it changes sign. Nonlinear prebuckling
effects included. INDIC then changed automatically to -I and cal-
culations proceed as if INDIC has always been - 1.

Buckling load and corresponding wave number N determined, in-
cluding nonlinear prebuckling effects. M corresponding to local
minimum critical load Lc,(N) is automatically sought.

INDIC=O Axisymmetric stresses and displacements calculated for a sequence of
stepwise increasing loads from some starting value to some maximum
value, including nonlinear effects. Axisymmetric collapse loads can be
calculated.

INDIC= I Buckling loads calculated with nonlinear bending theory for a fixed
load. Buckling loads calculated for a range of circumferential wave
numbers. Several buckling loads for each wave number can be cal-
culated.
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INDIC=2 Vibration frequencies and mode shapes calculated, including the effects
of prestress obtained from axisymmetric nonlinear analysis. Several
frequencies and modes can be calculated for each circumferential wave
number.

INDIC=3 Nonsymmetric or symmetric stresses and displacements calculated for
a range of circumferential wave numbers. Linear theory used. Results
for each harmonic are automatically superposed. Fourier series for
nonsymmetric loads are automatically computed or may be provided
by user.

INDIC=4 Buckling loads calculated for nonsymmetrically loaded shells. Pre-
buckled state obtained from linear theory (INDIC=3) or read in from
cards. 'Worst' meridional prestress distribution (such as distribution
involving maximum negative meridional or hoop prestress resultant)
chosen by user, and this particular distribution is assumed to be axi-
symmetric in the stability analysis, which is the same as that for the
branch INDIC= 1.

The variety of buckling analyses (INDIC= -2, -1, 1, and 4) is provided to permit the
user to approach a given problem in a number of different ways. There are cases for which
an INDIC= -I analysis, for example, will not work. The user can then resort to an
INDIC= -2 analysis, which requires more computer time, but which is generally more
reliable. Buckling of a shallow spherical cap under external pressure is an example. In an
INDIC= -I analysis of the cap, the program generates a sequence of loads that ordinarily
should converge to the lowest buckling load, with nonlinear prebuckling effects included.
Depending on the cap geometry and the user-provided initial pressure, however, one of
the loads in the sequence may exceed the axisymmetric collapse pressure of the cap. This
phenomenon can occur if the bifurcation buckling loads are just slightly smaller than the
axisymmetric collapse loads. The user can obtain a solution with use of INDIC= - 2, in
which the bifurcation load is approached from below in a 'gradual' manner. The BOSOR4
manual [1] contains an example of this case. A somewhat different illustration is provided
in the section on analytical results.

The branch INDIC= I is provided because it is sometimes desirable to know several
buckling eigenvalues for each circumferential wave number, N, and because there may exist
more than one minimum in the critical load vs N-space. This is especially true for composite
shell structures with many segments and load types. Such a structure can buckle in many
different ways. The designer may have to eliminate several possible failure modes, not just
the one corresponding to the lowest pressure, for example. The INDIC=4 branch is
provided for two reasons: The user can calculate buckling under nonsymmetric loads with-
out having to make two separate runs, an INDIC=3 run and an INDIC= 1 run. In
addition, this branch permits the user to bypass the prebuckling analysis and read pre-
buckling stress distributions and rotations directly from cards. This second feature is very
useful for the treatment of composite branched panels under uniaxial or biaxial compression.

The BOSOR4 program, although applicable to shells of revolution, can be used for
the buckling analysis of composite, branched panels by means of a 'trick' described in
detail in Ref. [25]. This 'trick' permits the analysis of any prismatic shell structure that is
simply-supported at particular stations along the length. Any boundary conditions can be
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used along generators. In Ref. [25] many examples are given, including nonuniformly
loaded cylinders,. noncircular cylinders, corrugated panels, and cylinders with stringers
treated as discrete. This paper gives other examples.

ANALYSIS METHOD

The assumptions upon which the BOSOR4 code is based are:

(I) The wall material is elastic.
(2) Thin-shell theory holds; i.e. normals to the undeformed surface remain normal

and undeformed.
(3) The structure is axisymmetric, and in vibration analysis and nonlinear stress

analysis the loads and prebuckling or prestress deformations are axisymmetric.
(4) The axisymmetric prebuckling deflections in the nonlinear theory (INDIC=O,

-1, 2), while considered finite, are moderate; i.e. the square of the meridional
rotation can be neglected compared with unity.

(5) In the calculation of displacement and stresses in nonsymmetrically loaded shells
(INDIC-3), linear theory is used. This branch of the program is based on
standard small-deflection analysis.

(6) A typical cross-section dimension of a discrete ring stiffener is small compared with
the radius of the ring.

(7) The cross-sections of the discrete rings remain undeformed as the structure deforms,
and the rotation about the ring centroid is equal to the rotation of the shell
meridian at the attachment point of the ring (except, of course, if the ring is
treated as a flexible shell branch).

(8) The discrete ring centroids coincide with their shear centers.
(9) If meridional stiffeners are present, they are numerous enough to include in the

analysis by an averaging or 'smearing' of their properties over any parallel circle
of the shell structure, meridional stiffeners can be treated as discrete though the
'trick' described in Ref. [25].

The analysis is based on energy minimization with constraint conditions. The total
energy of the system includes strain energy of the shell segments and discrete rings, potential
energy of the applied line loads and pressures, and kinetic energy of the shell segments and
discrete rings. The constraint conditions arise from displacement conditions at the
boundaries of the structure, displacement conditions that may be prescribed anywhere
within the structure, and at junctures between segments. The constraint conditions are
introduced into the energy functional by means of Lagrange multipliers.

These components of energy and constraint conditions are initially integro--differential
forms. The circumferential dependence is eliminated by separation of variables. Dis-
placements and meridional derivatives of displacements are then written in terms ofthe shell
reference surface displacement components ul, v, and wi at the finite-difference mesh points
and Lagrange multipliers Al. Integration is performed simply by multiplication of the
energy per unit length of meridian by the length of the 'finite difference element', to be
described below.

In the nonlinear axisymmetric stress analysis the energy expression has terms linear,
quadratic, cubic, and quartic in the dependent variables ui and wi. The cubic and quartic
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energy terms arise from the 'rotation-squared' terms that appear in the expression for
reference surface meridional strain and in the constraint conditions. Energy minimization
leads to a set of nonlinear algebraic equations that are solved by the Newton-Raphson
method. Stress and moment resultants are calculated in a straightforward manner from
the mesh-point displacement components through the constitutive equations and the
kinematic relations.

The results from the nonlinear axisymmetric or linear nonsymmetric stress analysis
are used in the eigenvalue analyses for buckling and vibration. The 'prebuckling' or'pre-
stress' meridional and circumferential stress resultants N10 and N20 and the meridional
rotation Xo appear as known variable coefficients in the energy expressions that govern
buckling and vibration. These expressions are homogeneous quadratic forms. The values
of a parameter (load or frequency) that render the quadratic forms stationary with respect
to infinitesimal variations of the dependent variables represent buckling loads or natural
frequencies. These eigenvalues are calculated from a set of linear homogeneous equations.
More will be written about the bifurcation buckling eigenvalue problems in the following
paragraphs.

Details of the analysis are given in Refs. [1, 26 and 27]. Only three aspects will be
described here: the 'finite-difference element', the form of the stability eigenvalue problem,
and the effect of branched systems on the configuration of the stiffness matrix.

THE 'FINITE-DIFFERENCE' ELEMENT

BOSOR4 is based on the finite-difference energy method. This method is described in
detail and compared with the finite element method in Ref. [28]. Figure 3 shows a typical
shell segment meridian with finite-difference mesh points. The 'V' and 'v' points are located
halfway between adjacent 'w' points. The energy contains up to first derivatives in u and v
and up to second derivatives in w. Hence, the shell energy density evaluated at the point
labeled E (center of the length 1) involves the seven points we- through wi+1. The energy
per unit circumferential length is simply the energy per unit area multiplied by the length
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FIG. 3. Finite-difference discretization: the 'finite-difference element'.
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of the finite-difference element I, which is the arc length of the reference surface between
two adjacent u or v points. In Ref. [28] it is shown that this formulation yields a (7 x 7)
stiffness matrix corresponding to a constant-strain, constant-curvature-change finite
element that is incompatible in normal displacement and rotation at its boundaries but that
in general gives very rapidly convergent results with increasing density of nodal points.
Note that two of the w-points lie outside of the element. If the mesh spacing is constant,
the algebraic equations obtained by minimization of the energy with respect to nodal
degrees-of-freedom can be shown to be equivalent to the Euler equations of the variational
problem in finite form. Further description and proofs are given in Ref. 128].

Figures 4 and 5 show rates of convergence with increasing nodal point density for a

Ls Finite Difaiffse (81R4)

stc Rodoni TrW and Five Gouss Points
6 - Cub uV.w; Finite Element

e 4

Ede Free , No Stat;R~do-

:s / Finite ittmentn
I

0 40 60 eV i 0

NUMBER OF WESN POINTS

Fro. 4. Normal displaaement at free edge of hemisphere with nonuniform pressure p(s, 0)-
po cos 28.

.07

P Cw, t 2D
Edges Free/

4t [
L i / - Firaite £Ett AUIyIIsk
s 31 > Wdh Cubic u,tw

W 2

NUMBER OF MESH POINTS

xo. S. Computer times to form stiffness matrix K1 and rates of convagence of normal edge dis-
placement for free hemisphere with nonuniform pressure p(s, 9)=po cot 20.

406



Stress, Stability and Vibration of Coniple, Branched Shells of Revolution

poorly conditioned problem-a stress analysis of a thin, nonsymmetrically loaded hemi-
sphere with a free edge. The finite-element results were obtained by programming various
kinds of finite elements into BOSOR4. The computer time for computation of the stiffness
matrix K1 is shown in Fig. 5. A much smaller time for computation of the finite-difference
K, is required because there are fewer calculations for each 'Gaussian' integration point
and because there is only one 'Gaussian' point per finite-difference element. Other com-
parisons of rate of convergence with the two methods used in BOSOR4 are shown for
buckling and vibration problems in Ref. [281.

FORMULATION OF THE STABILITY PROBLEM

The bifurcation buckling problem represents perhaps the most difficult of the three
types of analyses performed by BOSOR4. It is practical to consider bifurcation buckling
of complex, ring-stiffened shell structures under various systems of loads, some of which
are considered to be known and constant, or 'fixed' and some of which are considered to
be unknown eigenvalue parameters, or 'variable'.

The notion of 'fixed' and 'variable' systems of loads not only permits the analysis of
structures submitted to nonproportionally varying loads, but also helps in the formulation
of a sequence of simple of 'classical' eigenvalue problems for the solution of problems
governed by 'nonclassical' eigenvalue problems. An example is a shallow spherical cap
under external pressure. Very shallow caps fail by nonlinear collapse, or snap-through
buckling, not by bifurcation buckling. Deep spherical caps fail by bifurcation buckling in
which nonlinearities in prebuckling effects are not particularly important. There is a range
of cap geometries for which bifurcation buckling is the mode of failure and for which the
critical pressures are very much affected by nonlinearities in prebuckling behavior. The
analysis of this intermediate class of spherical caps is simplified by the concept of 'fixed' and
'variable' pressure

Figure 6 shows the load-deflection curve of a shallow cap in this intermediate range.
Nonlinear axisymmetric collapse (p,,l), linear bifurcation (pub), and nonlinear bifurcation
(Pub) loads are shown. The purpose of the analysis referred to in this section is to determine
the pressure pnb. It is useful to consider the pressure pn, as composed of two parts

Pnb=P +Po

in which p1 denotes a known or 'fixed' quantity, andp'denotes an undetermined or 'variable'
quantity. The fixed portion pr is an initial guess or represents the results of a previous
iteration. The variable portion p" is the remainder, which can be determined from a
reasonably simple eigenvalue problem, as will be described. It is clear from Fig. 7 that if
pa is fairly close to pt the behavior in the range p=pf ip" is reasonably linear. Thus, the
cigenvalue pb can be calculated by means of a sequence of eigenvalue problems through
which ever and ever smaller values p" are determined and added to the known results p1

from the previous iterations. As the BOSOR4 computer program is written the initial guess
p1 need not be close to the solution Pnb-

In the bifurcation stability analysis it is necessary to develop three matrices corres-
ponding to the eigenvalue problem

Klx+AK 2 x+A2'K3x=O.

407

(1)



DAVID BUSHNELL

vOLUME DtSPLACED

Fio. 6. Load-deflection curves for shallow spherical cap, showing bifurcation points from linear
prebuckling curve (pan) and nonlinear prebuckling curve (P,.6).

(b)

Fio. 7. Stiffness matrix configuration with types I and 3 constraint conditions.

The matrix K1 is the stiffness matrix and contains 'fixed' load effects; the matrix K2 is
commonly called the 'load-geometric' matrix and contains linear terms involving the
4variable' loads; and the matrix K3 , another 'variable'-load quantity, is called the A2-
matrix, for obvious reasons. These matrices all contain known numbers and are all banded.
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The bifurcation buckling problem is stated mathematically in terms of the second
variation of the total energy. For a shell the second variation is given by

2+2[ 2 ][C]{60= +2[0 ][C]{62 }+2[NT ]{ 2 }

+[bu, 6v, bw][P] 6v rdOds (2)
6w

in which so, El, 62 signify, respectively, strain vectors (containing reference surface strains
and changes in curvature) that are zeroth, first, and second order in the displacement
variations bu, bv, 6w and that contain prebuckling quantities; [C] represents the 6 x 6
matrix of stress-resultant-strain coefficients; NT represents thermal effects; [P] represents
'pressure-rotation' effects; s and 0 are the meridional and circumferential coordinates,
respectively; and r is the local parallel circle radius of the shell of revolution.

The linear Iat of the 'strain. incremntduring buckling', s', contains .the prebuckling
meridional rotation Xo. The prebuckling strain vector so contains terms both linear and
quadratic in prebuckling rotations. If, in a reasonably small neighborhood ( )" of a
known prebuckling state ( )f, the behavior of the shel can be considered linear with
respect to load, then in this neighborhood the second variation of the shell strain energy
can be written he -form

62Uf= | | (AI +AA2 +)2A3)rdsd0. (3)

Formulas for A,, A2 and A3 are given in Ref. [1]. The development is expanded in Ref. 11]
to include discrete ring strain energy and constraint conditions. If the integration is per-
formed and the gecond variation is 'minimized' with repect to the deendent wariables
6u1, buv, bw1, and the Lagrange multipliers, the eigenvalue problem of equation (1) results.
The method of solution of this problem is described in Ref. [1]. An eigenvalue problem of
the same form was derived and solved by Anderson et al. [29]. Eigenvalues are extracted
by means of the method of inverse power iterations with spectral shifts.

STIFFNESS MATRICES FOR BRANCHED SYSTEMS

Figures 7-10 show the configurations of stiffness matrices for various types of branching
conditions. These matrices are specifically for prebuckling axisymmetric problems in which
only u and w displacement components exist, and for which there are only three equations
for each constraint point (u, w, and rotation compatibility). However, the forms of stability
or-vibration or nonsymmetric stress stiffness matrices are similar, the only differences being
that the 'point' stiffness matrices are 7 x 7 rather than 5 x 5, and there are four lambda's
for each boundary or juncture condition rather than three. In Figs. 7 and 8 the 5 x 5
element squares 'BCB' represent 'local' stiffness matrices contributed by each finite-
difference element (see Fig. 3). The rectangular 3 x 5 and 5 x 3 matrices 'QD' and 'D'
represent the constraint conditions obtained by minimization of the energy with respect to
the Lagrange multipliers. The shaded blocks receive contributions from the constraint
conditions. Reference [1] shows what the various contributions are.
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Fio. 8. Stiffness matrix configuration with type 4 and 5 constraint conditions.

There are five types of constraint conditions recognized by BOSOR4: Type 1 is a
simple 'one-sided' constraint condition (e.g., boundary condition) not at the termination of
a segment (it can be at the beginning as"in Fig. 7); Type 2 is a simple 'one-sided' constraint
condition (boundary condition) at the termination of a segment (shown in Fig. 10, Seg. 1);
Type 3 is a juncture condition in which the termination of a segment is connected in some
way to a nonadjacent previous point (Fig. 7); Type 4 is a juncture condition in which a
point embedded within a segment is connected to a nonadjacent previous point (Fig. 8);
and Type 5 is a juncture condition in which the termination of Segment (i) is connected to
the beginning of Segment (i+1). Figure 9a shows a stiffness matrix configuration "t
would result for a complete toroidal shell held at one point; 9b gives an example of a
meridian free at the boundaries and constrained at an interior point. Figure 10 shows a
stiffness matrix configuration corresponding, for example, to a corrugated semisandwich
panel in which the corrugations are rivefed to the flat sheet at intervals along the surface.
Other examples are given in Ref. [1].

BOSOR4 PROGRAM ORCMUZATION

The BQSOR4 program consists of a main program MAIN and six overlays called
READIT, PRE, ARRAYS, BUCKLE, MODEl, AND PLOTL. Figure 11 shows the
Univac I 108XEC8 and IBM 370/165 program organization. The program structute for
the CDC 6600 is similar, except that READIT contains one (rather than two) tiers of
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- -Mxx .... -. ;.- MII.P .llwlrrr
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PF. 9a. Stiffness matrix configuration for sheUl with closed meridian supported at point I; (b) for
meridian supported at interior point.

Flo. 10. Stiffness matrix configuration for double-walled shel fastened intermittently.
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overlays (Fig. 12). Figure 12 gives the core storage in decimal words required for the
Univac 1108, IBM 370, and CDC 6600 versions of BOSOR4. The Univac 1108 and IBM 370
versions are written in double precision FORTRAN IV; the CDC version is written in
single precision FORTRAN IV. In Fig. 11, a box around a subroutine name indicates that
it calls other subroutines.

Overall control in BOSOR4 depends on the integer INDIC. The various types of
analysis chosen by the input variable INDIC are listed in a previous section, and the flow
of calculations for each value of INDIC is given in Fig. 13t. All of the input data are read
in READIT. Figure 14 shows all of the subroutines called in this overlay, and Fig. 15 shows
the arrangement of a sample data deck. A call to READIT also causes results of calcul-
ations to be printed out (OUTFIN). Some general data that pertain to the entire shell are
read in first. Then, for each shell segment the mesh point distribution (MESH), meridian
geometry (GEOMTR), discrete ring properties (RGDATA), mechanical and thermal line
loads (LINELD), mechanical and thermal distributed loads (DISTL), and shell wall
properties (WALLS) are read in. The subroutine GASP, which is called in several places,
causes certain data to be stored on and read from drum or disk. These data will be used
in the calculations to be performed in other overlays. The calculations in TIADI' are
performed in single precision. Overlay READIT has another important function-it
causes to be computed 'templates' of the stiffness, load-geometric, lambda-sjgred, and
mass matrices for the nonsymmetric stress, buckling, and vibration problems and the

-EMIT

Fla. 11. Main link with overlays.

t Figur 13 appears fadng p. 424.
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stiffness matrix for the prebuckling problem. These 'templates' give the 'shapes' of the gov-
erning equation systems. Examples are shown in Figs. 7-10.

The nonlinear stress analysis for axisymmetric behavior of axisymmetric systems is
performed in the overlay PRE. Data for shell and discrete ring properties, temperature and
pressure distributions, and thermal and mechanical line loads are read into core from drum
or disk (GASP); 'variable' loads are increased or decreased by appropriate increments or
decrements; the coefficient matrix and the 'right-hand-side' vector are derived for the
current Newton-Raphson iteration; the coefficient matrix is factored (FACTR); the
equation system is solved (SOLVE); a test for convergence is made; and the prebuckling
or prestress stress resultants and stresses are calculated from the converged displacement
vector. These prestress quantities are stored on the drum or disk for later use in the
buckling and vibration analysis and for later plotting.

d3E

now

n- - Ix overL S tat i Li
UT ft1 § - w KeAP - h

1* Fmt Am "TI

-W'C F~1 - xn MIDTmI

Nl is cute i E SE a E te lInarTEL~~~~- Loaw ||l9

Aiedr e Ag n l wer N D ini.M, , -W.E mm?33*E

pmzz

FIG. 14. READIT overlay.

In the next overlay (ARRAYS), the coefficient matrices corresponding to the buckling

analysis, vibration analysis, and linear symmetric and nonsymnietric stress analysis are
derived. Subroutine ARRAYS is called for each value of the circumferential wave number
N. If INDIC=3, the load vector Q. is calculated in ARRAYS, and the linear system Klx

=Q is solved for the given circumferential wave number N. Depending on INDIC, various
coefficient matrices are derived. With buckling analyses, for example, three matrices are
obtained in ARRAYS for each circumferential wave number N: the stiffness matrix K,

for the composite shell, which corresponds to the structure loaded by the 'fixed' parts of

the loads, the 'load-geometric' matrix K 2 which contains linear powers of the eigenvalue

A, and the 'A"' matrix K 3 , which contains quadratic powers of A. In modal vibration

analysis, two matrices are derived in ARRAYS: the stiffness matrix K, for the prestressed

shell, and the mass matrix M. The arrays K 1 , K2 , K3, and M, are stored on drum or disk

in blocks of a given length for later use in overlay BUCKLE.
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FiG. 15. Sample data deck.

The equation systems for the stability and vibration analyses are solved in the overlay
BUCKLE. Subroutine BUCKLE is called for each value of the circumferential wave
number N. The arrays derived in ARRAYS are read in from drum or disk.

If INDIC= I (linear buckling analysis) the eigenvalue problem

(K1 + AK 2+ PK 3){x}=0

is solved for the first NVEC eigenvalues with the correct sign (EBAND). In many structural
systems, buckling is physically possible with loads of opposite sign than those actually
present. Therefore, in EBAND eigenvalues that are negative are not counted as 'accepted'
roots. It is possible, for example, for the user to specify NVEC=3 and for more than three
eigenvalues to be obtained. The negative eigenvalues are given (printed out), and ortho-
gonalizations are of course performed with respect to their associated eigenvectors; however,
calculations will continue until the prescribed number (NVEC) of positive eigenvalues has
been determined. With INDIC=2 the eigenvalue problem to be solved for NVEC eigen-
values is

(K1 -_l2 M){x}=O

in which M is the mass matrix. (M, incidentally, is not diagonal because u; and vf are at
'half' stations, and discrete ring rotatory inertia is included.) This solution occurs in sub-
routine EBAND2. The calculation of the lowest buckling load with nonlinear prebuckling
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effects included (INDIC= -1) is performed in EIGEN. Figure 16 summarizes the types
of equations being solved for the various values of INDIC. All of these calculations (except
for INDIC=3) are performed in Overlay BUCKLE.

The functions of the other two overlays MODEI (MODE) and PLOTI (PLOT) are
given in Fig. 13.

Some as for INOIC. | Cobb Stbity Dermi
ESAND PACiR

Lineor Solution Ce-eus lewst Ebbedwa-
of # ythe

KFx. Q S eNDIC I yl

Coluasted fin 2 I
ARmYS ttic-

Coloukite WadfNICChiteLuo NYIC
EkOWslM of ft Systm: EEieweas of *t Syde-m
Ktx - gesL x*O XjX*XX .1 >tt- *

EBAND2 EBAND

Flo. 16. Types of equations being solved for various INDIC.

ANALYTICAL RESULTS FROM BOSOR4

The remaining sections of the paper provide examples of the types of problems that
BOSOR4 is designed to handle. The first seven examples are for shells of revolution, and
the last two are for branched panels and columns. The first three and last two examples are
from the BOSOR4 user's manual. The fourth, fifth, and sixth examples correspond to
'real-world' engineering problems. The seventh example represents an illustration of some
of the problems involved in a buckling analysis in which nonlinear effects are important
and in which eigenvalues are closely spaced. The examples are chosen to illustrate the seven
types of analysis governed by the control integer INDIC. Computer times given in the text
are for Univac 1108 double precision calculations on the EXEC8 system.

Example 1. T-ring modeled as branched shell (INDIC= 1)

Figure 17 shows the discretized model and buckling loads predicted for a given range
of circumferential waves N. BOSOR4 gives two minima in the range 2•N• 16. The mini-
mum N=2 is a mode in which the cross-section does not deform-i.e. the ring ovalization
mode. Buckling pressures calculated for this mode are very close to those computed from
the well-known formula q-,=EI(N2 - 1)/r', in which q,, is the critical line load in lb/in.
(pressure integrated in the direction of segment 1), El is the bending rigidity of the ring, and
r, is the radius to the ring centroidal axis. The minimum at about N= I I corresponds to
buckling of the web. Approximately 20 sec of CPU time were required for this case.

Example 2. Stress analysis of ring-stiffened cylinder with three-point loads (INDIC=3)
Figure -18 presents the example with deflections and stresses shown schematically. The

threepoint loads are modelel as a line load with three triangular 'pulses' applied to the
ring. The results for stresses and displacements have apparently converged to a reasonably
accurate value, since a 10-term Fourier expansion yields at 8=0: w= -0.000301 in.,
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FIG. 17. Buckling of ring treated as branched shell.

a, (outer)= -6.19 psi, and a2 (inner)=6.02 psi. Reduction of the number of points in
the 40-in. length near the ring from 41 to 11 with use of 20 Fourier harmonics gives at
0=0: w=-0.000302 in., a, (outer)=6.30 psi, and a2 (inner)=6.56 psi. Similar small
changes occur in the other variables. The reason that convergence with increasing number
of Fourier harmonics is better than expected is that the ring essentially 'integrates' the
applied load. It is for this reason that numerically one-dimensional shell-of-revolution
codes based on Fourier superposition are frequently reliable and efficient for analysis of
shell systems submitted to concentrated loads. The very rapid convergence with increasing
number of mesh points in the short segment near the ring is a property of the finite-difference
energy method, see Ref. [28]. Approximately 33 CPU sec on the 1108 were required for
execution of the case described in Fig. 18. This includes time to plot six frames with about
fifteen traces on each frame.

Example 3. Buckling of conical shell heated on axial strip (INDIC=4)
Figures 19 and 20 show the model and results. Figure 19 gives the temperature rise

distribution at buckling as reported in Ref. [30]. Figure 20 shows the prebuckling stress
and displacement distributions and the lowest three eigenvalues and eigenvectors corres-
ponding to 20 circumferential waves. The eigenvalues denote a factor to be multiplied by the
prebuckling temperature rise distribution. Twenty Fourier harmonics were used for the
prebuckling analysis. The model consists of 309 degrees of freedom. A total of 74 sec of
CPU time on the 1108 were required for execution of the case.
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FIG. 20. Prebuckling state of heated cone and buckling modes.

Example 4. Buckling of a corrugatedshroudunder max. q nonsymmetrlc airloads (INDIC=4)
Figures 21-23 and Table 2 pertain to this case. Figure 21 gives SC4020 plots of the

reference surface of the structure and some expanded views. Many of the ring stiffeners
are treated as flexible shell structures. A discrete ring is shown as a centroid and an attach-
ment point. Figure 22 shows details of how the modeling is done at a typical station. Figure
23 shows a schematic of the assumed pressure distribution, taken essentially from wind-
tunnel data. Also shown in Fig. 23 are computer-generated plots ofthe prebucklingdeformed
structure and a buckling mode corresponding to the prestress distribution on the leeward
(axially compressed) side of the shroud. Table 2 gives comparative computer times for
various intermediate computations on the Univac 1108, IBM 370/165, and CDC 6600. The
model consists of 1033 degrees-of-freedom with a stiffness matrix maximum semibandwidth
of 133. Five Fourier harmonics were used for the prebuckling analysis.
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TABLe 2. Buckling of nonsymmetrically loaded shroud-shroud analyzed as branched shell with
18 segments: 1033 degrees-of-freedom. Maximum semibandwidth: 133. 5 harmonics for stress

analysis

ComOr Run Times (sac)

6600 CDC
UNIVAC FTN 6600 IBM

Circumfer- 1108 (OPT-I) RUN IBM 370/165
Computatitns inprocos (4) ential EXEBC8 CO Wer Compiler 3701165 Bisn

(I 108 and MM 370 in doubke precasion) waves (CPU) (CPU) (CPU) (CPU) valuee(d)

Read data and set up case

Stiffness matrix Kio calculated

ijeox-Qe solved and solution superposed on existing
vectors at various merldional, circ. stations.

Stiffness matrix Ki calculated

Ku xi-Qa solved and solution superposed on existing
vectors at various stations

Stifsid Matrix Ks2 calculated

K12x2-.Qz solved and solution superposed on existing
vectors

Stiffness matrix K, calculated

Kiax3-Qs solved and solution superposed on existing
vecton

Stiffness matrix K,4 calculated

K14x4-Q4 solved and solution superposed on existing
vectors

Discrete ring loads and moments computed and super-
posed (29 ring) displacements and resultants printed

Undeformed and deformed structure plotted

Begin buckling analysis:

StUfbhess matrix Li computed

Load-eometrIc matrix Ki computed

Lambda-squared matrix K3 computed

Form (Ki + MUo4K + MUo*MAUo*)(e)

Factor K, + MUoOK + MUoMe*Uo*K
14 power iteratlons completed

Shift (Kg + MU K *4 + MUt *MUs *A), factor

Six power iterations completed

Shift (Ki + MU*4K + MU2aMU2*aK), factor

Three power iterations completed

Calculate and store modal displacements

Print snd plot mode

Total CPU time (sec)

Total I/O le footnotes (e), (f), ()]

- 20.692 5.809 12.580

0 24.118 7.504 18.690

0 28.719

- 1 32.335

- 1 37.303

-2 40.780

-2 45.437

-3 48.914

- 3 53.505

-4 56.971

-4 61.628

10.160 26.836

11.859 32.930

14.528 41.224

16.216 47.320

18.885 55.620

20.578 61.714

23.234 70.014

24.941 76.110

29.370 91.976

- 75.205 32.305 99.366

81.025 -(b) -

13

13

13

13

13

13

13

13

13

13

13

13

85.689

91.354

93.382

93.832

98.096

118.824

123.600

132.017

136.367

140.741

145.882

149.654

34.291 106.760

36.079 115.172

37.024 118.200

37.167 118.734

39.555 126.064

46.592 157.942

49.102 165.710

52.128 179.408

54.631 187.178

56.156 195.190

59.364 202.854

-(b) 203.778

149.654 59.364 203.778

15.0(e) 38.100(e) 1051(f)

7.537

8.703

10.537

1 1.720

13.640

14.847

16.760

17.907

19.897

21.083

24.663

27.870

29.147

30.637

31.303

31.996

33.556

44.296 3.64256

46.566

51.373 3.64120

53.563

55.986 3.64123

59.330

59.330 3.64123

(d)

(a) 857 cM to Subroutine GASP in this cas Each call to GASP cause data to be traserred from core to auxiliary me
stVAMP or vite-versa.

(b) SC4020 plot software not available

(c) MU -spectral shift by amount MUm.
(d) Factor to be multiplied by pressure distribution shown in Fig. 23.

(e), (f) See footnotes (e), (f) in Table 3

(g) See footnote (h) in Table 3.
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FIG. 21. Computer model of corrugated shroud with expanded views.
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Example 5. Free vibration modes of a two-stage rocket (INDIC=2)
The model is shown in Fig. 24, and the vibration modes are depicted in Figs. 25 and

26. The rocket is considered to be empty, so that the modes do not contain the effects of
fuel or payload. The first two modes for N=O and N= I circumferential waves are rigid-
body modes. The first mode for N=O is simply a rotation about the axis of revolution.

FIG. 23. Pressure distribution on the shroud, prebuckling deflection, buckling mode.

B

I -

A

TWO-STAlE
ROCKET

DETAL A DETAIL D

FIG. 24. Two-stage rocket: discretized model.
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TAB3LE 3. Vibration of two-stage rocket treated as branched shell of 19 segments. Prestress
analysis: 536 degrees-of-freedom. Vibration analysis: 784 degrees-of-freedom. Maximum semi-

bandwidth in vibration analysis: 119, N=2 circumferential waves

Comput ations in procea(a)
(I lOS nd IBM 370 in double precision)

Read data and set up
Prestress soluton (NR-1)(b)
Compute stiffne matrix K,
Compute mas matrix K2
Forn K, -MU, *K (shift)(9)
Factor K, -MUKi2
Fihst power iteration completed
Second
Third
Fourth
Fifth
Thirteen more power iterations
Shift (Form K, -MU2*K2 )
Factor KI -MU2*aK
14 power itelns comented(U)
Shn tform KI -MU3*J 3)
Factor K, -MU3aK2
Five power Iterations completed
Store mode shape on drum
Four power iteratIons, 2nd eigenvalue
Store mode dshpe on drum
Ten power Iterations. 3rd eigenvalue
Shift (form KI -MU4

5 52) and factor
Four power Iterations completed
Sevn power iterationsr 4th eigenvalue
Shift (form Xi -MU5*K2) and factor
Thee power Iterations completed
Seven power iteration, 5th eigenvalue
Shift (form K, -MUe42) and factor
Three power iterations completed
14 power Iterations for 6th eigenvalue
Shift (form K, -MU7K2) and factor
Font power iterations compted
Check If all roote found (shiRft in and factor and count)
Calculate and print out modes
Plot undeformed and deformed structure, modes (28

frames)

Total CPU Time (seconds)
Total 1|0 asee footnotes (e), (f). (h))

Computer Run Times (sec)
CDC
6600 CDC

UNIVAC FTN 6600 IBM
1108 (OPT-I) RUN IBM 370)165

Frequency EXEC-$ Compiler Compier 370/165 Frequency
(cps) (CPU) (CPU) (CPU) (CPU) (cps)

= 11.S10 3.049 3.310
- 18.828 5.845 7.264

- 21.557 7.216 9.298
- 22.227 7.573 9.712

- 22.660 7.688 9.944
- 24.904 8.964 11.746

30.7808 25.594 9.219 12.176
27.1542 26.297 9.472 12.602
27.0698 26.991 9.722 13.028
27.0683 27.6U8 9.977 13.456
27.0653 28.380 10.227 13.882
27.0159 37.600 13.492 19.434
- 37.756 13.532 19.486
- 40.058 14.808 21.286

26.8932 49.989 18.331 27.246
- 50124 18.368 27.300
- 52.424 19.649 29.100

26.8674 55.997 20.906 31.230
- 56.012 20.910 31.234

27.2032 59.277 22.033 33.188
- 59.297 22.039 33.192

64.0898 67.111 24.832 37.918
- 69.337 26.148 39.772

64.0982 71.392 26.933 41.086
82.6948 76.S08 28.981 44.548
- 79.082 30.302 46.398

82.6958 81.189 31.092 47.724
117.659 87.144 33.274 51.292
- 89.514 34.593 53.144

117.657 91.693 35.392 54.4S6
160.249 103.199 39.709 61.612
- 105.309 41.028 63.462

160.086 108.167 42.089 65.242
- 110.567 43.421 67.116
- 119.363 45.945 69.776

- 126.530 -(d) -(d)

12630 45.45 609.776
13.000(e) 44.071(e) 1209(f)

4.710
7.130
8.050
8.377
8.740
9.543
9.883

10.263
10.603
10.963
11.340
14.597
14.860
15.643
17.833
18.087

19.947
19.950
21.497
21.500
25.673
26.736
27.936
30.563
31.533
32.6S3
35.936
36.936
38.096
44.623
45.639
47.166
48.919
52.089

-(d)

52.089
(h)

27.4844
27.0189
27.0110
27.0082
27.0044
26.9738

26.8685

26.8676

27.2031

64.0905

64.0963
82.6942

82.6962
117.659

117.657
160.046

160.085

(a) 1029 calls to subroutine GASP in this case. Each call to GASP causes data to be transferred from core to auxiliary
MaSa storage or vice-veraa.

b) NR me-n Newton-Raphson iterations.
c) M Ug-spectral ahift by amount MU.
d) SC4020 plot soflware not available.
e) This is 'equivalent' n/o sec as chared at the particular installation where cam run. For the CDC 6600 FTN case

the actual 1/0 sec were about 100, but since the program required only 40 per cent of total core available, the charge
(actual //O sec) was 0.44 times the charge/(CPU-4ec).

(f) Thi is the quantity of opetig tem (1/O) calls required at the NASA Lauloy CDC wham this case was run.
Note: Quantity of call depends on the buffer size set by the user. 1500-t (decimal) is suggested.

( 6 orer iterations required on IBM 370/165.
h) 1 charge depends upon size of buff., and upon record lengths established in the JCL and in Subroutine GASP.

o 1 2 0this as of the conversion of BOSOR4 to the iBMI370 had not been completed.

The two rigid-body modes for N= I are orthogonal to each other, but are each linear com-

binations of a uniform lateral translation and rotation about the center of mass. The third

mode for N=O is localized in the neighborhoods of the nozzles, and expanded plots are

given for clarification. Three of the modes involve local motion of the nozzles; the fourth

mode for N=1 and the first and second modes for N=2. This vibration model contains

784 degrees of freedom and the maximum semibandwidth of the stiffness matrix is 119.

Table 3 presents comparative data on computer CPU times for calculation of the six lowest

eigenvalues for N=2 circumferential waves.
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Fxo. 25. Vibration modes for N=O and N= I waves.
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Mwa. 26. Vibration modes for N=2 waves.
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Stress, Stability and Vibration of Complex, branched Shells of Revolution

Example 6. Failure of a ring-reinforced cylinder under hydrostatic external pressure (INDIC
-1,-1, -2, andO)

In this model, shown in some detail in Fig. 27, the slender webs are treated as flexible
annuli and the flanges as discrete rings. The problem is a good illustration of a typical
sequence of computer runs that might be required for analysis of a complex shell of
revolution where several failure modes are possible.

* i! Effedtive b tv l gg

|Foramre 13 -0Lo13 356 5.1 -

0.275 F2 Prame2 1Fram I

a Neat at ee.

at9ct.16
3400 ' Frame 'I Shame 'tt S y

E3300 W b Effete staff I

#2 , ofi f2 ofI

t3200 L

1
'UX3100 E3t.a0psi 4

0 0.0a Ol0. 0.15 0.20 0 50 100 150 200
NORMAL DEFLECTION 1wl AT WEB TIP (in) EXTRE FiBER EFFECTIVE STRESS We)

FIG. 27. Nonlinear stress analysis of frame-reinforced cylinder.

The choice of INDIC= I for a preliminary analysis is logical because one suspects
that buckling may be the primary mode of failure, and with INDIC= 1 one can obtain
approximate buckling pressures for a wide range of circumferential wave numbers without
too large an expenditure for computer time. The initial choice of INDIC= I is particularly
appropriate in this case because it is apparent that more than one minimum buckling
pressure exists in the pe,(N) vs N space: The shell may buckle axisymmetrically through
'sidesway' of the deep ring stiffeners; it may buckle nonsymmetrically in a low-N general
instability mode in which cylinder and rings move together; it may buckle nonsym-
metrically in a higher-N 'panel' or 'bay' mode in which the rings are located at displace-
ment nodes in the buckle pattern; or the webs of the rings may buckle nonsymmetrically in
a still-higher N mode similar to that shown in Fig. 17. The choice of INDIC= I with a
wide range of N would reveal all of these modes and cause to be calculated approximate
critical pressures corresponding to them. The top insert in Fig. 28 shows the results of
such an analysis. The lowest minimum corresponds to axisymmetric bifurcation buckling
('sidesway' of the webs).

Suppose that bifurcation buckling loads have been calculated from the INDIC= 1
branch of BOSOR4 and the minimum critical pressure has been determined approximately
from linear theory. The user should now check the accuracy of this prediction by choosing
INDIC= -1 (nonlinear prebuckling effects). In this case, however, the INDIC= -1
branch does not succeed in finding an eigenvalue corresponding to N=O. It is necessary
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Fio. 28. Linear (INDIC=l) and nonlinamr(INDIC= -2) bifurcation buckling analyses of frame.-
reinforced cylinder,

to choose INDIC= - 2 ('plot' stability determinant) to find out why. Figure 28 shows
results of the INDIC= - 2 analysis. At a pressure close to the bifurcation pressure with
INDIC= 1, the stability determinant changes direction rather abruptly, indicating fairly
large changes in prebuckling deformations for small changes in pressure. Since the stability
determinant does not change sign, it is not surprising that the INDIC= - I branch fails
to find an eigenvalue. A final computer run with INDIC==0 gives axisymmetric nonlinear
displacements and stresses for increasing pressure. The results of the IND)IC=0 analysis
are shown in Fig. 27. The rather abrupt increase in rate of 'sidesway' in fr-ames No. 2 and
No. 3 bectween 3,100 and 3,200 psi is the cause of the change in direction of the stability
determinant shown in Fig. 28. Failure of the structure would probably occur at the root
of frames No. 2 or No. 3 because of high (and rapidly increasing) Stresses there.
Example 7. Buckling of very thin cylinder under axial compresirion (INDIC= - 1)

This example is included because nonilmear prebuckling effects are fairly important; it
is a difficult case from a numerical point of view, since eigenvalues are close together and
close to the axisymmetric collapse load; and the case demonstrates some of the internal
checks and automatic internal control in BOSOR4. Because of these properties it is one of
the cases that a previous program, the BOS0R3, could not handle very well.

Figure 29 shows the model of a cylinder with radius R=500 in., thickness t-lin.,
length L=2,OOD in., Young's modulus E- 101 psi and Poisson's ratio v=0.3. The cylinder
is treated as being symmetric about the midlength, and the 1,000-in, half-cylinder thus
analyzed is divided into two segments: a 200-in.-long edge zone segment with 83 mesh
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FIG. 29. Buckling of axially compressed cylinder.

points, and an 800-in.-long interior segment with 99 mesh points. The axisymmetric pre-

stress model thus contains 379 degrees-of-freedom, and the stability model 566 degrees-of-

freedom. Simple support conditions are applied at the edge, and symmetry conditions at

the midlength. Also shown in Fig. 29 are the prebuckling displacement distribution at the

predicted critical load of 10,274 lb/in. and the buckling mode corresponding to N= 18

circumferential waves.

With the INDIC= -1 option the user supplies a starting load, a starting range of N,

and an initial value of N. Through a sequence of operations the program first searches

for an approximate local minimum buckling axial load VY,(N) within the given range of N.

Once the N corresponding to the approximate minimum V4, has bee found, N becomes

fixed and a sequence of eigenvalue problems is established through which a final accurate

buckling load is computed at that value of N with nonlinear prebuckling effects accounted

for.

Figure 30 shows the sequence of wave numbers and loads automatically explored by

BOSOR4 to obtain the final result L6= V,,= 10,274 lb/in. With an initial base or 'fixed'

load of 0 and a 'variable' load (quantity to be multiplied by eigenvalue) of 1.0 lb/in.,

eigenvalues labeled (1), (2), (3), and (4) are calculated. The base or 'fixed' load is then set

equal to the local minimum or 12,008 lb/in. The 'variable' or 'eigenvalue' load is set equal

to 12,008/1,000 lb/in. The small increment over a relatively large fixed value gives an

accurate approximation of the 'local' rate of change of prebuckling stresses and rotations

with load-local change about a given base or 'fixed' point. This technique permits for-

mulation of another eigenvalue problem analogous to that represented by equation (1),

in which K1 is the stiffness matrix for N= 12 waves, including the effects of the 'fixed'

preload L 2 = 12,008 lb/in., and K2 and K3 are the load-geometric and lambda-squared

matrices. These matrices depend on various parameters as well as on the differences

between the prebuckling stress resultants and rotations at the 'fixed' load and those at the

load L 2 +L 2 /1,000. For this problem, the eigenvalue A is the factor that, when multiplied
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Fo. 30. Sequence of axial load and circumferential wave number estimates during calculation of
buckding of cylinder with nonlinear prebuckling effects included.

by the load difference L2 /1,000, gives the quantity that must be added to the base or 'fixed'
load L 2= 12,008 to give a new base load. A third eigenvalue problem at N= 12 can then
be set up corresponding to the new base load. Ordinarily, calculations would continue in
this manner until A is smaller than a certain prescribed amount.

In this case, however, it is determined by BOSOR4 that for N=12 circumferential
waves, three eigenvalues exist below the 'fixed' load 12,008 lb/in. Hence, the load is auto-
matically reduced by a factor of 0.7 to 8,414 lb/in. With the eigenvalues corresponding to
points 5, 6, 7 and 8 and 9 in Fig. 30 determined, the new base load L 3 = 10,819 lb/in.
is established corresponding to N= 18 waves. It is also determined by BOSOR4 that at
N= 18 one eigenvalue exists below this new base load. However, the new load need not
be reduced by some factor because initial inverse power iterations for the eigenvalue
nearest to L3 = 10,819 indicate that subsequent critical load estimates will further reduce
the base loads L4 , Ls, etc., to the lowest eigenvalue rather than increase them toward
the second eigenvalue. Figure 30 shows the final three load estimates, L4 , LS, and L6 .

Table 4 identifies various computations and gives current 'fixed' loads, circumferential
wave numbers, eigenvalues, and CPU computer times. Underlined eigenvalues represent
values to which the inverse power iterations with spectral shifts converge. This particular
case requires much more than the average computer time for a nonlinear buckding analysis
with the same number of degrees of freedom for the following reasons:

(I) The eigenvalues for each N are closely spaced, so that many inverse power iter-
ations and spectral shifts are required for convergence.

(2) The eigenvalues are close to the axisymmetric collapse load of the cylinder.
Rapidly changing nonlinear behavior in the neighborhood of the eigenvalues
causes the requirement for more than the average number of base loads (LI-L 6 )
with associated reformulations of the eigenvalue problem.

(41 ,-}

11-y)
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Figure 31 shows the prebuckling load deflection curve for this cylinder. The abscissa
represents the difference between the actual end shortening and the end shortening that
would exist if there were no prebuckling rotations. Eigenvalues computed with the INDIC
= +1 branch for N= 18 waves are shown as crosses. Several runs were made, each run
corresponding to a different base or 'fixed' load. The open circles correspond to the various
base loads, Li. The large dots represent the 'fixed' loads used in the sequence shown in
Fig. 30. Two to four eigenvalues are calculated corresponding to each open-circle base

-, 1lO t500 i.' 1900 Ibs/in *-M.~----- ----- ------------------ [---- F,/r

2 0 '' 42008 lbs/in

11000

x9

1'.lk,.0379

102 IO74

9000

8 , -L 8414 lb*/in

<8000.

Fia. 31. Eigenvalue 'separation' for axially compressed cylinder.
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load. These eigenvalues are indicated by crosses on the same vertical lines as the open
circles. The eigenvectors are shown in Fig. 32. Notice that for 'fixed' load L=O, the lowest
four eigenvalues are very close and are all approximately equal to the 'classical' load
0.605 EtV/R. The lowest eigenvalues are also close for N= 15. It is apparent from Table 4
that several inverse power iterations and spectral shifts are required to obtain the lowest
eigenvalue at that wave number. A total of 39 inverse power iterations and four spectral
shifts are required for convergence to the lowest eigenvalue. For L=5,000 lb/in. the
lowest eigenvalue 'separates' from the others, and the localized nature of the corresponding
eigenvector is strongly developed (Fig. 32). Because of this separation of the lowest eigen-
value, fewer inverse power iterations and spectral shifts are required for convergence.
From Table 4 for N= 15 and 'fixed' load L3=8,422 lb/in. it is seen that a total of twenty
power iterations and two spectral shifts are required. Thus, the user may save considerable
computer time by choosing a base or 'fixed' load to be some reasonable percentage of the
estimated final buckling load. This is particularly true if many values of the wave number
N are to be explored and if the predicted N corresponding to minimum Vr(N) is likely to
depend strongly on the fixed portion of the load, as is the case for axially compressed very
thin cylinders.

EIGENVECTOR~S____ ___

Prelood FIRST SECOND THIRD FOURTH
(fbs.in.) A - \ 7 X , d

NC,,I2178 N, -12232 ' N,,' 122968- N,,'12357-

5000 /jf t17lO '-'2311780 123

8414 / ''< *f '-+ - z X84 080- 12190 228-5

10000 -
10289- 11844- 2257 12360-

-110 11340 2253 a .

1150011329

11900A

11800 12202

Fio. 32. Eigenvectors and eigenvalues for axially compressed cylinder with various base loads.

STRESS, BUCKLING AND VIBRATION OF PRISMATIC SHELL STRUCTURES
An interesting and not immediately obvious use of BOSOR4 is for buckling and

vibration analysis of prismatic shell structures, in particular composite branched panels.
This technique of using a shell-of-revolution program for the treatment of structures that
are not axisymmetric is discussed in detail in Ref. [25]. Figure 33, reprinted from that
article, shows various types of prismatic shell structures that can be handled by BOSOR4.
Examples involving stress and buckling of oval cylinders, cylinders with nonuniform loads,
and corrugated and beaded panels are given in Ref. (25] as well as a study of vibration of a
stringer-stiffened shell in which the stringers are treated as discrete. In the analysis of
buckling of nonuniformly loaded cylinders, the nonsymmetry of the prestress can be
accounted for in the stability analysis. In BOSOR4 the capability described in Ref. [251 is
extended to branched prismatic shell structures.
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Loads

t) Discretely Stiffened General Sections
With Variable Thickness

FiG. 33. Some prismatic shell structures that can be analyzed with use of BOSOR4.

Example 8. Axially compressed semi-sandwich corrugatedpanels (INDIC=4)
Figure 34 shows two types of semisandwich corrugated construction, bonded and

riveted. The panels are treated as giant annuli with mean radius of 2,750 in. and outer
radius minus inner radius equal to about 7.4 in. Both panels are assumed to carry an
axial compressive stress (panels loaded normal to plane of figure) that is constant along the
axis of the panel and over all of the little segments shown at the top of Fig. 34. In the model
on the left-hand side of the figure the troughs of the corrugated sheet and the flat skin are
assumed to be united by a perfect bond of zero thickness. The thickness of the panel in
these areas is equal to the sum of the thickness of the flat sheet and the corrugated sheet.
In the riveted panel the displacements and rotations of the corrugated sheet are con-
strained to be equal to those of the flat skin only at the midlengths of the troughs, thus
simulating a rivet of zero diameter in the plane of the paper and continuous in the direction
normal to the plane of the paper. The computer-generated plots show the undeformed and
deformed panels for buckling modes with various wave lengths L in the direction normal
to the plane of the paper. The riveted panel is weaker in axial compression because the
rivets permit more local distortion of the cross-section than does the continuous bonding.
The modes shown are more or less general instability modes. One can calculate buckling
loads for much shorter L, such as L= 1.0 in., in order to determine the effect of method of
fastening on crippling loads.
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FIo. 34. Buckling modes of axially compressed semisandwich bonded and riveted corrugated panels.

Example 9. Buckling of an axially compressed branched, composite column (INDIC=4)

Figure 35 shows a cross-section of the column submitted to uniform compressive

shortening normal to the plane of the paper. The column is made of aluminium, and the

COLUMN CROSS-SECTION FINITE DIFFERENCE NWEL

Aluminum

2 - E ' IOpsi
z

|' BoronE-poxy
o E 30psl

-I
t0000 10002 10000 10002

Buckin e 1 Su kII Mode 2

2

R R
Fro. 35. Buckling of branched composite column under axial compression (load normal to plane

of paper).
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circular appendages attached to the short flange are filled with boron epoxy composite.
The column is treated as a shell of revolution, with radius from the axis of revolution to the
two 'foot' flanges equal to 10,000 in. The mesh-point distribution is shown in Fig. 35b,
and two buckling modes corresponding to an axial half-wavelength of 10,000 x r/N
=1.96 in. are shown in Fig. 35c and d. These modes represent antisymmetric and sym-
metric crippling of the foot flanges. The critical 'loads' 510.5 and 520.8 are actually
eigenvalues, quantities to be multiplied by the loads per length along the cross-section of
the column, which for this INDIC=4 run are read from cards as input data.

SUMMARY
The paper gives a complete description of the BOSOR4 computer program, which

runs on the CDC 6600, UNIVAC 1108, and IBM 370/165 computers. The literature on
computer programs for shells and solids of revolution is briefly reviewed. BOSOR4 and
other computer programs are shown in a 'capability' chart. The basic assumption upon
which BOSOR4 rests are enumerated, and the finite-difference energy method is described.
The formulation of the stability problem is shown, and the strategy is demonstrated for
obtaining the lowest buckling load in cases for which the eigenvalues are closely spaced
and the problem is highly nonlinear at loads in the neighborhood of the bifurcation buckling.
Examples of stiffness matrices for branched systems of shells are shown. Overlay charts
with required core storage are given for operation of BOSOR4 on the CDC6600, UNIVAC
1108, and IBM 370/165. A schematic of a typical data deck is shown. Flow charts are
given for the seven types of analysis that BOSOR4 will perform: buckling with nonlinear
prebuckling, nonlinear axisymmetric stress, buckling with linear prebuckling, vibration
with nonlinear axisymmetric prestress, linear nonsymmetric stress with automatic cal-
culation of Fourier series of nonsymmetric loads and automatic superposition of harmonics,
buckling with linear nonsymmetric prestress, and calculation of stability determinant for
an increasing sequence of applied loads. Examples are given for each of these types of
analysis with central processor times given on the CDC, UNIVAC, and IBM computers
for the various operations during the execution of three typical rather large cases. The
use of BOSOR4 for the calculation of buckling loads of branched, prismatic shell structures
such as a semi-sandwich corrugated panel is demonstrated.
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