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HANDPROOK OF STRUCTURAL STABILITY
PART I - PUCKLIIK: OF FIAT PLATES

By George Gerard an% Hervert Becker
SUMMARY

The variocus factors governing buckling of flat plates ere criticelly

reviewed and the results asre summarlzed in a cormprehensive serles of charts

and tables. Numerical values are presented for buckling coefficients of
flat plates with various boundary conditions and zpplied loadings. The
effects of plasticity are incorporated in nondimensional buckling charts
utilizing the three-parameter description of stress-strain curves.

INTRODUCTION

Tais "Handbook of Structural Stability" presents a rather corprehen-
sive review and cozpilation of theories anl experimental data relating to
the buekling and failure of plate elements encountered in the eirfrare.
To reet the anticipated needs of those who would use this review and com-
piletion, it appeared test to adopt a handbook style of presentation.

The raterizl is not intended as a textbook in which the emphasis is often
on the matheratical developrent of different types of related problems.
Neither is it intended to corpete with the familisr eircraft-corpany
structures manuals which generally present design information, empirical
data, and metrods of extending results beyond the scope of the original
report.

This handbook attecpts to cover the generslly neglected srea between
the textbook and the structures manual. No attempt is made to present an
exhaustive coverage of mathematicael techniques which are of great impor-
tance in the solution of buckling problers. This material has been well
presented in several excellent books and pepers which are included in the
reference 1list. The subject of columns is comprehensively treated in
several books and, therefore, the inclusion of such material in this
review did not appear to be warranted.

This presentetion primarily constitutes a critical review of devel-
oprents concerning tuckling and failure of plate elements since fhe
early 1240's. This date has been selected since the last corprehensive
review of this nature (ref. 1) appeared at that time.

e’
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1o orider to reel Lthe varying needs of ajrirerse destemers and
analysts, siructures methols, and research engireers, It appears tess
to orgunize this hundiook as follows: The raln text discisses agssw ;-
tions, liritations, and tackground of the available literature; the
appendix contains a surerary of this rsaterial ard indic.:.s thie nanner
in which this information is to be used in analysis and design. It is
anticipated that, after the materizl in the maeln text lLas teen revicwed,
reference to only the eppendix will te made in 2 majority of routine
applicetions. The dquplicetion in these two mzin parts has been held to
a minimum consistent with completeness and intelligibility.

In tke rain text of this report, the various factors appearing in
the general buckling-stress eguation

kn2E 2
Oer(or Top) = M =t (%) (1)
12(1 - ve?)

-]

are critically examined from the standpoint of their theoretical develop-
dent and the agreement of”theory with test data.

In the sectlon entitled "Basic Principles” a brief review of the
Laslc mathematical principles involved in solution of buckling problems
iz given. The primary objecti—e in presenting this material is to
acquaint the reasder with the approxirate methods used in order to be
able to indicate the sccuracy of thke results cf particuiar sclutions
discussed in subesequent sections.

Tn the section entitled "Boundary Conditions" the influer.ce of the
geometric boundary conditions upon tke buckling stress is dis-ussed at
gome length. It is indicated that the use of a free unloaded edge in a
Plate involves Poisson's ratio in the cormpressive buckling coefficient.

- As an example, the buckling coefticlents for plate columns, flanges, and

simply supported plates are determined from theory to demonstrate the
effect of various boundery conditions upon the behavior of such elements.

~ Also, the three-parareter method of matheratically describing stress-
strain relations is presented in an intrcduciory manner in the section
entitled "Stress-Strain Relations in the Yield Region." Use of this
method affords a considerable simplification in the presentation of
results of 1lnel.stic bucking theories.

The effects of exceeding the proportional 1imit of a material are
incorporated in a plasticity-reduction factor 1. Because of the vari-
ous theories that have teen recently advanced together with the fa-ct
that no one publication has reviewed the conflicting essurptions of
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these thecries from the stundwoint of encineering resulis, o rather com-
prehensive trestrnent of this subject is precented in tre s2ction entitled
"Plasticity~Reduction Factors."

The effect of cladding upon the buckling stress of flat plaites has
been treated by an extension of ireles‘ic-tuckling theory. In the sec-
tion entitled "Cladding Reduction Factors” & simplified treatment of
buckling of clad plates is presented ir which velues for the cladding

correction factor 7 =are derived.

The background for determining the elastic-tuckling coefficient k
hes been well documented. Therefore, the last sections sre concerned
with the buckling coefficients for a large number of ceases. The presen-
tation consists, for the rmost part, of & streightforward cataloging of
results in the form of buckling-coefficient charts.

The appendix Les been organized for unimpeded use in analysis and
design and for this reason ro references appear in this portion of the
report. The references are examined in detail in the pertinent part of
the main text. The literature is reviewed and discussed toth as to con-
tent and application to the particular problem. Experimental evidence
is presented where it tends to substantiate one thecry among several
which may have been advanced on a particular phase of the buckling prob-
lem; plasticity-reduction factors are perheps the most conspicuous exam-
ple of this. Thus, the recormendation for & particulsr theory is gen-
erally supported by experimental data.

The main text also contains some new rateriel developed during the
course of this compilation. Although such material is important to the
unification of prior results, it has not been considered of sufficient
consequence to merit separate publication. Therefore, wken such mate-
rial does sppear in this hendbook it is in a detailed form.

This survey was conducted under the sponsorship and with the finan-
cizl assistance of the Nationsel Advisory Committee for Aeronautics.

SYMBCLS
Ap area of rik cross section, sq in.
a long dimension of plete, usually unloaded edge in uniaxiel

compression, in.

b short dimension of plate, usually loaded edge in uniexial
compression, in.

{}
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eoefticien's In reornl inelagtic-rleio~tueklin.g entticn
Y L
(s section entftled "hosie Prioeciples

coefficients iun elustic-plete-tuckling equation to te
determined by ge:metrical boundary conditions along —_ .
unlooded elzes of plate C—_

plate cross-section rigidity, E}t5/12(1 - v2), 1b-in.

plastic plate cross-section rigidity, Est3/9, 1b-in.

Young'c modulus, psi

secent modulus, ofe

tangent modulus, do/de

secant and tangent modulus for clad plates, respectively

ratio of total cladding thickness to total plate thickness

shear modulus

moment of inertis .

3= (B2 - v - 12

= B roR®

=

modified buckling coefficient, kx2/1é(1 - v2) .
buckling coefficlent

length of plate, in.

bending moment applied in plane of plate, in-lb

axial load, 1b/in.

number of longlitudinal half waves in buckled plate; also,
shape parameter for stress-strain curve

normal load applied in plane of plate, otb, 1b

normal pressure, psi

T e Y ey
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F =8 - ve(rp/\)E
1 shear loading, 1b/in.

g =82+ ve(mu/n)?

R stregs ratio
t thickness of plate, in.
u-= (k5+ - ks_)/(ks+ + ks_)
W potential energy, in-lb
w displacement normal to plane of plate, in.
X,¥,Z coordinates
Y =14+ 3pf
a edge angle, deg; also, 124/(Pb + 6M)
Lt 1/2 -
& = x(o/N¥/2 Eb/x) + k22
B "ratio of cladding yleld stress to core stress, 0o3/0uores

also, loading ratio for plate with varying axisl load,
Maximm load/Minimum lcad

B = n(o/n1/2 [—(b/x) + k1 2: 1/

r shear strain

€ normal strain; elso, ratlio of rotational rigidity of plate
edge stiffener to rotationsl rigidity of plate

plasticity-reduction factor
cladding reduction factor

total-reduction factor, 07

buckle half wave length, in.

<

inelastic Poisson's ratio; v = vp - (vp - "e) (ES ) for
orthotropic solids

.
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Subscripts:
A,B

av

b

c

cl

cr

elsstie Poicson's ratio
plastic Poisson's ratio

normal stress, psi

+ fO'cl R

1/2
stress intensity, <°x2 + cry2 - ox0y + 372,) / , psi
stress at secant moduius, O0.7E end 0.85E, respectively, psi

shear stress, psi

angle of diagonal support to plate width, radians or deg

value; at station A and station B; see fig. 30
averege

bending

compression

cladding proportional limit -
eritical or buckling

elastic

plastic

proportional 1imit

in traverse rib of compressed plate

shear

shear on infinitely long plate

directions of loading

}oadings producing tension

loadings producing corpression




s eundlitlions:

C clumped
F free
Ss simply supportei (hinged)

In sketches accompanying figures, supported edges with elustic rota-
tional restraint are shuwn shaded. Unshaded loaded edges are simply
surported. Unshaded unloaded edges are free.

BASIC PRINCIPLZS

General Rerarks

The theoreticel buckling stress of a flat structural elerment is the
stress at which an exchange of stable equilibrium configurstions occurs
tetween the straight and-the slightly btent form. It marks the region in
which continued application of load results in accelerated growth of
deflections perpendiculer to the plane of the plate. Its irportance lies
in the fact that tuckling initiates the physifwl processes which lead to

eventual failure of thke plate. =

The mathematicel -solution of particular buckling problems requires
that equilibrinm and boundary conditions be setisfied. This can be
accomplished bty integration of the equilibrium partial differentiel egua-
tion of the flat plate or by use of mathermatical methods which may not
completely satisfy the boundary or ejullibrium conditlons. The former
solutions are exact whereas the methods based generally on erergy inte-
grals ere approximate although usually very accurate. The need for
approximate rethods arises from the fact that exact solutions can te
found for only a limited number of buckling problems of practical

irmportance.

In this section, a brief outline of the methods of analysis of
buckling problems is presented. For extensive discusslons of the vari-
ous methods of analysis and their application to a wide variety of prob-
lems, reference to the tooks of Timoshenko, Sokolnikoff, and Bleich
(refs. 2 to 4) is suggested.

Equilibrium Differential Equation
The general form of the differential equation describing the slightly

tent ejquilibrium configuration of an initially flat plate wes derived by
Stowell in the following form (ref. 5):

v Ty, O, c——




v g athe Aty
cl —_— - C2 JELLEE . + 2C - = = C o +
ot Iy > 'oxai}y" b dx Oy’
v uf B, .. P, . 3w :
C5 — = - glox — + 27 + Oy (2)
Byl‘ ax2 ox Oy dy2

in which the constante esre defined as:
Cy=1- (3/%) (cx/ai)z[l - _.(Et/EsEI

Co = (3ch/°12)[1 - (Et/Es]
C3=1- (3/1»("" ” )[ - (eo/ms)
| C = (3031- /012)[ - (Et/Eg)]

C5=1 - (5/)“’)(°'y[“i)2E - (Ethﬂ)]

-

(3}

r

These definitions of the constants are based on the assurption that no !
elastic unloading occurs during the buckling process. Furthermore, a
value of Poisson’s ratio equal to 1,2 was essumed for both the elastic

ard inelastic rangee.

In the elastic range, FE+/Bg = 1, and, therefore, for all loadings |
Cp=C3=C5=1 and Cp = Cy = 0, and equation (2) reduces to the !
familiar equilibrium equation for the elastic case:

Vv = +2 A, A
B2 | ot
--%axaz"-l-z-raz"-i-a v (k)
ax2 ox Oy 32
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In should te roted thet the vilue of D is not the sure L tie Inelss- —
tlc range ag jr. the elastlc rauge ltiecause of the change of Poisson's . _
retlo with stress., For the fully plastic plats, v = 1/2, which yields :

a tending rigidity of D' = Et5/9, whereas the elastic value is
D= Et3/12(1 - vea).

The soluticn of individual buckling problems can be most readily
bhandled by selection of appropriate solutions of equation (2), insertion
of proper bourdery conditions, and minimization to obtain the buckling o
stress. In this connection, the buckling stresses for simply supported L
plete columns, compressed flanges, and plates are considered in some
detail in the section entitled "Boundary Conditions" to illustrate the
differences in btuckling behavior of these structural elements.

Energy Integrals
Since exact solutions to equations (2) and (%) cen te found for
only & limited number of bucklink problems of practical importance,
approximate solutions generally utilizing energy integrals have fourd
wide application.

The potential energy of the plate and 1ts loading system is repre-
sented by the difference of two integrals. The first integral of equa-
tion (5) represents the increase in strain energy due to bending and
twisting of the plate durling the buckling process, whereas -the second
integral represente energy assoclated with membrane stresses resulting
from lateral deflection. If the plate edges are fixed during buckling,
the latter represents the membrane energy. If the edges experience &
relatiye shift, the second integrel represents the work of the external

loeding system. _ '

The general energy integral for pletes with simply supported edges
wzs derived by Stowell (ref. 5) for the inelastic case:

2 2
Aw,gﬁcl(az_w) o P B, (a_zw_) s P Py

2 3x2 g dx dy dx dy nx2 dy2
2 2
o % B oo - 1P
2
a%gwy(%) ax ay (5)
T gt T I
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The coefriciunts Ly e C, are deeUined by cqustyions {(3). 1L is tu
be noted that equatien {&) is the Euler eguntion thnl results from mini-
mization of the energy intepral, ejustion (5). It there are elastic
restraints of magnitude ¢ along tle edges of th: plate, then the siruin
energy in these restraints is sdded to eguation (5). These terms have

the form
. \2
U 1.4
88 /(5. =

where y, 1s the edge coordinate.

For the elsstic case, equation (5) cen te simplified to

AW:Eff(ae" 32“‘) 2(1-ve)§2"':j‘2' (?a'xa'?'va?)exdxay'
< )

ff&x(b") +21'-g:—%y3+0 %) dx dy (6)

Solutions

In prineiple, of all the deflection functions satisfying the geo-
metric boundary conditions of the problem, the potential energy AW will
be zero for that function which also satisfies the equilibrium differen-
tial equetion. This function would be an exact solutlon of the problem.
Since exact solutions can te fournd in only e limited number of cases,
the energy integrals sre of great usefulness in finding approximate solu-
tions which satisfy the geometric boundary conditions exactly and the
differential equation approximately. Thus, of the several functions
satisfying the geometric boundary conditions btut not necesserily the dif-
ferential equation, the function for which the energy integral is a mini-
mm constitutes tke bect approxirmate solution of the differential equation.

Probably the best knocwn energy method for determining the buckling
stress of thin plates is the Raylefigh-Ritz procedure. The method con-
gists of the following steps:

(1) The deflection surface of the buckled plate is expressed in
expanded form as the sum of an infinite set of functions having undeter-
mired coefficients. Tn general, each term of the expansion rmst satlsfy
the geometrical boundary conditions of the problem.
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(2) 1Me potentinl c.orgy difference of the load-plute system is
corpuied for this deflecwicn swfece by use of ejuation (5) end is then
minirmieed witl. respect to ti:.. undeterrined coefflclents.

(3) Tais rinimizing procedure leads to & set of linear horogeneous
equations in the undeterrcined coefficients. These equations have non-
venishing solutions only if the determlinant of their coefficient vanishes.
The vanishing of this stabillty determinent provides the equation that
ey be solved for the buckling stress.

When the set of functions used is a complete set capable of repre-
senting the deflectlon, slope, and curvature of any possible plate defor-
metion, the solution obtained is, in principle, exact. Since, however,
the exact stabllity determinent is usually infinite, & finlte determinant
yielding approximate results 1s used instead.

The uckling stresses obtained by the approxirate method are always
higher than the exact solution although they may be very accurate. This
is 8 result of the fact that the deflection function approximates the
true buckle shape snd therefore the potential energy resulting from use
of the approxirmeting function is greaster than zero. If the deflection
function is the true one, then an exact solution to the differential
eguation is obtained.

If a deflection function is chosen which satisflies the geometrical
boundary conditions epproximately, it is possible to obtain buckling
stresses which approach the exact solution from the lower side. This
can be accorplished by & revision of the Rasyleigh-Ritz procedure known
as the Iagresngian multiplier method.

The ILagrangian multiplier method follows the general procedure ocut-
lined for the Rayleigh-Ritz method with but one significant chenge. The
restriction in step (1) thet the btoundary conditions be satisfied by
every term of the expansion is discarded and is replaced by the condition,
that the expansion as a whole satisfles the boundary conditions. This
condition is mathematically satisfied in step (2), during the minimization
process, by the use of Lagrangian mmltipliers.

The advantage of the Lagranglan multiplier method lies in the fact
that, with the rejection of the necessity of the fulfillment of boundary
conditions term by term, the choice of an expansion is much less restricted.
For example, in the clemped-plate compression problem, a simple Fourler
expansion may bte used instesd of the complicated functions usurlly assumed
in the Rayleigh-Ritz analyses of this problem. Firthermore, the orthogo-
nality properties of ”“he simple Fourier expansion lead to energy expres-
sions of a simplicity that is instrunental in permitting accurate
cormputations. * .
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This meiliol end its cuplicatlon Lo cpeclific protiens is described
by Budiansky apd Hu {ref. 6). They hmve treated the Lagranginn multi-
plier method in & panner in which it is possible to otialn approxisuie
solutions for toth upper and lower bounis. As determinants of higher
order are used to oliain better approximations, toth the upper and lower
bounds epproach the true buckling stresc. Thus, the Lagrangien multi-
plier method rmey be used to obtain results withir eny desired degree of
accuracy.

In addition to the above procedures which are based on energy lute-
grals, other methods of obtaining approximate solutions of buckling prob-
lems have been usel vhich involve the equilibrius differential equation.
Functions which s:z:sfy the geometrical boundary conditions exactly are
used to satisfy the governing differential egquastion approxisately by
processes that lead to integration of these functions. Galerkin's method,
finite-difference ejuations, relaxation techniques, and iteration are some
of the numerical methods that cen be used.

BOUNDARY CONDITIONS

The nature of the buckle pattern in a plate depends not only upon
the type of epplied loeding but also upon the manrer in which the edzss
are supported. This is illustrated in figure 1 in which the seme exial
compressive loading is seen to generate three types of buckle patterns
on e long rectangular plate with different geomeirical bourdery condi-
tions. The single wave 1s representative of colurm behavior, the twisted
wave 1s representative of flange behavior, and tke miltiple-buckle pattern-
is representative of plate btehavior.

To indicate the menner in which the geometric boundary conmditions
mathematically influence the buckling behavior ani also to demonstrate
the solution of the equilibrium differentisl equetion (eq. (%)) for some
particular cases, the plates shown in figure 1 sre analyzed. Eoundary
conditions which characterize simply supported wide columms, flanges,
and plates are considered.

-

Mathematical Analysis

The equilibrium differential equation for elestic buckling of e
uniaxially compressed plate cen be cbtained from equastion (k) in the
form

k. .
é&! + 2 _ELli__ + é&ﬂ +‘EE égﬁ = 0 (7)
S 3x2dy2 ayh D 32




It is essumed that the leadeld © 3 of ihe plate are cliiply supported
znd therefore an appropriate soinution of equation (7) is

a; f B "X
w = Gl cosh & b + co sinh 'Fj 4 c3 cos y + ck sin —f-)cos >y (8)

where

:- ,1@1/2[ (ke )1/2] (%)

1/2
5 - n@)’-ﬁ-’[. 2+ (™) (10)
12' - vez Cop
. Zh oy =

The coefficients e; to ¢y are to te determined by the geometrical
bmmda.ry cornditions along the unlosded edges of the plate.

For the wide column, tke unloaded edges located at y = tb/2 are
free, and consequently the edge moments and reduced shee~s must be zero.

Trerefore, -

S¥ 4 oy SX = 0

2 axz)yrj:b /2
P

= 2(1 - ve)

(Baw 2

e (12)

32y |ymtn /2

= 0

For the flange, the unloaded edge at y = O 1s assumed to be simply
supported and that at y = b 1is free:
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(w)yzo =0
2 2
B, |
% */y=0,b (13
' )
[9-3‘1+ 2(1 - ve) a"’] =0
dx2dy y=b
J

The plate is assumed to be simply supported along the unloaded edges
located at y = ib/2:

(W)yutv/2 = ©

(1k)

g

% %
i + Ve ._-é
a2 ox y=tb/2

= 0

Incorporation of these boundary conditions into the solution given
by equation (8) leads to the following implicit expressions for k.

For the column,

$°F tan(B/2) + 325 tanh(5/2) = O (15)

. for the flange, '
£2B sinh & cos § - 32 cosh & sin‘B =0 (16)
end for the plate ’
[& tann(a/2) + B tan(3/2]] ™ = o | (17)
vhere B -

$ = a2 - v (xp/A)2
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The buckling coefficlent for wide columms and flanges is shawn as a
£ et ion of vy and a./b in figure 2. The solutions for wide colurns
th

4 given by Houbolt end Stowell ly use of the differential ejuation

w":. nimply supported loaded edges and the energy method for clamped
f::“d,..1 edges (ref. T).

The buckling coefficlent for e simply supported flange was derived
by (urdquist and Stowell (ref. 8) in the form

ko = (6/x2) {(l - Ve) -!'-[(rtb/)\)e/6] (18)
Whed the unl—:aded edge is clamped,

ke = 0.83 - 0.93v, + 1.34(A/xb)2 + 0.10(xb/A)2 (19)

For the simply supported plate

ke = [(0/o) + (/]2 (20)

Anticlastic-Curveture

As mey be seen from the solutions in the preceding section, the
x1ing coefficient for the simply supported plate depends upon only
"‘/’;‘ and 1s independent of Poisson's ratio, while the coefficients for
W™ ide colurm and flange are functions of both ve and b/A. This

L
t';wation is not limited to the case of simple support alone tut per-
B {nu to 80y degree of rotational restraint along the unicaded edges of
pinte. The influence of ve upon ¥k, is traceable to the reduced-
nt oar terms at the free edges of flanges and colums. Boundary condi-
'g‘mﬂ guch as simple support do not impose the requirement of zero
b juced shear along the unlosded edges, which ellminates the v influ-
:::.'d from the relationship for ke. :

The value of the compressive buckling coefficient for an element
ntaining & free unloaded edge depends upon the degree of anticlastic
:‘:rvutul'e developed. For & very narrow element such &8s a beam, complete

¥
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enticlastlic curvature occuars and the tending rigidity is sleply EI. For
a relatively wide strip, tle anticlastic curvature is suppressed 80 tlnt
the cross section rerainsg relatively flat except for e highly localized
curling at the free edges wiere the stress distiribution rearranges itself
to satisfy the georetrical bourdary conditions. The restraint of anti-
clestic curvature results in an incresse in bending stiffness. For a
very wide element, the .:.iing stiffness approaches EI/(1 - v2); this
limiting conditlon is wvr - : as cylindrical tending.

Plate columns and flanges may often te relatively narrow, in which
case the bending stiffness liss tetween the limiting values discussed.
This effect can be accounted for by use of figure 2.

STRESS-STRAIN RELATIONS IN YIELD REGION

Three-Parameter Description of Stress-Straln Curves

Stress-strain curves are of fundamental importance in the computa-~
tion of inelastic buckling stresses. The numbter of design charts reguired
for the many materisls aveilable and the various allowaeble stresses for
these materials at normal and elevated temperstures can te tremendously
reduced by use of a rondimensional matheratical description of stress-
strain relations.

Ramberg and Osgood (ref. 9) have proposed e three-paraceter repre-
sentation of stress-strain relations in the yleld region which has found
wide spplication. Their equation specifies the stress~strain curve bty
the use of three paramaters: The modulus of elasticity E, the secant
yield stress c¢p 7 corresponding to the intersection of the stress-
strain curve and a secant of 0.7E, and the shape parameter n which
describes the curvature of the knee of the stress-strain curve. Tre
shape parareter is a function of 90.7 and 70.857 the latter stress

corresponding to a2 secant of 0.85E m=s shown in figure 3(a). The shape
parsmeter n 1is presented in figure 3(b) as & function of the ratio

%.7[%.85°

The three-parareter method is based on the experimental observation
that for reny reterials a simple power law describtes the relation between
the plastic and elastic components of strain. By use of this fact, tte
following nondimensional equatlon can be derived:

Be __o _,3[s n (21)
T

%.7 Y%.7 T\%.
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The guantities EE/Go.T and c/bo'T ure nondimcnsional end consejuenily

the nondirensional stress-struin curves shown in figure b can te plotied.
Therefore, the stress-strain curves of reny materisls pay be found with ¢
the aid of figure L providing E, n, and %g,7 are known for the spe-

cific materials.

Inelastic Modulil

For inelastic-buckling problems, the modulus ratlos Egf/E, E¢/E,

and Et/Es appear. These ratios can be corruted in nondimensional form
by use of equation (21). Since Es = o/e, it follows directly from equs-
tion (21) that

B/Es = 1+ (3/7)(o/o0.7)"™" (22)

Since E; = dc/ﬁe, differsntiation of equetion (21) leads to the
expression t

E/Ey = 1+ (3/T)n(ofo0,7)>" (23)
From equations (22) and (23) it follows that
/5 = (5/%) [(2/2:)

1+ (3/Te/o0.7)"

= (2t)
1+ (3/T)n(o/o0.7)"

1

These quantities are used 1In subsequent sections concerned with
inelastic buckling.

Inelastic Poisson's Ratio

Poissen's ratio for engineering reterfals usually has a value in
the elastic reglon of btetween 1/h and 1/3 and, on the assumption of a
plastically incompressible iSotropic solid, assumes a value of 1/2 in
the plastic reglon. The transition from the elastlic to the plastic value
is most pronounced in the yileld region of the streas-strain curve. Since
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Poisson's rutlo appears in the buckling-stress egquastion, this transition
is of some importnnce in inelastic-tuckling problems.

Gerard and Wildhorn, w«w ..ig others, have studied this problem on
several aluminum slloys and huve shown that Polsson's ratlo is seriously
affected by anisotropy of the material (ref. 10). For raterisls which
can te considered to be orthotropic (e.g., having the sare properties
along the y- and z-sxes 1f loaded along the x-axis) the following relation
describes the transition in the yield region:

v .= vp - (EB/E)(VP - ve) (25)

In this relation, Vp is8 the fully plsstic velue of Poisson's ratio.
For isotropic materlals vp = 1/2, wkereas for orthotropic materials vp
is generslly different from a value of 1/2.

It is evident from the buckling stress expression that two raterials
vhich differ only in thelr values of Polsson's ratio should have different
buckling stresses. As a rule, however, the value of ve is virtually

constant for a material whose properties may change as 8 result of heat
treatment, details of composition, or amount of cold-work.

The ususl range of v, for most technlecally important structural

rmeterials is between 0.25 and 0.35. There are exceptions, however. Omne
of the most extreme materiesls is teryllium, for which Udy, Shaw, and '
Boulger report a value of 0.02 (ref. 11).

In the Inelastic range, presumably because of anisotropy, numerical
velues of v have been found which are considerably in excess of the
theoretical upper limlt of 0.5, which is derived on the assumption of
incompressibility of en isotropic raterial. For example, Gerard and
Wildhorn obtained values of v as large as 0.70 for several high-strength
aluminum alloys {ref. 10}, while Goodman and Russell reported a value
of 0.77 for comrercially pure titanium sheet and 0.62 for FS-1lh magnesium
alloy (ref. 12). Stang, Greemspan, and Newran also obtained data at var-
iance with the theoretical value of 0.5 for plastic strains (ref. 13).
These three reports cover a large variety of alloys, deformed by various
total strains in both bar and sheet stock, and should be consulted for
more complete data.
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PLASTICITY-REDUCTION FACTORS

Inelastic~Buckling-Stress Equation

The elastic buckling stress of a flat rectangular plate can be
expressed in the form

Ocre

i 12<:Kpre2)(%)2 (26)

When the buckling stress exceeds the proportional 1limit of tke plate
material, the terms in equation (26) which are influenced are %, E,

and v. The buckling coefficient k depends upon the type of loading,
the buckle wave length as affected by the geometrical festures of bound-
ary conditions and aspect ratio, the stress level, and Poisson's ratio

in the case of plates with free edges. The elastic modulus E is altered
by the reduction in btending stiffness assoclated with inelastic behavior.
Poisson's ratio in the yield region exhibits a graduel transition from
the elastic velue v, to & value of 1/2 for a Plastically incompressible
isotropic material. .

For simplicity of calculation all effects of exceeding the propor-
tional limit are generally incorporated in a single coefficient referred
to as the plasticity-reduction factor 1. By definition

N = Uch/O'cre (271}

,Substituting equation (27) into equatfon (26),

kx2E 2
Oer = 1 -12—(1—-::2-)-(%) (28)

Since 7 =1 in the elastic range, equation (28) is perfectly general
and it is not necessary to distinguilsn between elastlic and plastic
buckling. The values of k and ve are always the elastic values
since the coefficient 1n contains all changes in those terms resulting
from inelastic behavior. -
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Comparison of lheories and Experimentul Duta

Tre theoretical and experimental determinations of the values of 7
appropriate to vurious types of loedings and boundary condltions have
resulted in extensive literature. The assumptions underlying the wurious
theorlies differ with respect to plasticity laws, stress-strain relations,
end -tuckling models used. In order to avold possible confusion in dis-
cussing the verious theories, it appears desirable to resort to tre
expedient of comparing theories with test data first.

Rather precise experimental data exist for plastic buckling of
colurms, simply supported flanges and plates under compressive loads,
and elastically supported plates under sheer loads. For practical
eluminum-alloy columns under compression, it is a well-known fact thkat
the experimental failing stress 1s closely approximeted by the Euler
formule wilth the tangent modulus substituted for the elastic modulus.

In figure 5, test data for buckling of simply supported flanges
under compression &re shown in comperison with the theoretical velues
es derived by Stowell (ref. 14) according to the method of Gerard
(ref. 15). Excellent agreerment is obtsined.

In figure 6, test data of Pride and Heimerl (ref. 16) and Peters
(ref. 17) for plastic tuckling of simply supported plates under co-rres-
sion are shown in comparison with the theories of Bijlaerd (ref. 18),
Eandelman and Prager (ref. 13), Ilyushin (ref. 20), and Stowell (ref. 5),
and the method of Gerard (ref. 15). Poor agreement is obtained bvetween
the test data and the flow theory of Handelman and Prager, whereas rela-
tively good agreement is obtained for the deformation theories of tke
others with Stowell's theory in best agreemert.

In figure 7, test data for plastic buckling of elastically supported
plates under shear are shown in corparison with the theories of Bijlsard
(ref. 18), Gerard (ref. 21), and Stowell (ref. 5). It can be observed
that the method of Gerard, which is based on tke maximumm-sheer plasticity
law to transform an axlal stress-strain curve into a shear stress-strain
curve, is in good agreement with test date on aluminum alloys.

On the basis of the agreerent with test data, the values of g
recommended for use with equation (28) appeer in the appendix. Also,
nondimensional buckling charts derived through the use of these reduc-

_tion factors appear in figures 8, 9, and 10 for axially .corpressed

flanges and plates and for shear-loaded plates.

Assumptlions of Inelastic-Buckling Theories

The state of knowledge up to 1936 concerning inelastic bucklirng of
plates and shells has been surmarized by Timoshenko (ref. 2). The maia
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ef'forts reporited therein were concorned with atiempls to modify the vari-
ous Lending-morent terrs of tie equilitrium differential equutions by tre
use of suitable plasticity coefficlents determined from experirental date
on coluwrms. Although such semierpirical efforis met with a reascnable
degree of success, the theoretiecanl deterndination of plesticity-reduction
factors for flat plates has been schieved within recent years as the
result of the developrent of a satisfectory inelastic-tuckling theory.
PBecause such develornents are receni and tecause the varicus theories lrave
not been, as yet, adequately treated in text books, the following dis~
cussion concerning the mssurptions and results of the various theories is
presented in some detail.

Mathematical theories of plasticity are phenomenologicel in nature
since such theorles generally proceed from the experirmentally determined
stress-strain relations for simple uniaxial loesdings. In the elastic
renge, stress and strain are linearly related by the elastlic modulus.

At strains beyond the proportional limit, a finite stress-strain rela-
tion can be used in the form

o = Ege (29)
or an incremental relation can be used
do = By de ' (30)

In either relation the secant modulus Eg or the tangent modulus Ei

veries with stress and applies as long as the loading'continues to
increase. Unloading usually occurs along an elastic line parallel to
the initial elastic portion of the stress-strain curve.

In the buckling process, for example, the stress state is considera-
bly more corplex than simple uniaxial loeding. Therefore, formulation of
sultable stress-strain laws for three-dimensionsl stress states teyond
the proportioral 1limit forms one of the besic assumptions ¢® the various
plasticity theories. Eased on generalizations of equation (29) which
involve finite relations, deformation tynes of stress-strain laws have
been advanced. Similar generalizations of equation (30) involving incre-
mental relations are referred to as flow-type theories. In btoth theories,
unloading cccurs elastically.

The use of the warilous plasticity theorles is greatly facilitated
by the introduction of rotationally invariant functions to define the —
three-dimensional stress and strain states; such functions are termed
etress and strain intensities. The assumption that the stress intensity
is a uniquely defined, single-valued function of the strain intensity
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for a given rzateriul when the stress intensity Increnses {loading) arnd
is elastic when it decreuses (unloading) is a second of the fumdumentsl
hypotkeses of plasticity theory.

The definitions -of. the stress and strailn intensitlies theoretically
can Le chosen from a faaily of rotationally invariant funetions. Two
such functions referred to as the meximum-shear law end -octakedral-shear
law have been found to be of considerable usefulnese for correlating
stress data on ductile raterials. Thus, both of these laws have teen
assumed to apply in various solutions for inelastic buckling.

In order to obtein solutions to various plasticity problems, addi-
tional sssurptions are generally erployed. These ordinarily include thre
gssumption that the prircipal axes of stress and strain coincide and thLe
assumption of plastic isotropy. Furtherrore, the variation of Polssoa's
ratio from the elastic velue to the value of 0.5 for a plastically incom-
pressible, isotropic solid is most pronounced in the yield region. Some
solutions account for the instantaneous value of Poisson's retio whereas
others assure a2 value of 0.5 for both the elastic and plastic region.
The lstter assumptlon serves to sirplify the analysis considerably.
Corrections for the use of the fully plastic velue of Poisson's ratlo
can generally te incorporated in the final results.

All the foregolng assumptions form the btasis for solution of plas-
ticity problems in general. For the speclific problem of inelastilc
buckling, it is necessary to mske an additional assumption concerning
the stress distribution st the instant of buckliing.

From the standpoint of classical stability theory, the buckling load
iz the load at which an exchange of stable equilibrium configuretions

occurs between the strzight form and the tent form. Since the load rexmains

constant during this exchange, a strain reversal rust occur on the convex
side and, therefore, the buckling model leading to the reduced-modulus
conzept for columms 1is correct theoretically.

Practical plates arnd columns invaeriebly contain initial irperfec-
tions of some sort, and, therefore, axial locading and bending proceed
similtaneocusly. In thls case, the bent form is the only stable config-
uration. Since In the presence of relatively large axial compressive
stresses the tending stresses are small, no strain reversal occurs and
the incremental tending stresses in the inelsstic range are given by
equation (30).

Since failing loads obtained from tests on &aluminum-alloy columns
are closely spproximated by the Euler buckling equation with the tangent
modulus substituted for the elastic modulus, certain of the inelastic-
buckling theories assume the no-strain-reversal, or tangent-modulus,
model as the bvasic tuckling process and then proceed to sclutions by use
of equilibrium equatlions based on classical stabllity concepts.
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Inelustic~-iuckling hecries

Bifferent investigutors have used various onea of those assumptions
discussed above, In order to indicate tlhe major assurpiiens underlying
each of the theories, s surmmary is presented in tuble 1.

Historically, Bijleard appears to have teen the first to arrive
at satisfectory theoretical solutions for inelastic-buckling theories
(ref. 18). His work is the most corprenensive of all those considered
in that he considers btoth incremental and defornation theories and con-
cludes that the deformation type is correct since it leads to lower ine-
lastic buckling loads than ere obtained from incrermentel theories. Tis
work was first published in 1937. This paper and later publications
ineclude solutions to meny important inelastic-buckling problems. How-
ever, this work appears to have remained unknown to most of the later

investigetors.

Iyushin briefly referred to Bijlasrd's work and then proceeded to
derive the basic differential equation for inelastic buckling of flat
plates according to the strain-reversal model (ref. 20). The derivation
of this equation is rather elegant and was used by Stowell, who, however,
used the no~strain-reversal model (ref. 5). The differential equation
obtalned by Bijleard reduces to that derived by Stowell by setting
Vo= 1/2 in the former. Handelran and Prager, during this time, obtained
solutions to several inelestic-buckling problems by use of incremental
theory (ref. 19). Test data, such as shown in figure 6, indicate that
the results of incremental theories, regardless of the buckling model,
are definitely uncoanservative, whereas deformation-type theories are in

relatively good agreerent.

A1) the foregoing theories were tascd on the use of the octahedral-
shear law. Towever, test data on the inelastic buckling of aluminum-alloy
plates in shear indicated that the results of the atove theories were
unconservative. Gerard used the maximum-shear law in plece of the
octahedral-shear law to transform axial stress-strain curves to shear
stress and found good agreement with the aluminum-slloy-plate shear-
buckling data (ref. 21).

Te summarize, then, the assumptions which lead to the best agreement
between theory and test data on inelastic buckling of sluminum-alloy flat
pletes under compression and shear loadings include deformation-type
stress-strain laws, stress and straln intensities defined by the octshedral-
shear lsw, and the no-strain-reversal model of inelastic buckling. Althoush
there may be theoretical objections to deforration theories as a class and
the use of & po-strain-reversal model in conjunction with classical sta-
bility concepts, test data da suggest the use of results obtained from a
theory based on these assurmtions in engineering applications. The choice

.of laws to transform axial s*ress-strain data to shear stress-strain data
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depends upon the degree of correint’on obtuined bLeilween cach of these
laws wiih polyaxiel test date for 1ndividuw:l paterials.

Factors Used in Comput:ations

As already indicated, the inelastic-buckling stress may be com-
puted by use of plasticity-reduction fectors asppropriste to the tound-
ary and loading conditions. The factors incorporate ell effects of
exceeding the proportionsl limit upon k, E, and v, For convenience
in prepering design charts for inelastic buckling, the criticsal elastic
gtrain can be used:

2
€or = __iz__(%) (31)
12(1'- ve2)
From egquations (28) end (31)
Oor = NB&ey ' (32)

The recormended values of 1 are given in table 2. For compressive
loads, the values of 1 derived by Stowell for infinitely long plates
except in the case of plate columns (see refs. 5 and 22) have been cor=-
rected tc account for the instantaneous value of Poisson's ratio according
to a method suggested by Stowell and Pride (ref. 23). Thus,

Cl - Vea)

1= 1g W (33)

vhere 17y 1s the original value given by Stowell. Equation (33) is the
form of the plasticity-reduction factors that appears in table 2 and has.
been used to construct the nondimensionsl buckling charts of figures 8,
9, and 10.

For long sirply supported plates under corbined axial corpression

and bending BijJlsard found theoretically, by a finite-difference approach
(ref. 24), that

e o] o
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where a 1is fowrl from equuiion (96) ond [§1 - vpel/Ql - ve%}qc is

the plesticity-reduction factor for axial compression. Equation {(zh4)
reduces to this value for axisl loud slose, slnce a = O for thils case.
For pure bending o = 2 and equation (34) is equal to the plasticity-
reduction factor for a hinged flange.

To determine the instantaneous value of Poisson's ratio, eguation (25)
can be used. For the nondimensionzal buckling cherts the theoretical fully
plastic value of 0.5 was asaurcl for Poisson's ratio, as wes assumed by
Stowell in his determinations of the plasticlty-reduction factors. Stowell
and Pride reported on computations rede using equstion (34) instead of
v = 0.5 and showed that there was little difference between the two curves
for flanges and simply supported plates (ref. 23). Bijlaard took exception
to this report (ref. 25); however, the differences were slight, as was
pointed out by Stowell and Pride, snd 1t can be essumed for practicel pur-
poses that the plasticity-reduction factors shown in the appendix are sat-
isfactory for general design and analysis.

Construction of Nondimensional Buckling Charts

The nondimensional buckling-stress charts of figures 8, 9, and 10
were constructed from the basic nondimensional stress-strain curves of
figure 4 and the plasticity-reduction factors shown in the appendix,
incorporating the method of critical strains as depicted through equsa-
tions (31) and (32). Since there is little difference among the numeri-
cal values of the buckling strasses that would be obtalned for the
plasticity-reduction factors eppliceble to a long clamped flange and to
& long plate with any amount of edge rotational restraint, these cases
were grouped into one erploying the reduction factor for the simply sup-
ported plate, which is the average of the three factors.

CLADDING REDUGTION FACTORS
Basic Principles

The presence of cledding on the faces of plates may have an appreci-
gble effect on the buckling stress since the cladding raterial, which
usually has lower mechanical strength than the plate core, is located at
the extreme fibers of the plate cross section (fig. 11) where the bending
straeins during buckling attain their highest velues.

Buchert determined buckling-stress-reduction factors for clad plates
which include plasticity effects as well as reduction due to cladding
(ref. 26). However, it is possible to determine a reduction factor for
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cludding alz:- that piay be mdtivlied bty the inelsstic bLuckling stress

to yield a {inal buexling stress for the clad plate that sgrees quite
closely with the test date. The clzdding reduction fuclors mey the:r e
used with the exlsting inelastic-buckling curves of figures 8, 2, ard 10.

The form of buckling enquation comonly used for deterwining the
buckling stress of & bere flut plate with wuny iype of loading and bound=
ery supports is given as equation (28). For elai plates this exprecsion
is used to find e nominal buckling streses, where the thickness is thut
of the toi.l plate and the rateriel properties are those of the core.
The ectual buckling stress of a clad plate then ray be found by epplying
8 simple nuwerical multiplier 17 to this stress. This rultiplier,
termed the cladding reduction factor because it reduces the ratio of the
nominal core stress to the buckling stress of tke clad plate, is a func~
tion of the reletive core end cladding stress levels and the respective
modull of the core and cladding materials. The clad-plete buckling stress
can be found from

Q)

er = Wop (35)

If the nominal buckling stress exceeds the proportional limit of
the core material, then the nominel buckling stress for the clad plate
may be found by using the appropriate value of 1, the plasticity-
reduction factor of the core material. Values of n may be obtained
from the clad-plate stress-straln curve shown in figure 12, the deri-
vation of which is discussed below.

It should be noted that the plasticity-reduction factor depends
upon the stress level and consequently requires an estimate of the final
buckling stress of the plate before egquation (28) can be used to £ird
Ocpre The cladding reduction factor has been found to be of such a rcature,
however, that little error is involved in first finding the nominal buck-
ling stress and then multiplying it directly by the cladding reduction
factor to find the actusl buckling stress of the clad plate. The prod-
uct nf is 7, which was determined by Buchert.

Teble 3 contains-a listing of the various cledding reduction fec-
tors determined in subsequent portions of this section. In the table,
all plates are long and sirmply supported. In all cases for which tre
cladding proportional-limit stress g, exceeds the nominz2l bucklirg

stress d,p, the cladding reduction factor is equal to unity. The guen-
tity B is defined as B = 0o] ooy, and £ 1is the ratio of the tolal
cladding thickness to the clad-plate total thi-kness.
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Terivation of Core Stress-Ctrein Curve

The core stress-streln curve ray be derived from a stress-strain
curve for the entire clad plate us shown in figure 12. Using the nota-
tion of figure 11, in which a section of & cled plate is shown, the total
axial load acting on the section is determinable trom

Ny = t3 = t(1 = £)oggpe + 10,1 (36)

Dividing this expression by to,,,.e ¥ields

5/0core = L = £ + B (37)

where B = 0,1 /0orer

Thus, the core stress-strain curve can be constructed by plotting
the core stress determined from equation (37) at each value of strain
for which the corresponding clad-plate stress was found. (See fig. 12.}
The initial slope of the core curve, which is the same as the initial
slope of the clad-plate curve, is the elastic modulus to be used in the
nominal-buckling-stress eguation. Since the buckling stress refers to
the core raterial, Ocore wos replaced by its counterpart g, in the

succeeding derivations.

Typical values of f for alclad plete appear in table Lk for sev-
eral aluminum 2lloys. Buchert showed a value of o0.; = 10,000 psi for

1100-H1L4 alloy (ref. 26). However, the cladding stress will vary with
the cladding material, of which different types are used on different
alloy cores. .

Comparison of Theory end Experiment

The total-reduction factor, defined as the product of the plasticity-
and cladding-reduction factors, has been plotied in fi~-wre 13 as & func-
tion of stress for both the test data and the tHeory in the case of axially
conpressed plates. Two materials are represented, each with a different
percentage of cladding thickness. Furthermore, the first (2024-T84 sheet)
is a sirply supported plate whereas the second (2024-T3 sheet) is a long
column. Plasticity-reduction factors for these two cases were obtained
from table 2. It is instructive to notice the close correlation for the
columin ense, for which the tangent modulus is the applicable plasticity-
reduction modulus. This follows the prediction of the simplified theory,
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which s*ipulates (et L. clelling rodustion factur 1 indejenleat ot
strezs lev2l when the rondnal core silress exceelds thle cladding propur-
tionel limit. Thus, the theory and test 4 .. wree in the charp drop

in the total-reduction factor at the cladding proporiloual limit.

Derivations of Simplif!ed Cladding Reduction Fuctors

Buchert derived expressions for the total-reduction factor for flat
eimply supported rectangular plaotes subjected to several types of lcalings.
In the following sections are presented derivations of simplified clelding
reductlon factors that yield buckling stresses at sll stress levels curely
by multiplying the nominal stress (elastic or inelestic) by the cledding
reduction factor at that stress. This is done by separating the clediing
effect from tke total-reduction factor by using the relationship #{ = np/n.

Case 1. Iong sirmply supported plates in corpression.~ Buchert derived
the expression for np at 0. > dp (of the core] (ref. 26):

e = ES/E' E- , (3138 /Es)] . {[1 + (3f§s/gs)] [(llk) +

2(1 + 3f)

(314 (Bs/5s) + w:ul/a | (38)
where | |
W= (565, El/h) N <3/u)(ﬁtfﬁs)] ‘
For a bare plate £ =0 and np = 7§, uhich glve
1 = (Es/?-E) 1+ El/h) + (B/h)(Eu/Es)] 1/ {39)

{cf. table 2). Then

/ﬁ.,. (5553/58)] + {[1 + (BfEs/Eg)] El/&) + (3/4) (Bt/Es) + HBUE r
1+ 5’\ 1+ [(1/&) + (3/%) (Bt/Es)] M2

—
w
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(8) When Ogp< Ocl, i3 = ¥t = Eg = By = E, and therefere § = 1.

(b) When Oc1 < der < Opys Eg = By = E, and for the cludding stress-

= E, ag.1/e  oc
strain curve of figure 12 E = 0. Then with -2 = —El-/-— =281 B,
E  ogerfe  oer

r

- 1
n= m{(l + 3L} + —[1 + 3pf) (b + 3131')] } (k1)

which may be written

7= -i—:—-:?—f(a)(l + {h - [ose/(a + 3Bf)]}l 2)

If it is assumed that 98f/(1 + 3Bf) << L, the following sicple expres-
sion is obtained for the cladding reduction factor:

72t 2Bl (:2)
1+ 3f

{c) For large stresses, B—>0 end therefore

p— (13)

Equations (42) and (k3) appear in figure 13 fn the form of fnp = i,
where they may be seen to sgree closely with the total-reduction factor
and the test data.

Case 2. Plate columns.- The derivations of 17 for short and long
plate colums follow thet form used in case 1 for the supported plate
without any simplifying essumptions. The results are shown in table 3.
The column curve is plotted in figure 13 in the form Mq = 1Y, where it

is seen to agree closely with the data and with Buchert's theory.

Case 3. long simply supported plates in sheer.- Buchert (rer~ 26)
shows that 7np for shear on & long simply supported plate is

A S————
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) Ly2(1 + 3f)

_ _357_@5&)__[/&2 N (C3T/C5T) N [ah + 22 (CBT /Csf) , 1}1/2} (uk)

where the nodal-line slope of the shear buckles 1s obtained from the
irplicit equation

Csr = (1/2) {1 . (E,,;/Es) + 3Bf[1 + (Et/Es):”

C5y = 1 + 38¢F

The mirnirum-energy state occurs for unclad elsstic plates when
a.—)l/ﬁ, and there is 1little resson to expect a significantly different
value for clad plates. Consequently, this value of a is assumed in
the following developrment:

| Csr ESIE) /i
p = 1?—1(:-55 (3/2) + (C3T/C5,) + 575 ?7037 /051) (%5)

(a) When ogr < Geys N =T =qp=1.
.

(‘b).The plasticity-reduction factor for oy, > 0,7 1s derivable
from the total-reduction factor in the form

n = (5 /BE) [n + (Bef5s) + 2_-_@:7*3:5] (“55.
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frox which, usirg 7 = “Tvﬁh

e )b )]
Ll (Et/EB) + 3/[2 - (Et/ES)J

where Y = 1 + 383f.

g

The expression In braces deviates about 2 percent from unity for
f=0.,10 and for B ->0.2, which will be In the neighborhood of the
proportional limit for typiecsl structural sluminum alloys. Consequently,
it will not introduce an appreciable error to consider it equal to unity,
in which case egquation (42) for the compressed simply supported plate
holds true. .

1
1+ 32

{c) For large stresses, B-—>0, and therefore 1 =

BUCKLING OF FLAT RECTANGULAR PLATES UNDER COMPRESSIVE LOADS

In the preceding sections the mathematical and physicel background
for the flat-plate buckling problem has been presented. It was shown
that basic eguation (1) can be used for the solution of buckling problems
pertaining to flat rectanguler plates under various types of loadings in
the elastic and inelastic ranges by sulitable choice of reduction factors
and buckling coefficients. Considerstions that influence the determina-
tion of k have been analyzed in the sections entitled "Basic Principles”
end "Boundary Conditions.”" The plasticity-reduction and cladding reduction
factors were discussed in the sections "Plasticity-Reduction Facfors" and
"Cladding Reduction Fectors." In this section, and In those to follow, the
buckling coefficient k will be discussed and its numerical velues for
various loading and boundary conditions will be presented.

-Historical Background
Bryan investigeted the buckling of a simply supported flat rectangu-

lar plate under t«ial loading in the elastic range using the energy
method (ref. 27). He obtained the explicit form for k., for this type

of loading and support: :

Ko = [(a/nb) + (nb/aﬂ2 . (48)

. m——a - e = tr e e



Tim.shenke trested nwrerous addiliural cases of Lowding oad bouslysy
corrlitions utilizing both the energy upproach and the solulion of the
differential equation (ref. 2). Hill constructed a churt of ke covering
the corplete range of possibi=z bowunldiry conditions for nxial leadings:
simply cupported, clemped or free el,s on one side, and simply supported
or clemped edges on the other, with thke loaded e izes eiither clamped or
simply supporied {ref. 28).

Lundquist and Stowell presented the first unified treatment of the
compressive-buckling problem in their analyses, by both the differentianl-
equation and energy methods, of the cases of supported plates and flanges
with simply supported load=d edges end with varying degrees of elastic
rotational restraint slong the supported unloaded edges (refs. 8 ani 29).

Stein and Libove, in considering combined longitudinal and transverse
axisl loads, covered the effects of clamping slong the unloaded edges of
rectanguler plates (ref. 30).

Kumerical Values of Compressive-Buckling Cocefficients

for Plstes

Figure 14 is a summary chart depicting the variation of k. as a
function of a/b for varicus limiting conditions of edge support and
rotational restreint on a rectangular flat plate. It is apparent that
for values of a/b greater than four the effect of rotationsl restreint
along the loaded edges becomes negligible and that the clarped plate
would buckle at virtually the same corpressive load as a plate with
simply supported loaded edges.

Supported Plate, Edges Elastically Restrained
| Against Rotation

The behavior of compressed plates with varlous amounts of elastic
rotational restraint along the unloaded edges can be understood by
exarining the relation between buckling coefficient and buckle wave
length. For plates supported slong both unloaled edges the curves
sppear in figure 15 for rotational restrsint from full clamping (e = «)
to hingad supports (e = Q). From this figure, which is taken from the
report by Lundquist and Stowell (ref. 29), it is possible to see the man-
ner in which-the buckle wave length decreases as rotational restraint
increases, and the value of A/b for a minimum value of k, can be
seen to increase from 2/3 for elamped edges to 1.00 for hinged edges.

The lower portions of these curves and the portions to the left of the
minirum ke 1line form the first arms of the curves of k. a&s a function

T T e g = . e AL F i e ek ava e
e e ey, ——— ———— —— —
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of &a/b, as in figure 16. For compleieness, several lines denoiing tle
trunsiticns from 1 t0 2, 2t0 3, . . «n to n+ 1 buckles have been
included in figure 15. The intersections of these lines with the curves
of ko against K/b correspond to the cusps on the curves of figure 16.

Plates With Uneguel Edge Rotatlonal Restraint

Figure 15 can also be used when there are unequal rotatiional
restraints along the unloaded edges of a plate. This can be done by
determining the ko value for the e on each unloaded edge. The effec-
tive value for use in equation {1) can then be found frox

k. = (kclkcg)l/ ¢ (19)

The sccuracy of this method has been demonstrated by Lundquist and Stowell
who compared results so obtained with the values obtained by solving
directly with the equations used by them for the general case of rota-
tional restraint (ref. 29).

The elsstic restraints are mathematically equivalent to a serles of
unconnected torsional springs. Since this does not necessarily conform
t0 the behavior of the usurl edge rerber or stiffener of a flat panel,
it is necessary to evaluate the effective single spring stiffness of the
sctusl stiffener in order to use either figure 15 or figure 16. However,
it is not necessary to determine this stiffress to a high degree of
accuracy since the influence of € wupon K. enbraces a large range of
stiffness ratios, as is shown in figure 1T for infinitely long plstes.
When the stiffener rotationel rigidity has been found, € may be com~
puted by forming the ratio of this rigildity to the rotational rigidity
of the plate.

\ From test data Gerard was sble to comstruct a chart of ko for
long plates as a function of b/t for strong snd weak stiffeners
(ref. 31 and fig. 18). Above b/t = 200 it is seen that most stiff-

eners will effectively clarmp the plate edge.

Supported Flanges With Elastic Rotational Restraint

The relationships among k., A/b, and € are depicted for flanges
in figure 19. It should be noted that these curves were constructed for
a2 Poisson's ratio value of 0.3, which also applies to the curves of kg

as a function of a/b in figure 20. The determination of k. for other
values of v 1s disgussed in the section entitled "Boundary Conditions.”




The transition lines for 1 to 2, 2t 3, . . . n to n+ 1 buckles ars
shown in figure 19. However, it should be noted that the ririmom line
does not intersect the curve for & hinged flange (¢ = 0). For this case
there 1s only ore buckle which extends the full length of tie rlange.

As in the case of the plate, the theoreticsl restraint action on the
unloaded supported edge of the flange is assumed to be a series of dis-
connected torsional springs, and it 1s necessavry in this case also to
determine the effective restraint for the edge stiffener in order to use
the curves of figures 19 and 20. However, as In the case of supported
plates, 1t is not necessary to determine ¢ +too accurately, as figure 17
shows, since k. i1s relatively insensitive to large variations in e.

Effect of ;ateral Restraint on Buckling

In the usual buckling-stress computations the plate anelyzed 1is
essured to be unrestrained egainst distortion in its plane under the
external loads applied. However, for longitudinal compressive loads on
a rectangular plate, the edges perallel to the loads would tend to move
apart as a result of the Poisson's ratio expansion. If this wotion
should be restrained to any extent, forces would be developed transverse
to the applied lcad which would influence the longitudinal stress thrat
the plate might withstend before it would buckle. If the interaction
concept is erployed, it is apparent that the transverse compression would
loyer the permiesible longitudinal stress by ar amount that could .be
found from interaction curves utilizing stress ratios.

If the plate edges dre restrained by rigid stifferers held in place

by transverse ribs each with a section area Ay, the balance of transverse
Porces requires that . ~

Ophy = gyat (50)

The directions of oy, Ty end o, are shown in figure 21. The eguiva-
lence of transverse strain requires that

) ) - o

. i 4 I .
assuming that the ribs and plaete are of the same rmterial. From equa-
tions (50) and (51), the transverse stress becomes

oy /oy = \/[1 + (at/Ar)] (52)




From this point it is & sirple matter fo determine the reduced
longitudinael~buckling stress. This may te cxpressed in terms of the
new velue of the buckling coefficient k. as shown in figure 21, which

is & modificetion of curves presented by Argyris and Dunne (ref. 32).

BUCKLING OF FLAT RECTANGULAR PLATES UNDER SHEAR LOADS

Historical Background

Southwell and Skan computed the critical shear loasd for a flat rec-
tangular plate with simply supported edges and with fixed edges by means

of tke buckling differential equation (ref. 33). Timoshenko investigated

shear buckling also (ref. 2); however, he used the energy method and
obtained & criticel loading 6.5 percent higher than the exact result of
Southwell and Sken.

Stowell determined shear-buckling coefficients for infinitely long
supported plates with the edges elestically restrained against rotation
(ref. 34). He utilized the differential equstion for an exact solution
and the energy integrals for plotting purposes. Stowell presented his
results in the manner of Southwell and Skan, who plotted the buckling
coefficient as & function of A/b for long plates. This is the same
procedure used by Lundquist and Stowell for compressive loading on plates
of any length (refs. 8 and 29).

Symmetric and Antisymmetric Modes

The solutions obtained by Southwell snd Sken (ref. 33) and by
Timoshenko (ref. 2) pertained to e buckle form termed the symmetric mode
because of the symretry of the mode shape with respect to a diagonal
across the plate at the node-line slope. Stein and Neff examined the
antisymmetric buckle mode for sirmply supported plates and found that it
has a lower buckling stress, within a small range of a/b values, than
does the symmetric mode (ref. 35). Stein and Neff also repeated
Timoshenko's calculations for greater precision and obtained an esti-
meted error of 1 percent.

Budiansky and Connor investigated the short clamped plate for both .
symmetric and antisyrmetric buckle modes using the Tegrangian multiplier
method (ref. 36). Except for & srall range of a/b values, the symmetric
mode was shown to yleld the lower buckling stress. .

o
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Numerical Values of Sheur-Buckllng Coefficient

The plot of kg as a function of a/b appears in figure 22. It

may be seen from the curves how the symmetric and antisymmetric modes
alternate with one another as a/b increases. For long plates the
value of kg mey be found from figure 23(&), in which kg, appesrs as

e function of «¢.

Effect of Plate ILength on Buckling Coefficient

When kg 1is plotted as a function of afb for infinite and zero
values of ¢ (clamped and hinged edges) as shown in figure 23(b}, it
may be seen that there is little difference between the two curves.

This suggests 2 rapid method of computing the shear-buckling coefficient
for any value of €. The coefficient for the specified e 1is obtained
from the curve of kg, &s & function of e (fig. 23(a)), vwhich is &
replot of the minimm kg line (n = =) of figure 24. Also, the ratio
ks/ksm is found from figure 23(b). Then kg -for the specified a/b

and e may be found by computing the product of these two numbers.
Estimation of the correct value of ks/ks°° will be relatively free from

error because of the proximity of the two limiting curves in figure 23(b).

BUCKLING OF FIAT RECTAMNGULAR PIATES UNDER BENDING LOADS

-

Historlcel Background

Timoshenko investignted the buckling stresses for flat rectanguler
plates under combined longitudinel and bending loads using energy inte-
grals and obtained values for kp that agree well with later ecalculations

of higher precision (ref. 2). Schuette and McCulloch analyzed long plates .

under pure bending with supported edges and elastic rotational restraint
(ref. 37). Johnson and Noel also investigeted the buckling »f plates
under longitudinal axial load and bending (ref. 38), and Noel analyzed
plates for longitudinal bending plus axial load combined with transverse
axial load (ref. 39). ,

. _
Numerical Values of Bending-Buckling Coefficient

The relastions between buckle wave length and buckling coefficient
for various velues of rotational restraint appear in figure 25 together
with the wave-length transition lines. The curves of Xp as a function

of a/b are shown in figure 26. It is of interest to note that the

1
]
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value of ki for infinitie pl-.tes is roughly six times as greaﬁ as the
velue for the supported plate ko for all values of rotational restraint.

BUCKLING OF FLAT RECTANGULAR PLATES UNDER COMBINED LOADS

General Background

Flat rectangular plates frequently are subjected to combinations of
elementary loadings. It has been common practice to consider elementary -
loadings in pairs and to determine an interaction curve or curves for the
combination. However, two recent pepers treat triple combinations of the
elementary loads, so that an interaction surface in stress ratios is gen-
erated, end by teking apptopriate sections (e.g., letting one of the -
stiess ratios equal zero) it is possible to reproduce the interaction
curves that were derived previously in the literature. .

Interaction curves for the combination of bending, shear, and trans-
verse compression on long plates were developed by Johnson and Buchert
(ref. 40), and Noel constructed the two-dimensional sectione of the sur-
face for longitudinal bending, longitudinal compression, and transverse
compression (ref. 39). The backgrounds for the various combinations of
loedings are discussed in the following perag aphs. Interaction charts
are shown in figures 27 and 28, in whiech sections of the triple stress-
ratio surfaces appear.

A summary of the loading canditions discussed in the following para-
graphs appears in teble 5. Interactlion equations which exist for a few
cases are included in the table. '

IO

Biexiel Compressioﬁ

Mmoshenko derived & relation between the longitudinel and transverse
edge stresses ecting on a rectangular plate at buckling (ref. 2). This
relation was evaluated for the lowest possible combination of stiresses by
reans of & chart that mist be drawn for each a/b value under considera-
tion. As one limiting case of plate proportion and loeding, Timoshenko
demonstrated that a square plate loaded by equal biaxial strecses hes a
buckling coefficient of 2, or half of that for a uniaxially loaded square
plate. -

Libove and Stein evaluated buckling under biaxial loadings by the
energy method for rectangular plates supported in several different man-
ners and presented the results in charts of -ky as functions of afb
for various values of ky, where .

- ———
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%2D
ox = "X<T
b2t

oy = ky[TD
y ky('bah)

and ¢, and oy, &re the two stresses acting on the plate at bueklirng
{ref. 30).

No simple interaction expressions exist for the stress ratios in
the general case for the loadings and supports investigeted by Libove
and Stein. However, for square panels, or for long panels that buckle
in square waves, it can be shown, from Timoshenko's results, thst

thRynl (54)

~ Noel considered more complicated loasding conditions and presented
data from which intersction curves rey be constructed for biaxial loadings
for any value of a/b (ref. 39). Noel's curves eppear in figure 28.

Shear and Normal Stress

By epplication of the energy method, Stowell and Schwartz examined
the conditions under which buckling will occur on & long, flat, rectan-
gular panel with edges elastically restrained against rotation under the
sirmltanecus action of shear and normel stresses (ref. 41)}. They derived
the intersction relstionship between the stress ratios in the form

_Rc'l‘Rse'l » {55)

They also derived en expression for the stress corcbination et
buckling through use -of the differential equation and tested the inter-
action equation for several values of restraint coefficient €. The
agreement with the intersction equation wes found to be excellent, as a
consequence of which the interaction equation written above ray be
applied to this loading case for all values of restraint coefficient
and mey be used when the axial load is either compression or tension,
provided the restraint coefficients are the same on both edges and tle

panel is infinitely long.

i
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The problem of determining critical loading coabinations for shear
ani transverse normal stress was solved by Datdorf and Houbolt by both
the eneryy method and the differentinl egquation {ref. k2). The signifi-
cant result of this work is the demonstration that roughly half of the
eritical shear stress ray be applied to a transversely compressed panel
without lowering its permissible corpressive-buckling stress.

This work was done on infinitely long penels with the long edges
supported and elastically restrained against rotation. The restreint
coefficlent was found to exert an eppreciable (although not very large)
effect upon the critical loading combination. The results for this type
of loading, consequently, do not lend themselves to the writing of a
simple explicit interaction equation between the stress ratios. The
curves were plotted by Batdorf and Houbolt for both compressive and ten-
sile transverse norral loedings in corbination with shear over the entire

range of restraint coefficilents.

The two preceding loading conditions were reexamined for simply
supported plates of finite a/b by Batdorf and Stein with the use of
the energy equations {ref. 43). They showed that the parabolic inter-
action expression of Stowell end Schwartz (eq. (55)) sgrees with the
interaction curves for finite values of a/b for shear plus longitudi-
pal compression {or tension) (ref. 41). However, the curve derived for
infinitely long panels under shear and transverse loading requires modi-
fication for finite velues of a/b. For a square panel the parabolsa
agrees with the modified curve, while the simple-edge-support case of
Batdorf and Houbolt (ref. 42) may be used for a/t.= 4. The transition
region from the modified curves to those for a/b = ® lies between
these two values of a/b.

The large shear stress that may be superimposed upon the criticél
compressive stress witbout lowering the permissible compressive stress
for infinitely long panels is not possible for squere plates. In fact,
it appears to be possible for infinitely long plates only.

[
Bepding and Rormal Stress

Timoshenko determined the critical corbination of bending and nor-
rel stresses scting on simply supported fiat rectangular plates using
the energy method (ref. 2). He determined the buckling coefficient as
& function of « for several ratios of moment loading to axial loading
for panels with various values of a/b.

Johnson and Noel broadened the scope of the problenm by including
elastic rotational restraint slong the unloaded compression edge (ref. 38).
Their results were plotted as k, versus A/b for all values of restraint
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coefficient. One chart is required for each of the loading ratios (lon-
gitudinal loading to moment loading), of.which four values were chosen.
The loading ratio.ls defined by -

o= 12
Pb + 6M
¢ (56)
Pb 6(2 - a)

M a

where P is the longitudinal load, M 1is the bending moment, and b
is the panel width. They also plot Lk, as & function of a./'b for the
ceses of simple support and clemping of the unloaded compression edge of
the panel. In additlion, the effect of fixity of the unloaded tension
edge is depicted for various velues of « _in a plot of Xp versus a/b
in which the hinged and fixed cases are drawp on the same graph. It is
apparent that edge fixity does not become important until o falls
below T7/4, which corresponds epproximately to a FPb/M of 1 or more.

Crossman exsnined bending in corbination with transverse compression
using the energy method (ref. 4i). He found thst for infinite a./‘b tke
bending stress raetio can be 0.9 at the same time that the transverse com~
pressive stress ratio is 1. He alsoc provides a graph of the stress
ratios for several velues of a/b; however, apparently only the infi-
nitely long plate is cepable of withstanding bending stresses without
buckling while the transverse stress is at its eritical value. This is
similer to the result found by Betdorf and Stein for shear and transverse
compression (ref. &3). '

. Noel provides interaction curves for simply supported rectengular
plates loaded in longitudinal bending, longitudinal compression, and
transverse corpression (ref. 39). For the limiting case of no transvérse
loading they agree with the results of Johmson and loel (ref. 38), ani
when the longitudinal compression vanishes they agree with those of
Grossran (ref. 44%). Consequently, their charts can be used for both of
these losding combinations. The curves appesr in figure 28.

The data of Johnson and Noel and of Noel were obtaired from eque~
tions solved for infinite velues of afb =and vere applied to finite
values of &/b by use of the identity

-

Mo ='a/mb | (57)
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Thic procedure may be guestioned for srmall aspect ratios; however, it
may be Justified by comparicon with the work of Timoshienko (longitudi-
nal corpression and tending) and with the work of Grossman (transverse
compression and bending), with which the results of Johnson and Huel
end of Noel show good agreene:.t.

Beriding and Shear Stress

Timoshenko reports the result of analyzing a rectangular flat plate
to determine the critical combination of bending end shear stresses
(ref. 2). He used the energy method and-plotted the buckling coeffi-
cient of the panel as & function of the shear stress ratio. The coeffl~
cient, when divided by that for the bending load alone, becomes the
bending stress ratio, and the set of curves provided by Timoshenko for
various velues af a/b becomes an interaction chart, from which it may
be seen that the interaction equation is a unit circle:

Re? + Rl = 1 _ (58)

The range of &a/b for which Timoskenko plotted the curves is from 0.5
to 1.0. However, the curves loop back on themselves es a/b increases,
thus indicating that larger values of a/b would yield curves falling
within the plot. The maximum variation of stress ratios sbout the values
obtainsble from the circular interaction equation is T percent, with the
equation values the lowest (and hence the rost conservative) of all.

Bending, Shear,:and Transverse Compression

Johnson end Buchert utilized the Iagrangian multiplier method to
determine the critical corbinations of bending, shear, and transverse
compressive loads on rectangular flat plates of infinite a/b (ref. LO).
The results aprear as interaction surfaces in the three stress ratlos FRy,
Rgy and Ry. The two types of support for the plate are simple support

along both long edges and simple support along the tension (due to
bending) edge with clarping elong the compression (due to bending) edge.

Sections of the interaction surfaces tsken perpendiculsr to any of
the three stress-ratio axes yield plane stress-ratio cwrves that asgree
with the results obtained directly for these cases in previous publica-
tions. This is true only of the simply supported plate, of course, since
nothing has appeared in the literature for shear plus bending of plates
with the compression edge clarmped. The interesting resulf of a shear

stress ratio equal to 1.2, with R, equsl to 0.5, is revealed (2ig. 27(v)),

as well as the combination of  Re = 0.9%, Rp = 0.50, and Rg = 0.43.

h 'is

il



b2 e it o

Longitudinel Bending, Longttudinnl CompresMon, ani
Transverse Corpression

The work of Ncel (ref. 39) on the problem of longitudinul b«'"'“j_"_',’l
longitudinal compression, and transverse corpression Las been dincts"
in the section on combined berding and norral siress. The pertlnent
interaction curves appear in figure 28.

Combined Inelastic Stresses
LY A r
Stowell utilized the concept of an equivalent-stress intensi'y _f;n,_,_
combined stresses applied in constant retio during loadirng in the 1-"”(: nl

tic range (ref. 45). He examined the problem of determining the ¢F 1urtcd

combination of shear and longitudinal corpression in elastically 8“P

- flat rectangular plates by using the erergy method to determine the

buckling stresses. From these results » stress ratios were plotted
directly fron the theoretical results and were also corrected for ti?
chenges in effective modulus. From this, Stowell concluded that WitV
1ittle error the following stress-ratic equation is applicables:

2
(Es)pc + IR, (Es)ps .1 (%9)

h (Es)di @:1-

In equation (59), (Es)pc 1s the secant modulus at o = g, for PW¢
compression, (Eﬂ)ps i1s the corresponding secant modulus for pure shn s
a@ (.Es)ci is 'the secant modulus for the effective stress of the €OF~

. 2 .
bined loading at buckling; (Es)cri = [3(31{2 + 31-2) (3ex2 + 72)] .

similarity of this expression to thet for the elsstic case is appm"-'"f.;,.
in fact, in the elastic range the expression reduces to the equation
elastic loads.

A recent investigation of Peters on long square tubes loaded 1a fon
torsion and compression (ref. 17) indicates that a gtress-ratio enust

of the form. .

Re? 4 B2 = 1 ()

!
I
|
i
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asrees slightly betier with the test dutu (£ig. 29) than does the modified

perabola of Stowsll (ref. L15). Actually, the data yield slightly higher
stress-ratio combinations than do either of interaction equations (59) or
(60), with the diccrepancy inereasing with decreasing siress levels. For
stresces wholly in the elastic range the dats are as rmuech as 100 percent
higher (that is, Ry is 0.4 instead of 0.2 for R equal to 1). The

' deta also agree closely with & theoretical curve obtained by Budiansky,

Stein, and Gilbert for long square tubes loaded elastically in torsion
end compression (ref. 46).

EFFECT OF PRESSURE ON BUCKLII:Z OF RECTANGULAR FILAT PLATES

Renge of Published Results

The effect of normal pressure on the longitudinal compressive-
buckling stress of a rectangular flat plate has been investigated for
both simply supported and clarped edges. ILevy, Goldenberg, and
Zibritosky (ref. 47) analyzed the simply supported plate using the
large-deflection differential equations of Von Kérmin. The plate length
was four times the width, which plsces it in the long-plate category.
The data reveal a rise in longitudinel compressive-buckling stress for
this configuration which increases with pressure. However, this rise
ray be realizable only in a plate of such proportions end loading because
of the significant difference in wave forms of the long plate under com~
pressive end pressure loadings. It may be intuitively evident that when
there 1s little difference between these wave forms, such as for a short
plate under combined longitudinal compression and normal pressure, there
rmey be a reduction in the corpressive-buckling stress of the plate. Mo
data are available in this case, however.

Longitudinally Compressed Long Simply Supported Plates

High normal pressure was found to increase the compressive-buckling
stress considerably for the long simply supported plate tested by Levy,
Goldenberg, and Zibritosky (ref. 47).. For example, when the’ pressure
applied to a plate with.length four times the width reached 2L.03Etl/vh,
the buckling stress was 3.1 times that for zerc normal pressure on the
plate. ILevy, Golderberg, and Zibritosky also showed that more than one
equilibriun configuration of the plate was possible when normal pressure
was applied, with the configuration at any instant depending upon the

previous loading history. The plate could be either buckled or unbuckled

under various specific combinetions of axisl load and norral pressure.

Cn

o ————
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Iongitudinally Corpressed Long Clarped Pletes

Woolley, Corrick, and Levy anglyzed a longitudinally corpressed long
clarped plate {ref. 43). For this case the effect of pressure was not so
promcunced as for simply supported edgus. The maximum buckling lozd for

a pressure of 37.55?:3,1*/'1:’+ vas fourd to be 1.3 times that for no normul
pressure. Also, for clarped plates the buckle pattern was found to be
unique for any particular combination of pressure and axial lcading.

-~
SPECIAL CASES

Use of Elastic-Buckling-Stress Expression

It has been shown that the elastic-buckling stress for any flat rec-
tangular plate of constant thickness can be computed using egquation (26)
for various losding and boundary conditions. There are also flat plates
of interest to aeronautical engineers that are neither rectargular nor
of constant thickness. By sultable choice of the buckling coefficlent
and definition of the plate thickness and proportions it is possible to
utilize equation (26) to compute the buckling stresses for these plates
also.

Axially Compressed Plate With Variable loading:
and Thickness

Pines and Gerard investigated the proportions of a simply supported
£1at rectangular plate under varying axial loading to determine an effi-
cient thickness variation for minimm weight (ref. 49). The plate rigid-
ity was assumed to be proportional to the axial load in order to satisfy
equation (26) et any spanwise station. Thke loed variation along the
plate was assured to be produced by shear stresses small enough to have
negligible influence upon the buckling characteristics of the plate.
Furthermore, the airloading on a typical wing develops & cover axial
loading that closely follows an exponential variation that decays from
the root outboard. This will dictate meximum axisl loading oa the cover
gt the root, which is deplcted as station A in figure 30, in which a
sketch of the tapered plate is shown together with the loading and plate
thickness variations that follow as a result of the assumptions made by

Pines and Gerard.

Results presented in the form of the buckling coefficlent as a func-
tion of a/b for various values of the logarithm of the loading ratio
(Maximm loading/Minimum loading) reveal little increase of buckling
coefficient until the loading ratio begins to exceed e {the base of

"natural logarithms) (fig. 30).

— 0w
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In cases in which B 1s large, the buckling-coefficient chart
reveals tlat the rmwoiber of buckles in a penel of predeternined a
ray exceed the nunber of buckles for g = 1.

Axially Corpressed Plate With Varleble Loading and
Constent Thickness

The problem of determining the buckling stress of an axially com-
pressed flat rectangular plaie was investigated by Libove, Ferdmen, and
Peusch for a simply supported plate with comstant thickness and a linear
axlal load gradient (ref. 50). They plotted the effective buckling-
stress coefficient as a function of the .loading ratio for various velues
of a/b. For the sake of uniformity of presentation, their curves have
been replotted bere in the form of ke, &8s a function of s/t for

various values of the loeding ratio, ihcluding negative values (tension
et one edge) ms large 8s -3. These curves eppear in figure 31.

The buckling coefficlent -kcav applies to the average axisl
loading on tke plete, which is ejual to (cA + GB)IZ with o0p eassumed
to be the lerger of the two end loads. The average plete loed is
(UA/E) E.+-(l/Bi]. This permits repid corperison with the buckling.
stress of a plate with constant exial load, which is the curve for
B =1 in figure 31.

Long pletes will buckle at the end at which the maxirmim load is

applied,! for which k. is equal to k.

Parallelogram Panels in Compression

Anderson inv!stigated cormpressive buckling of a flat sheet sub-
divided into panels by nondeflecting supports that form a parallelogram
gridwork under the sheet (ref. 51). One set of supports (all equally
spaced) runs longitudinally, and the other runs at an angle ¢ to the
normal, or transverse, direction. The longitudinal spacing of the diag-
onal .supports is a, and the transverse spacing of the longitudinal sup-
ports is Db. Buckling coefficients were plotted as functions of a/b
for"both longitudinal compreséion and transverse compression’for various
values of the angle 9 (figs. 32(2) and 32(b)). In addition, inter-
action curves were provided for combinatlons of these two loadings in
the form of, buckling-coefficient combinations for various values of @

(fig' 32(3));
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For large valuez of u/b the bunkline-cocificient curves approach
tne curves for simply ou torisd rectiegnudlar plates under corprescion.
Tre largest @ for which Anderson provides curves is £0°. For lomel-
tudinel lozding the ongularity of the supporis does not appeur to inriu-
ence k uatil ¢ exceeds 159, For sm:ll values of a/b  tle influence
tecones pronounced zt values of a/b in the region of unity, wit: the
tuckling coefficient reaching & value of over 20 for @ ejual to 60°.

Thé transverse-buckling coefficient is not so severely affected ¥
¢, since k increases from & to 5 as ® increases from zero to 30°.
For @ equal to 6°, k 1is 9at a/b = 1.

Paralle;géram Plates

Wittrick determined the buckling stress of a parallelogram plate
with clazped edges under the action of uniform compression in one direc-
tion (ref. 52}. His work differs Trom the work of Anderson (ref. 51)
in that specified rotational boundary conditions are applied to thre
plate in this case. Both Wittrick and Anderson =mployed the energy
epproach in oblique coordinates to obtein solutions. Results are pre-
sented in the form of curves of ithe buckling ccefficient k. as & funce
tion of a/b. Wittrick presented data for edge angles of O° (rectargu-
lar plate), 30°, end 45° as shown in figure 33(2), in which the plate
geometry 1s depicted.

Guest (ref. 53) and Guest and Silberstein (ref. 54) analyzed sirply
supported parallelcgram plates under longitudinal corpression and, for a
rhombic plate of 30° edge =ngle, determined that ke ='5.60. Wittrick
elso analyzed clerped parzllelogresm platée in shear and obteined the
results shown in figure 53(b);(ref. 55). Hasegawa analyzed buekling of
clarmped rhorbic plates in shear (ref. 56), for which buckling ccefficilents
appear in the table below. The generzl plate geometry of figure 33(b)
applies to this case.

8, deg . . o 15 20 30 35

Ks « o+« | 1.7 ) 21.0 | 26.6 | 0.0 | 51.0

Triengular Plates

Tre “uckling of triengular plates under various loads-and edge sup-

ports was investigated by Woinowsky-Krieger (ref. 57}, Kiit&hleff (ref. 5%

Wittrick (refs. 59 to 61}, and Cox and Klein (ref. 62). Woinowsky-Kricge:
ccrruted the buckling stress of a sinply supported egquilsteral *rianzular
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rlate unier unifors compress!-n snd found Y. to equal § when the base
5f the triangle is taken equad to b in equutiion (20:. Klitchieff
investisated the tuckline of right-angle isosceles triargmalor plates
“ith purce shear on the orthoponel sides epplied so as to produce com-
treasion along the altitude upon the hypotenuse. Wittrick evolusted the
buckling coefficient for shear epplied so 25 to produce elther corpres-
sicn or tension slong the altitude end also included the effects of nor-
=21 stresses applied to !4 ejuml legs of the triargle. Cox and Kiein
analyzed buckling in isosceles trlangles of aqy vertex angle for normel
stress alone and for shear alone.

The buckling coefficients presented in this section are to be used
in conjunction with equation (26). The geometry of a triangular plate
is shown in figure 34. The data of Cox and Klein appear in figure 3h(z)
for uniform corpresaion ard in figure 34(b) for shear slong the equal
legs. th simply supported and clarwed edges were consiiered. The
rasults of Cox and Klein egree with the date of Wittrick for right-angle
isosceles trianguiar plates, which appear in table 6. The shear buckling
coefficients k3+ and kg_ refer to pure shear loadings which produce

tension and compression, respectively, elong the altitude upon.the hypote-

nuse of the triangle.

For -shear and normel stress on & right-angle isosceles plate the
interaction equaticn

2
2T su) -9 (1-u2) =1 (61)
Tery + Ter. Jer

applies, in which u'= (ks+ - ks_j/(k5+ + ks_).

Research Division, College of Engineering,
New York University,
' New York, N. Y., October 29, 195k.
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Introduction

Procedures for the computation of the elastic and plastic buckli:y
stresses of flat plates based on general plate-buckling eguation (1) are
sunmarized in this section. The factors appearing in this equatlion are
briefly discussed and charts are presented from which nurerical values
of these factors may be obtained.

The elementary loadings such as corpression; shear, and bending
frequently are considered 1n prelixinary design by using the buckling
coefficients for the 1limiting cases (infinite values of a/b, ciamping
or hinging of the plate edges, and so forth). For coavenlence table T
has been compiled conteining the values of the buckling coefficlents
that pertain to some of these limiting cases, while figure 14 displays
the curves for k, &s & function of a/b for different combinations
of limiting edge conditions. .

-

Physical Propertles of Meterials .

The buckling stress of & flat plate 1s determined when the loadirg,
plete geometry, and raterial are specified. The loading dictates the
particular chert to be used to find the buckling coefficient k, and the
plate a/b and edge restraint locate the nurerical value of k to be
found from that chart. For an unclad plate (f = 1) which buckles elas-
tically (n = 1), 0,p can be found directly from equation (1) if E is

known. The effects of cladding and plesticity depend upon the type of

" loeding end the stress level and therefore require a more detailed kncwl-

edge of the stress-strain chaeracteristics of the material.

The three-parameter description of stress-strain data can be used
as. a convenient generalized approach in buckling problems. With this
method figure 3 can be employed tc find the shape factor n. Since
dg.7> and n can be readily determined (see teble 8 for average values

- -
—r

. of n), nondimensionel curves are avallable from figure 4. It is to be

noted that, In many ceses, plastic-buckling charts have teen preparei
from which the plastic-buckling stress mey be determined if one knows

E; ©0.7s and n.
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Table 9 coatains the old and sev Jdegignatlons for wrought alurdrom
alloys. The new designaiions. are used throughout this report aund the
table is included for use with the various references. Characterlisties
of the cladding used on several structural sluminum alloys are shcewn in

teble L.

Poisson's ratio beyond the proportional limit can be colculated
using Vpi = G.5 1n the expression

Ve vy - (Vpl - Ve)<E3/E> (A1)
Frequently buckling stresses are corputed using the equation

Gep = TKE(t/b)2 | (a2)

‘where K = kx2/12(l - v2), The expression K/k can te found as a func-

tion of v 1in figure 35.

Compressive Buckling

Flates.- For plates, k., apgears in figure 16 in terms of a/b

and € and in figure 15 in terms of A/p and €. For an infinitely
long plate, Xk, may be found from figure 17 in terzms of € =alone.
Ween € 1s not the same for both unloaded edges, the gecmetric mean
of the k. wvslues for each edge rey be used (eq. (49)).

The plasticity-reduction factor fof & long plate with simply sup~-
ported edges is

n = [(ES/E)(I - ve’c‘)/(l - veil {o.éoo +0.250 |1 + (35‘5/55)]}112 (A3)

while for a long clamped plate

7 = [(ES/E) (1 - vez)/(l - v2)] [0.352 +0.324]1 + (531;/;.;5)]}1/2 )

Irelastic plate-buckling ctresses may be calculated using the nondimen-

"sionnl chart of figure 9,
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The cladding relduction factor for 6.3 < 0.y < Ip1 is approxira-«ly

given bty =quation (k2):

B 1 4+ 3fF

For ouap > Op1s 28 an adequate aprroximation, equation (50) holds true:

- /fl . (Bf‘?s/ss\} " {'} + (553/35)] [(1/1.) + (B/L)(Bt/Es) + ""{}11/2

f=—L
1 +§\ 1+ Elﬂ;} + (3/%) (gt/gs)] 1/2

The effect of lateral restraint In reducing Xk, may be deterrined
from figure 21 for vzlunes of Ap/at, and the effects of thickness tozer
and axial load variation mey te calculated with the aid of figures 30
and 31l.

The gain in bﬁckling stress with obliquity of the loaded edges Is
showvn in figuwre 33(a) for clarged parallelogram plates, while figure 32
depicts buckling coefficlients for large sheets divided into perallelcgranm
panels by nondeflecting supports. For data on triangular plates, fiz-
ure 34(a) ray te used to find k.

' The variation in k. with b/t for stifferned plates with torsicnally

weak or strong edge stiffeners epvears in figure 18. Because of the spearse
data available, no reccrrendatica can be made concerning the effect of nor-

mal pressurs upon buckling.

—

|
L) e
.I-J

Flanges.~ For flanges, X, may be found in figure 20 as a furc<ion
of a/b erd € and in figure 19 as a function of A/b and € for

v = 0.3. For an infizitely long flange, figure 17 contains k, as =
function of € alone. The effect of varying v appears in figure Z.

~ The plasticity~-reduction factor for a long hinged flangé is

= (ES/E)(I - vez)/(l - v2) (a5)

For a long clamped flange,

n = (ES/E)(I - veE)/(l - v2) [0.330 + 0.335[1 + (3&/135)]}1/2 (a6)
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For ihe former cace the ronlirensional bLuckling chart of figure & rny be
uced, while tbﬁ‘ of figure % zuy be used for the latter cuse with 1ittle

erroxr.

For flange clzdding reduction factors when oo, > Op1s it ray be |
permissible to use ejuation-{k0). Alib..yh this factor wes not cozputed
in the section entitled “Cladding Reduction Factors," it appeasrs to be
reasonable by comparison with the fectors for plates and columns.

Plate colurns.- For plste columns, ihe buckling stress ray be deter-
rined using flgure 2(a). .

For e short plate coluxn (L/o < 1) the plasticity-reduction factor

is
5 = [(Es/ha) (2 - ve?) /(1.- VE)] [1 + (33:5/55)] (AT)
For & square plate colum (L/t = 1),
7= KE,/S) @ - ve2)/(l -:u?;! Ea.nl; :+ (q.ssézt/zs)] | (’AB;
‘e For a long pla.fe coluran (L/o > 1), tﬁe ‘ple.sticity—re-iuc-t.ion fao;tdr

n = (3¢/8) (i - ve«?)/(l - V) (29)

The cladding reduction factor for short plate colurms in which
Ucl < Ucr < U'Pl is -

[1 + (35f/.hﬂ / (1 +38) | (a10)

and when oap > Op1 equation (LC) %31is true which is also aﬁbiicéble
to long plate colurms at all stress levels sbove LR

Shear Buckling

The shear-buckling-stress coefficient as a function of afv 1is
showm in figure 22 for clamped and hinged plate edges. For long plates,
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wr lolh buckle in ihe syimeiric nodey figure 2+ may be usel o find kg

as & function of R/b and €. For plates o finite leigtl: the procedure.
of the section entitled "Zuckling of Flat Rectangular Pletes Under Sheur
Louds" ray te used in cor! ..otion with figures 22 and 23.

The plasticity-reduction factor for lorz plates in shear is given
by equution (A5). Inelastic shear-bucklin: stresses ray be calculated
with the ald of the nondimensional chart of figure 10. e

The cladding reduciion factor for o, < Ogp < op1 1is glven by
equation (k2), and for aqp > op1 ejuation (k0) holds true.

For clarped oblique plates figure 32(b) zay be used to find kg

when the plate edge engle is h5°. For triangular-plate shear;ﬁuckling
coefficients figure 3h(b) ray be used. In adiition, the section
entitled "Special Cases” ghould be consulted.

Bending Buckling

The bending-buckling coefficient appeers in figure 26 as a function
of afb and ¢ and in figure 25 es a function of A/b. The plasticity-
reduction factor for a simply supported plate is the sarme as for a2 hinged
flsnge. Little error should be expected in using elastically restrained
flange plasticity-reduction factors for elasticelly restrained plates in
bending. For these cases the plestic-bucklirg chart of figure 9 may be
used to find oqp, which is the raximm corpressive stress on the plsate

section. In order.to fird the corresponding moment it is necessary to
integrate the stress distribution, for which purpose tke curves of figz- s
ure 9 mey be used. '

.

4
Corbined Loadlng

Interaction equations for various corbinations of compression, skear,
end bending appear in table 5. These expressions are presented in graphi-
cal form in figures 27 and 28 for elastic buckling. For longitudinal com-
pression and shear on 2 long rectangular plate, with both applied stresses
in the inelastic range, egustion (60) holds true:

Ro® + Rg2 = 1 _ ' (60)

The plasticity-reduction factor for a simply supported plate in ~om-
bined compression and axial loed varies between that for 2 hinged flange
and that for a simply supported plate under axial compression, depending
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upcn the ratio of ternding stress to wuxisl stresst The value of 1 for
ttZ. zuse is shown 4n equibion (56}

S I

Aztuxlly, utilization of the plasiic-buckling chzurt of figure 9 for all
cases of conmbined beonding and axial loed to fimd ogp (after which the

plate loading may be found by integrating the cross-section stress dis-
tritution) should give conservative results.

On right-angle isosceles triangular plates loaded under shear and
corpression as shown in the sketches in figures 34(a) and 34(b), equa-
tion (61) applies:

| 2r ~"2 .
- - ———— £ U +-°—,g—(l-u2) =1 (61)
Ter, + Top_ er

Teble 6 conteins nurerical values of k. and k; for different types
of plate edge supports.
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TABLE 1.~ ASSUMPTIONS OF INELASTIC-PUCKLING THEORIES

Investigator

Btreps=-atrain law

Plasticlity law

Buckling model

Hapdelman-~Prager
(ref. 19)

Dyushin
(rer. 20)

Stowell (refs. 5
and 3014)_

Trioroemantnl and defnr.
ANCrementTil and anior

mation types,
v instantonpsous

Ineremental type,
v instantaneous

Deformation type,
v=e0.5

Deformation type,
V= 0‘5 -

Qeotahedrnl ghear

S Mt e Ay

Octshedral shesy

Octahedral shear

Octahedral shear

No atrain reversal

Strain reversal
Strain reversal

No sirain reverecs)




. T

hatan g de & arlen

R

HACA TH 5[zl

TPABLE 2.- PLASTICITY~-RELUCTION FACTORS |

E . (ES/E)(l - vee)/('-_ - v2§]

T W

Loading Structure 1/3
Compression|Long flange, one unlczied 1
edge simply supported
Long flenge, one unloaded 11/2
o3ee olommed 0.330 + 0.3351 + (3&/35)_
Long plate, both unlosded \]1/2
edges simply supported 0.300 + 0.230 } + (BBt/ES)_
Long plate, both unlosded |0 2o . o sonfi 4 (3 /e )‘ 1/2
eiges clamped : * Et/Es /|
Short plate loaced as a .
colum (L/b << 1) 0.250 [l + (5Et/Es):|
Square plate losded as a o
calum (/b o 1) 0.11% + 0.886(Et/Es)
Long colum (L/b >> 1) Bg/Eg
Shear Rectangular plate, all edges {=
: elastically restrained 0.83 + 0.17 \—-t/Es)




.y

PRy

.

TARBLE 3.- SUMMARY OF SDPLIFILD CLADDING RIDUCTION FACTCRS

Loading Ocl < For < Opy Ser > Op1
1+ £/b

Short plate colums ———(B—B—Q 1
1+ 3fF L+ 3fF

Long plate columns 1 1
1+ 3f 1+ 3f

Corpression and 1+ 3pf 1
shear panels 1+ 3f 1+ 3fF

TABLE ..~ CLADDING MATERIATL AND THICKMESS FOR ALCLAD PLIATES

E)ata. taken from reference 613

i,
LR
!

S

(o)

1=

Materiel Cladding Total plate Total clgdding
designation material thickness, in. thickness, . £, in.
Alelad 201k 6053 <0.040 0.23

. 2.0k0 .10

Alclad PO2k 1236 <0.06k 0.10
2.06h .05

Alclad 7075 1072 . All thicknesses 0.08
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TABLE 5.- COMBINED LOADING CONDILIONS FOR WHICH INTERACTION CURVE3 EXIST

and shear

Theory Loading combiration Interzction eguation Figure
Biaxial compression JFor plates that buckle in 28
square waves, Ry + Ry = 1
Longitudinal cou- For long plates, R, + Rg2 = 1| 27
pression and shear
Longltudinal com- lione 28
pression and bending
-} Elastie
Bending and shear Bp2 + Rg2 = 1 27
Bending, sheer; and - Hone 27
transverse corpression
|Iongitudinal compression |Hone . 28
and bending and, trens-
verse compression '
o, RTE
Tnelestic|longitudinal cozzression|R.,2 + Rg? = 1 e 29
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TABLE 6.- BUCKLIIC COXFFICIENTS FOR RIGHT-ANGLE ISOSCELES TRIANGULAR

PIATES LOADED INDEPENDENTLY I UNIFORM CQMPRESSIOH,

POSITIVE SHEAR, AND N=GATIVE SHEAR

Edge supports

enuse simply supported

(2) v ke ks, ks
A1l edges simply 10.0 62.0 23,2
supported
Sides simply supported, 15.6 70.8 3k.0
hypotenuse clarped
Sides clamped. hypot- 18.8 80.0 4y .0

8gypotenuse = b in figure 3k4.

- ———— e e,
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HACA TN 571

TABLZ 7.- BUCKLL#¥ COEFFICIZNIS FOR INFILITELY LOW: PLAT=S

ULDER VARICUS TYP=S5 OF LOADS

Loading Edge support Coefficient
Compression S5 on all edges ke = k.0 HACA Rep. 753
1 ‘ ‘ L C on all edges ke = 6.98 (ref. 29)
SS on y=0, y=8, x=20
fe— b — F on x=05D Jko = 043
- X i€ on 7 = 0, y=8, x=20 Nh%iégfpé)73h
| I t 1 ' F oo x=1b l ke = 1.28
'
Shear

e aasta 2

———— SS on all edges kg = 5.35 HACA TN 1222
‘ ' (ref. 35)
‘ 1 C on all edges ks = 8.98 FACA TN 1223
‘ 1 . (ref. 43)
Bending

ss &ll I = N

o ges = 259 faca ™ 1323
C on all edges kp = 1.8} - (ref. 57)

-
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TABLE 8.- VALUES OF SHAPE PARAMETER n _FOR SEVERAL ENGINZERING MATIRIALS

Emta taken from reference 65]

n Materisal
3 Cne-fourth hard to full hard 18-8 stainless steel, -with grain
’ One-~fourth herd 18-8 stainless stesl, cross grain
5 Cne-half herd and three-fourths hard 18-3 stainless steel,
cross graln
Full hard 18-8 stainless steel, cross grain
10 2024-T and 7075-T aluminum-allcy sheet and extrusion
2024R-T aluminum-alioy sheet
202k-TR0, 2024-T81, and 202L-T86 sluminum-zllcy sheet
20 to 25| 2024-T aluminum-alloy extrusions .
SAE k130 steel heat-treazed up to 1C0,000 psi ultimete stress
35 to 50 2014+T eluminum=-alloy extrusions
SAE 4130 steel heat-treated above 125,000 psi ultimste stress
o« SAE 1025 (mild) steel
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TABLE 9.~ DESIGNATIONS FOR WRCUGHT ALUMINUM AiibYS

'

01d New
15, R301 201%
17s 2017
2Ls 202k
61s 6061
155 7075
e

L) 28
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fened panels as a funelion of b/t and stiffencr torsional ripfdivy.
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Figure 19.- Compressive-buckling-stress coerficient of flanges as a func-
tion of A/b for various amounts of edge rotational restraint.
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Figure 20.- Compressive-buckling-stress coefficlent of flenges as & func-
tion of a/b for various amounts of edge rotational restraint.
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Figure 21.- Compressive-buckling coefficient of flat plates
restrained agsinst lateral expansion.

equals 0.3; cy/ox = (vArIfat)/ (l + Ar/at}-.

Poisson's ratio
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(b) Upper edges simply supported, lower edges clamped.

?lowre 27.- Interaction curves for long flat plates under verious com-
binatlons of compression, bending, and shear.
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Figure 32.- Compressive-buckling coefficients for flat sheet on non-
deflecting supports divided into parallelogram-shaped panels. A1l
penel sides are equal.
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