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STRESS, STABILITY AND VIBRATION OF COMPLEX,
BRANCHED SHELLS OF REVOLUTION

DAvVID BUSHNELL
Lockheed Palo Alto Research Laboratory, Palo Alto, California, U.S.A.

Abstract—A comprehensive computer program, designated BOSOR4, for analysis of the stress, stability
and vibration of segmented, ring-stiffened, branched shells of revolution and prismatic shells and panels
is described. The program performs large-deflection axisymmetric stress analysis, small-deflection nonsym-
metric stress analysis, modal vibration analysis with axisymmetric nonlinear prestress included, and buckling
analysis with axisymmetric or nonsymmetric prestress. One of the main advantages of the code is the
provision for realistic engineering details such as eccentric load paths, internal supports, arbitrary branching
conditions, and a ‘library’ of wall constructions. The program is based on the finite-Jifference energy method
which is very rapidly convergent with increasing numbers of mesh points. The organization of the program
is briefly described with flow of calculations charted for each of the types of analysis. Overlay charts and
core storage regquirements are given for the CDC 6600, IBM 370/165, and UNIVAC 1108 versions of
BOSORA. A largenumber ofcases isincladed to demonstrate thescopeand practicality of the program period,

INTRODUCTION

THE PURPOSE of this paper is to describe a computerized method of analysis for composite,
branched shells of revolution. The main advantage of the analysis method and computer
program is its direct and efficient applicability to practical engineering design problems
involving very complex shells of revolution or prismatic shell structures such as corrugated
panels or noncircular cylinders. Emphasis is placed on analytical results for a variety of
‘real-world’ engineering problems. Details of the analysis method are reported in Ref. [1].

Extensive literature exists on analysis and computer programs for shells and solids of
revolution. Figure 1 confains the names of many computer programs and names of
originators of other computer programs that cover this field. The names are given in a
‘coordinate system’ arranged such that increasingly ‘general purpose’ computer codes lie
increasing distances from both axes. Other codes, existing just outside of the region depicted,
apply to structures that are ‘almost’ shells of revolution, such as shells with cutouts, shells
with material properties that vary around the circumference, or panels of shells of revolution.

The region shown in Fig. 1 is divided by a heavy line into two fields: Programs lying
within the heavy line are based on numerical methods that are essentially one-dimensional,
that is, the dependent variables are separable and only one spatial variable need be dis-
cretized; programs lying outside the heavy line are based on numerical methods in which
two spatial variables are discretized. It is generally true that analysis methods and programs
lving outside the heavy line require perhaps an order of magnitude more computer time
for a given case with given nodal point density than do those Iying inside the line. This
distinction arises because the bandwidths and ranks of equation systems in two-dimensional
numerical analyses are greater than those in one-dimensional numerical analyses. Certain
of the areas in Fig. 1 are blank. Those near the origin correspond in general to cases for
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Fic. 1. Computer programs for shells and solids in revolution.

which closed-form solutions exist and for which slightly more general programs are clearly
applicable. The blank areas lying near the outer boundaries of the chart are for the most
part covered by more general programs such as NASTRAN, SNAP, REXBAT, STAGS,
STRUDL, and ASKA [20].

The numerals next to the program name or to the originator names correspond to
references at the end of the text. Names shown with no numerals are referenced in one or
more of the survey papers, Refs. [20~23]. These papers describe the various numerical
procedures used, and in one case [21] hint as to the availability of some of the codes.

This paper will focus on a description of the general branched shell-of-revolution
analyzer called BOSOR4. The goals of the research leading to the BOSOR4 code have
been to provide as general as possible an engineering tool within the restriction of one-
dimensional discretization; to include as much capability as possible for analysis of practical
engineering structures, which include meridional discontinuities, weld mismatches, com-
posite materials, discrete rings, sliding constraints, etc. to make the computer program
easy to use by means of logical arrangement of input data, internal diagnostics, plots, and a
complete user’s manual; to make the code as efficient as possible; and to maximize its
availability by converting it and checking it out on three major systems—the Univac 1108,
the CDC 6600, and the IBM 370/165. Program tapes and manuals are available through
the author or through the COSMIC system. Described in this paper are the scope of
BOSORA, the analysis method, and the program organization; in addition, several cases
involving nonlinear stress analysis, buckling, and vibration of segmented, branched, ring-
stiffened shells of revolution with various wall constructions are discussed.
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SCOPE OF THE BOSOR4 COMPUTER PROGRAM

The BOSOR4 code performs stress, stability, and vibration analyses of segmented,
branched, ring-stiffened, elastic shells of revolution with various wall constructions.
Figure 2 shows some examples of branched structures which can be handled by BOSORA4.
Figure 2a represents part of a multiple-stage rocket treated as a shell of seven segments;
Fig. 2b represents part of a ring-stiffened cylinder in which the ring is treated as two shell
segments branching from the cylinder; Fig. 2c shows the same ring-stiffened cylinder, but
with the ring treated as ‘discrete’, that is the ring cross section can rotate and translate but
not deform, as it can in the model shown in Fig. 2b. Figures 2d—f represent branched
prismatic shell structures, which can be treated as shelis of revolution with very large mean
circumferential radii of curvature, as described in Ref. [25] and later in this paper.

I
»\4?:;1

FG. 2. Examples of branched structures which can be analyzed with BOSOR4.

The program is very general with respect'to geometry of meridian, shell-wall design,
edge conditions, and loading. It has been thoroughly checked out by comparisons with
other known solutions and tests. The BOSOR4 capability is summarized in Table 1. The
code represents three distinct analyses:

(1) A nonlinear stress analysis for axisymmetric behavior of axisymmetric shell
systems (large deflections, elastic)

(2) A linear stress analysis for axisymmetric and nonsymmetric behavior of axi-
symmetric shell systems submitted to axisymmetric and nonsymmetric loads

(3) An eigenvalue analysis in which the eigenvalues represent buckling loads or
vibration frequencies of axisymmetric shell systems submitted to axisymmetric
loads. (Eigenvectors may correspond to axisymmetric or nonsymmetric modes.)
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TasLE 1. BOSOR4 capability summary

Type of analysis Shell geometry Wall construction Loading
Nonlinear axisym- Multiple-segment Monocoque, variable  Axisymmetric or non-
metric stress shells, each segment or constant thickness  symmetric thermal and/
Linear symmetric or with its own wall con- Skew-stiffened shells or mechanical line loads
nonsymmetric stress struction, geometry, Fiber-wound shells and moments
Stability with linear and loading Layered orthotropic Axisymmetric or non-
symmetric or nonsym- Cylinder, cone, shells symmetric thermal and/
metric prestress or ogival, Corrugated, with or or mechanical dis-
with nonlinear sym- toroidal, ellipsoidal, without skin tributed loads
metric prestress etc. Layered orthotropic Proportional loading
Vibration with non- General meridional with temperature- Non-proportional
linear prestress shape; point-by- dependent material loading
analysis point input properties
Variable mesh point Axial and radial dis- Any of above wall
spacing within each continuities in shell types reinforced by
segment meridian stringers and/for
Arbitrary choice of rings treated as
reference surface ‘“‘smeared out”
General edge Any of above wall
conditions types further rein-
Branched shells forced by rings treated
Prismatic shells and as discrete
composite built-up  Wall properties vari-
panels able along meridian

BOSOR4 has an additional branch corresponding to buckling of nonsymmetrically loaded
shells of revolution. However, this branch is really a combination of the second and third

.analyses just listed.

In the BOSORA4 code, the user chooses the type of analysis to be performed by means of

a control integer INDIC:

INDIC=-2 Stability determinant calculated for given circumferential wave number
N for increasing loads until it changes sign. Nonlinear prebuckling
effects included. INDIC then changed automatically to —1 and cal-
culations proceed as if INDIC has always been —1.

INDIC= -1 Buckling load and corresponding wave number N determined, in-
cluding nonlinear prebuckling effects. N corresponding to local

minimum critical load L_(N) is automatically sought.

INDIC=0  Axisymmetric stresses and displacements calculated for a sequence of
stepwise increasing loads from some starting value to some maximum
value, including nonlinear effects. Axisymmetric collapse loads can be

calculated.

INDIC=1 Buckling loads calculated with nonlinear bending theory for a fixed
load. Buckling loads calculated for a range of circumferential wave
numbers. Several buckling loads for each wave number can be cal-

culated.
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INDIC=2  Vibration frequencies and mode shapes calculated, including the effects
of prestress obtained from axisymmetric nonlinear analysis. Several
frequencies and modes can be calculated for each circumferential wave
number.

INDIC=3 Nonsymmetric or symmetric stresses and displacements calculated for
a range of circumferential wave numbers. Linear theory used. Results
for each harmonic are automatically superposed. Fourier series for
nonsymmetric loads are automatically computed or may be provided
by user.

INDIC=4  Buckling loads calculated for nonsymmetrically loaded shells. Pre-
buckled state obtained from linear theory (INDIC=3) or read in from
cards. ‘Worst’ meridional prestress distribution (such as distribution
involving maximum negative meridional or hoop prestress resultant)
chosen by user, and this particular distribution is assumed to be axi-
symmetric in the stability analysis, which is the same as that for the
branch INDIC=1.

The variety of buckling analyses INDIC=-2, —1, 1, and 4) is provided to permit the
user to approach a given problem in a number of different ways. There are cases for which
an INDIC= -1 analysis, for example, will not work. The user can then resort to an
INDIC=~2 analysis, which requires more computer time, but which is generally more
reliable. Buckling of a shallow spherical cap under external pressure is an example. In an
INDIC= -1 analysis of the cap, the program generates a sequence of loads that ordinarily
should converge to the lowest buckling load, with nonlinear prebuckling effects included.
Depending on the cap geometry and the user-provided initial pressure, however, one of
the loads in the sequence may exceed the axisymmetric collapse pressure of the cap. This
phenomenon can occur if the bifurcation buckling loads are just slightly smaller than the
axisymmetric collapse loads. The user can obtain a solution with use of INDIC=—2, in
which the bifurcation load is approached from below in a ‘gradual’ manner. The BOSOR4
manual [1] contains an example of this case. A somewhat different illustration is provided
in the section on analytical results.

The branch INDIC=1 is provided because it is sometimes desirable to know several
buckling eigenvalues for each circumferential wave number, N, and because there may exist
more than one minimum in the critical load vs N-space. This is especially true for composite
shell structures with many segments and load types. Such a structure can buckle in many
different ways. The designer may have to eliminate several possible failure modes, not just
the one corresponding to the lowest pressure, for example. The INDIC=4 branch is
provided for two reasons: The user can calculate buckling under nonsymmetric loads with-
out having to make two separate runs, an INDIC=3 run and an INDIC==1 run. In
addition, this branch permits the user to bypass the prebuckling analysis and read pre-
buckling stress distributions and rotations directly from cards. This second feature is very
useful for the treatment of composite branched panels under uniaxial or biaxial compression.

The BOSOR4 program, although applicable to shells of revolution, can be used for
the buckling analysis of composite, branched panels by means of a ‘trick’ described in
detail in Ref. [25]. This ‘trick’ permits the analysis of any prismatic shell structure that is
simply-supported at particular stations along the length. Any boundary conditions can be
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used along generators. In Ref. [25] many examples are given, including nonuniformly
loaded cylinders,. noncircular cylinders, corrugated panels, and cylinders with stringers
treated as discrete. This paper gives other examples.

ANALYSIS METHOD
The assumptions upon which the BOSOR4 code is based are:

(1) The wall material i§ elastic.

(2) Thin-shell theory holds; i.e. normals to the undeformed surface remain normal
and undeformed.

(3) The structure is axisymmetric, and in vibration analysis and nonlinear stress
analysis the loads and prebuckling or prestress deformations are axisymmetric.

(4) The axisymmetric prebuckling deflections in the nonlinear theory (INDIC=0,
—1, 2), while considered finite, are moderate; i.e. the square of the meridional
rotation can be neglected compared with unity.

(5) In the calculation of displacement and stresses in nonsymmetrically loaded shells
(INDIC=3), linear theory is used. This branch of the program is based on
standard small-deflection analysis.

(6) A typical cross-section dimension of a discrete ring stiffener is small compared with
the radius of the ring.

(7) The cross-sections of the discrete rings remain undeformed as the structure deforms,
and the rotation about the ring centroid is equal to the rotation of the shell
meridian at the attachment point of the ring (except, of course, if the ring is
treated as a flexible shell branch).

(8) The discrete ring centroids coincide with their shear centers.

(9) If meridional stiffeners are present, they are numerous enough to include in the
analysis by an averaging or ‘smearing’ of their properties over any parallel circle
of the shell structure, meridional stiffeners can be treated as discrete though the
‘trick’ described in Ref. [25].

The analysis is based on energy minimization with constraint conditions. The total
energy of the system includes strain energy of the shell segments and discrete rings, potential
energy of the applied line loads and pressures, and kinetic energy of the shell segments and
discrete rings. The constraint conditions arise from displacement conditions at the
boundaries of the structure, displacement conditions that may be prescribed anywhere
within the structure, and at junctures between segments. The constraint conditions are
introduced into the energy functional by means of Lagrange multipliers.

These components of energy and constraint conditions are initially integro—differential
forms. The circumferential dependence is eliminated by separation of variables. Dis-
placements and meridional derivatives of displacements are then written interms of the shell
reference surface displacement components u;, v, and w;, at the finite-difference mesh points
and Lagrange multipliers A;. Integration is performed simply by multiplication of the
energy per unit length of meridian by the length of the ‘finite difference element’, to be
described below.

In the nonlinear axisymmetric stress analysis the energy expression has terms linear,
quadratic, cubic, and quartic in the dependent variables ¥, and w,. The cubic and quartic
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energy terms arise from the ‘rotation-squared’ terms that appear in the expression for
reference surface meridional strain and in the constraint conditions. Energy minimization
leads to a set of nonlinear algebraic equations that are solved by the Newton—-Raphson
method. Stress and moment resultants are calculated in a straightforward manner from
the mesh-point displacement components through the constitutive equations and the
kinematic relations.

The results from the nonlinear axisymmetric or linear nonsymmetric stress analysis
are used in the eigenvalue analyses for buckling and vibration. The ‘prebuckling’ or‘pre-
stress’ meridional and circumferential stress resultants N,, and N,, and the meridional
rotation x, appear as known variable coefficients in the energy expressions that govern
buckling and vibration. These expressions are homogeneous quadratic forms. The values
of a parameter (load or frequency) that render the quadratic forms stationary with respect
to infinitesimal variations of the dependent variables represent buckling loads or natural
frequencies. These eigenvalues are calculated from a set of linear homogeneous equations.
More will be written about the bifurcation buckling eigenvalue problems in the following
paragraphs.

Details of the analysis are given in Refs. [1, 26 and 27]. Only three aspects will be
described here: the ‘finite-difference element’, the form of the stability eigenvalue problem,
and the effect of branched systems on the configuration of the stiffness matrix.

THE ‘FINITE-DIFFERENCE’ ELEMENT

BOSORA4 is based on the finite-difference energy method. This method is described in
detail and compared with the finite element method in Ref. [28]. Figure 3 shows a typical
shell segment meridian with finite-difference mesh points. The “#’ and ‘v’ points are located
halfway between adjacent ‘w’ points. The energy contains up to first derivatives in w and v
and up to second derivatives in w. Hence, the shell energy density evaluated at the point
labeled E (center of the length /) involves the seven points w;_, through w,, . The energy
per unit circumferential length is simply the energy per unit area multiplied by the length
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Fi1c. 3. Finite-difference discretization: the *finite-difference element’,
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of the finite-difference element /, which is the arc length of the reference surface between
two adjacent « or v points. In Ref. [28] it is shown that this formulation yields a (7x7)
stiffness matrix corresponding to a constant-strain, constant-curvature—change finite
element that is incompatible in normal displacement and rotation at its boundaries but that
in general gives very rapidly convergent results with increasing density of nodal points.
Note that two of the w-points lie outside of the element. If the mesh spacing is constant,
the algebraic equations obtained by minimization of the energy with respect to nodal
degrees-of-freedom can be shown to be equivalent to the Euler equations of the variational

DaviD BUSHNELL

problem in finite form. Further description and proofs are given in Ref, [28].

Figures 4 and 5 show rates of convergence with increasing nodal point density for a
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poorly conditioned problem—a stress analysis of a thin, nonsymmetrically loaded hemi-
sphere with a free edge. The finite-element results were obtained by programming various
kinds of finite elements into BOSOR4. The computer time for computation of the stiffness
matrix X, is shown in Fig. 5. A much smaller time for computation of the finite-difference
K, is required because there are fewer calculations for each ‘Gaussian’ integration point
and because there is only one ‘Gaussian’ point per finite-difference element. Other com-
parisons of rate of convergence with the two methods used in BOSOR4 are shown for
buckling and vibration problems in Ref. [28].

FORMULATION OF THE STABILITY PROBLEM

The bifurcation buckling problem represents perhaps the most difficult of the three
types of analyses performed by BOSOR4. It is practical to consider bifurcation buckling
of complex, ring-stiffened shell structures under various systems of loads, some of which
are considered to be known and constant, or ‘fixed’ and some of which are considered to
be unknown eigenvalue parameters, or ‘variable’,

The notion of ‘fixed’ and ‘variable’ systems of loads not only permits the analysis of
structures submitted to nonproportionally varying loads, but also helps in the formulation
of a sequence of simple of ‘classical’ eigenvalue problems for the solution of problems
governed by ‘nonclassical’ eigenvalue problems. An example is a shallow spherical cap
under external pressure. Very shallow caps fail by nonlinear collapse, or snap-through
buckling, not by bifurcation buckling. Deep spherical caps fail by bifurcation buckling in
which nonlinearities in prebuckling effects are not particularly important. There is a range
of cap geometries for which bifurcation buckling is the mode of failure and for which the
critical pressures are very much affected by nonlinearities in prebuckling behavior. The
analysis of this intermediate class of spherical caps is simplified by the concept of ‘fixed’ and
‘variable’ pressure

Figure 6 shows the load-deflection curve of a shallow cap in this intermediate range.
Nonlinear axisymmetric collapse (p,;), linear bifurcation (p,;,), and nonlinear bifurcation
{p,3) loads are shown. The purpose of the analysis referred to in this section is to determine
the pressure p,;. It is useful to consider the pressure p,, as composed of two parts

Pnb=pf+pv

in which p’ denotes a known or ‘fixed’ quantity, and p” denotes an undetermined or ‘variable’
quantity. The fixed portion p/ is an initial guess or represents the results of a previous
iteration. The variable portion p® is the remainder, which can be determined from a
reasonably simple eigenvalue problem, as will be described. It is clear from Fig. 7 that if
P’ is fairly close to p,, the behavior in the range p=p’ 4 p® is reasonably linear. Thus, the
eigenvalue p,, can be calculated by means of a sequence of eigenvalue problems through
which ever and ever smaller values p” are determined and added to the known results p/
from the previous iterations. As the BOSOR4 computer program is written the initial guess
p’ need not be close to the solution p,,.

In the bifurcation stability analysis it is necessary to develop three matrices corres-
ponding to the eigenvalue problem

K1x+2K2x+AzK3x=0. (‘-)
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Fic. 6. Load-deflection curves for shallow spherical cap, showing bifurcation points from linear
prebuckling curve (pp) and nonlinear prebuckling curve (pus).
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FiG. 7. Stiffness matrix configuration with types 1 and 3 constraint conditions.

The matrix K, is the stiffness matrix and contains ‘fixed’ load effects; the matrix K, is
commonly called the ‘load-geometric’ matrix and contains linear terms involving the
‘variable’ loads; and the matrix K, another ‘variable’-load quantity, is called the A2-
matrix, for obvious reasons. These matrices all contain known numbers and are all banded.
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The bifurcation buckling problem is stated mathematically in terms of the second
variation of the total energy. For a shell the second variation is given by

#u=| [ [ e+ N+ UK + 2N

= uTiT
ov
dw

+[bu, v, dw][ P} rdods  (2)

in which &%, ¢!, &2 signify, respectively, strain vectors (containing reference surface strains
and changes in curvature) that are zeroth, first, and second order in the displacement
veariations du, dv, dw and that contain prebuckling quantities; [C] represents the 6x6
matrix of stress-resultant—strain coefficients; N7 represents thermal effects; [P] represents
‘pressure-rotation’ effects; s and 8 are the meridional and dircumferential coordinates,
respectively; and r is the local parallel circle radius of the shell of revolution.

. The linear part of the ‘strain. increment. during buckling’, ¢!, contains the prebuckling
meridional rotation y,. The prebuckling strain vector ¢° contains terms both linear and
quadratic in prebuckling rotations. If, in a reasonably small neighborhood ( )" of a
known prebuckting state { )/, the behavior of the shell tan be considered linear with
respect to load, then in this neighborhood the second variation of the shell strain energy
can be written in theform

5EU=J J (Ay +AA; + 12 A;3)rdsd. 3
s) 9

“Formufas for A,, A, and A, are given in Ref. [1]. The development is expanded in Ref. {1]

to include discrete ring strain energy and constraint conditions. If the integration is per-
formed and the second variation is ‘minimized’ with respect to the dependent variables
du,, ov,, dw,, and the Lagrange multipliers, the eigenvalue problem of equation (1) results.
The method of solution of this problem is described in Ref. [1]. An eigenvalue problem of
the same form was derived and solved by Anderson ef al. [29]. Eigenvalues are extracted
by means of the method of inverse power iterations with spectral shifts.

STIFFNESS MATRICES FOR BRANCHED SYSTEMS

Figures 7-10 show the configurations of stiffness matrices for various types of branching
conditions. These matrices are specifically for prebuckling axisymmetric problems in which
only u and w displacement components exist, and for which there are only three equations
for each constraint point (¥, w, and rotation compatibility). However, the forms of stability
‘or vibration or nonsymmetric stress stiffness matrices are simitar, the onty differences being
that the ‘point’ stiffness matrices are 7 x 7 rather than 5x 5, and there are four lambda’s
for each boundary or juncture condition rather than three. In Figs. 7 and 8 the 5x5
element squares ‘BCB’ represent ‘local’ stiffness matrices contributed by each finite-
difference element (see Fig. 3). The rectangular 3x 5 and 5x3 matrices ‘QD’ and ‘D’
represent the constraint conditions obtained by minimization of the energy with respect to
the Lagrange multipliers. The shaded blocks receive contributions from the constraint
conditions. Reference [1] shows what the various contributions are.
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There are five types of constraint conditions recognized by BOSOR4: Type 1 is a
simple ‘one-sided’ constraint condition {e.g., boundary condition) not at the termination of
a segment (it can be at the beginning as:in Fig. 7); Type 2 is a simple ‘one-sided’ constraint
condition (boundary condition) at the termination of a segment (shown in Fig. 10, Seg. 1);
Type 3 is a juncture condition in which the termination of a segment is connected in some
way to a nonadjacent previous point (Fig. 7); Type 4 is a juncture condition in which a
point embedded within a segment is connected to a nonadjacent previous point (Fig. 8);
and Type 5 is a juncture condition in which the termination of Segment (i) is connected to
the beginning of Segment (i+1). Figure 9a shows a stiffness matrix configuration that
would result for a complete toroidal shell held at one point; 9b gives an example of a
meridian free at the boundaries and constrained at an interior point. Figure 10 shows a
stiffness matrix configuration corresponding, for example, to a corrugated semisandwich
panel in which the corrugations are riveted to the flat sheet at intervals along the surface.
Other examples are given in Ref. [1].

BOSOR4 PROGRAM ORGENIZATION

The BOSOR4 program consists of 8 main program MAIN and six overlays -called
READIT, PRE, ARRAYS, BUCKLE, MODEIl, AND PLOTI. Figure 11 shows the
Univac 11088EXECS and IBM-370/165 program organization. The program structuse for
the CDC 6600 is similar, except that READIT contains one (rather than two) tiers of
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overlays (Fig. 12). Figure 12 gives the core storage in decimal words required for the
Univac 1108, IBM 370, and CDC 6600 versions of BOSOR4. The Univac 1108 and IBM 370
versions are written in double precision FORTRAN IV; the CDC version is written in
single precision FORTRAN IV. In Fig. 11, a box around a subroutine name indicates that
it calls other subroutines.

Overall control in BOSOR4 depends on the integer INDIC. The various types of
analysis chosen by the input variable INDIC are listed in a previous section, and the flow
of calculations for each value of INDIC is given in Fig. 13t. All of the input data are read
in READIT. Figure 14 shows all of the subroutines called in this overlay, and Fig. 15 shows
the arrangement of a sample data deck. A call to READIT also causes results of calcul-
ations to be printed out (OUTFIN). Some general data that pertain to the entire shell are
read in first. Then, for each shell segment the mesh point distribution (MESH), meridian
geometry (GEOMTR), discrete ring properties (RGDATA), mechanical and thermal line
loads (LINELD), mechanical and thermal distributed loads (DISTL), and shell wall
properties (WALLS) are read in. The subroutine GASP, which is called in several places,
causes certain data to be stored on and read from drum or disk. These data will be used
in the calculations to be performed in other overlays. The calculations in READIT are
performed in single precision. Overlay READIT has another important function—it
causes to be computed ‘templates’ of the stiffness, load-geometric, lambda-sguared, and
mass matrices for the nonsymmetric stress, buckling, and vibration problems and the

T
T

Fic. 11. Main link with overlays.

t Figure 13 appears facing p. 424.
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CORE STORAGE REQUIRED IN DECIMAL WORDS

UNIVAC 1108/EXEC 8, DOUBLE PRECISION

40000t~
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20000—
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Fi6. 12. BOSOR4 core storage requirements.
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stiffness matrix for the prebuckling problem. These ‘templates’ give the ‘shapes’ of the gov-
erning equation systems. Examples are shown in Figs. 7-10.

The nonlinear stress analysis for axisymmetric behavior of axisymmetric systems is
performed in the overlay PRE. Data for shell and discrete ring properties, temperature and
pressure distributions, and thermal and mechanical line loads are read into core from drum
or disk (GASP); ‘variable’ loads are increased or decreased by appropriate increments or
decrements; the coefficient matrix and the ‘right-hand-side’ vector are derived for the
current Newton-Raphson iteration; the coefficient matrix is factored (FACTR); the
equation system is solved (SOLVE); a test for convergence is made; and the prebuckling
or prestress stress resultants and stresses are calculated from the converged displacement
vector. These prestress quantities are stored on the drum or disk for later use in the
buckling and vibration analysis and for later plotting.

=
G He ]

T
;

o
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FiG. 14. READIT overlay.

In the next overlay (ARRAYS), the coefficient matrices corresponding to the buckling
analysis, vibration analysis, and linear symmetric and nonsymmetric stress analysis are
derived. Subroutine ARRAYS is called for each value of the circumferential wave number
N. If INDIC==3, the load vector Q, is calculated in ARRAYS, and the linear system K, x
=@ is solved for the given circumferential wave number N. Depending on INDIC, various
coefficient matrices are derived. With buckling analyses, for example, three matrices are
obtained in ARRAYS for each circumferential wave number N: the stiffness matrix K,
for the composite shell, which corresponds to the structure loaded by the ‘fixed’ parts of
the loads, the ‘load-geometric’ matrix X, which contains linear powers of the eigenvalue
A, and the ‘A* matrix K,, which contains quadratic powers of 1. In modal vibration
analysis, two matrices are derived in ARRAYS: the stiffness matrix X, for the prestressed
shell, and the mass matrix M. The arrays K, K,, K;, and M, are stored on drum or disk
in blocks of a given length for later use in overlay BUCKLE.
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FiG. 15. Sample data deck.

The equation systems for the stability and vibration analyses are solved in the overlay
BUCKLE. Subroutine BUCKLE is called for each value of the circumferential wave
number N. The arrays derived in ARRAYS are read in from drum or disk.

If INDIC=1 (linear buckling analysis) the eigenvalue problem

(Kl +A-K2+A..2K3){X}=o

is solved for the first NVEC eigenvalues with the correct sign (EBAND). In many structural
systems, buckling is physically possible with loads of opposite sign than those actually
present. Therefore, in EBAND eigenvalues that are negative are not counted as ‘accepted’
roots. It is possible, for example, for the user to specify NVEC=3 and for more than three
eigenvalues to be obtained. The negative eigenvalues are given (printed out), and ortho-
gonalizations are of course performed with respect to their associated eigenvectors; however,
calculations will continue until the prescribed number (NVEC) of positive eigenvalues has
been determined. With INDIC=2 the eigenvalue problem to be solved for NVEC eigen-
values is

(K, —Q*M){x}=0
in which M is the mass matrix. (M, incidentally, is not diagonal because u; and v, are at

‘half” stations, and discrete ring rotatory inertia is included.) This solution occurs in sub-
routine EBAND2. The calculation of the lowest buckling load with nonlinear prebuckling
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effects included (INDIC=—1) is performed in EIGEN. Figure 16 summarizes the types
of equations being solved for the various values of INDIC. All of these calculations (except
for INDIC=3) are performed in Overlay BUCKLE.

The functions of the other two overlays MODEL (MODE) and PLOT! (PLOT) are
given in Fig. 13.

Some os for INDIC=1{ Caiculate Stability Determinent
EBAND FACTR
Y
Lineor Solution 4 -2 Celeuiete Lowset Eigenvaive
of the Sysiem:
Kgx=Q 3 Woc - :
Kgxe AKgxe Yy ®11)
Colculated in 2 1
ARRAYS EIGEN
Caiculate Lowest NVEC Colcuieie Lowest NVEC
Eigenvaiues of the System: Eigeavalies of e System:
Kyx- Q%Mx =0 Kyxe Akgx o XoKyx = 0
EBANDZ EBAND

Fia. 16. Types of equations being solved for various INDIC.

ANALYTICAL RESULTS FROM BOSOR4

The remaining sections of the paper provide examples of the types of problems that
BOSOR4 is designed to handle. The first seven examples are for shells of revolution, and
the last two are for branched panels and columns. The first three and last two examples are
from the BOSOR4 user’s manual. The fourth, fifth, and sixth examples correspond to
‘real-world’ engineering problems. The seventh example represents an illustration of some
of the problems involved in a buckling analysis in which nonlinear effects are important
and in which eigenvalues are closely spaced. The examples are chosen to illustrate the seven
types of analysis governed by the control integer INDIC. Computer times given in the text
are for Univac 1108 double precision calculations on the EXECS system,

Example 1. T-ring modeled as branched shell (INDIC=1)

Figure 17 shows the discretized model and buckling loads predicted for a given range
of circumferential waves N, BOSOR4 gives two minima in the range 2< N<16. The mini-
mum N==2 is a mode in which the cross-section does not deform—i.e. the ring ovalization
mode. Buckling pressures calculated for this mode are very close to those computed from
the well-known formula g, =EI(N*—1)/r3, in which g, is the critical line load in Ibfin.
(pressure integrated in the direction of segment 1), EJ is the bending rigidity of the ring, and
r is the radius to the ring centroidal axis. The minimum at about N=11 corresponds to
buckling of the web. Approximately 20 sec of CPU time were required for this case.

Example 2. Stress analysis of ring-stiffened cylinder with three-point loads (INDIC=3)
Figure 18 presents the example with deflections and stresses shown schematically. The
threepoint loads are modeled as a line load with three triangular ‘pulses’ applied to the
ring. The results for stresses and displacements have apparently converged to a reasonably
accurate value, since a 10-term Fourier expansion yields at §==0: w=—0.000301 in.,
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E=10.8x10%psi

2400 r

BUCKLING PRESSURE (psi)
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CIRCUMFERENTIAL WAVES, N

F

o

. 17. Buckling of ring treated as branched shell.

oy (outer)=—6.19 psi, and o, (inner)=6.02 psi. Reduction of the number of points in
the 40-in. length near the ring from 41 to 11 with use of 20 Fourier harmonics gives at
0=0: w=-0.000302 in., o, (outer)=6.30 psi, and o, (inner)=6.56 psi. Similar small
changes occur in the other variables. The reason that convergence with increasing number
of Fourier harmonics is better than expected is that the ring essentially ‘integrates’ the
applied load. It is for this reason that numerically one-dimensional shell-of-revolution
codes based on Fourier superposition are frequently reliable and efficient for analysis of
shell systems submitted to concentrated loads. The very rapid convergence with increasing
number of mesh points in the short segment near the ring is a property of the finite-difference
energy method, see Ref. [28]. Approximately 33 CPU sec on the 1108 were required for
execution of the case described in Fig. 18. This includes time to plot six frames with about
fifteen traces on each frame.

Example 3. Buckling of conical shell heated on axial strip INDIC=4)

Figures 19 and 20 show the mode! and results. Figure 19 gives the temperature rise
distribution at buckling as reported in Ref. [30]. Figure 20 shows the prebuckling stress
and displacement distributions and the lowest three eigenvalues and eigenvectors corres-
ponding to 20 circumferential waves. The eigenvalues denote a factor to be multiplied by the
prebuckling temperature rise distribution. Twenty Fourier harmonics were used for the
prebuckling analysis. The model consists of 309 degrees of freedom. A total of 74 sec of
CPU time on the 1108 were required for execution of the case.
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Fic. 19. Conical shell heated along axial strip.
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Fi1G. 20. Prebuckling state of heated cone and buckling modes.

Example 4. Buckling of a corrugated shroud under max. q nonsymmetric airloads (INDIC—=4)

Figures 21-23 and Table 2 pertain to this case. Figure 21 gives SC4020 plots of the
reference surface of the structure and some expanded views. Many of the ring stiffeners
are treated as flexible shell structures. A discrete ring is shown as a centroid and an attach-
ment point. Figure 22 shows details of how the modeling is done at a typical station. Figure
23 shows a schematic of the assumed pressure distribution, taken essentially from wind-
tunnel data. Also shown in Fig. 23 are computer-generated plots of the prebucklingdeformed
structure and a buckling mode corresponding to the prestress distribution on the leeward
(axially compressed) side of the shroud. Table 2 gives comparative computer times for
various intermediate computations on the Univac 1108, IBM 370/165, and CDC 6600. The
model consists of 1033 degrees-of-freedom with a stiffness matrix maximum semibandwidth
of 133. Five Fourier harmonics were used for the prebuckling analysis.
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TaBLE 2. Buckling of nonsymmetrically loaded shroud—shroud analyzed as branched shell with
18 segments: 1033 degrees-of-freedom. Maximum semibandwidth: 133. 5 harmonics for stress
analysis

Coma% Run Times (sec)
CDC
UNIVAC FIN 6600 IBM
X Circumfer- 1108 (OPT=1) RUN IBM 370/165
(1108 34”5‘3‘ ?’? ixlln dpomszhlon) :?v:l (B(',"f’E'U‘;8 ( %?’%l)" % o values(d)
Read data and set up case —_ 20.692 5.809 12.580 7.537
Stiffness matrix X0 calculated 0 24.118 7.504 18.690 8.703
K e e A vacions 1 cxisting 0 28719 10160 26836  10.537
Stiffness matrix X1 calculated -1 32.335 11.859 32.930 11.720
Klvtg;Ialll m‘sstgmim superposed on existing -1 37.303 14.528 41.224 13.640
Stiffness matrix K12 calculated -2 40,780 16.216 47.320 14.847
Kia2x2=(1 solved and solution superposed on existing
vectors -2 45437 18.885 55.620 16,760
Stiffness matrix K13 calculated -3 48914 20.578 61.714 17.907
Ki3xsoes sotvod and solution superposed on existing 53505 23234 70014 19897
Stiffness matrix K4 calculated —4 56.971 24.941 76.110 21,083
K14x4= Q4 solved and solution superposed on existing
vectors —4 61.628 29,370 91.976 24.663
Discrete ring loads and moments computed and super-
posed (29 rings) displacements and resultants printed - 75.208 32.308 99.366 27.870
Undeformed and deformed structure plotted 81.025 -—(b) — —
Begin buckling analysis:
Stiffness matrix Xy computed 13 85.689 34.291 106.760 29.147
Load—goometric matrix K2 computed 13 91.354 36079 115172 30.637
Lambda—squared matrix X3 computed 13 93.382 37.024  118.200 31.303
Form (K1 + MUo*K2 + MUop* MUo*K3)(€) 13 93.832 37.167 118,734 31.996
Factor K1 4+ MUp*K2 + MUo*MUo*K3 13 98.096 39.555 126.064 33.556
14 power iterations completed 13 118.824 46.592 157942 44,296  3.64256
Shift (Ky+ MU (*K2+ MU *MU1*K3), factor 13 123.600 49,102  165.710 46.566
Six power iterations completed 13 132.017 52.128 179.408 51.373  3.64120
Shift (Ky + MU2*K2 + MU2*MU2*K3), factor 13 136.367 54.631 187.178 53.563
Three power iterations completed 13 140.741 56.156 195.190 55986 3.64123
Calculate and store modal displacements 13 145.882 59.364  202.854 59.330
Print and plot mode 13 149.654 —(b) 203.778 —
Total CPU time (sec) 149.654 59.364  203.778 59.330 3.64123
Total 1/O [see footnotes (o), (), ()] 15.0¢5)  38.100(¢) 1051(S) ®

(8) 857 calls to subroutine GASP in this case. Each call to GASP causes data to be transferrod from core to suxiliary mass
storage or vice-verss.

(b) SC4020 plot software not available.

() MU;=spectral shift by amount MU;.

(d) Factor to be muitiplied by pressure distribution shown in Fig. 23.
(e), (f) See footnotes (e), (f) in Table 3.

(8) See footnots (h) in Table 3.
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FiG. 21. Computer model of corrugated shroud with expanded views.
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FiG. 22. Geometry of detail E of the shroud.
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Example 5. Free vibration modes of a two-stage rocket (INDIC=2)

The model is shown in Fig. 24, and the vibration modes are depicted in Figs. 25 and
26. The rocket is considered to be empty, so that the modes do not contain the effects of
fuel or payload. The first two modes for N=0 and N=1 circumferential waves are rigid-
body modes. The first mode for N=0 is simply a rotation about the axis of revolution.

TWO-STAGE DETALL A DETAIL B
ROCKET

F16. 24. Two-stage rocket: discretized model.
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TABLE 3. Vibration of two-stage rocket treated as branched shell of 19 segments. Prestress
analysis: 536 degrees-of-freedom. Vibration analysis: 784 degrees-of-freedom. Maximum semi-
bandwidth in vibration analysis: 119, N=2 circumferential waves

Computer Run Times (sec)
CDC
6600
UNIVAC FIN IBM
(%) F E;ég%% o l JI'I%ILI{GS l’-?w/ &
Con;gu ions in process requency er requency
(1108 and IBM 370 in double precision) (cps) . (CPU) 3) (cps)
Read data an )\? — 11.810 3.049 3.310 4.710
Prestress lolution (NR=1)(h) — 8.828 5.845 7.264 7.130
stiffness mltnx K, — 21.557 7.216 9.298 8.050
Compute mass mat! —_ 22.227 17.573 9.712 8.377
Form K, - MU, ‘Kz (lhlfl)(‘-') —_ 22.660 7.688 9.944 8.740
Factor Ky — MU, * — 24.904 8.964 11.746 9.543
First power itentlon completed . 7808  23.594 9.219 12.176 9.883 27.4844
Second 27.1542 26297 9.472 12.602 10.263 27.0189
Chird 27.0698  26.991 9.722 13.028 10.603 27.0110
Fourth 27.0683 688 9.977 13.456 10.963 27.0082
Fifth 27.0633 380  10.227 13.882 11.340 27.0044
Thirteen more power iterations 27.0159 .600 13,492 19.434 14.597 269738
Shift (Form Ky —MU: K2) — 37756  13.532 19.486 14.860 —
Factor K1 —MU3*K, — 058 14 21.286 15.643 —
14 itu'lﬂom ()] 26,8932 49989 18.331 27.246 17.833 26.8685
(form Ky —MU»*K3) — 18.368 .300 18.087 —
Factor Ky —MU3*K; 52424  19.649 29.100 18.860 —_
Five power iterations completed 26.8674 35.997 906 31,230 19.947 26.8676
Store mode shape on drum — 012  20.910 31.234 19.950 —_
Four power iuruiom 2nd eigenvalue 27.2032 22.033 33.188 21.497 27.2031
Ston mode shape on dru —_ 59.297 224 33.192 21.500 —
power i 3rd eigenvalue 64,0898 67.111 24.832 7.918 25.673 64.0905
smn (form Ky —MU4*K3) and factor — .. 26.1: 39.772 736 —
Four pmnr it en.!ionl eomp leted 64.0982 71392 26933 41.086 21,936 64.0983
rower th eigenvalue 82.6948 6.808  28.981 .563 82.6942
Shift (form X, —Mu,‘x,) and factor — 79.082 .302 31.533 —
'l'hree power iterations completed 82,6958 81.189 31092 47.724 .683 82.6962
? itnrltionl Sth eigenvalue 117.659 7.144 33.274 51.292 35.936 117.659
Shift (form K1 —MUs Kz) and factor —_ 89.514 593 53.144 36.936 —
Thtu power iterations completed 117.657 91.693 35.392 54.486 096 117.6587
Shl&ow iterations for 6th eigenvalue 160.249 103.199 9.709 61.612 ,623 160.046
(form Ky —-MU7*K3) and factor — 309  41.028 462 45.639 —_
Four zowet iterations ooul;r 160.086 108.167 42.089 65.242 47.166 160.085
ifall motl found (shift again and factor and count) —_ 110.567 43.421 67.116 48.919 —
Cnlc and print out modes — 119.363 45945 69.776 52.089 —
undcfo:med and deformed structure, modes (28
frames) — 126.530 —(d) —(d) —(d) —_—
Total CPU Time (seco: 126.530 45.945 69.776 52.089
Total T/O [see footnotel (e), ), (M) 13.000(¢) 44.071(®) 1209(f) h)

(2) 1029 calls to subroutine GASP in this case. Each call to GASP causes data to be transferred from core to auxiliary

MAass StOrage or vice-versa.
b) NR means Newton-Raphson iterations.
J) MU =spectral shift by amount MU;.

SC4020 plot softw ble.
O] 'ﬂlisil nhnt'I/ancu ntheg:mcuhrmﬂdlnmwhuemmn. For thoe CDC case
prognmrequhedonlyﬂpucentoftotdmavnihbh.thechuge

1O sec were about 100, since t
charge

(wtlul T{O sec) was 0.44 times the
) (‘2 qunnmy of openting system ”Ogm :eqmred at the NASA CDC where this case was run.
Nou calis depends on sizo set by the user, 1 (decimal) is suggested.

8 6 '&itﬂlt requiledonl'BMB‘?Ol

6600

FIN

dmm upon size of bul‘en and uj lenﬁh established in the JCL md in Subroutine GASP.
of 12 this nspect of the conversion of B%lu to the IBM/370 had not been complet

The two rigid-body modes for N=1 are orthogonal to each other, but are each linear com-
binations of a uniform lateral translation and rotation about the center of mass. The third
mode for N=0 is localized in the neighborhoods of the nozzles, and expanded plots are
given for clarification. Three of the modes involve local motion of the nozzles; the fourth
mode for N=1 and the first and second modes for N=2. This vibration model contains
784 degrees of freedom and the maximum semibandwidth of the stiffness matrix is 119.
Table 3 presents comparative data on computer CPU times for calculation of the six lowest

eigenvalues for N=2 circumferential waves.
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116.7 cps

[eXelele]]]

116.7 cps

Fi16. 25. Vibration modes for N=0 and N=1 waves.

26.87 2720 82.70
cps cps cps
— -

F1G. 26. Vibration modes for N=2 waves.
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Stress, Stability and Vibration of Compléx, Branched Shells of Revolution 425

Example 6. Failure of a ring-reinforced cylinder under hydrostatic external pressure (INDIC
=1, —1, =2, and 0)

In this model, shown in some detail in Fig. 27, the slender webs are treated as flexible
annuli and the flanges as discrete rings. The problem is a good illustration of a typical
sequence of computer runs that might be required for analysis of a complex shell of
revolution where several failure modes are possible.

pR/Z
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Fi1G. 27. Neonlinear stress analysis of frame-reinforced cylinder.

The choice of INDIC=1 for a preliminary analysis is logical because one suspects
that buckling may be the primary mode of failure, and with INDIC=1 one can obtain
approximate buckling pressures for a wide range of circamferential wave numbers without
too large an expenditure for computer time. The initial choice of INDIC=1 is particularly
appropriate in this case because it is apparent that more than one minimum buckling
pressure exists in the p.,(N) vs N space: The shell may buckle axisymmetrically through
‘sidesway’ of the deep ring stiffeners; it may buckle nonsymmetrically in a low-N general
instability mode in which cylinder and rings move together; it may buckle nonsym-
metrically in a higher-N ‘panel’ or ‘bay’ mode in which the rings are located at displace-
ment nodes in the buckle pattern; or the webs of the rings may buckle nonsymmetrically in
a still-higher N mode similar to that shown in Fig. 17. The choice of INDIC=1 with a
wide range of N would reveal all of these modes and cause to be calculated approximate
critical pressures corresponding to them. The top insert in Fig. 28 shows the resuits of
such an analysis. The lowest minimum corresponds to axisymmetric bifurcation buckling
(‘sidesway’ of the webs).

Suppose that bifurcation buckling loads have been calculated from the INDIC=1
branch of BOSOR4 and the minimum critical pressure has been determined approximately
from linear theory. The user should now check the accuracy of this prediction by choosing
INDIC= -1 (nonlinear prebuckling effects). In this case, however, the INDIC=—1
branch does not succeed in finding an eigenvalue corresponding to N=0. It is necessary
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FiG. 28. Linear (INDIC=1) and nonlinear (INDIC=~2) bifurcation buckling analyses of frame-
reinforced cylinder,

to choose INDIC==~—2 (‘plot’ stability determinant} to find out why. Figure 28 shows
results of the INDIC=—2 analysis. At a pressure close to the bifurcation pressure with
INDIC==1, the stability determinant changes direction rather abruptly, indicating fairly
large changes in prebuckling deformations for small changes in pressure. Since the stability
determinant does not change sign, it is not surprising that the INDIC=—1 branch fails
to find an eigenvalue. A final computer run with INDIC=0 gives axisymmetric nonlinear
displacements and stresses for increasing pressure. The results of the INDIC=0 analysis
are shown in Fig. 27. The rather abrupt increase in rate of ‘sidesway’ in frames No. 2 and
No. 3 bectween 3,100 and 3,200 psi is the cause of the change in direction of the stability
determinant shown in Fig. 28. Failure of the structure would probably occur at the root
of frames No. 2 or No. 3 because of high (and rapidly increasing) stresses there.

Example 7. Buckling of very thin cylinder under axial compression (INDIC=-1)

This example is included because nonlinear prebuckling effects are fairly important; it
is a difficult case from a numerical point of view, since eigenvalues are close together and
close to the axisymmetric collapse load; and the case demonstrates some of the internal
checks and automatic internal control in BOSOR4. Because of these properties it is one of
the cases that a previous program, the BOSOR3, could not handie very well.

Figure 29 shows the model of a cylinder with radius R==500 in., thickness ¢==lin.,
length L==2,000 in., Young’s modulus E=107 psi and Poisson’s ratio v=0.3. The cylinder
is treated as being symmetric about the midlength, and the 1,000-in, half-cylinder thus
analyzed is divided into two segments: a 200-in.-long edge zone segment with 83 mesh



Stress, Stability and Vibration of Cospléky Branched Shells of Revolution 427
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Fic. 29. Buckling of axially compressed cylinder.

points, and an 800-in.-long interior segment with 99 mesh points. The axisymmetric pre-
stress model thus contains 379 degrees-of-freedom, and the stability model 566 degrees-of-
freedom. Simple support conditions are applied at the edge, and symmetry conditions at
the midlength. Also shown in Fig. 29 are the prebuckling displacement distribution at the
predicted critical load of 10,274 1b/in. and the buckling mode corresponding to N=18
circumferential waves.

With the INDIC=—1 option the user supplies a starting load, a starting range of N,
and an initial value of N. Through a sequence of operations the program first searches
for an approximate local minimum buckling axial load V,(N) within the given range of N.
Once the N corresponding to the approximate minimum V,, has bee found, N becomes
fixed and a sequence of eigenvalue problems is established through which a final accurate
buckling load is computed at that value of N with nonlinear prebuckling effects accounted
for.

Figure 30 shows the sequence of wave numbers and loads automatically explored by
BOSOR4 to obtain the final result Lg=V_=10,274 1b/in. With an initial base or ‘fixed’
load of 0 and a ‘variable’ load (quantity to be multiplied by ecigenvalue) of 1.0 Ib/in.,
eigenvalues labeled (1), (2), (3), and (4) are calculated. The base or ‘fixed’ load is then set
equal to the local minimum or 12,008 Ib/in. The ‘variable’ or ‘cigenvalue’ load is set equal
to 12,008/1,000 Ib/in. The small increment over a relatively large fixed value gives an
accurate approximation of the ‘local’ rate of change of prebuckling stresses and rotations
with load—local change about a given base or ‘fixed’ point. This technique permits for-
mulation of another eigenvalue problem analogous to that represented by equation (1),
in which X, is the stiffness matrix for N=12 waves, including the effects of the ‘fixed’
preload L,=12,008 Ibfin., and K, and K, are the load-geometric and lambda-squared
matrices. These matrices depend on various parameters as well as on the differences
between the prebuckling stress resultants and rotations at the ‘fixed’ load and those at the
load £,+L,/1,000. For this problem, the eigenvalue 4 is the factor that, when multiplied
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FiG. 30. Sequence of axial load and circumferential wave number estimates during calculation of
buckling of cylinder with nonlinear prebuckling effects included.

by the load difference L,{1,000, gives the quantity that must be added to the base or ‘fixed’
load L,=12,008 to give a new base load. A third eigenvalue problem at N=12 can then
be set up corresponding to the new base load. Ordinarily, calculations would continue in
this manner until A is smaller than a certain prescribed amount.

In this case, however, it is determined by BOSOR4 that for N==12 circumferential
waves, three cigenvalues exist below the ‘fixed’ load 12,008 Ib/in. Hence, the load is auto-
matically reduced by a factor of 0.7 to 8,414 Ib/in. With the eigenvalues corresponding to
points 5, 6, 7 and 8 and 9 in Fig. 30 determined, the new base load L,=10,819 1b/in.
is established corresponding to N=18 waves. It is also determined by BOSOR4 that at
N=18 one eigenvalue exists below this new base load. However, the new load need not
be reduced by some factor because initial inverse power iterations for the eigenvalue
nearest to L,=10,819 indicate that subsequent critical load estimates will further reduce
the base loads L,, L, etc., to the lowest eigenvalue rather than increase them toward
the second eigenvalue. Figure 30 shows the final three load estimates, L,, L, and L.

Table 4 identifies various computations and gives current ‘fixed’ loads, circumferential
wave numbers, eigenvalues, and CPU computer times. Underlined eigenvalues represent
values to which the inverse power iterations with spectral shifts converge. This particular
case requires much more than the average computer time for a nonlinear buckling analysis
with the same number of degrees of freedom for the following reasons:

(1) The eigenvalues for each N are closely spaced, so that many inverse power iter-
ations and spectral shifts are required for convergence.

(2) The cigenvalues are close to the axisymmetric collapse load of the cylinder.
Rapidly changing nonlinear behavior in the neighborhood of the eigenvalues
causes the requirement for more than the average number of base loads (L,—L)
with associated reformulations of the eigenvalue problem.
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Figure 31 shows the prebuckling load deflection curve for this cylinder. The abscissa
represents the difference between the actual end shortening and the end shortening that
would exist if there were no prebuckling rotations. Eigenvalues computed with the INDIC
=+1 branch for N=18 waves are shown as crosses. Several runs were made, each run
corresponding to a different base or ‘fixed’ load. The open circles correspond to the various
base loads, L;. The large dots represent the ‘fixed’ loads used in the sequence shown in
Fig. 30. Two to four eigenvalues are calculated corresponding to each open-circle base

F T T T T T
1‘[_--%-‘_}1000 11500, - |_l|$00 ibs/in = N
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Fia. 31, Eigenvalue ‘separation’ for axially compressed cylinder,
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load. These eigenvalues are indicated by crosses on the same vertical lines as the open
circles. The eigenvectors are shown in Fig. 32. Notice that for ‘fixed’ load L=0, the lowest
four eigenvalues are very close and are all approximately equal to the ‘classical’ load
0.605 Et*/R. The lowest eigenvalues are also close for N=15. It is apparent from Table 4
that several inverse power iterations and spectral shifts are required to obtain the lowest
eigenvalue at that wave number. A total of 39 inverse power iterations and four spectral
shifts are required for convergence to the lowest eigenvalue. For L=35,000 ib/in. the
lowest eigenvalue ‘separates’ from the others, and the localized nature of the corresponding
eigenvector is strongly developed (Fig. 32). Because of this separation of the lowest eigen-
value, fewer inverse power iterations and spectral shifts are required for convergence.
From Table 4 for N=15 and ‘fixed’ load L;=28,422 1b/in. it is seen that a total of twenty
power iterations and two spectral shifts are required. Thus, the user may save considerable
computer time by choosing a base or ‘fixed’ load to be some reasonable percentage of the
estimated final buckling load. This is particularly true if many values of the wave number
N are to be explored and if the predicted N corresponding to minimum V_(N) is likely to
depend strongly on the fixed portion of the load, as is the case for axially compressed very
thin cylinders.
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Fie. 32. Eigenvectors and eigenvalues for axially compressed cylinder with various base loads.

STRESS, BUCKLING AND VIBRATION OF PRISMATIC SHELL STRUCTURES

An interesting and not immediately obvious use of BOSOR4 is for buckling and
vibration analysis of prismatic shell structures, in particular composite branched panels.
This technique of using a shell-of-revolution program for the treatment of structures that
are not axisymmetric is discussed in detail in Ref. [25]. Figure 33, reprinted from that
article, shows various types of prismatic shell structures that can be handled by BOSORA4.
Examples involving stress and buckling of oval cylinders, cylinders with nonuniform loads,
and corrugated and beaded panels are given in Ref. [25] as well as a study of vibration of a
stringer-stiffened shell in which the stringers are treated as discrete. In the analysis of
buckling of nonuniformly loaded cylinders, the nonsymmetry of the prestress can be
accounted for in the stability analysis. In BOSOR4 the capability described in Ref. [25] is
extended to branched prismatic shell structures.
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{a) Oval Cylinder
{b) Nonuniform Loads

(d) Beaded Ponel

(e) Discretely Stiffened G | Secti
With Vuorigble Thickness

Fi1G. 33. Some prismatic shell structures that can be analyzed with use of BOSOR4.

Example 8. Axially compressed semi-sandwich corrugated panels INDIC=4)

Figure 34 shows two types of semisandwich corrugated construction, bonded and
riveted. The panels are treated as giant annuli with mean radius of 2,750 in. and outer
radius minus inner radius equal to about 7.4 in. Both panels are assumed to carry an
axial compressive stress (panels loaded normal to plane of figure) that is constant along the
axis of the panel and over all of the little segments shown at the top of Fig. 34. In the model
on the left-hand side of the figure the troughs of the corrugated sheet and the flat skin are
assumed to be united by a perfect bond of zero thickness. The thickness of the panel in
these areas is equal to the sum of the thickness of the flat sheet and the corrugated sheet.
In the riveted panel the displacements and rotations of the corrugated sheet are con-
strained to be equal to those of the flat skin only at the midlengths of the troughs, thus
simulating a rivet of zero diameter in the plane of the paper and continuous in the direction
normal to the plane of the paper. The computer-generated plots show the undeformed and
deformed panels for buckling modes with various wave lengths L in the direction normal
to the plane of the paper. The riveted panel is weaker in axial compression because the
rivets permit more local distortion of the cross-section than does the continuous bonding.
The modes shown are more or less general instability modes. One can calculate buckling
loads for much shorter L, such as L=1.0 in., in order to determine the effect of method of
fastening on crippling loads.
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Fia. 34, Buckling modes of axially compressed semisandwich bonded and riveted corrugated panels.

Example 9. Buckling of an axially compressed branched, composite column (INDIC=4)
Figure 35 shows a cross-section of the column submitted to uniform compressive
shortening normal to the plane of the paper. The column is made of aluminium, and the

COLUMN CROSS-SECTION FINITE DIFFERENCE MODEL

3 3
j——— Aluminum
2t ’y E=l0psi | |-
i . %; A
fi Boron-Epoxy
or 2 . E=30psi 17 7
| ¥ {a) )
- 3 3 i H H i
10000 10002 10000 10002
. Buckling Mode | Buckling Mode 2
2k !
z
l L -
Lood = 5i0.3 Loud=520.8 |
OF Ne16000 1T : N=16000
\ {c) ( ta)
0060 10002 16000 10002
R R

Fia. 35. Buckling of branched composite column under axial compression (load normal to plahc
of paper).
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circular appendages attached to the short flange are filled with boron epoxy composite.
The column is treated as a shell of revolution, with radius from the axis of revolution to the
two ‘“foot’ flanges equal to 10,000 in. The mesh-point distribution is shown in Fig. 35b,
and two buckling modes corresponding to an axial half-wavelength of 10,000x n/N
=1.96 in. are shown in Fig. 35c and d. These modes represent antisymmetric and sym-
metric. crippling of the foot flanges. The critical ‘loads’ 510.5 and 520.8 are actually
eigenvalues, quantities to be multiplied by the loads per length along the cross-section of
the column, which for this INDIC==4 run are read from cards as input data.

SUMMARY

The paper gives a complete description of the BOSOR4 computer program, which
runs on the CDC 6600, UNIVAC 1108, and IBM 370/165 computers. The literature on
computer programs for shells and solids of revolution is briefly reviewed. BOSOR4 and
other computer programs are shown in a ‘capability’ chart. The basic assumption upon
which BOSORA4 rests are enumerated, and the finite-difference energy method is described.
The formulation of the stability problem is shown, and the strategy is demonstrated for
obtaining the lowest buckling load in cases for which the eigenvalues are closely spaced
and the problem is highly nonlinear at loads in the neighborhood of the bifurcation buckling.
Examples of stiffness matrices for branched systems of shells are shown. Overlay charts
with required core storage are given for operation of BOSOR4 on the CDC6600, UNIVAC
1108, and IBM 370/165. A schematic of a typical data deck is shown. Flow charts are
given for the seven types of analysis that BOSOR4 will perform: buckling with nonlinear
prebuckling, nonlinear axisymmetric stress, buckling with linear prebuckling, vibration
with nonlinear axisymmetric prestress, linear nonsymmetric stress with automatic cal-
culation of Fourier series of nonsymmetric loads and automatic superposition of harmonics,
buckling with linear nonsymmetric prestress, and calculation of stability determinant for
an increasing sequence of applied loads. Examples are given for each of these types of
analysis with central processor times given on the CDC, UNIVAC, and IBM computers
for the various operations during the execution of three typical rather large cases. The
use of BOSORAM for the calculation of buckling loads of branched, prismatic shell structures
such as a semi-sandwich corrugated panel is demonstrated.
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