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David Bushnell joined Lockheed Missiles & Space 
Company, after receiving his B.S. and M.S. degrees 
in aerospace engineering from the Massachusetts 
Institute of Technology in 1961. In 1965, while at 
Lockheed, he earned his Ph.D. in Aeronautics and 
Astronautics at Stanford University. He then began 
extensive investigations of the stress, buckling and 
vibration behavior of thin shell structures. That 
work has resulted in over 40 papers and ultimately 
in the development of the BOSOR4 and BOSOR5 
computer programs, widely used codes for the 
stress, buckling, and vibration analysis of shells of 
revolution. Many of the examples in this survey 
article are based on applications of these computer 
programs to practical problems involving complex 
shell structures. In 1975 Dr. Bushnell received the 
ONR/AIAA Structural Mechanics Research 
Award, the topic of his investigation being "Stress, 
Buckling, and Vibration of Hybrid Bodies of 
Revolution." He served as Associate Editor of the 
AIAA Journal from 1977 to 1979 and was a 
member of the AIAA Structures Technical 
Committee 1978 to 1979. Dr. Bushnell was elected 
the Outstanding Engineer of the AIAA San 
Francisco Chapter for the year 1978, and is an 
Associate Fellow of AIAA.  (2011 NOTE: This 
biography was written in May, 1980) 



1. Introduction (2011 Note: for references and more detail, see 1981pitfalls.pdf) 
 
Purpose 
In order to produce efficient, reliable designs and to avoid unexpected catastrophic 
failure of structures of which thin shells are important components, the engineer 
must understand the physics of shell buckling. The objective of this survey is to 
convey to the reader a "feel" for shell buckling, whether it is due to nonlinear 
collapse, bifurcation buckling, or a combination of these modes. This intuitive 
understanding of instability is communicated by a large number of examples 
involving practical shell structures that may be stiffened, segmented, or branched 
and which have complex wall constructions. With such intuitive knowledge the 
engineer will have an improved ability to foresee situations in which buckling 
might occur and to modify a design to avoid it. He or she will be able to set up more 
appropriate models for tests and analytical predictions. The emphasis here is not on 
the development of equations for the prediction of instability. For such material the 
reader is referred to the book by Brush and Almroth [11]. (2011 note: Also see and 
download the files, 1981pitfalls.refs.pdf and 1996bucklingsurvey.pdf  and 
shellbucklingrefs.pdf.) 
 
Emphasis is given here to nonlinear behavior caused by a combination of large 
deflections and plasticity. Also illustrated are stress redistribution effects, stiffener 
and load path eccentricity effects, local versus general instability, imperfection 
sensitivity, and modal interaction in optimized structures. Scattered throughout the 
text are tips on modeling for computerized analysis. The survey is divided into nine 
major sections describing: 1) several examples of catastrophic failure of expensive 
shell structures; 2) the basics of buckling behavior; 3) "classical" buckling and 
imperfection sensitivity; 4) nonlinear collapse and the appropriateness of linear 
bifurcation buckling analyses for general shells; 5) bifurcation buckling with 
significant nonlinear pre-buckling behavior; 6) effects of boundary conditions, load 
eccentricity, transverse shear deformation, and stable post-buckling behavior; 7) 
optimization of buckling-critical structures with consequent modal interaction; 8) a 
suggested design method for axially compressed cylinders with stiffeners, internal 
pressure  or other special characteristics; and 9) two examples in which 
sophisticated buckling analyses are required in order to derive improved designs. 
The paper focuses on static buckling problems. (2011 NOTE: Download the file, 



1981pitfalls.pdf and the PowerPoint slide show, pitfallsnasa.ppt .) 
 
 

 
Fig. 1.1 Buckling is a somewhat mystifying phenomenon (courtesy of St. Regis 
Paper Company). (from AIAA Journal, Vol. 19, No. 9, 1981) 
 
 
2. Some Buckling Basics 
 
Why Do Shells Buckle? 
 
The property of thinness of a shell wall has a consequence that is pointed out in Ref. 
14: The membrane stiffness is in general several orders of magnitude greater than 



the bending stiffness. A thin shell can absorb a great deal of membrane strain 
energy without deforming too much. It must deform much more in order to absorb 
an equivalent amount of bending strain energy. If the shell is loaded in such a way 
that most of its strain energy is in the form of membrane compression, and if there 
is a way that this stored-up membrane energy can be converted into bending energy, 
the shell may fail rather dramatically in a process called "buckling" as it exchanges 
its membrane energy for bending energy. Very large deflections are generally 
required to convert a given amount of membrane energy into bending energy. The 
way in which buckling occurs depends on how the shell is loaded and on its 
geometrical and material properties. The pre-buckling process is often nonlinear if 
there is a reasonably large percentage of bending energy being stored in the shell 
throughout the loading history. 
 
What is Buckling? 
 
To most laymen the word "buckling" evokes an image of failure of a structure that 
has been compressed in some way. Pictures and perhaps sounds come to mind of 
sudden, catastrophic collapse involving very large deformations, such as those 
displayed below by Falstaff’s boots (picture added, 2011).  
 

 

Falstaff’s boots have experienced 
two types of buckling: 
 
1. axisymmetric collapse (the top 
part of Falstaff’s left boot),  and 
 
2. non-axisymmetric bifurcation 
buckling and post-bifurcation 
deformation (lower down in both 
boots). (from the pitfallsnasa.ppt 
file) 
 



From a scientific and engineering point of view, the interesting phases of buckling 
phenomena generally occur before the deformations are very large, when to the 
unaided eye the structure appears to be undeformed or only slightly deformed. In 
the static analysis of perfect structures, the two phenomena loosely termed 
"buckling" are: 
 
(1) collapse at the maximum point in a load versus deflection curve, and 
 
(2) bifurcation buckling. 
 
To use a more “classical” engineering example than Falstaff’s boots, these two 
types of instability failure are illustrated again in Figs. 2.1 and 2.2.  
 
 

 
Fig. 2.1  Load/end-shortening curve with collapse load A, bifurcation point B, and 
post-bifurcation equilibrium path BD (photographs courtesy of Sobel and Newman 
[87]). (from AIAA Journal, Vol. 19, No. 9, 1981) 



 
 
The rather thick axially compressed cylinder shown in Fig. 2.1 deforms 
approximately axisymmetrically along the equilibrium path OA until a maximum or 
collapse load lambdaA is reached at point A. If the axial load, lambda, is not 
sufficiently relieved by the reduction in axial stiffness, the perfect cylindrical shell 
will fail at this collapse load, following either path ABC along which it continues to 
deform axisymmetrically (the path followed by the top part of Falstaff’s left boot) 
or some other path ABD along which it first deforms axisymmetrically from A to B 
and then non-axisymmetrically from B to D (the path taken by the lower parts of 
both of Falstaff’s boots). 
 
Nonlinear buckling or "snap-through" occurs at point A and bifurcation buckling at 
point B. The equilibrium path OABC, corresponding to the symmetric mode of 
deformation, is called the fundamental or primary or pre-buckling equilibrium path. 
The post-bifurcation equilibrium path BD, corresponding to the non-axisymmetric 
mode of deformation, is called the secondary or post-buckling path. Buckling of 
either the collapse or bifurcation type may occur at loads for which some or all of 
the structural material has been stressed beyond its proportional limit. The example 
in Fig. 2.1 is somewhat unusual in that the bifurcation points B is shown to occur 
after the collapse point has been reached. In this particular case, therefore, 
bifurcation buckling is of less engineering significance than axisymmetric collapse. 
 
A perhaps more commonly occurring situation is illustrated in Fig. 2.2a.  
 



 
 
The bifurcation point B is between 0 and A. If the fundamental path OAC 
corresponds to axisymmetric deformation and BD to non-axisymmetric 
deformation, the initial failure of the structure represented by these paths would 
generally be characterized by rapidly growing non-axisymmetric deformations. In 
this case the collapse load of the perfect structure, LambdaL, is of less engineering 
significance than the bifurcation point, LambdaC. 
 
The next figure (not shown in the 1981 “Pitfalls” paper) is analogous to Fig. 2.2a. 
This sketch represents the behavior of a structure that is extremely “imperfection 
sensitive”, that is, the load at which the structure fails is extremely sensitive to 
initial imperfections because the load-bearing capacity of the imperfect structure 
(peaks of the two curves labeled “Imperfect shell”) is far below the point B, the 
load-bearing capacity of the perfect shell. (See imperfection sensitivity). 
 
 

Fig. 2.2(a) Load-deflection 
curves showing limit and 
bifurcation points. The load 
at which the structure 
represented by these curves 
fails is mildly sensitive to 
initial imperfections because 
the point E is not too far 
below the point B, which 
pertains to the perfect shell. 
(from AIAA Journal, Vol. 19, 
No. 9, 1981) 



 
 
In the case of real structures that contain unavoidable imperfections, there is no 
such thing as true bifurcation buckling. The actual structure will follow a 
fundamental path OEF in Fig. 2.2a, with the failure corresponding to the"snap-
through"at point E at the collapse load, LambdaS. If point B in Fig. 2.2a corresponds 
to bifurcation into a non-axisymmetric buckling mode, the collapse at E will 
involve significant non-axisymmetric displacement components. Although true 
bifurcation buckling is fictitious, the bifurcation buckling analytical model is valid 
in that it is computationally convenient and economical and often leads to a good 
approximation of the actual failure load and mode shape. 
 
 
Various Types of Bifurcation Buckling 
 
In Fig. 2.2b the load is plotted as a function of amplitude of the bifurcation buckling 
mode. The pre-buckling load path of the perfect shell is represented by the path OB. 
Since the bifurcation buckling mode is orthogonal to the pre-buckling  
 

This figure shows the behavior of a 
very thin cylindrical shell under 
uniform compression or a very thin 
spherical shell under uniform 
external pressure.  Again, the same 
physics and mathematics applies as 
in the previous two figures. 
However, in this case there is a 
dramatic effect of an initial 
imperfection on the load-carrying 
capacity of the shell. (from the 
pitfallsnasa.ppt file) 



 
 
displacement pattern of the perfect shell, its amplitude remains zero until the 
bifurcation point B is reached. The curve BD in Fig. 2.2b implies that the post-
buckling state is unstable: the load-carrying capability, Lambda, decreases with 
increasing amplitude of the bifurcation buckling mode. 
 
All real structures are imperfect. The imperfection shape is, in general, not 
orthogonal to the bifurcation buckling mode. If one expressed the deformation of 
the imperfect structure as a sum of two components, the fundamental pre-buckling 
equilibrium state of the perfect structure plus the bifurcation buckling mode of the 
perfect structure (presumed here to be unique), then one would obtain the curve 
OEF in Fig. 2.2b if one plotted the amplitude of the bifurcation modal component 
versus the load for the imperfect structure. The amplitude of the bifurcation modal 
component would increase at an increasing rate until instability via nonlinear "snap- 
through" or collapse would occur at the reduced load, LambdaS. The difference 
between the critical bifurcation load, LambdaC, of the perfect structure and the 
collapse load, LambdaS, of the imperfect structure depends on the amplitude of the 

Fig. 2.2(b) Load-deflection 
curves showing limit and 
bifurcation points: Asymptotic 
analysis. (from AIAA Journal, 
Vol. 19, No. 9, 1981) 



initial imperfection, call it wb0. A chart of LambdaS/LambdaC versus wbo would 
characterize the sensitivity of the maximum load, LambdaS, to initial geometrical 
imperfections. According to the jargon that has become accepted over the years, the 
structure to which the curves in Fig. 2.2b correspond is called "imperfection 
sensitive" because imperfections reduce its maximum load-carrying capability. (Of 
course, it is not the structure that is sensitive to imperfections, but the maximum 
load it can safely support!) (2011 Note: for more on “imperfection sensitivity” see 
the “page”, imperfection sensitivity.) 
 
Not all structures or mathematical models of them behave as shown in Fig. 2.2b. 
Figure 2.3 shows various types of post-buckling behavior. A linearized model of 
elastic stability, that is, an eigenvalue formulation of the buckling problem, implies 
a load-deflection behavior shown in Fig. 2.3a: The amplitude of the eigenvector, the 
bifurcation buckling mode, is indeterminate, which implies that the load, Lambda, 
remains constant: Lambda = LambdaC with increasing buckling modal deflection, 
wb. The equilibrium path for the slightly imperfect structure follows the rectangular 
hyperbolic path, 
 
wb = wbo/(LambdaC/Lambda – 1)      (1) 
 
shown as a dotted line in Fig. 2.3a. 
 
 
 
 
 



 
 
 
If nonlinear post-buckling effects are accounted for, equilibrium paths for most 
structures have the forms shown in Figs. 2.3b-d. The asymmetric nature of the 
curves in Fig. 2.3b indicates that the structure continues to carry loads above the 
bifurcation load, LambdaC, if it is forced to buckle one way, but collapses if allowed 
to buckle the other. An example of this type of behavior is given by a structure with 
parts that move relative to each other as buckling proceeds in such a way that these 

Fig. 2.3 Different 
types of post-
buckling load-
displacement 
relations (Lambda 
is the load; wb is the 
amplitude of the 
buckling modal 
displacement). 
(from AIAA 
Journal, Vol. 19, 
No. 9, 1981) 



parts come in contact and support each other for positive deflections but move away 
from each other and form gaps for similar negative deflections. Specifically, a built-
up panel consisting of a flat sheet riveted to a corrugated sheet is such a structure. 
 
Roorda [15] has demonstrated this asymmetric post-buckling behavior for perfect 
and imperfect frames with eccentric loads. His results are summarized in [11]. The 
symmetric stable post-buckling behavior displayed in Fig. 2.3c is typical of axially 
compressed columns and isotropic flat plates. The perfect column or plate loaded 
precisely in its neutral axis or surface buckles either way with equal ease and the 
post-buckled equilibrium state is neutrally stable for very, very small wb, becoming 
stable for larger wb. The symmetric unstable post-buckling behavior shown in Fig. 
2.3d is typical of the early post-bifurcation regimes of axially compressed thin 
cylindrical shells and externally pressurized thin spherical shells. 
 
 
Capsule of Recent Progress in Buckling Analysis (modified in 2011) 
 
Recent progress in our capability to predict buckling failure can be categorized into 
three main areas: 
 
1) Development of asymptotic post-buckling theories and applications of these 
theories to specific classes of structures, such as simple plates, shells, and panels 
[16 – 18]. (2011 Note: for references see the paper, 1981pitfalls.pdf .) 
 
2) Development of special-purpose computer programs for limit-point 
axisymmetric buckling and non-axisymmetric bifurcation buckling of axisymmetric 
structures [9, 22 – 24]. (See BIGBOSOR4, BOSOR5). 
 
3) Development of general-purpose computer programs for calculation of static and 
dynamic behavior of structures, including large deflections, large strains, and 
nonlinear material effects [19 – 21]. (See STAGS) 
 
 
Asymptotic Analysis 
The asymptotic analyses surveyed in [16 – 18] rest on theoretical foundations 



established by Koiter [25], whose general elastic post-bifurcation theory leads to an 
expansion for the load parameter, called Lambda  (Figs. 2.2b and 2.3), in terms of 
the buckling modal amplitude wb which is valid in the neighborhood of the critical 
bifurcation point in (Lambda, wb) space. Figure 3.3 is an example. (In Fig. 3.3 the 
load, Lambda, is now called P, the buckling modal amplitude wb is now called delta, 
and the limit load, LambdaS is now called PS.) The primary aims of the asymptotic 
analyses are to calculate the maximum loads for perfect and imperfect structures. 
These analyses have contributed vital physical insights into the buckling process 
and the effect of structural or loading imperfections on this process. 
 
 

 
Fig. 3.3 Imperfection sensitivity as a function of the Koiter parameter b for a unique 
buckling mode, and comparison with the imperfection sensitivity of a spherical 
shell under external pressure and a cylindrical shell under axial compression. PC is 
the buckling load of the perfect shell; delta is the amplitude of the buckling mode, 
deltabar is the amplitude of an imperfection in the shape of the critical buckling 
mode, and t is the shell wall thickness. (from Budiansky and Hutchinson [53]). 
 
 



 
 
Axisymmetric Structures 
The second approach to the buckling problem, development of special-purpose 
programs for the analysis of axisymmetric structures such as that displayed below 
(not included in the 1981 “Pitfalls” lecture), forms a sort of middle ground between 
 

 
 
the asymptotic analysis and the general-purpose nonlinear analysis. The approach is 
similar to the asymptotic treatment because in applications it is restricted in practice 
to a special class of structures, and the distinction between pre-buckling equilibrium 
and bifurcation buckling is retained. It is similar to the general nonlinear approach 
in that the continuum is discretized and the nonlinear pre-buckling equilibrium 
problem is solved by "brute force." The emphasis is on the calculation of the pre-

Buckling of an axisymmetric shell: 
a ring-stiffened shallow conical 
shell used for entry into the 
Martian atmosphere, tested at 
NASA Langley Research Center 
and analyzed by G. A. Cohen. 
(Cohen, G.A., "User Document for 
Computer Programs for Ring-
Stiffened Shells of Revolution," 
NASA CR-2086, 1973; "Computer 
Analysis of Ring-Stiffened Shells 
of Revolution," NASA CR-2085, 
1973; "Computer Program for 
Analysis of Imperfection 
Sensitivity of Ring-Stiffened 
Shells of Revolution," NASA CR-
1801, 1971.) Photographs by 
Leonard, Anderson, and Heard, 
NASA Langley Research Center, 
1974. 



buckling fundamental path, OB or OA in Fig. 2.2a and determination of the 
bifurcation point B and its associated buckling mode, not on calculation of post-
bifurcation behavior BD or of the load-deflection path OEF of the imperfect 
structure. The goals of this second approach are to create an analysis tool for use by 
engineers and designers and to use this tool in extensive comparisons with tests, 
both to verify and to obtain physical insight into the buckling process. (2011 Note: 
See BIGBOSOR4 and BOSOR5.) 
 
General Nonlinear Analysis (2011 Note: See STAGS.) 
The general-purpose computer programs in widespread use since the early 1970s 
and presently being written are based on principles of continuum mechanics 
established for the most part by the late 1950s and set forth in several texts [26 – 
31]. (2011 Note: For the references see 1981pitfalls.pdf.) 
 
The structural continuum is discretized into finite elements as described in the texts 
[32 – 35], and various strategies are employed to solve the resulting nonlinear 
problem [19].  The nonlinearity is due to moderately large or very large deflections 
and nonlinear material behavior. Various plasticity models are described in texts, 
conference proceedings, and survey articles identified in [19]. 
 
The primary aim of this vast body of work, much of which was done in the1970s, 
has been to produce reliable analysis methods and computer programs for use by 
engineers and designers. Thus, the emphasis in the literature just cited is not 
primarily on the acquisition of new physical insight into buckling and post-
bifurcation phenomena, but on the creation of tools that can be used to determine 
the equilibrium path OEF in Fig. 2.2a for an arbitrary structure and on proof that 
these tools work by the use of demonstration problems, the solution of which is 
known. 
 
In most cases, no formal distinction is made between pre-bifurcation and post-
bifurcation regimes; in fact, simple structures are modeled with imperfections 
included so that potential bifurcation points (such as B in Fig. 2.2a) are converted 
into maximum load points such as E. The buckling problem loses its special 
qualities as illuminated so skillfully in the asymptotic treatments and becomes just 
another nonlinear analysis, requiring perhaps special physical insight on the part of 



the computer program user because of potential numerical traps such as spurious or 
real bifurcation points and ill-conditioning due to maximum load points or possibly 
outrageous shapes of some of the finite elements in the model. 
 
 

 
 
 

Buckling and collapse of an 
axially compressed, thin 
cylindrical shell under uniform 
end shortening. A general-
purpose nonlinear finite 
element computer program 
such as STAGS is used for the 
prediction of the highly 
behavior of this non-
axisymmetric shell. 
(Photograph by Bo O. Almroth 
and colleagues at the Lockheed 
Missiles & Space Company, 
mid 1960’s; This picture is in 
the file, pitfallsnasa.ppt.) 



 
 
Fig. 6.7 Computer analysis of a complex shear panel (from Skogh and Stern [151]), 
a) Complex stiffened shear panel, b) Post-buckling behavior predicted with the 
STAGS computer program. (Fig. 6.7 in “Pitfalls” paper, AIAA Journal, Vol. 19, 
No. 9, 1981). [151] Skogh, J. and Stern, P. "Post-buckling Behavior of a Section 
Representative of the B-l Aft Intermediate Fuselage," AFFDL-TTR-73-63, May 
1973. 
 

 



 

PART 2 
Presented at AIAA 48th Structures, Structural Dynamics and Materials 
Conference, AIAA-2007-2216, 2007 
 
OPTIMIZATION OF AN AXIALLY COMPRESSED RING AND 
STRINGER STIFFENED CYLINDRICAL SHELLS WITH A GENERAL 
BUCKLING MODAL IMPERFECTION 
 
David Bushnell, Fellow, AIAA, Retired, 775 Northampton Drive, Palo Alto, CA 
94303, email: bush@sonic.net 
 

 
Dr. David Bushnell (2008) 
 
 
 
 

It’s hard to believe that this old coot is the 
same person as that depicted at the beginning 
of this file. David Bushnell worked at 
Lockheed Missiles & Space Company, which 
later became the Lockheed Martin 
Corporation, from 1961 to 1994, when he 
retired at age 55. In his retirement he continues 
to develop his computer programs, 
BIGBOSOR4, BOSOR5, PANDA2, and 
GENOPT. Most of his time, from 1994 to 
2008, he spent on his continuing development 
of PANDA2, including the creation of the 
PANDA2 processors, PANEL, PANEL2, and 
PANEL3, that generate valid input files for 
BIGBOSOR4, and the PANDA2 processor, 
STAGSUNIT, that generates valid input files 
for the STAGS computer program, a general-
purpose finite element code developed by Bo 
O. Almroth, Dr. Charles C. Rankin and others 
and currently being further developed by Dr. 
Rankin. From 2008 to the present Dr. Bushnell  
has worked primarily with GENOPT/ 
BIGBOSOR4, developing the capability to 
optimize complex shells of revolution and 
prismatic structures and validating the 
optimum designs by the application of 
STAGS. The pictures in this section are 
PANDA2-generated STAGS models of a ring 
and stringer stiffened, axially compressed 
cylindrical shell previously optimized by 
PANDA2. 



ABSTRACT 
 
PANDA2, a computer program for the minimum-weight design of elastic perfect 
and imperfect stiffened cylindrical panels and shells under multiple sets of 
combined loads, is used to obtain optimum designs of uniformly axially compressed 
elastic internal T-ring and external T-stringer stiffened cylindrical shells with initial 
imperfections in the form of the general buckling mode. The optimum designs 
generated by PANDA2 are verified by STAGS elastic and elastic-plastic finite 
element models produced automatically by a PANDA2 processor called 
STAGSUNIT. Predictions from STAGS agree well with those from PANDA2. 
Improvements to PANDA2 during the past year are summarized. Seven different 
optimum designs are obtained by PANDA2 under various conditions. The most 
significant condition is whether or not PANDA2 is permitted automatically to make 
the initial user-specified amplitude of the general buckling modal imperfection 
directly proportional to the axial half-wavelength of the critical general buckling 
mode. A survey is conducted over (m,n) space to determine whether or not the 
critical general buckling modal imperfection shape computed by PANDA2 with 
(m,n)critical (m=axial, n=circumferential) half-waves is the most harmful 
imperfection shape. It is found that indeed (m,n)critical is, for all practical purposes, 
the most harmful imperfection mode shape if PANDA2 is permitted automatically 
to make the general buckling modal imperfection amplitude directly proportional to 
the axial half-wavelength of the critical general buckling mode (inversely 
proportional to m). It is concluded that for axially compressed, stiffened, globally 
imperfect cylindrical shells the optimum designs obtained with the condition that 
PANDA2 is NOT allowed to change the initial user-specified imperfection 
amplitude are probably too heavy. One of the cases investigated demonstrates that 
the optimum design of a perfect shell obtained via the commonly used condition 
that a likely initial imperfection be replaced by an increase in the applied load by a 
factor equal to the inverse of a typical knockdown factor is too heavy. A new input 
index, ICONSV, is introduced into PANDA2 by means of which optimum designs 
of various degrees of conservativeness can be generated. Optimum designs are 
obtained with ICONSV = -1, 0, and +1, which represent increasing degrees of 
conservativeness in the PANDA2 model. It is concluded that, when obtaining 
optimum designs with PANDA2, it is best to allow PANDA2 to enter its branch in 
which local post-buckling behavior is determined, thereby avoiding the generation 



of designs that may be unsafe because of excessive local bending stresses in the 
panel skin and stiffener parts. In most cases both nonlinear static and nonlinear 
dynamic analyses are required in order to obtain collapse loads with STAGS. A 
table is included that demonstrates how to use STAGS to evaluate an optimum 
design obtained by PANDA2. In most cases the elastic STAGS models predict 
collapse in one of the ring bays nearest an end of the cylindrical shell. With the 
effect of elastic-plastic material behavior included in the STAGS models, collapse 
most often occurs in an interior ring bay where the finite element mesh is the most 
dense. 
 
From Section 7 of the same AIAA Paper 2007-2216: 
7.0 TWO MAJOR EFFECTS OF A GENERAL BUCKLING MODAL 
IMPERFECTION (For some of the tables referenced, see 2007.axialcomp.pdf) 
Much of the following appears in Section 11.1 on p. 19 of [1K] (Reference [1K] 
and other PANDA2 and STAGS references are given below). It is repeated here 
because this section is especially important. It briefly describes the behavior of a 
stiffened cylindrical shell with a general buckling modal imperfection shape. This 
behavior plays a major role in the evolution of the design during optimization 
cycles in PANDA2. Here it is assumed that the shortest wavelength of the general 
buckling modal imperfection is greater than the greatest stiffener spacing, as holds 
in Figs. 1 and 2, for example (disregarding the component of stringer bending-
torsional deformation displayed in the expanded insert in Fig. 1a). 
 
A general buckling modal imperfection in a stiffened shell has two major effects: 
 
1. The imperfect stiffened panel or shell bends as soon as any loading is applied. 
This pre-buckling bending causes significant redistribution of stresses between the 
panel skin and the various stiffener parts, thus affecting significantly many local 
and inter-ring buckling and stress constraints (margins).  
 
2. The "effective" circumferential curvature of an imperfect cylindrical panel or 
shell depends on the amplitude of the initial imperfection, on the circumferential 
wavelength of the critical buckling mode of the perfect and of the imperfect shell, 
and on the amount that the initial imperfection grows as the loading increases from 



zero to the design load. The "effective" circumferential radius of curvature of the 
imperfect and loaded cylindrical shell is larger than its nominal radius of curvature 
because the larger "effective" radius corresponds to the maximum local radius of 
the cylindrical shell with a typical inward circumferential lobe of the initial and 
subsequently load-amplified buckling modal imperfection. In PANDA2 this larger 
local "effective" radius of curvature is assumed to be the governing UNIFORM 
radius in the buckling equations pertaining to the imperfect shell. For the purpose of 
computing the general buckling load, the imperfect shell is replaced by a new 
perfect cylindrical shell with the larger “effective” circumferential radius. By means 
of this device a complicated nonlinear collapse analysis is converted into a simple 
approximate bifurcation buckling problem - a linear eigenvalue problem. For each 
type of buckling modal imperfection (general, inter-ring, local [1E]) PANDA2 
computes a "knockdown" factor based on the ratio: 
 
(buckling load factor: panel with its “effective” circumferential radius)/ 
(buckling load factor: panel with its nominal circumferential radius)            (7.1) 
 
Figures 1a,b,c show a STAGS model of a typical general buckling modal 
imperfection shape (amplitude exaggerated) for an optimized “compound” model 
[1K] of an axially compressed cylindrical shell with external stringers and internal 
rings (Case 4 in Table 4 in this paper). In this compound model a 45-degree sector 
has both external stringers and internal rings modeled as flexible branched shell 
units. A 315-degree sector, the remainder of the cylindrical shell, has smeared 
stringers and internal rings modeled as flexible branched shell units. Figure 2 shows 
the deformed state of the imperfect compound model as loaded by the design load, 
NX = -3000 lb/in axial compression (STAGS load factor PA is close to 1.0). One 
observes three characteristics: 
 
1. The stresses in the imperfect axially compressed shell have been redistributed as 
the globally imperfect shell bends under the applied axial compression. The 
maximum effective (von Mises) stress in this case, sbar(max) = 66.87 ksi, occurs in 
the outstanding stringer flanges where the pre-buckling deformation pattern of the 
imperfect shell has a maximum inward lobe. 
 
2. The typical maximum “effective” circumferential radius also occurs where the 



deformation pattern has a maximum inward lobe. This larger-than-nominal 
circumferential radius is highlighted most clearly by the in-plane circumferential 
deformation of the interior ring located one ring spacing in from the right-hand 
curved edge of the STAGS model shown in Fig. 2. See the right-most expanded 
insert in Fig. 2. 
 
3. There is an important phenomenon that occurs when imperfect cylindrical shells 
are optimized. This phenomenon has been described in previous papers [1K]. It 
occurs in the case of a stiffened cylindrical shell with an imperfection in the form of 
the critical general buckling mode of the perfect shell. The optimum design of an 
imperfect stiffened cylindrical shell has a general buckling load factor that is 
usually considerably higher than load factors that correspond to various kinds of 
local and “semi-local” buckling, such as local buckling of the panel skin and 
stiffener segments, rolling of the stiffeners, and inter-ring buckling. The general 
buckling margin of such a shell is usually not critical (near zero). In contrast, when 
a perfect stiffened cylindrical shell is optimized the general buckling load factor is 
usually very close to at least one local buckling load factor and is usually lower than 
many other local and “semi-local” buckling load factors. The general buckling 
margin of an optimized perfect shell is usually critical (near zero). 
 
The cases explored in this paper exhibit this characteristic. Take, for example, the 
optimum designs called Case 1 and Case 2 in Table 4. In Case 1 a perfect shell is 
optimized. The margins for the Case 1 optimum design are listed in Table 10. (See 
Table 10 in panda2.papers/2007.axialcomp.pdf) Several of the margins for local and 
“semi-local” buckling are essentially equal to or greater than that for general 
buckling, and the general buckling margin is near zero (critical). In Case 2 a shell 
with a general buckling modal imperfection is optimized. The margins for the 
imperfect optimized shell are listed in Table 6, and those for the same optimum 
configuration but with the amplitude of the general buckling modal imperfection set 
equal to zero are listed in Table 7.  In both Tables 6 and 7 of the paper, 
panda2.papers/2007.axialcomp.pdf, the margin for general buckling of the 
optimized imperfect shell is considerably higher than many of the margins 
corresponding to local and “semi-local” buckling. The general buckling margin of 
the optimized imperfect shell is well above zero (not critical). 
 



Why does this happen? The general buckling margin of optimized IMPERFECT 
stiffened shells is forced higher during optimization cycles because PRE-
BUCKLING BENDING OF THE IMPERFECT SHELL increases with applied 
load approximately hyperbolically as the applied load approaches the general 
buckling load of the imperfect shell [1E]. If the general buckling load of the 
optimized imperfect shell were close to the design load, that is, if the general 
buckling margin were near zero (almost critical), there would be so much pre-
buckling bending near the design load that LOCAL STRESS AND BUCKLING 
MARGINS FOR THE STIFFENER PARTS AND FOR THE PANEL SKIN 
WOULD BECOME NEGATIVE BECAUSE THESE PARTS OF THE 
STRUCTURE WOULD BECOME HIGHLY STRESSED. 
 
 
A table and several figures from the 2007 AIAA Paper 2007-2216, April, 2007 
follow. (See panda2.papers/2007.axialcomp.pdf for the complete paper.) 
 
Table 4 Optimum designs from PANDA2 suitable for analysis by 
STAGS (dimensions in inches) 

 
. Case 1 

Perfect,  
no Koiter, 
ICONSV=1  

Case 2 
Imperfect, no 
Koiter, yes 
change 
imperfection 
amplitude, 
ICONSV=-1 

Case 3 
Imperfect, no 
Koiter, yes 
change 
imperfection 
amplitude, 
ICONSV=0 

Case 4 
Imperfect, 
no Koiter, 
yes change 
imperfection 
amplitude, 
ICONSV=1 

Case 5 
Imperfect, 
yes Koiter, 
yes change 
imperfection 
amplitude, 
ICONSV=1  

Case 6 
As if 
perfect, 
no Koiter, 
Nx=-6000, 
sbar=120 
ksi 
ICONSV=1 

Case 7 
Imperfect, 
no Koiter, 
no change 
in 
imperfectio
n amplitude, 
ICONSV=1 

Variable 
Name 

Optimum 
Design 

Optimum 
Design 

Optimum 
Design  

Optimum 
Design 

Optimum 
Design 

Optimum 
Design 

Optimum 
Design 

B(STR) 0.75519 0.93500 0.93500 0.98170 0.93500 0.93500 1.5708 
B2(STR) 0.075519 0.093500 0.093500 0.0981710 0.093500 0.093500 0.15708 
H(STR) 0.39795 0.57079 0.58395 0.63651 0.55261 0.55330 0.92254 
W(STR) 0.35593 0.38639 0.36056 0.39946 0.29593 0.36761 0.64833 
T(1)(SKN) 0.030240 0.033988 0.033795 0.034878 0.039964 0.044110 0.048160 
T(2)(STR) 0.019897 0.028540 0.029197 0.031826 0.027631 0.033536 0.046127 
T(3)(STR) 0.022209 0.026779 0.029411 0.022835 0.032576 0.024673 0.033702 
B(RNG) 6.25 9.3750 8.3333 8.3333 9.3750 8.3333 15.000 
B2(RNG) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
H(RNG) 0.52160 0.79425 0.75877 0.79978 0.77659 0.92137 0.86341 



W(RNG) 0.17891 0.10000 0.12313 0.24075 0.31922 0.35255 1.0804 
T(4)(RNG) 0.026080 0.039713 0.037939 0.040078 0.038830 0.046069 0.043170 
T(5)(RNG) 0.021847 0.097842 0.086763 0.029339 0.037873 0.017627 0.054020 
WEIGHT 31.81 lb 39.40 lb 40.12 lb 40.94 lb 41.89 lb 46.83 lb 56.28 lb 
Critical 
margins 
from 
PANDA2, 
Table 5 

1, 6a,b, 
23a,b, 26, 
44, 55, 56, 
57, see Table 
10 

1, 3, 6a,c,e, 
10, 23a, 26, 
47, 55, 56, 57, 
see Table 6. 

1, 3, 6a,c,e, 
10, 23a, 26, 
47, 55, 56, 
57 

1, 3, 6a,c,e, 
10, 23a,e, 25, 
26, 44, 47, 
55, 56, 57 

1, 3, 6a,d, 
10, 11, 23a, 
44, 47, 55, 
56, 57 

1, 3, 6a,c,e, 
10, 11, 23a, 
25, 26, 44, 
47, 55, 56, 
57, 58 

1, 3, 6a,c,e, 
10, 11, 23e, 
25, 26, 44, 
46, 55, 56, 
57, 58 

Almost 
critical 
margins 
from 
STAGS 
and mode 
of elastic 
collapse 

1, 6a, 44, 
Collapse 
was not 
computed 

1, 6a, 47, 
Stringer 
sidesway and 
first bay 
collapse at 
PA=1.04 

1, 6a, 47, 
Stringer 
sidesway 
and first bay 
collapse at 
PA= 1.05 

1, 6a, 47, 
Stringer 
sidesway 
and first bay 
collapse at 
PA=1.08 

1, 6a, 47, 
Stringer 
sidesway 
and first bay 
collapse at 
PA=1.13 

1, 6a, 11, 
44, 47, 
Axisym-
metric edge 
collapse at 
PA=0.970; 
rv(edge)=0 
on 2 curved 
edges. 

1, 6a, 11, 
47, Stringer 
sidesway, 
first,middle 
and last 
bay 
collapse at 
PA= 1.22(–) 
PA= 
1.15(+) 

Tables & 
Figures 
pertaining 
to the case 

     Table 10, 
Figs. 3, 33-
41 

Figs. 8–32  Figs. 1a-c, 2, 
4-7, 42-65 

Table11, 
Figs. 66-71 

Figs. 72-74 Figs. 75-80 

Comments This shell is 
not practi-
cal because 
no one can 
fabricate a 
perfect 
structure. 

With this 
option you 
MUST check 
the results 
via a general-
purpose code 
such as 
STAGS. 

With this 
option you 
are strongly 
URGED to 
check result 
with use of a 
general-
purpose 
program. 

This option 
may lead to 
shells with 
local skin & 
stringer 
bending & 
therefore 
possibly 
excessive 
stresses. 

This is the 
best option 
if you do not 
plan to 
check 
PANDA2 
designs. 
Even so, you 
SHOULD 
check them. 

This widely 
used option 
generates a 
heavy shell. 
PANDA2 
cannot 
predict axi-
symmetric 
collapse. 

This option 
is too con-
servative, 
in my 
opinion. 
The 
imperf-
ection can 
probably 
be detected 
easily. 

 
 
For a detailed explanation of the column headings in Table 4 see the full-length 
paper, panda2.papers/2007.axialcomp.pdf or the file, 
panda2.abstracts/2007.axialcomptable4.pdf. 
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The following figure captions cite figures and tables that are not included here. 
Please see the complete paper, panda2.papers/2007axialcomp.pdf, for more details. 



 
 

Case 4 in Table 4 no Koiter, yes change imperfection, ICONSV=1; compare with Fig.49. 
STAGS Mode 395 = lowest general buckling mode, load factor, pcr=2.0308; BIGBOSOR4 
predicts 2.0008 (m,n)=(4 axial halfwaves, 6 circumferential full waves); PANDA2 predicts 
2.07 before knockdowns for smearing stringers, for smearing rings, and for transverse shear 
deformation (t.s.d). PANDA2 predicts 1.774 after application of these three knockdowns. 
Note from the expanded insert that the general buckling mode includes a significant 
component of bending-torsion buckling of the stringers. 
FIG.1a Linear general buckling mode from a “compound” STAGS model. The nodal 
mesh density is not sufficiently refined to capture local skin/stringer bending and 
buckling of the type shown in Fig. 23a. Compare Fig. 1a with Fig. 49. 



 
 
 
 
 

Case 4, Table 4: no Koiter, yes change imperfection, ICONSV=1. STAGS Mode 395 = 
general buckling; load factor, pcr=2.0308; first of a pair of modes. The region with 
stringers modeled as shell units spans 45 degrees of circumference. 
FIG. 1b End view of the same linear buckling mode as that shown in the previous 
figure 

Case 4, Table 4: no Koiter,  yes change imperfection, ICONSV=1. Compare with Fig. 
1b. With a complete (360-deg) cylindrical shell the modes always occur in pairs. 
STAGS Mode 396, buckling load factor, pcr=2.0309; second of a pair of modes. 
FIG. 1c End view of the next buckling mode to that shown in the previous figure. 



 
 
 
 
 
 
 
 

Case 4, Table 4: no Koiter, yes change imperfection, ICONSV=1; also see Figs. 61-63. 
Nonlinear equilibrium state from STAGS at the load factor, PA=1.00516. The imperfect shell 
has two initial buckling modal imperfection shapes: Fig. 1a with amplitude, Wimp1=+0.0625 
and Fig. 61 with amplitude, Wimp2= -0.0005 inch. Pre-buckling bending of the imperfect 
shell causes redistribution of stresses among the shell skin and the stiffener segments. Also, 
pre-buckling bending gives rise to “flattened” regions with an “effective” circumferential 
radius of curvature that causes early general buckling. (See the right-most expanded insert). 
FIG. 2 STAGS prediction of outer fiber effective stress (psi) at axial load, Nx= -3000 x 
1.00516 lb/in. 



 
 
 
 

Case 4, Table 4 no Koiter, yes change imperfection, ICONSV=1; Compare with Fig.2. Deformed state 
during a nonlinear dynamic STAGS run at the design load, PA=1.0, Time = 0.00255 seconds (Fig.52). 
Notice local bending in the panel skin. The imperfect shell has only a general buckling modal 
imperfection shape (that shown in Fig. 49) with amplitude, Wimp1 = -0.0625 inches. This is a 60-
degree STAGS model of the same configuration (Case4) as that shown in Figs. 1 and 2 with symmetry 
conditions applied along the two straight edges. The agreement of predictions from the 360-degree 
compound model and the 60-degree model justifies use of the 60-degree model. 
FIG. 7 STAGS prediction of outer fiber effective stress (psi) at the design load, Nx = -3000 lb/in. 



 

 
 
 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Case 2, Table 4: no Koiter, yes change imperfection, ICONSV=-1. See Part 8 of Table 9. 
Imperfect shell with same 3 imperfections as identified in the previous figure. Deformed state 
predicted by STAGS at the highest load factor reached in the nonlinear static run, PA = 1.02487. 
FIG. 29 Outer fiber effective stress (psi) at axial load Nx = -3000 x 1.02487 lb/in. 
Compare with previous figure. Notice sidesway of the three central stringers in the region 
with the highest mesh density. (The three central stringers are darker than the others 
because they have greater nodal point density over their cross sections). 



 

Case 4, Table 4: no Koiter, yes change imperfection, ICONSV = 1. Compare with 
Fig. 50. Imperfection shape shown in Fig. 49, amplitude, Wimp=-0.0625 in. 
Deformed state in the panel skin (shell unit no. 1) from STAGS at the highest load 
factor reached in the nonlinear static run, PA=0.98. 
FIG. 51 STAGS prediction of outer fiber effective stress (psi) in the panel SKIN at 
axial load, Nx= -3000 x 0.98 lb/in.i) in the panel SKIN at axial load, Nx= -3000 x 
0.98 lb/in. 

FIG. 52 Case 4 in Table 4: The 
large increase in effective 
(vonMises) stress in the panel skin 
during the dynamic STAGS run in 
which the load factor is held 
constant at PA = 1.0 (the design 
load) is caused by local buckling 
of the type displayed in Figs. 4 
and 48. This local buckling at PA 
= 1.0, occurring for an optimum 
design configuration derived with 
use of the “no Koiter” option, is 
the reason that in Table 4 the 
recommended option is to use 
“yes Koiter”. (See Case 5). 



 

Case 4, Table 4: no Koiter, yes change imperfection, ICONSV = 1.  STAGS nonlinear 
buckling mode at load factor, PA = 1.07084. There is one imperfection shape, shown in Figs. 
1a,b, with amplitude, Wimp1=+0.0625 inch. The nonlinear buckling load factor from 
STAGS, pcr=1.1386; PANDA2 predicts 1.0097 for the bending-torsion buckling mode of the 
imperfect shell as loaded by the design load, Nx= -3000 lb/in. 
FIG. 61 NONLINEAR bending-torsion buckling mode from STAGS. This mode is used 
as a second imperfection shape with amplitude, Wimp2 = -0.0005 inch in a subsequent 
nonlinear STAGS run. 



 
 
 
 
 

FIG. 93 STAGS model of Case 5, Table 4 with plasticity included. Nonlinear static 
elastic-plastic sidesway of Stringers 15 & 16 (numbering from the bottom in Figs. 66 & 67) 
in Ring bays 3 & 4 (Fig. 66). Two imperfection shapes: 1. general buckling modal 
imperfection shape similar to that in Fig. 66 with amplitude, Wimp1 = -0.0625 inch, and 2. 
bending-torsion buckling shape similar to that shown in the lower expanded insert in Fig. 
68 with amplitude, Wimp2 = -0.001 inch. In the bending-torsion imperfection shape in this 
elastic-plastic model there is no buckling modal deformation near the right-hand end of the 
shell. Compare with Figs. 69-71. 



 

PART 3: 
Some advice to colleagues relating to buckling 
of shells 
 
David Bushnell 
 
CHAPTER 1 
HOW TO DETERMINE IF A STRUCTURE IS BUCKLING-SAFE 
------- 22 October 2007 (modified, January 9, 2008:  ----- 
 
Here is a message in which I describe what I feel is a 
generally valid procedure to determine whether or not a 
structure previously modeled with any general-purpose 
computer program for a stress analysis is buckling-safe. 
 
The following letter, reproduced below, was written to my 
colleague, Frank. Frank had asked me what he should do to 
assure that a structure he was analyzing for one of the 
engineering divisions would not buckle. He already had a 
very detailed ABAQUS finite element model, and he had 
performed a stress analysis. 
 
Now, I have never used ABAQUS and don’t know what its 
capabilities are. However, despite this gross ignorance on 
my part, I wrote Frank the following message. In my opinion 
a procedure such as that described below should work in any 
context in which an engineer wants to determine if a 
structure is buckling-safe. 
 
 
October 18, 2007 
 
Dear Frank: 
 
I've been thinking about your structural buckling problem 
while I lie abed very early in the morning. I have come up 
with the following suggestions. 
 
First, let me introduce a few definitions applicable to a 
linear buckling formulation: 
 



1. A linear buckling eigenvalue equation is: 
 
 [K1]{q} = lambda[K2]{q}      (1) 
  
in which [K1] is the stiffness matrix for the structure as 
loaded by “Load Set B”; [K2] = Load-geometric matrix for the 
structure as loaded by “Load Set A”; {q} = buckling 
eigenvector, that is, the buckling mode shape; lambda = 
buckling eigenvalue (buckling load factor). Example: suppose 
you want to find the buckling pressure of a cylindrical 
shell under uniform external pressure (“Load Set A”) and 
under uniform axial tension that has a “fixed” value, that 
is, axial tension that you know in advance and that is not 
to be multiplied by the eigenvalue, lambda (“Load Set B”). 
 
2. “Load Set A” = loads from which [K2] is computed, that 
is, the loads corresponding to which you want to find a 
buckling load factor (eigenvalue). In the example “Load Set 
A” = uniform external pressure. 
 
3. “Load Set B” = loads which affect [K1], that is, the 
loads that are “fixed” in the sense that they represent part 
of the structural system in the same way that stiffnesses 
and boundary conditions represent the structural system. In 
this example “Load Set B” = uniform axial tension. 
 
The following suggestions are based on the assumption that 
all the loads are either in "Load Set A" (that is, all the 
loads are "eigenvalue" loads) or any loads that happen to be 
in "Load Set B" (that is, "non-eigenvalue" or “fixed” loads) 
are stabilizing. I'm assuming that there are no "fixed" pre-
loads, such as fixed destabilizing thermal loads and/or 
fixed destabilizing pressure or other destabilizing 
"mechanical" loads. If it is hard to tell whether Load Set B 
loads are stabilizing or destabilizing, then do what you 
would do assuming that the loads in Load Set B are 
destabilizing. If there are significant destabilizing loads 
in Load Set B, then first perform a linear buckling analysis 
with all the loads in Load Set A set equal to zero and all 
the loads in Load Set B transferred to Load Set A. Check to 
see if this case yields any eigenvalues that are less than 
unity. If not (or if all eigenvalues less than unity are 
negative) then proceed as described below. If so, then the 



structure will buckle under Load Set B acting by itself and 
it must therefore be redesigned (or there might be something 
wrong with your modeling or with your specification of Load 
Set B).  
 
Assuming that there are no "Load Set B" problems, proceed as 
follows: 
 
Item no.1. Run a linear buckling analysis at 1g 
acceleration. (NOTE: In Frank Weiler’s particular structural 
problem the “Load Set A” loading was weight. This weight 
acted sort of like a nonuniform external pressure on a short 
cylindrical shell.) I expect you'll probably find a 
reasonably high (safe) buckling load factor (eigenvalue), 
but that might possibly not be so in your case (see Item no. 
3). 
 
Caution 1: Your analysis is for a PERFECT structure. The 
question always arises, what is the sensitivity of the 
buckling load factor to initial imperfections? This, of 
course, depends on the nature of the structure and the 
loading. If you find that the pre-buckling state in the area 
where buckles first occur indicates relatively uniform axial 
compression in a thin cylindrical shell, then you probably 
should apply a knockdown factor of at least 2.0. It is to be 
hoped that the linear/nonlinear buckling analyses will yield 
buckling load factors that are high enough that you don't 
have to worry about initial imperfections. 
 
Caution 2: I think yesterday you said that there are contact 
elements in your structure. Suppose you find that buckling 
occurs in a region where considerations of contact are 
important. A question arises: "How does ABAQUS model 
bifurcation buckling in a region where contact elements 
exist? For example, suppose you have a thin cylindrical 
shell (a "liner") encased in a relatively soft material, all 
under external pressure. During the buckling process the 
thin cylindrical shell is free to separate from the 
surrounding soft material where inward buckles develop, but 
pushes into this surrounding soft material where outward 
buckles develop. How does ABAQUS handle this? Perhaps a 
linear eigenvalue analysis is not sufficiently accurate. 
 



 
Item No.2. Run a nonlinear buckling analysis at 1g 
acceleration. There probably won't be much difference from 
the linear result if the linear result yields a reasonably 
high buckling load factor. If the nonlinear buckling load 
factor agrees fairly well with the linear (which is the case 
in most designs), and if the buckling load factor for a 
loading of 1g acceleration is reasonably high (that is the 
structure is safe from buckling), then you are done. If the 
nonlinear buckling load factor disagrees with the linear 
buckling load factor, is higher than the linear buckling 
load factor, and the linear buckling load factor is 
reasonably high, you are done. A nonlinear buckling load 
that is higher than the linear buckling load indicates that 
either the destabilizing (negative) pre-buckling internal 
loading of the structure increases more gradually (more 
slowly) with increasing load factor than does that 
corresponding to the linear theory, or the pre-buckling 
deformation is of such a nature as to stabilize the 
structure, or both. If the nonlinear buckling analysis 
yields a significantly lower buckling load factor than does 
the linear buckling analysis, but the nonlinear buckling 
load factor is still rather high (indicating a buckling-safe 
structure), then you are done. A nonlinear buckling load 
that is lower than the linear buckling load indicates that 
either the destabilizing (negative) pre-buckling internal 
loading of the structure increases more steeply than does 
that corresponding to the linear theory, or the pre-buckling 
deformation is of such a nature as to destabilize the 
structure (such as pre-buckling flattening of a cylindrical 
shell in the region where it buckles), or both. It is 
possible (though unlikely) that even though the linear 
buckling load factor indicates a buckling-safe structure, 
the nonlinear buckling load factor does not. If that 
unlikely event holds, proceed as in Item 3. Otherwise, you 
are done. 
 
Item No. 3. If the linear buckling analysis at 1g 
acceleration yields a buckling load factor that is 
unacceptably low (taking possible imperfection sensitivity 
and the effects of contact into account), then there are two 
possibilities: 
 



a. It is possible (although unlikely) that a nonlinear 
buckling analysis will solve the problem for you. (Believe 
it or not, this actually happened in one case in my past!) 
The nonlinear buckling eigenvalue may be higher than the 
linear buckling eigenvalue by enough to render the structure 
buckling-safe. In that unlikely case you are done. (Although 
I'll bet you'd have a difficult time persuading the customer 
that the structure is buckling-safe under this 
circumstance!) 
 
b. More likely, nonlinear effects are harmful, that is, they 
"soften" the structure, making it appear to be less stable 
than does the linear theory or nonlinear effects are not 
significant enough to change the verdict, "buckling-unsafe 
structure". In this most likely of findings under this item 
(Item no. 3) the best solution is first to redesign the 
structure before you attempt any more precise buckling 
analyses, such as nonlinear load stepping. If it is not 
feasible or possible to redesign the structure, and if you 
must obtain a more precise prediction of the structural 
behavior, I suggest you do the following: 
 
i. Obtain one or more imperfection shapes from linear 
buckling theory. Use as imperfection shapes one or more 
linear buckling modes. Assign as amplitudes of these 
buckling modal imperfection shapes values that are in 
keeping with the engineering tolerances specified in your 
project. 
 
ii. Perform nonlinear equilibrium analyses of the imperfect 
structure by load stepping. Be careful to use as 
imperfection amplitude(s) the proper algebraic sign(s), that 
is, the algebraic sign(s) that render the imperfection 
shape(s) which are most harmful. If you don't know what 
sign(s) to use, you just have to do at least two nonlinear 
analyses for each imperfection shape, one with positive and 
the other with negative sign of the amplitude of the initial 
imperfection(s). 
 
iii. Look for nonlinear collapse or excessive stresses that 
occur during the nonlinear load steps. 
 
I hope this is helpful, Frank! 



 
Dave 
 
 
 
 
CHAPTER 2 
CONCERNING FACTORS OF SAFETY 
----------------- by David Bushnell, 25 August 2007: 
 
Suppose you have two computer programs, Program A and 
Program B, that supposedly do the same thing: find the 
minimum-weight design of an elastic stiffened cylindrical 
shell. 
 
Assume that Program A is based on the simplest possible 
model: membrane pre-buckling behavior (that is, uniform pre-
buckling stress resultants, Nx, Ny, Nxy), smeared stiffeners 
(without any compensating knockdown factors to account for 
the inherent unconservativeness of a smeared-stringer and/or 
smeared-ring model), stiffener cross sections not permitted 
to deform, perfect shell (no buckling modal imperfections), 
and linear bifurcation buckling model (no nonlinear effects 
at all). 
 
Assume that Program B accounts for some pre-buckling 
bending, has knockdown factors to compensate for the 
inherent unconservativeness of smearing stiffeners, discrete 
stiffeners that can deform locally, buckling modal 
imperfections, and a "quasi-linear" bifurcation bucking 
model that accounts for the nonlinear pre-buckling growth of 
the initial buckling modal imperfections with increasing 
applied load, Nx, Ny, Nxy, p.  
 
If you use the same factors of safety and the same design 
load for both computer Program A and computer Program B, you 
will usually obtain a heavier optimum design with Program B 
than with Program A. 
 
The purpose of this email message (sent to a colleague at 
the NASA Langley Research Center, Hampton, Virginia) is to 
emphasize that you have to give a lot of thought to what 



factors of safety and what loading you want to use in order 
to obtain your optimum design. 
 
What I like to do whenever I obtain an optimum design is the 
following: 
 
1. Use for the design load combination the ULTIMATE load, 
that is, the load combination, Nx, Ny, Nxy, p, that the 
structure would have to survive in its most rigorous static 
test. (This applies to multiple load combinations that the 
structure would have to survive with each ultimate load 
combination applied separately). 
 
2. In PANDA2 generally use factors of safety for buckling 
equal to 0.999. (In PANDA2 when you use 0.999 for a buckling 
factor of safety PANDA2 does not automatically change the 
factor of safety to 1.1 the way it does if you use a 
buckling factor of safety between 1.0 and 1.09999). If you 
wish to allow local buckling at a lower load than the design 
load, then you must use a factor of safety for local 
buckling that is less than 0.999, say, 0.7 for a small 
amount of local post-buckling or 0.1 for a large amount of 
local post-buckling, for examples. If you do not want to 
permit any local post-buckling but you still for some reason 
want local buckling to occur at a lower load than general 
buckling, then use a buckling load factor of safety for 
local buckling of 0.999 and a buckling load factor of safety 
for general buckling something like 1.3, for example. I 
think it's best always to optimize with use of the YES 
KOITER option in the *.OPT file. (See Case 5 and compare its 
optimum design with that for Case 4 in my most recent PANDA2 
paper, AIAA Paper 2007-2216, April 2007). (2011 NOTE: See 
Table 4 from that paper listed in PART 2 above.) 
 
Often (it seems to me) factors of safety are dictated from 
"on high"; the designer doesn't have a choice in the matter. 
This management policy is poor, in my opinion, because then 
computer programs that include the most sophisticated models 
lead to the heaviest designs. You just penalize yourself by 
including a very sophisticated model for maximum stress, for 
example, and then applying to the predictions from this 
sophisticated model the same "traditional" factor of safety 



that you would have applied to the simplest "membrane" 
model. Might as well use the simplest "membrane" model if 
your management is unbending with regard to what factor of 
safety to use.  
 
For example, if you include the effect of initial 
imperfections in your structural model you do not also want 
to include a factor of safety that in the past compensated 
for our lack of ability to predict many years ago the 
deleterious effects of initial imperfections on shell 
buckling. 
 
 
 
 
 
PART 4: 
Slide 41 of my "Pitfalls" lecture, followed by a discussion 
of it: 
 



 
 
This is a very important slide, so please pay close attention! A rather thick 
aluminum cylindrical shell under uniform end shortening (axial compression). The 
primary equilibrium path (solid line, 0AC) corresponds to axisymmetric 
deformation, in which an elastic-plastic “elephant’s foot” buckle develops, in this 
case, near the top end of the shell. In this particular case at a point, A, the maximum 
load-carrying capacity is reached. As end shortening is further increased, at another 
point, B, bifurcation of equilibrium states initiates. The dotted path, BD, 
corresponds to equilibrium states in which the total deformation consists of further 
axisymmetric deformation plus a rapidly growing component of non-axisymmetric 
deformation. The bifurcation point, B, can be determined from a series of nonlinear 
eigenvalue analyses in which the uniqueness of the equilibrium state on the primary 
(axisymmetric) equilibrium path is tested at successive points on this path. The 



point on the primary path at which the stability determinant first equals zero (non-
uniqueness of equilibrium) is the bifurcation point (nonlinear buckling load). At the 
bifurcation point, B, the non-axisymmetric component of the total deformation has 
infinitesimal amplitude and its shape is the eigenvector, {q}, obtained from the 
eigenvalue problem: 
 
  [K1] {q} =  LAMBDA*[K2] {q}    (41.1) 
 
in which [K1] is the stiffness matrix of the axisymmetrically deformed shell as 
loaded at the load step just before Point B (infinitesimally before B), LAMBDA is 
the eigenvalue, and [K2] is the “load-geometric” matrix corresponding to the 
difference in axisymmetric load states between that at the load step just before Point 
B and that just after point B. The post-bifurcation equilibrium path can be 
determined approximately by a new nonlinear analysis in which the shell has a 
very, very small initial imperfection in the shape of the eigenvector (buckling mode, 
q). The particular system shown above would exhibit very little or no sensitivity to 
initial imperfections, that is, the maximum load-carrying capacity and other 
behaviors would not strongly depend on the amplitude of the initial imperfection.  
 
SHELL BUCKLING REFERENCES AND SHELL BUCKLING 
BIBLIOGRAPHY 
 
See 1981pitfalls.refs.pdf and 1996bucklingsurvey.pdf and shellbucklingrefs.pdf . 



 
PART 5: 
 
A buckling failure that is not caused by an unavoidable imperfection, 
but is caused by a known flaw in the design. The design flaw can be 
thought of as an imperfection, but it is an “imperfection” that can be 
incorporated exactly into the analysis. Therefore, the shell is not 
“imperfection sensitive” in the “classical” sense of imperfection 
sensitivity in the presence of unknown and possibly random 
imperfections. The behavior of the shell with the design flaw is 
predictable if it is modeled correctly. 
 
 



 
 
 
 
 
 

An externally corrugated, 
internally ring-stiffened payload 
shroud that failed during a test. 
The segmented stiffened 
payload shroud can buckle 
during launch. The skin 
thicknesses and external 
corrugation thicknesses (see 
Fig. 1.9b below) increase in 
steps from tip to base of the 
shroud. In a bending test of this 
payload shroud buckling 
occurred unexpectedly on the 
compressive side at the field 
joint at Station 468. As 
demonstrated in the next three 
slides, buckling can occur from 
non-axisymmetric external 
dynamic pressure that generates 
primarily axial compression on 
the leeward side of the shroud 
that increases from its tip to its 
base as the shroud bends like a 
beam under the non-
axisymmetric dynamic pressure 
loading encountered during 
launch. (Fig. 1.9a in AIAA 
Journal, Vol. 19, No. 9, 1981) 



 
 
Slide 34 Buckling mode of a non-axisymmetrically loaded rocket payload shroud 
shown above in Fig. 9(a): (a) Pressure distribution measured in a wind tunnel test; 
(b) Pre-buckling beam-type deflection; (c) Non-axisymmetric buckling mode. 
Buckling is between the discrete rings and occurs with 13 circumferential waves. 
(from the PowerPoint file, pitfallsnasa.ppt). The BOSOR4 (BIGBOSOR4) 
computer program was used to obtain these results. 
 



 
 

        
Fig. 1.9b in AIAA Journal, Vol. 19, No. 9, 1981            Fig. 1.9d in AIAA Journal, Vol. 19, No. 9, 1981 
External axially oriented corrugations in the payload     Schematic of local buckling failure at Station 468 
shroud.                                                                              in the payload shroud. 
 
Fig. 1.9d (right-hand sketch above) Local buckling failure is caused by an 
axisymmetric inward excursion of the load path of the axial compression seen by 
the payload shroud at Station 478. This is a known “imperfection” that can be 
included in the computerized model. This known “imperfection” is the most serious 
imperfection in the entire fabricated shell because during a test the payload shroud 
failed because of it and not because of some unknown and unknowable random 
imperfection at some other location in the shroud. Therefore, one might say that the 
payload shroud as fabricated is not “imperfection sensitive” in the “classical” sense 
of that term. If the payload shroud had been designed taking account of the load 
path eccentricity at Station 468 (by the use of a thicker doubler, for example) then 
the stiffened cylindrical shell would be classed as “moderately imperfection 



sensitive” (See Part 2 of the “page”, imperfection sensitive). (Fig. 1.9d in AIAA 
Journal, Vol. 19, No. 9, 1981) 
 
 

 
 
Fig. 1.9c Local buckling failure of the payload shroud at Station 468 that occurred 
during a test. (Fig. 1.9c in AIAA Journal, Vol. 19, No. 9, 1981) 
 
 


