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ABSTRACT

The phenomenon of plastic buckling is first illustrated by
the behavior of a fairly thick cylindrical shell, which under
axial compression deforms at first axisymmetrically and later
nonaxisymmetrically. Thus, plastic buckling encompasses two
modes of behavior, nonlinear collapse at the maximum point in
in a load vs deflection curve and bifurcation buckling. Accurate
prediction of critical loads corresponding to either mode in the
plastic range requires a simultaneous accounting for moder-
ately large deflections and nonlinear, irreversible, path-depend-
ent material behavior. A survey is given of plastic buckling
which spans three areas: asymptotic analysis of post-bifurca-
tion behavior of perfect and imperfect simple structures,
general nonlinear analysis of arbitrary structures, and non-
linear analysis for limit load collapse and bifurcation buckling
of shells and bodies of revolution. A discussion is included of
certain conceptual difficulties encountered in plastic buckling
models, in particular those having to do with material loading
rate at bifurcation and the apparent paradox that use of de-
formation theory often leads to better agreement with tests on
structures with very simple prebuckling equilibrium states than
does use of the more rigorous incremental flow theory. In the
survey of general nonlinear structural analysis emphasis is given
to formulation of the basic equations, various elastic-plastic
material models, and strategies for solving the nonlinear equa-
tions incrementally. In the section on buckling of axisym-
metric structures, numerous examples including comparisons
of test and theory reveal that critical loads are not particularly
sensitive to initial imperfections when the material is stressed
beyond the proportional limit. A final summary includes sug-
gestions for future work.
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INTRODUCTION
WHAT {S PLASTIC BUCKLING?

To most engineers the word ""buckling’’ evokes an image of
failure of a structure which has been compressed in some way.
Pictures and perhaps sounds come to mind of sudden, castas-
trophic collapse involving very large deformations. From a
scientific and engineering point of view, the interesting phases
of buckling phenomena generally occur before the deforma-
tions are very large, when to the unaided eye, the structure ap-
pears to be undeformed or only slightly deformed.

in static analysis of perfect structures, there are two phe-
nomena loosely termed “‘buckling’’: collapse at the maximum
point in a load vs deflection curve and bifurcation buckling.
These are illustrated in Figs. 1 and 2. The axially compressed
cylinder shown in Fig. 1 deforms approximately axisym-
metrically along the path OA until a maximum or limit load
A, is reached at point A. If the axial load A is not sufficiently
relieved by the reduction in axial stiffness, the perfect cylinder
will fail at this limit load, foliowing either the path ABC along
which it continues to deform axisymmetrically, or some other
path ABD along which it first deforms axisymmetrically from
A to B and then nonaxisymmetricaily from B to D. Limit point
buckling, or “snap-through’’, occurs at point A and bifurcation
buckling at point B. The equilibrium path OABC correspond-
ing to the axisymmetrical mode of deformation is calied the
fundamental path and the post-bifurcation equilibrium path
BD, corresponding to the nonaxisymmetrical mode of de-
formation, is called the secondary path. The significance of the
word “plastic” in the title is that buckling of either type occurs
at loads for which some or all of the structural material has
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FIG. 1 LOAD-END SHORTENING CURVE WITH LIMIT POINT A, BIFURCATION POINT B, .
AND POST-BIFURCATION EQUILIBRIUM PATH, BD. (PHOTOGRAPHS COURTESY SOBEL
AND NEWMAN [237]).

been stressed beyond its proportional limit. The example in
Fig. 1 is somewhat unusual in that the bifurcation point B is
shown (correctly) to occur after the collapse point has been
reached. In this particular case, therefore, bifurcation buckling
is of less engineering significance than axisymmetric collapse.

A more commonly occurring situation is illustrated in Fig.
2(a). The bifurcation point B is between O and A. If the
fundamental path OAC corresponds to axisymmetrical de-
formation and BD to nonaxisymmetrical deformation, then
initial failure of the structure would generally be characterized
by rapidly growing nonaxisymmetrical deformations. In this
case the collapse load of the perfect structure A, is of less
engineering significance than the bifurcation point, Ao

In the case of real structures which contain unavoidable
imperfections, there is no such thing as bifurcation buckling.
The actual structure will follow a fundamental path QEF, with
the failure corresponding to ‘‘snap-through’’ at point E at the
collapse load A;. However, the bifurcation buckling analytical
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model is valid in that it is convenient and often leads to a good
approximation of the actual failure load and mode. For more
general background on buckling of perfect and imperfect
structures, see Ref. [1].

CAPSULE OF PROGRESS IN THE 1870°S IN PLASTIC
BUCKLING ANALYSIS

Recent progress in our capability to predict plastic buckling
failure can be categorized into four main areas, three of them
dealing primarily with structural modeling, and the fourth
dealing primarily with material characterization.

The three areas dealing with structural modeling are:

1. Development of asymptotic postbuckling theories and
applications of these theories to specific classes of structures,
such as simple plates, shells and panels (Refs. [2-18] ).

2. Development of general-purpose computer programs for
calculation of static and dynamic behavior of structures includ-
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(A) GENERAL NONLINEAR ANALYSIS. (B) ASYMPTOTIC ANALYSIS.

ing large deflections, large strains, and nonlinear material ef-
fects (Refs. [19-21]).

3. Development of special purpose computer programs for
limit point axisymmetrical buckling and non-axisymmetrical
bifurcation buckling of axisymmetric structures (Refs. [22-23] ).

Asymptotic Analysis

The elastic-plastic bifurcation and asymptotic post-buckling
analyses [2-18] rest on the theoretical foundations established
by Hill [24-27], whose formulation of the bifurcation prob-
fem applies to solids with smooth or piecewise smooth yield
surfaces and small or large strains, and Koiter [28-29], whose
general elastic post-bifurcation theory leads to an expansion
for the load parameter A in terms of the buckling modal ampli-
tude wy, which is valid in the neighborhood of the critical bi-
furcation point in (X, wy) space. Hill proved that in order for
bifurcation of equilibrium paths to occur atstresses beyond
the proportional limit, the initial post-buckling path must in
general have a positive stope; plastic bifurcation buckling occurs
under increasing load. Therefore, it is crucial to determine the
post-bifurcation path until it reaches a limt load. The primary
aims of the asymptotic analyses of Refs. [2-18] are to cal-
culate limit loads for perfect and imperfect structures. These
analyses have contributed vital physical insights into the
plastic buckling process and the effect of structurat or {oading
imperfections on this process.

General Nonlinear Analysis

The general-purpose computer programs in widespread use
since the early 1970's and presently being written are based
on principles of continuum mechanics established for the
most part by the {ate 1950’s and set forth in several texts
[30-351. The structural continuum is discretized into finite
elements as described in the texts [36-40] and various
strategies are employed to soive the resuiting nonlinear prob-
lem [41-71]. The nonlinearity is due to moderately large or
very large deflections and nonlinear material behavior. Various
plasticity models are described in texts [72-76], conference
proceedings [77-78], and survey articles [79-82] . Additional
papers on the formulation, discretization, and solution of non-
linear structural problems appear in the symposia proceedings
[83-87]1. The primary aim of this vast body of work, most of
which was done in the 1970’s, has been to produce reli-
able analysis methods and computer programs for use by
engineers and designers. Thus, the emphasis in the literature
just cited is not on acquiring new physical insight into buckl-
ing and post-bifurcation phenomena, but on creating tools that
can determine the equilibrium path OEF in Fig. 2 for an arbitr-
ary structure and on proving that these tools work by use of
demonstration problems, the solution of which is known. in
most cases no formal distinction is made between prebifurca-
tion and post-bifurcation regimes; in fact, simple structures
are modeled with imperfections so that potential bifurcation



points are converted into limit points. The plastic buckling
problem loses its special qualities as illuminated so skitlfully

in Refs. [2-18] and becomes just another nonlinear analysis,
requiring perhaps specia! physical insight on the part of the
computer program user because of potential numerical traps
such as bifurcation points and limit points usually (and some-
times spuriously!) revealed by changes in the sign of the deter-
minant of a stiffness matrix.

Figures 2(a) and (b} illustrate the two very different ap-
proaches to the plastic buckling problem described in the last
two paragraphs. In the general nonlinear approach the com-
putations involve essentially a “prebuckling’’ analysis, or a

determination of the unique equilibrium states along the funda-

mental path OEF in Fig. 2(a). In the asymptotic approach
(Fig. 2b) the prebuckling state is usually statically determinate.
The secondary path BD of the perfect structure and {in the
elastic case) the limit point E on the fundamental path of the
imperfect structure are determined by expansion of the solu-
tion in a power series of the bifurcation modal amplitude
which is asymptotically exact at the bifurcation point B.

Axisymmetric Structures

The third approach to the plastic buckling problem,
development of speciai-purpose programs for the analysis of
axisymmetric structures, forms a sort of middle ground
between the asymptotic analysis and the general-purpose non-
linear analysis. The approach is similar to the asy mptotic treat-
ment because in applications it is restricted to a special class
of structures and the distinction between prebuckling equiti-
brium and bifurcation buckling is retained. It is similar to the
general nonlinear approach in that the continuum is discretized
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and the nonlinear prebuckiing equilibrium problem is solved
by brute force.” The emphasis is on the calculation of the
prebuckling fundamental path, OB in Fig. 2(a), and determina-
tion of the bifurcation point B and its associated buckling
mode, not on calculation of post-bifurcation behavior BD or
of the load-deflection path of the imperfect structure. The
goals of this third approach are to create an analysis tool for
use by engineers and designers and to use this tool in extensive
comparisons with tests both to varify it and to obtain physical
insight into the plastic buckling process.

SUMMARY OF THIS SURVEY ON PLASTIC BUCKLING

Certain difficulties associated with plastic bifurcation buckl-
ing theory are discussed in the next section. Following this, the
asymptotic methods of Hutchinson, Tvergaard, and Needle-
man [2-18] are described and examples shown. The general
nonlinear approach is then summarized with emphasis on the
Total Lagrangian vs Updated Lagrangian formulations, stra-
tegies for solving nonlinear equations, and characterization
of elastic-plastic material behavior. Next, a strategy for axisym-
metric nonlinear snap-through and nonaxisymmetric bifurca-
tion buckling of elastic-plastic axisymmetric shells is described,
followed by numerous examples in which experimental and
theoretical results are compared. The chapter closes with some
recommendations for future work.

WHERE PLASTIC BUCKLING FITS INTO THE
BIG PICTURE

Since most plastic buckling analyses are probably performed
with use of general-purpose computer programs, and since

EXTERNAL LOQAD

M@ k() sl =k

I

I STATIC

F VARIES SLOWLY
k{y) *+ By) = ¢

(—J—-ﬁ

OMIT NONLINEAR
TERMS NONLINEAR

(kly=f

]
L ] ]

DYNAMIC ]

L VARIES RAPIDLY

I
[ 1

TRANSTENT
ANALYSIS

SMALL VIBRATIONS
po= Ug + uy SR wy

I_L_—l

PERTURBAT ] ON INELASTIC
TECHNIQUE COLLAPSE
u o= Auo *ouy PLASTICITY CREEP

ELASYIiC COLLAPSE

NONL 1 NEAR
DYNAMIC BUCKLING”
PARAMETRIC
EXCITATION

LINEAR NONLINEAR LINEAR
PRESTRESS PRESTRESS MODAL

l__‘_;_‘j

I INEAR PREBUCKL NONL INEAR

CLASSICAL
BIiFURCATION PREBUCKLING

BUCKL NG

FIG. 3 GENERAL NONLINEAR STATIC AND DYNAMIC ANALYSIS AND WHERE PLASTIC
BUCKLING FITS INTO THE BIG PICTURE. BOXES WITH HEAVY OUTLINES
ARE DISCUSSED HERE



these programs solve a very broad class of problems, it helps to
focus the discussion by showing graphically where the dis-
cipline called “plastic buckling’” fits into the general field of
structural analysis. The chart shown in Fig. 3 starts with a
general equation for the dynamic response, u, of a structure

to time-dependent loading, F. The operators D, K, and B may
be noniinear. In this chapter we are concerned with the
physics and methods enclosed in the emphasized boxes. There
has been much work done on dynamic, large-defiection elastic-
plastic failure of structures neglecting and including the effects
of interaction with a surrounding fluid medium. This signifi-
cant research will not be surveyed here. In particular, the box
labeled ‘’Dynamic Buckling,” although an important part of
the general discipline of plastic buckling, will not be covered
because of lack of space.

CONCEPTUAL DIFFICULTIES IN
BIFURCATION BUCKLING {N THE PLASTIC RANGE

SUMMARY

Before the 1970’s bifurcation buckling analyses involving
plasticity were applied to simple structures with uniform pre-
stress. Sewell [4] gives an extensive survey and a bibliography
with more than 600 papers. Basic conceptual difficulties were
cleared up and paradoxes resolved. It is now understood that
the nonconservative nature of plastic flow does not prevent
the use of bifurcation buckling analysis to predict instability
failure of practical structures; the concept of consistent load-_
ing of the material in the transition from the prebifurcation
state to an adjacent post-bifurcation state permits the use of
instantaneous prebifurcation material properties in the stabil-
ity equations; and an investigation of the effect of very small
initial imperfections on the collapse loads of cruciform
columns indicates that the reduced shear modulus G obtained
from deformation theory should be used in the stability equa-
tions even if there is no history of shear along the prebifurca-
tion path.

With the high speed electronic computer, it is now feasible
to calculate the elastic-plastic bifurcation buckling loads of
rather complex structures, including large prebuckling deflec-
tions and elastic-plastic effects.

THE PROBLEM OF NONCONSERVATIVENESS

Systems involving plastic flow are nonconservative. The
energy required to bring a structure from its prebifurcation
state to an adjacent buckled state depends upon the path of
transition if any of the material is loading into the plastic
region. Hill [25, 26] has shown, however, that as long as the
infinitesimal path is reasonably direct, the variation in in-
finitesimal energy dissipation from one path to another con-
sists of higher order terms only.
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THE PROBLEM OF LOADING RATE DURING BUCKLING

Analysis of the bifurcation buckling of elastic-plastic struc-
tures dates back to 1889 when Engesser [88] presented his
tangent modulus theory for columns and Considére [89] set
forth the “effective” or “'double” modulus theory based on
the assumption that the column unloads elastically on the
concave side during incipient buckling at a given load. In
1895 Engesser, who had assumed that the total load on the
column remains constant during buckling, acknowledged error
in his original theory and determined the general expression
for the reduced modulus. In 1910, von Karman [90] presented
the Considére Engesser theory again, with actual evaluation of
the reduced modulus for rectangular and idealized H-sections
and comparisons with tests. Until Shanley’s paper appeared in
1947 [91] the reduced modulus or “double modulus’” model
was accepted as the exact theory of column action, even
though the tangent modulus model gave better agreement with
tests. Shanley [91] resolved the paradox in 1947, when he
stated:

*'. . . in the derivation of the reduced-modulus theory a question-

able assumption was made. It was assumed, by implication at

least, that the column remains straight while the axial load is

increased to the predicted critical value, after which the column

bends or tries to bend. Actually, the column is free to ‘try 1o

bend’ at any time. There is nothing to prevent it from bending

simultaneously with increasing axial load. Under such a condi-

tion it is possible to obtain a nonuniform strain distribution

without any strain reversal taking place.”

In a discussion appended to Shanley’s paper, von Kdrman
further clarified the theory stating,

’Both Engesser’s and my own analyses of the problem were
based on the assumption that the equilibrium of the straight
column becomes unstable when there are equilibrium positions
infinitesimally near to the straight equilibrium position under
the same axial load. .

... Mr. Shanley’s analysis represents a generalization of the
question . . . What is the smallest value of the axial load at
which a bifurcation of the equilibrium positions can occur,
regardless of whether or not the transition to the bent position
requires an increase of the axial load?"’

In 1950 Duberg and Wilder [92] provided further insight
into the problem by showing that for small, finite imperfec-
tions bending will take place immediately as the load is ap-
plied but that locai unloading of the material will not occur
until the column has been subjected to a relatively large bend-
ing moment. For vanishingly small initial imperfections, finite
bending of the column will start at the bifurcation load pre-
dicted by the tangent modulus theory. Elastic unloading will
not occur, however, until a higher load at which the column
has deformed a finite amount along the post-bifurcation load-
deflection curve. Duberg and Wilder show that for practical
engineering materials, the maximum load carrying capability
of the column is only slightly above the tangent modulus bi-
furcation point.

It is physically reasonable to extend the concept of
"“tangent modulus bifurcation” to buckling of two-dimensional



plate and shell structures. Experiments and analyses have been
conducted for simple plates and shells in which the prebuckling
state is characterized by uniform compressive stress {See, e.g.,
[93-102] ). The analyses just cited are based on the tangent
modulus method. Sewell [4] gives a more extensive biblio-
graphy.

In 1972 Hutchinson [7] calculated axisymmetric collapse
pressures of an elastic-plastic spherical shell with various
axisymmetric imperfections. As the imperfection amplitude
approaches zero the collapse load approaches a value very
slightly above the tangent modulus bifurcation load calculated
from J, flow theory for a perfect shell, In justifying the use of
the tangent modulus approach to bifurcation problems in
general, Hutchinson [3] in 1974 wrote:

"“The bifurcation solution is a linear sum of the fundamental

solution increment and the eigenmode. We can always include a

sufficiently large amount of the fundamental solution increment

relative to the eigenmode such that the bifurcation mode satisfies
the total loading restriction.

. .. The confusion in bifurcation applications apparently stems

from the misconception that when bifurcation occurs total load-

ing will be violated. On the contrary, it is the total loading condition

itself which supplies the constraint on the combination of fundamen-

tal solution increment and eigenmode which must pertain.”’

The “total loading’ condition cited above justifies the use
of the ““tangent modulus” approach to bifurcation buckling
problems of elastic-plastic shells. The fact that the collapse
load is only slightly above the bifurcation load for vanishingly
small imperfections makes an elastic-plastic bifurcation stabil-
ity analysis in principle just as suitable for design purposes as
an elastic bifurcation stability analysis. For bifurcation buck!-
ing of general shells under combined loading, in which the
stresses are nonuniform and in which the prebuckling solu-
tion may be characterized by regions which are elastic or un-
loading and other regions which are loading into the plastic
range, the ““total loading” condition enunciated by Hutchinson
may be generalized by the statement that the rate of change
of material properties or “'tangent properties’ in the pre-
bifurcation analysis govern the eigenvalue analysis also.

. The following heuristic argument should further clarify the
“total” loading or “‘consistent’’ loading concept. Let us
hypothesize that the eigenvalue obtained from the consistent
loading model is physically meaningless because a finite amount
of material which has been loading into the plastic region sud-
denly unloads in the infinitesimal transition from the unbuckl-
ed state g to the buckled configurationg + 8¢. The effect
would be to produce a stiffer structure and hence, in the pre-
sence of a given prebuckling state, a higher eigenvalue than
would result from the consistent loading model. Suppose also
that an eigenvalue and corresponding kinematically admis-
sible mode have been determined from the consistent loading
model. Now assume that a new nonlinear equilibrium analysis
is performed for the shell with an infinitesimal imperfection
of the same shape as this buckling mode. Since the imperfec-
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tion is infinitesimal, the load-deflection behavior will differ
from that of the perfect shell only infinitesimally for loads
smaller than the lowest eigenvalue obtained from the con-
sistent loading model. If, as hypothesized, this eigenvalue were
physically meaningless and the true bifurcation point lies a
finite load increment above it, then the material of the in-
finitesimally imperfect shell would continue to load consis-
tently right through the neighborhood of the bifurcation load
calculated by means of the consistent loading model. A contra-
diction therefore exists: It has just been hypothesized that the
eigenvalue from the consistent loading model is physically
meaningless because /nfinitesimal perturbations of the form

of the buckling mode cause a finite amount of the material to
unload suddenly. However, the material of an actual shell
containing such a perturbation in geometry loads consistently
at'the eigenvalue calculated from the consistent loading model.
Therefore, this eigenvalue must be physicaliy meaningful and
must correspond to a bifurcation point on the load-deflection
curve of the perfect shell.

THE FLOW THEORY VS DEFORMATION THEQORY
PARADOX

During the years when plastic buckling of uniformly stres-
sed plates and shells was first being investigated, a perplexing
paradox became apparent: Theoretical considerations and
direct experimental evidence indicates that for general load
paths flow theory is correct while deformation theory is not.
However, bifurcation buckling analyses based on deformation
theory conform better to experimentally determined buckling
loads than do such analyses based on flow theory. The dis-
crepancy may have to do with whether or not the instantane-
ous vield surface has corners. Experimental evidence on this
point is contradictory. About half of the experiments indicate
that corners develop on yie!d surfaces and half do not. Experi-
ments by Smith and Aimroth [103] indicate that the yield
surface may develop a region of very high curvature which
“smooths’” out with time. Recent surveys of yield surface
experimentation are given by Michno and Findley [104] and
Hecker [105].

The discrepancy in the prediction of bifurcation buckling
loads is most pronounced in the case of an axially compres-
sed cruciform column, discussed by Stowell [94], Drucker
[106], Cicala [107], Bijtaard [108], Gerard and Becker
[102], and Onat and Drucker [97]. If the column is not too
long, it buckles in a torsional mode. The prebifurcation stress
state is uniform compression while the bifurcation mode in-
volves pure shear. In a flow theory involving a smooth yield
surface the shear modulus remains elastic as the material of the
column is uniformly compressed into the plastic range. Use of
deformation theory gives the instantaneous shear modulus
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where £ is the secant modulus. Since the predicted torsional
buckling stress is proportional to the effective shear modulus,
the discrepancy in predicted bifurcation loads is governed by
the difference between G and G. Figure 4, taken from Gerard
and Becker [102], shows that tests definitely indicate that G
rather than G should be used in the bifurcation buckling analy-
sis. Onat and Drucker [97] and Hutchinson and Budiansky
[17] resolved the paradox by showing that cruciform columns
with very small initial twist distributions and modeled with use
of J, flow theory are predicted to collapse at loads only
slightly above the bifurcation loads predicted with deforma-
tion theory. Apparently a very small amount of shearing strain
in the prebifurcation solution suffices to reduce the effective
shear modulus from the elastic value G to a value near that
predicted by deformation theory.

Because of this extreme sensitivity of the shear modulus to
small, imperfection-related shearing forces applied while the
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material is being stressed, nominally without shear, into the
plastic range, the value of G, predicted by deformation
theory should be used in bifurcation buckling analyses. The
purpose of this strategy is to eliminate much of the flow
theory vs deformation theory discrepancy in buckling predic-
tions.
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FIG.5 TENSILE STRESS-STRAIN CURVE AND BIFURCA-
TION STRESSES FOR A PERFECT SPHERICAL SHELL
UNDER EXTERNAL PRESSURE
{(FROM HUTCHINSON [7])

in cases involving no in-plane shear either in the prebuckiing
phase or in the buckling process, J. deformation theory still
predicts lower bifurcation buckling loads than does J, flow
theory. The axisymmetric buckling analysis of a spherical shell
presented by Hutchinson [7] and shown here in Fig. 5is a
good example. Since ./2 deformation theory has given better
agreement with test results than has 4, flow theory, and since
the discrepancy is not entirely related to the difference in ef-
fective shear modulus, it is prudent to perform stability anal-
yses using both theories in order to establish the sensitivity of
the predictions to the two models.

ASYMPTOTIC ANALYSIS: POST-BIFURCATION AND
IMPERFECTION SENSITIVITY IN THE PLASTIC RANGE

Practically all of the work in this area has been done in the
last decade by Hutchinson, Tvergaard, Needleman and their
coworkers [2-18] . Hutchinson gives a summary in [3] and
Tvergaard in {5] and [6]. The theory represents extensions to



the general theory of unigueness and bifurcation in elastic-

plastic solids derived by Hill in 1958-1959 [26-27] and the

general post-buckling theory developed by Koiter for elastic
structures in 1945 [28].

ELASTIC POST-BIFURCATION ANALYSIS

At a bifurcation point where the buckling mode is unique,
Koiter’s general elastic post-buckling theory leads to an as-
ymptotically exact expansion for the load parameter A in
terms of the bifurcation buckling modal amplitude, Wy,

M = T+aw, thwy® +. .. (2)

Three types of elastic initial post-buckling behavior are shown
in Fig. 6. Solid curves show the behavior of perfect structures
and dotted curves the behavior of imperfect structures with
imperfections in the form of the critical bifurcation buckling
mode. The ultimate load carrying capabilities of the structures
represented by Figs. 6(a) and (b) are sensitive to initial imper-
fections while that represented by Fig. 6(c) is not. For the case
6(a), which is asymmetric with respect to the sign of the buckl-
ing modal amplitude wy,, a negative imperfection amplitude
Wimp CONverts bifurcation buckling into limit-point or “snap”’
buckling at a reduced load A, given by Koiter's general theory
as

12

AN, = V2(-paw, (3)

imp
in which p is a constant that depends on the imperfection
shape. For the symmetric case 6(b) the limit load of the imper-
fect structure is

)2/3

AN = 1-3 (-6/8)'3 (pw, (4)

mp
Tvergaard [5] and the authors he references give similar
formulas for initial post-buckling in cases where there are
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(FROM TVERGAARD [5]).
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several buckling modes associated with the critical bifurcation
point.

PLASTIC POST-BIFURCATION ANALYSIS

Figures 7(a) and (b) are analagous to Figs. 6(a) and (b).
Note that bifurcation in the plastic range occurs under increas-
ing load, so that unlike the elastic cases, the maximum load-
carrying capability of perfect structures is slightly above the
bifurcation load >\¢ and occurs at amplitudes wy, for which a
finite amount of material has experienced strain reversal.

x maximum
ainitial unloading
oinitial yield

W,

b

(a) (b)

FIG. 7 INITIAL POST-BUCKLING BEHAVIOR IN THE
PLASTIC RANGE IN CASES WHERE THE BIFURCATION
MODE IS UNIQUE. DASHED CURVES SHOW EFFECT
OF SMALL INITIAL IMPERFECTIONS
{(FROM TVERGAARD [5]).

Perfect Structures

For the plastic range an asymptotic theory of initial post-
bifurcation behavior of perfect structures was developed by
Hutchinson [3, 8] . An asymptotic expansion is obtained for
the initial post-bifurcation load in terms of the bifurcation
modal amplitude, wj,, as in Koiter’s elastic post-buckling
theory. In the plastic range, the treatment is complicated by
the phenomenon of the elastic unioading, which starts at bi-
furcation and spreads into the material as the buckling modal
amplitude increases. When the buckling mode is unique the
asymptotically exact expression for the load parameter X in
terms of the buckling modal amplitude wy, is

MA, = TN w, + 2, wpy P (5)
with 0 <f < 1. The value of § depends on the shape of the un-
ioading regions [3]. The constant A; is positive since bifurca-
tion takes place under increasing load. Its value is determined
by the requirement that plastic loading takes place. The coef-
ficient A, is negative, so that the truncated expansion [5] can
be used to estimate the maximum support load of the perfect
structure, which is slightly above the critical bifurcation load.
An extension of the asymptotic expansion [5] to cases of



several coincident buckling modes has not been carried out.
The asymptotic theory for plastic post-bifurcation of perfect
structures has been applied by Tvergaard and Needleman to
study the behavior of structures with symmetric [16] and
asymmetric post-bifurcation behavior [11-13] .

Imperfect Structures

In 1972 Hutchinson [7] reported the results of a numerical
axisymmetric plastic buckling analysis of perfect and imperfect
spherical shells loaded by uniform external pressure. The shell
material is characterized by a Ramberg-Osgood stress-strain
relation

ele, = o/o, +a (o0, )" (6)
witha=0.1 andn = 6. The geometrical parameter of the
sphere is

[3(1-0%)] 12 t/(ey R) =3 (7)

From Fig. 5 it is seen that the bifurcation stress of the perfect
shefl is 1.5 times the effective yield stress o, and is about 7
percent above the prediction of J, deformation theory. Figures
8 and 9 show the results of an analysis including imperfections
of various amplitudes taken in the shape of the bifurcation
buckling mode. Figure 8 (a) reveals that even though the initial
post-bifurcation slope is positive, the buckling load is sensitive
to initial imperfections. The onset of elastic unioading occurs
at practically the same load as the collapse load. Figure 8(b)
shows that the difference in predicted failure between the Ja
fiow theory and J, deformation theory models disappears for
imperfection amplitudes greater than about one-tenth the wall

{lnilial Post-Bifuecation Siope

1.0 JZ Flow Theory

3 N Pregictions

imp 0.8 F
Pmax 0.6
prmax
~ Llastic unloading begins o

Detormation

0.4
Tgueory Predictions

o Limit loag 0.2

OD 6.1 02 03 0.4 0.5 0 0 040203 0.4 0.5
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FIG. 8 (A) PLASTIC POST-BIFURCATION BEHAVIOR AND
IMPERFECTION SENSITIVITY OF A SPHERICAL SHELL
UNDER EXTERNAL PRESSURE.

(B) IMPERFECTION SENSITIVITY OF SPHERICAL
SHELL SHOWING DIFFERENCE BETWEEN
FLOW AND DEFORMATION THEORIES
ONLY FOR SMALL IMPERFECTION
AMPLITUDES.

(FROM HUTCHINSON [7])
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FIG. 9 BUCKLING PRESSURES FOR SPHERICAL SHELLS

WITH FLAT SPOT IMPERFECTIONS. FOR BOTH CURVES,

pZ®* 1S THE MAXIMUM SUPPORT PRESSURE OF THE

PERFECT SHELL AS PREDICTED BY J, FLOW THEORY
(FROM HUTCHINSON [7]).

thickness. Figure 9 shows that for very small imperfections the
plastic buckling load is not as sensitive to imperfections as is the
the elastic buckling load. Also, as Hutchinson [7] points out,
imperfection sensitivity is not as severe a problem for plastic

as it is for elastic structures because plastic buckling requires
relatively high thickness-to-radius ratios for which it is much
less difficult to manufacture “reasonably perfect” shells. This
conclusion is borne out by the comparisons between test and
theory for a great variety of axisymmetric shells shown in a
following section.

Hutchinson further discusses the effect of small imperfec-
tions on plastic buckling loads in [9] . There he provides an
asymptotic estimate of the load at which elastic unloading
begins. For many unstable structures this load is only slightly
below the fimit load. An asymptotic expression for the limit
load, such as given by Koiter's general theory [28] for elastic
shells [Egs. (3) and (4)] is not vet available. The main problem
is that the limit load of the structure with an infinitesimal
imperfection in the form of the critical bifurcation buckling
mode is not infinitesimally close to the bifurcation point, as
is true in the elastic range, but lies a finite distance away. Con-
sequently, elastic unloading usually oceurs before the limit
point is reached. An asymptotic expansion of the initial part
of the equilibrium solution for the imperfect structure is valid
only to the point at which elastic unloading begins. Representa-
tion of the remaining part requires a second asymptotic expan-
sion that accounts for the growing elastic unioading region.

Hutchinson and Budiansky [17], Needleman and Tvergaard
[14], and Tvergaard [15] have devised asymptotic theories for



the plastic limit loads A, of imperfect structures using hypo-
elastic theories {/, flow theory without elastic unioading).
Even though these asymptotic analyses ignore elastic unload-
ing, they yield accurate predictions of the limit loads. Figures
10-12 apply to elastic-plastic imperfect cylindrical panels under
axial compression. A Ramberg-Osgood-type material stress-
strain law was used for the analysis:

1 i
g&’lt_ (i)” —— ¥ 1]
Eln o, n

The figures show the effects of panel depth 8 and material
hardening parameter n on the equilibrium paths and limit
loads of imperfect panels. {In each case the imperfection is in
the form of the critical bifurcation mode of the perfect panel.)
Figures 10 and 11 show the results of an elastic-plastic finite
element analysis and Fig. 12 shows a comparison between this
numerical approach with the more approximate hypoelastic
approach.
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FIG. 12 COMPARISON OF NUMERICAL RESULTS AND
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IMPERFECTION SENSITIVITY OF ELASTIC-PLASTIC
CYLINDRICAL PANELS.
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A SURVEY OF WORK DONE ON
GENERAL NONLINEAR ANALYSIS

Most engineering analyses involving plastic buckiing are per-
formed with general purpose computer programs that are
based on the displacement method with finite element dis-
cretization. The vast potential of the finite element method
was recognized after Turner, Clough, Martin and Topp publish-
ed their classic paper in 1956 [110] . Use of the finite element
method for the solution of nonlinear structural problems be-
gan in the early 1960’s.

NONLINEAR FINITE ELEMENT ANALYSISPRIOR TO
AND INCLUDING 1973

Table 1 presents some of the important papers [111-152]
and [52-54] published in the early years of nonlinear static
finite element analysis. The references in the table have been
divided into three sections, those that deal with geometric
nonlinearity only, those that deal with material nonlinearity
only, and those that deal with both types of nonlinear behavior.
Each section ends with reference to survey articles pertinent
to that section. The list of papers is far from exhaustive. A
more complete list of references appears in the survey article
by Tillerson, Stricklin and Haisler [54]. Tillerson, et al. [54]
include a review of direct minimization procedures based on
search methods as well as formulations based on finite dif-
ference discretization of the energy functional used in the
principle of virtual displacements. The papers listed in Table
1 might be thought of as forming a theoretical foundation
upon which rest the current general purpose finite element
computer programs for.nonlinear structural analysis. Other
works on nonlinear structural analysis prior to 1973 are includ-
ed in the symposia proceedings [83-86] .

For formulations with combined geometric and material
nonlinearities, the tangent stiffness method is favored because



TABLE 1 SOME FINITE ELEMENT FORMULATIONS AND SOLUTION STRATEGIES
PRIOR TO AND INCLUDING 1973

Type of Ref.
Nonlinearity No. Author Year Formulation*® Solution Strategy
{111} Turner et al. (1960) UL, ™™ No Equilibrium Check
[114] Argyris et al. {1964) ™ No Equilibrium Check
[116] Martin {1966} UL, ™™
[117] Gallagher et al. (1967) ™
[1181 Mallet & Marcal {1968) TL, ™ Newton-Raphson
[119] Murray & Wilson {1969) UL, T™M Modified Newton
Geometric {1201 Oden (1967) ™ Newton-Raphson
Only [121] Oden & Key (1970) ™ Newton-Raphson
[122] Stricklin et al. {1971) T™ Self-Correcting
[123] Martin (1969) Survey Survey
[124] Oden {1969) TL, TM Modified Newton
[125] Haisler et af. (1972) Survey Survey
[126] Gallagher et al. (1962) R
[127} Argyris {1965) R
[128] Swedlow & Yang (1965} ™
[129] Pope {(1966) ™
[130] Marcal (1965) R, T™™
[132] Marcal & King (1967) ™
Material [134] Witmer et a/. (1969) R Successive Substitution
Only [135] Zienkiewiczetal. (1969) R Successive Substitution
{136} Yamada et al. {1969) ™ No Equilibrium Check
[1371] Khojasteh-Bakht (1970) R, ™
[138] Marcal (1972) Survey Survey
[139] Yamada (1970} Survey Survey
[140] Felippa {1966) UL, TM No Equilibrium Check
[141] Armen et al, (1968) R, ™ No Equilibrium Check
[143] Hibbitt et al. {1870) TL, T™
Combined [144] Mareal (1870) TL, T™ No Equilibrium Check
Geometric [148] Yagmai & Popov  (1971) UL, T™M No Equilibrium Check
and Material [149] Hofmeister et al. (1971) UL, ™ Modified Newton
[150] Zienkiewicz etal. {1971) Various Various
[151] Nayak et al. (1972} Various Various
[152] Levine et a/. (1973) UL, R, TM
[82] Stricklin et al. (1973) Survey Survey
[53] Stricklin et a/. (1972) Survey Survey
[54] Tillerson et a/. (1973) Survey Survey
*UL = Updated Lagrangian
TL = Total Lagrangian
R = Nonlinearities included in a pseudo force vector {Right-hand-side)
TM = Tangent modulus (tangent stiffness) method
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it is required anyway for convergence in cases involving signifi- o 5 g ~—i Aggh
cant geometric nonlinearities. Currently the Total Lagrangian .
formulation seems to be favored over the Updated Langrangian 2 ;
formulation for applications involving large rotations and smail S ExACT
strains (strains less than about 4 percent). The ““TL" is con- e SOLUTION
ceptually a bit more straightforward than the UL’ and it is §
easier to generate program code for the tangent stiffness con- <
stitutive law in cases involving small strains [50] . The favored D;Sgl_:é;‘:/l‘ENT o
solution strategy is a modified Newton method because it a CONVERGENT SOLUTION
provides a reliable equilibrium check without the use of an
inordinate amount of computer time. j
r, '
Q 9./ ¢ Fale it
o '__K;‘ERROR g
g + INCREMENTAL - -
g | SOLUTION ExACT g o
w SOLUTION & EOLUTION
é q 4 9 & G
DISPLACEMENT
Tt b. DIVERGENT SOLUTION
‘f 5 FIGURE 14 CHARACTERISTICS OF SUCCESSIVE
\ APPROXIMATIONS PROCEDURE
b (FROM TILLERSON ez a/. [54])
I-;Tl b
497 NODAL DISPLACEMENT, q o=
FIG. 13 DRIFTING TENDENCY IN INCREMENTAL %
STIFFNESS PROCEDURE ;
{FROM TILLERSON et a/. [54]) <
Q.
%l Q Q, q, QN
Figures 13-15 demonstrate the meaning and numerical be- DISPL ACEMENT
havior of the incremental method with no iterative check on 0. CONVENTIONAL  NEWTON-RAPHSON
equilibrium (Fig. 13}, the method of successive substitutions PROCEDURE
{Fig. 14) and two Newton-like methods (Fig. 15}, The slopes Q+aQ
of the straight solid line segments at each load step or in each e
iteration represent schematically the stiffness matrix; a change o 4=
in slope indicates calculation of a new stiffness matrix. The o
modified Newton-Raphson method is a combination of the %
full Newton-Raphson method and the method of successive %
substitutions: At a certain load, Q, a new tangent stiffness a aa, a,
matrix is calculated and the method of successive substitutions DISPLACEMENT
is used to determine the state at the load Q + AQ. The stiffness b. MODIFIED NEWTON-RAPHSON PROCEDURE
matrix is recalculated at any load level for which the number FIG. 15 CONVERGENCE CHARACTERISTICS OF NEWTON-
of iterations of successive substitutions required for converg- RAPHSON METHOD
ence to some specified accuracy is greater than a specified (FROM TILLERSON et a/. [54])

amount. More will be said about formulation and solution
strategy in the following sections.

During this same period (1965-1973), many papers were metric curved shell element through systematic degeneration
published introducing new elements for the analysis of thin from an isoparametric solid element. The convergence with
and thick shells. Perhaps the most important of these is the increasing mesh refinement of results obtained with use of
article by Ahmad, et al. [154], who developed an isopara- this “Ahmad”’ element is greatly improved by reduced Gaus-
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sian integration schemes introduced by Zienkiewicz, et af,
[155}, and Pawsey and Clough [156].

In all of these analyses cited above which include elastic-
plastic material behavior, the constitutive law is based on
either isotropic or kinematic [157, 158] strain hardening.
Other hardening models, such as the multiple subvolume
models of White and Besseling [159] and Mroz [160], the two-
surface theory of Eisenberg and Phillips [161], and the dis-
continuous models of Batdorf and Budiansky [162] and
Hodge and Berman [163] had been formulated by 1971 but
had not yet been implemented into general-purpose computer
programs. in 1972 Pugh, Corum, Liu, and Greenstreet [164]
specified certain hardening models for plasticity and creep to
be used in analyses of nuclear reactor structures. The harden-

ing models cited above are described in a survey article by
Armen [165] . The isotropic, kinematic, and multiple sub-
volume models are compared with tests involving various non-
proportional loading paths in a paper by Hunsaker, Vaughan
and Stricklin [79].

The large body of work cited above forms the basis for a
number of general and special-purpose computer programs for
nonlinear analysis in widespread use since the early 1970's.
These programs are described in the symposium proceedings
[19]. Bushnell [20] created an information retrieval system
for the symposium [19] based on data from questionnaires
sent to computer program developers and users. His paper
contains a great deal of detailed information on the major
structural analysis computer programs being used by the

TABLE 2 COMPARISON AND RATING OF AVAILABLE FEATURES OF PROGRAMS AS OF 1973

Ease of Special
Element Material Use/ Features

Ref. Library Treatment Documentation (4)

No. Program (1) (2) (3) abcde f gh
[166] ANSYS 3 3 3 T 1T 110X 1 X
[167] ASAS 3 1 2 Tttt 111 X1 X
[168] ASKA 3 2 3 1101 1 X 1 X
[169] BERSAFE 2 X X 00111 X 1 X
{170} EPACA 2 3 3 1001 1000
[171) MARC-CDC 3 3 3 1011 111 1
[172] NEPSAP 3 3 2 1t 011111 1
{173} PAFEC 70+ 3 1 X tT1 110 X1 X
[174] PLANS 3 3 2 0011101 1

The code used in the above table is as follows:

Element Library
1 = Limited to a special class of problems

In column (1}:

2 = Moderately general

3 = General
Incolumn (2): Material Treatment

1 = Limited

2 = Moderately general

3 = General

In column (3): Ease of Use/Documentation

This rating is based on either of the above items and includes some user reaction.

1

= Difficult/no documentation

2 = Moderate/limited documentation
3 Easy/extensive documentation
Special Features

(a) Restart

(b) Substructuring

{c} Multipoint constraints {tying nodes)
{d} Pre-and postprocessors

{e) Equilibrium checks

(f} Assumption checks

(g) Selective 1/0

{h} Taking advantage of linear range

in column (4):
Subcolumn

The rating for the special features is based on the following code.

X = No information
0 = WNotavailable
1 = Available
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TABLE 3 ANALYSIS FEATURES OF PROGRAMS AS OF 1973

Linear
Plasticity Material Linearization Equation
Theory Property Technique Solver
Program (1) (2) (3} (4)
ANSYS 1, K P, L, ML, RO R W
ASAS I P,L, ML, RO R F,PT, W
ASKA I, K P, L R PT
BERSAFE X P, L, ML X w
EPACA I,K P,L,RO ™ G
MARC-CDC I,K P, L, ML, RO ™ G
NEPSAP I, K P, L, ML ™ S
PAFEC 70+ | P,RO R F,B,wW
PLANS K P, L, RO R PT

The code used in the above table is as follows:

X = No information

Plasticity Theory

! = lIsotropic hardening

K = Kinematic hardening
Material Property

P = Elastic-perfectly plastic

L = Elastic-linear hardening

ML = Elastic-multilinear segments
RO
Linearization Technique

General:
In column (1):

In column (2):

In column (3):

R = Right-hand side (initial strain, or stress)

T™M = Tangent modulus

Linear Equation Solver

W = Wavefront

F = Full matrix

PT = Partitioning

T = Iterative

G = Gaussian elimination
8§ = Skyline

B Constant bandwidth

In column (4):

engineering community as of 1973, including opinions by
users. Armen [165] also surveyed computer programs, placing
special emphasis on modeling of elastic-plastic material

havior. Tables 2 and 3 are from Ref. [165] . The computer
programs listed in these tables are documented in Refs. [166-
174].

LARGE STRAIN FORMULATIONS AND TENSILE
BIFURCATION

To the engineer the phrase “plastic buckling” usually con-
notes failure of a structure composed of thin or slender parts
subjected to compressive loading. As mentioned previously,
buckling can occur at a limit point or at a bifurcation point,
as illustrated in Figs. 1 and 2. For most structures, buckiing
occurs when the strains are very small. Such phenomena pose ~
problems for the designers of columns, domes, and thin-walled
vessels for use with internal or external pressure.

However, there is another class of problems for which both
limit point and bifurcation plastic “buckling” occur. These
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Ramberg-Osgood or any other power-law representation

involve elastic-plastic continua under tensile loading. At certain
values of the tensile load, local necking initiates in cylindrical
rods, stretched sheets, spinning disks, and internally pressuriz-
ed vessels, and voids open up in continua. Although the term
““buckling” is not applied to such problems, they belong to the
same mathematical class as the “classical”’ buckling problems,
the only difference being that formulations of these problems
must allow for finite strains. A survey of plastic buckling
phenomena should briefly summarize this closely related field
in which so much has been accomplished in the 1970’.

Finite strain formulations in continuum mechanics are
included in the texts [31-35] and [76] and in papers by Green
and Naghdi [175], Budiansky [176-177], Lee [178], Willis
[179], Sewell [4], and Hutchinson [3,180]. Finite strains
are coupled with finite element discretization in the formuia-
tions of Hibbitt, et a/. [143], Hofmeister, et a/. [149] s
Zienkiewicz and Nayak [150], Bathe, ez a/. [49], Bathe and
Ozdemir [50], and McMeeking and Rice [181]. Tvergaard
[6] gives a survey on applications of tensile bifurcation theory
o necking in bars, plates and shells. There are numerous works



on large strain tensile bifurcation, including application to
cylindrical bars by Miles [182] , Chen [183], Needieman
[184], and Hutchinson and Miles [185] ; application to growth
and coalescence of voids by Needleman [186] ; and applica-
tions to plates and shells by Hill and Hutchinson {1871,
Needieman [188], Storen and Rice [189], Tvergaard [190],
Needleman and Tvergaard [191], and Tvergaard [192] . Sewell
{4] lists many additional references.

Sewell [4] and Hutchinson [180] present a lucid formula-
tion of the problem. Hutchinson uses the Total Lagrangian
formulation in incremental (rate) form, presents a generaliza-
tion of J; flow theory to the finite strain case [177], and
writes the equations for application to thin plates and shells.
He indicates that the two conditions required for the small
strain relation to provide an accurate approximation to the
exact finite strain formulation are:

1. The distinction between the metric tensors of the un-
deformed and deformed configurations should be small.

2. The stresses should be small compared to the instan-
taneous moduli.

NONLINEAR ANALYSIS SINCE 1973

Important recent developments in nonlinear structural anal-
ysis include the formulation and solution of static and
dynamic problems in which creep, plasticity and large deforma-
tion occur simultaneously; the development of unified theories
for the prediction of creep and plastic flow; the invention of
new, more accurate models for cyclic elastic-plastic phenom-
ena; and the evolution of better strategies for the solution of
nonlinear equations. Several new computer programs have ap-
peared for the analysis of two and three dimensional continua.
Most of the programs are based on the Total Lagrangian
formulation and include dynamic effects (inertial body forces).
In many of them, temperature-dependent material properties,
finite strains, and arbitrarily large displacements are permitted.
Plates and shelis are modeled most frequently with use of the
Ahmad-Pawsey isoparametric element [154-156) . The simuita-
neous nonlinear equations that result from discretization of
a continuum are solved by various strategies, but in contrast
to the state-of-the-art a few years ago (Table 1), an iterative
equilibrium check is now almost always provided.

Combined Plasticity and Creep,; Viscoplasticity

Cyr and Teter [193] derived a computer program for two-
dimensional structures with temperature-dependent material
properties. Strains are assumed to be small and the tangent
stiffness method is used, with creep effects included in the
tangent modulus rather than as pseudo-load terms. Sharifi
and Yates [172] use a similar approach in their derivation of
a program applicable to three dimensional continua. Bushnel!
[22, 23, 194-196] developed computer programs for axisym-
metric shells and solids including calculation of bifurcation
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points corresponding to nonaxisymmetric equilibrium states
adjacent to the fundamental states, which are derived including
the effects of moderately large axisymmetric deflections,
elastic-plastic material properties, and primary or secondary
creep. In his small strain formulation he uses a double iteration
strategy for solving the nonlinear equations and a subincre-
mental technique for accurately determining plastic flow and
creep. More details on his formulation will be given in a follow-
ing section. Zienkiewicz and Cormeau [197], Nagarajan and
Popov [198], and Kanchi, Zienkiewicz and Owen [199] use

a viscoplastic mode! to obtain inviscid plasticity predictions
either by extrapolating results for very large viscosity coef-
ficients or by introducing time steps at each {oad level to pro-
duce a quasi-static relaxation to the true nonlinear elastic-
plastic solution.

Krieg [200] gives a survey of theories in which inelastic
strain is treated as a unified quantity, not separated into time-
dependent and time-independent parts. Such unified formula-
tions are capable of representing primary and secondary creep,
cyclic hardening, conventional plastic behavior and creep-
induced, strain-rate-dependent Bauchinger effects. Difficulties
in implementing these theories into computer programs for
use by engineers include the design of material tests for deter-
mination of constants and functions in the models and the
possibility of numerical instability in the integration of the
constitutive equations. Krieg [200] proposes various strategies
depending on whether accuracy or stability are limiting condi-
tions. Hughes and Taylor [201] propose a one-parameter
family of implicit algorithms for viscoplastic finite element
analysis that is unconditionally stable. Rashid and Tang [202]
unify creep and plasticity by treating the yield surface as strain
rate dependent with a single associated flow rule for both
plastic and creep strains. Classical plasticity theory applies at
high strain rates and creep holds for low strain rates. The
numerical implementation is difficult because an unfavorable
relationship between yield surface growth and contraction and
the stress rate can lead to oscillatory solution behavior.

New Computer Programns

New general-purpose computer programs that handle simul-
taneously large deflections, creep and plasticity include
ADINA [203], AGGIE | [204], TRICO [205], and programs
generated at the Institut fur Statik und Dynamik (1SD) in West
Germany [206] . General-purpose programs that handle large
deflections and elastic-plastic effects include STAGSC1 {2071,
ANSR [208], and GNATS [209] . A special-purpose program
for application to problems with large deflections, plasticity
and creep of axisymmetric pressure vessels is BOSORS [22],
which calculates the nonlinear fundamental path (OA in Fig.
1)} and bifurcation points (B in Fig. 2a) on this path cor-
responding to nonaxisymmetric buckling modes. A set of
benchmark problems has been established. Clinard, Corum and



Sartory [210] show comparisons of benchmark test results
with results obtained by various general-purpose programs.

New Elastic-Plastic Material Models

New analytical models for elastic-plastic material behavior
include the “two-surface’” theories of Krieg [211], Dafalias
and Popov [212] and Petersson and Popov [213]. These
models are especially designed to predict accurately the be-
havior of a material subjected to repeated reversed loadings
into the plastic range. Although they show great promise, they
have not yet been incorporated into general-purpose programs.
Krieg and Key [214] discuss implementation of a finite strain
plasticity theory into a finite element computer program. This
model includes a combined kinematic-isotropic hardening rule.

New Strategies for Traversing Limit Points

Obtaining solutions in the neighborhood of a limit point
such as E in Fig. 2(a) presents a difficulty if the load is pre-
scribed because the stiffness matrix is singular at E and il
conditioned close to E. Haisler, Stricklin and Key [60] briefly
survey numerical methods for tracking the load-deflection
curve over the limit point and suggest a self-correcting ap-
proach based on displacement incrementation in the neighbor-
hood of the limit point. As an illustration they choose an arch
with a concentrated load, for which it is obvious which dis-
placement component to specify. Gallagher [215, 215a], gives
surveys for nonlinear elastic systems. Yokoo, et a/. [216],
present a perturbation method which they claim is especially
designed for numerical investigation of limit points and post-
buckling equilibrium. They distinguish between an incremental
constitutive relation

AO'," = Ciij AEkQ (g)

and the instantaneous rate relation

° _ ® 1
0ii = Cijike €ke (10

by expanding all variables in Tayior series of the load param-
eter about the known state corresponding to the last converged
solution,

The method of Riks [65, 66] appears more promising.
In a paper which very clearly sets forth the difference between
limit point collapse {‘snapping”) and bifurcation buckling
[651, he suggests a method for traversing limit point collapse
loads by introducing an auxiliary equation such that the nor-
malized determinant of the Jacobean of the augmented equa-
tion system is maximized at each load step. Physically Riks’
method corresponds to use of the arc length of the equilibrium
path as a loading parameter. The use of such a loading parame-
ter eliminates numerical difficulties associated with ill condi-

tioned stiffness matrices for loads near the limit point and the
singularity at the limit point. Riks extends the method for ap-
plication to bifurcation buckling problems in Ref. [66].

In Ref. [67] Haftka, Mallett, and Nachbar propose a meth-
od whereby discretized nonlinear snap-through buckling prob-
lems are transformed into linear bifurcation problems: The
nonlinear prebuckling behavior of a real structure is represent-
ed by an “imperfection” in a hypothetical “modified
structure,”” and a form of Koiter’s analysis [28] is used to
predict the behavior in the neighborhood of the snap-through
buckling point. The aim is to avoid lengthy computations as-
sociated with a direct nonlinear analysis. However, in Ref.
[68] Cohen and Haftka find that the method does not appear
to be practical for shells of revolution because in many cases the
prebuckling nonlinearity may be too large to be treated ac-
curately as a small imperfection.

The methods developed by Bergan and Séreide [61] and
Bergan, et a/. [62], also appear promising. Bergan and Séreide
[61] construct an algorithm for automatic computation of
variable load increments and decrements. The magnitude of
the load increment or decrement is based on a maximum al-
lowable difference between a linear and quadratic extrapola-
tion of the equilibrium path in (o, 1 7ll) space, where p is the
scalar load amplitude, r is the solution vector, and lrllis a suit-
ably chosen norm of the solution vector. (For example, for a
shallow spherical cap subjected to uniform external pressure,
p is the pressure and lIr|l might be the volume enclosed be-
tween the undeformed and deformed cap.} This procedure
leads to a nearly constant number of iterations required for
convergence at each load level. Bergan, er a/. [62] extend the
strategy of [61] by introducing a scalar quantity called the

“current stiffness parameter”’, Sp:

s='T~R/(r'T-R) (11

p ~ To

in which R is the reference load vector normally held constant,
io is the initial rate of change of the solution vector with
respect to the loading parameter p, and ¥ is the current rate of
change of the solution vector. The “current stiffness param-
eter” Sp is unity for linear systems, less than unity for soften-
ing systems, greater than unity for stiffening systems, and
negative for unstable systems. The size of the load increment
is determined by the strategy of Bergan, et a/., [62], and the
sign of the load increment is determined by the sign of Sp. In
examples Bergan, et a/., [62], have determined that it is
advantageous to take two load steps without equilibrium itera-
tions just after any reversal in the sign of Ap and to prescribe
an upper bound for the norm of the solution vector in the
neighborhoods of limit points.

Figures 16-18 are taken from Ref. [62]. Figure 16 shows
how the current stiffness parameter Sp varies with the solution
norm ||¥]] and with the load parameter p for a system which
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initially softens, snaps through, and then stiffens. Figures 17
and 18 demonstrate that the strategies described in [62]

work for problems with rapidly and abruptly changing stiffness
and stability characteristics. Both examples were completed in
only one computer run per case. Load incrementation was
used throughout. Bergan, et a/. [63] introduce a “'bifurcation

index”’ /p defined as

=S, S5 /s, -} (11a)
in which S is the value of S just before bifurcation and .S‘+
that just after bifurcation. In Ref. [83] is given a table in
which values of / in the range + = >/ > - = are associated
with various types of bifurcation buckhng behavior: / > o
means no bifurcation; / positive and of moderate snze means
bifurcation to an mmally stable branch; l = 0 means bifurca-
tion to a neutrally stable branch: 0 >/ > ~0.5 means bifurca-
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tion to an unstable branch with moderate sensitivity to initial
imperfections; -0.5 >I > - = indicates highly imperfection-

sensitive bifurcation.



FORMULATION AND SOLUTION OF
NONLINEAR STRUCTURAL PROBLEMS

Two areas will be emphasized in this section: the formula-
tion of the governing equations starting from the principle of
virtual displacements and various methods for solving the
resulting nonlinear equations and their advantages and dis-
advantages. The discussion of formulations follows articles by
Bathe, Ramm, and Wilson [49] and Bathe and Ozdemir [50].
That on solution techniques follows Almroth and Felippa
[218].

FORMULATION

The motion of a general body is shown in Fig. 19, which is
taken from Refs. [49] and [50] . The configuration is known
at times 0 and t and the objective is to determine it at time
t + At. In the following derivation a left superscript indicates
the time when the quantity occurs and a left subscript in-
dicates the configuration with respect to which the quantity
is measured. In the case of derivatives, a left subscript indicates
the time of the coordinate with respect to which the quantity
is differentiated. Thus,

2 P(

v!)

CONFIGURATION
AT TIME O

t+ A
X

ou;

I/

3 (t+ Atxj)

{12)

t+ar¥ij

All tensors are referred to Cartesian reference frames. The
principle of virtual displacements, written for the current
configuration (time = ¢ + At) is

t+A _ t+AE
f(t+AtV)(t+At7/i)8(t+Ateij)( fav)= R (13)

where

t+AtL - t+At lo]
R = foA( Dtk)Eouk (" dA) +

0 At o
[ op (TR, f) by CdV)
oy
The quantities (t + AtT,-i)are the Cartesian components of the

Cauchy (true) stress tensor at time t + At, and (“’ AL fk) are

surface tractions and body force components at time ¢ +At
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FiG. 19 MOTION OF BODY IN CARTESIAN COORDINATE
SYSTEM (FROM BATHE, RAMM AND WILSON [49])



but measured with respect to the configuration at time = 0.
The variation Suy is an infinitesimal variation in the current
displacement component (¢ + Atuk). The summation conven-

tion for repeated indices is used here. The variation in true
strain corresponding to the infinitesimal variation in the dis-
placement field is :

sle+atg ) _ g 1 (244,

L trat, )
/] 2

i i

(15)

In dynamic analysis the body force components include inertial
effects.

Since the configuration at the current time t + At is un-
known, the principle of virtual displacements, Eq. {13}, must
be expressed in a form in which all variables are referred to a
known state. Then the integration will be performed over
known volumes and areas. If the static and kinematic variables
are referred to the initial state (time = 0), the formulation is
known as Total Lagrangian (TL). If they referred to the pre-
vious known state {time = ¢}, the formulation is known as the
Updated Lagrangian (UL). The remainder of this derivation
will follow the total Lagrangian formulation. Bathe, et al.
[49], and Bathe and Ozdemir [50] present details of both the
TL and UL formulations.

In the TL formulation the principle of virtual displacements
becomes [31, 34, 35] :

tHAT
[

Jrrat s;) 8 (16)

o _ tHAT
e,.j) dv = R
Oy

in which ”A;S’.I. are the components of the 2nd (symmetric)

Piola-Kirchoff stress tensor and t"'A;el./. are the components
of the Green-Lagrange strain tensor which is written in terms
of the current displacements T+ tuk
5 (HA;eij): 5 15 (t+A;Ui'j + t+Aor u;
t+At t+At a7
T 0tk oUk)

If incremental static and kinematic quantities are defined as

= t+ At t
oS = Sij = 0Sij

= t+ At - e,
o€ij T o€ij = ofij (18)
g, =ty 1,

the total Green-Lagrange strain increment can be decomposed
into linear and nonlinear parts
(19)

o€ij = o€ T o Mij
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with

1
ofij =5 [ovij*otji + Gui,i) lug ;)
t
+ (ouk,i) (o Uk,j)] (20)
-1
oMii = 5 (o) (oY, )

In addition, the increments of 2nd Piola-Kirchoff stress tensor
components can be related to the increments of Green-
Lagrange strain tensor components by the linear constitutive
law

osij = ociirs (oers) (21)
which is an approximation, since DC,-I-,S changes along the path

in the finite increment At. Furthermore, the variation in the
total strain §(T* Ag e,-j) is equal to the variation in the total

strain increment 5(06,-]). This equivalence and the relations

{18), (19), and (21) can be used to express Eq. (16) in the
form
o t I3
j;v oCiirs (o €, 8 (,€,)°dV +jo'vos,.j6 (om;/)°dV
_ t+At t o
= R-fos,ja(oe,.j) dv
%y
This variational principle represents a nonlinear equation for
the incremental displacements ;. The Updated Lagrangian
formulation leads to a completely analogous expression in

which the subscripts and superscripts {o) are replaced by (t)
and the equivalence of the 2nd Piola-Kirchoff stress tensor

(22)

t .
¢ S,-j to the Caunchy (true) stress tensor { Tij s noted. Of

course, the constitutive tensor for the U.L. formulation is now
tC,-j,s, which takes on different values from oCijrs' The
relationship between the two constitutive tensors is given by

o

oCrmnpa =;f X ) Cxp ) (cCiirs) GX p ) G x, ) (23)
t

Crnnpa =O_P © X ) & % ) 6 Ciins) G X, ) (G xg,5)  (24)

in which the derivatives ( x,,, ;), etc. are defined as in Eq.
(12). Bathe and Ozdemir [50] note that the TL formulation
for large displacements but small strain analysis is program-
med more easily because
“In this case large displacement analysis is a simple extension of
small displacement analysis in that the same subroutine which
calculates the material matrix in small displacement analysis can

be used without modification for large displacement conditions.
1t is only necessary to work with 2nd Piola-Kirchoff stresses and



Green-Lagrange strains instead of conventional small displace-
ment stresses and strains,”*

Equation (22) can be transformed into a system of
simultaneous nonlinear algebraic equations by division of the
volume 2V into an assemblage of finite elements and use of
isoparametric interpolation

)
x
"
M=z
>
x
S
X
<
<
]
Mz

h Wk)  (25)
1

k=1 k

in each element, where A/ is the number of nodal points in the
isoparametric element and h, are appropriate interpolation
polynomials. Integration is carried out numerically, usually by
Gaussian quadrature. For nonlinear elastic-plastic analysis of
shells the Ahmad-Pawsey isoparametric element [154-156] is
very popular. Bathe and Ozdemir [50] first linearize Eq. (22)
by replacing ,€,, by ,e,; and § {o€i7) by 6(oeij) and then per-
form modified Newton iterations, setting

t+AtUi(k) - t+Atui(k-1) + Aul.(k) (26)
in which & is the iteration number and ”Atuiw) = tui. More

details, including the formulation for follower loads such as
pressure, are given in Refs. [49] and [50].
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Figures 20 and 21 show the large deflection static response
of an elastic cantilever with a distributed dead load. Five 8-
node plane stress isoparametric elements were used in the
discretized model. The solutions were obtained from equations
linearized as just described for the TL formulation, with no
iterations for equilibrium refinement. It is seen that the dif-
ferences in results from the UL and TL formulations are due
only to the increment size, those for a large number of incre-
ments agreeing with each other and with Holden's solution
{220] . Presumably the large discrepancies shown in Fig. 21
would have vanished if iterations had been performed at each
of the five load steps, since the state of the elastic material is
independent of the ioad path and Eq. (21) is therefore exact
in this case.

Other examples are given in Refs. [49] and [50], including
the dynamic response of an elastic-plastic spherical cap with an
external uniform pressure applied as a step load.

METHODS OF SOLVING NONLINEAR EQUATIONS

Formulation and discretization of nonlinear structural anal-
ysis problems lead to a set of nonlinear algebraic equations of
the form

Flg.\N) =0 (27)

where A is a load parameter and g is a solution vector. Table

4, taken from Ref. [218], lists the various strategies for solv-
ing nonlinear equations, the names given these strategies in the
mathematical literature, and the names given in the engineering
literature. Three of the four groups are pictured graphically in
Figs. 13-15.



TABLE 4 ALGORITHMS FOR NUMERICAL SOLUTION OF
NONLINEAR ALGEBRAIC EQUATIONS

Major Groups

Algorithms

identifiers Often
Used in Engineering
Literature

Newton-like Standard Newton Newton-Raphson
Modified Newton
Damped Newton
Quasi-Newton
Steffensen
Successive Picard iteration Initial stress
substitution Perturbation Initiaf Strain
Contraction Pseudoload

Initial value {continuation,
imbedding, parameter
differentiation)

Minimization

Uncorrected integration,
Corrected integration,
Infinite interval

Random search

Incremental Step-by-
step

Self-correcting
Dynamic relaxation

Energy search

Sequential search
Steepest descent
Conjugate gradient
Variable metric
Gauss-Newton

Newton-Like Method's

These are based on Taylor series linearization in the neigh-
borhood of a solution (g, A). A sufficiently close initial estim-
ate g2 is required to start the iteration process. The iteration
sequence is

Kigk,A) Agk = F gk, N

(28)
gt =gk + Mgk, k=01,
in which the elements of the K-matrix are
Kj = OF;/0q; (29)

The primary advantage of the method is its characteristic of
quadratic convergence near the solution. The primary dis-
advantage is the need to generate and factor a new stiffness
matrix for every iteration. Most general-purpose programs con-
tain an option for performing a Newton iteration or iterations
at intervals of several load steps, say every fourth to every
tenth load step, depending on the rapidity of convergence of
the computationally less expensive but more weakly convergent
method of successive substitutions, which is used for the inter-
vening load steps. The strategy used in this modified Newton
method depends on the bandwidth of K. For the analysis of
shells of revolution it is feasible to perform Newton iterations
at every load step, whereas for the analysis of general shells a
single Newton iteration every fourth to tenth load step,
depending on the nonlinear behavior, is reasonable. The other
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Newton-like methods listed in Table 4 have been little used in
structural analysis.

Successive Substitution Method

In this iterative method all nonlinear terms are transferred
to the right-hand side as pseudoloads. A typical iteration is

Ko gk = NF, + Fpy (G5 0)
(30)
qk+1 = qk + Aqk

in which K|, is constant stiffness matrix (the tangent stiffness
at some earlier load step), and the nonlinear terms are contain-
ed in Fp, . The primary advantage of this method is that the
stiffness matrix K, is formed infrequently compared to the
number of iterations. Therefore, it is economical in mildly
nonlinear problems or when used in conjunction with a modifi-
ed Newton method, in which K, is updated whenever a pre-
specified number of iterations has been exceeded [207]. The
primary disadvantage is that the method is only linearly con-
vergent at best and is divergent in severely nonlinear problems,
as shown in Fig. 14. In addition, the stability determinant is
not available.

Initial Value Method

Equation (27) is converted into an initial value problem by
differentiating it with respect to the load parameter )\,



oF

oF
oq

T (31)
in which the initial condition is ¢{0} = 0 if A = O corresponds
to the undeformed configuration. Equation {31) may be solv-
ed by any standard forward integration scheme, such as Euler,
Runge-Kutta or predicter-corrector linear multi-step methods.
The primary disadvantage of the so-called “uncorrected” or
“forward marching” scheme represented by Eq. (31) is the
tendency of the solution g(A) to drift from the true equilibrium
path as shown in Fig. 13. This drifting tendency is corrected
by formation of a linear combination of Eq. (27) and Eq.

(31), thus

F+aF =0 (32)
or by solution of the second order system
F+aF +BF =0 (33)

Use of Eq. (32) yields a solution that approaches the true
equilibrium path exponentially and use of Eq. (33) vields a
solution that approaches the true equilibrium path in damped
oscillations. Tillerson, et a/. [54], present a thorough discus-
sion with many examples of these first order and second order
“self-correcting’’ schemes.

One of the most popular strategies in the £ = 0 class is a
scheme in which the “force imbalance” terms from the previ-
ous load step are used to modify the right-hard-side in the cur-
rent load step. This is relatively inexpensive to do on the
computer, since it does not involve the formation and factor-
ing of a stiffness matrix, and it permits the use of larger load
steps than would otherwise be possible. Without iterations at a
given load step, however, the drifting tendency shown in Fig.
13 would still be present.

The primary advantages of the initial value methods are that
implementation in existing linear codes is straightforward, the
stability determinant is available at every load step, and much
of the numerical integration software can be applied to non-
linear dynamic analysis. The primary disadvantage of the un-
corrected or noniterative £ = 0 scheme is its tendency to drift
from the true equilibrium path.

Direct Minimization Methods

In these methods the nonlinear equation system (27) is not
solved at all, but a minimum is sought of the energy function
from which Eq. (27) is derived. This method has been ex-
tensively applied in situations involving relatively few degrees
of freedom, such as optimization problems, but has not been
found to be competitive for the solution of nonlinear problems
with large numbers of degrees of freedom.

For a more complete discussion of nonlinear equation solv-
ing strategies the reader is referred to Tillerson, et a/. [54] ,
and Felippa [55].
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Reduction by Introduction of Global (Rayleigh-Ritz}
Functions

A promising technique for solving a large system of non-
linear equations is to reduce the number of unknowns by
introduction of generalized degrees of freedom q such that
X = Tq, where X is a “'Rayleigh-Ritz’’ approximation to the
true unknown nonlinear solution vector X” of the discretized
{large) mode! with N nodal point degrees of freedom, and T
is an (N, M) matrix, the M columns of which represent suitably
chosen discretized Rayleigh-Ritz modes. {Note that M <</.)
The nonlinear equations {27) in the reduced form are solved
by the Newton-Raphson method for several load steps with a
continuing check on the residual force vector R, which is cal-
culated by insertion of the approximate solution X instead of
g in Eq. (27): F (X, A} = R. If the norm of the residual force
vector R exceeds a certain percentage of the load vector, the set
of M Rayleigh-Ritz basis vectors T is updated in some way.

Nickel {68a} uses vibration modes as basis vectors in non-
linear dynamic response; Nagy [68b] chooses buckling modes;
Almroth, Stern and Brogan [69] accumulate new basis vectors
X’ as the load is increased by solving the full nonlinear system
F(X’, A) = 0 whenever the norm of the residual force vector
R = F (X, A} exceeds a pre-specified tolerance: Noor and
Peters’ [70] basis vectors are the nonlinear solution X’ and a
number of its derivatives with respect to the equilibrium path
(toading) parameter X; Hajela and Sobieski [71] choose eigen-
modes of the stiffness matrix as basis vectors.

These promising methods require extensive testing and have
yet to be applied to problems involving both large deflections
and elastic-plastic material behavior.

ELASTIC-PLASTIC MATERIAL MODELS

This section contains a brief outline of classical plasticity
theory, a derivation of the incremental constitutive tensor
oCijrs that appears in Eqgs. (21) and (22), descriptions of
various hardening theories, and a summary of work done on
integrated constitutive laws for use with analysis of elastic-
plastic plates and shells. Some of the discussion on classical
plasticity theory follows Almroth [82] ; the derivation of
DC,-/,S follows Bathe and Ozdemir [50] ; the descriptions of
various hardening theories follow surveys by Armen [80],
Almroth [82], and Hunsaker, Vaughan and Stricklin [791;
and the summary on integrated constitutive laws for use with
analyses of elastic-plastic plates and shells follows Bieniek and
Funaro [219].

Classical Plasticity Theory

Classical plasticity theory requires definition of the follow-
ing:

1. An initial vield surface and subsequent loading surfaces



which bound the region in stress space within which deforma-
tion is elastic.

2. A flow law which provides the ratios between the incre-
ments of plastic strain components.

3. A hardening rule which specifies the modification of the
yield (loading) surface as plastic flow occurs.

4. A plastic or “"hardening’”’ modulus which provides a ratio
between the increment of an effective stress quantity to the
increment of an effective plastic strain quantity.

In addition, classical plasticity theory is based on the following
assumptions:

1. Materials are isotropic with respect to initial yielding.

2. Plastic deformation occurs with no change in volume.
There is negligible plastic flow under pure hydrostatic pres-
sure,

3. Yielding and subsequent response are insensitive to the
rate of deformation.

4. The material exhibits no hysteresis. That is, unloading
from points A to B in stress space occurs such that the elastic
modulus of the virgin material governs the ratio between stress
and strain increments. Reloading from B to A occurs without
plastic flow, and continued loading further into the plastic
range takes place as if there had been no unloading.

5. The total strain may be decomposed into elastic and
plastic components. This assumption is generally valid if the
strains are small.

6. The relationship between stress and strain determined
from a uniaxial test holds for multi-axial loading, in which
“stress” is replaced by an “‘effective stress’’ quantity and
“strain” is replaced by an “effective strain” quantity.

By far the most popular yield criterion in use today for
nonlinear computerized analysis of metallic structures is due
1o von Mises (1913). He realized that since negligible plastic
flow occurs under hydrostatic pressure, the yield condition
should be expressed in terms of deviatoric stress components
and that this condition should not depend on coordinate
transformations. Thus, the yield limit is defined in terms of the
second invariant of these deviatoric components. Mises’ further
observation that increments in the components of plastic strain
are proportional to the components of deviatoric stress con-
stitutes a flow rule that is identical to the criterion that a small
increment in plastic strain be normal to the yield surface in
stress space. This “‘normality condition’ was later justified by
Drucker (1954) on the basis of conservation of energy. The
"“effective stress” referred to in assumption 6 above is implic-
itly defined by the yield condition because it is a quantity
which must be constant over the entire initial yield surface.

Most applications of piastic analysis have been restricted to
isothermal conditions. Non-isothermal plasticity forms the
basis for the general-purpose computer programs described in
Refs. [171, 172, 203, 204, 206] and formulations are present-
ed in Refs. [203] and [204]. The discussion here will be limit-
ed to isothermal plasticity.
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Incremental Constitutive Tensor OC/.I.,S [see Egs. (21) and
(22)]

Almost all plastic buckling analysis has been carried out
with use of the von Mises yield criterion, its associated flow
rule, and hardening rules based on either isotropic or kinematic
strain hardening. Bathe and Ozdemir [50] present an isother-
mal Total Lagrangian formulation which is valid for either of
these two hardening models. The aim of this formulation,
which is repeated here, is to obtain the incremental constitutive
tensor ;. through which the incremental components of the
2nd Piola-Kirchoff stress tensor, d,Sjj, are related to the incre-
mental components of the Green-Lagrange strain tensor, d, e

C..

dosi' ) I/de €

oCrs {34)
The initial yield surface and subsequent loading surfaces are

expressed by

F Sy %) = FILS; tef) =0 (35)

in which & is a hardening parameter that depends on the total
plastic strains 2 e‘; . The total strain increments are the sums
of the elastic and plastic strain increments,

= ]
do€jj = do€;

p
+ doe’.j (36)
The components of plastic strain increments are given by the
associated flow rule

o OF
=N — (37)
3l s,

During plastic flow the change in F is zero, since the state of
the material point is always on the loading surface. Therefore,

oF
dF = dyS;j + ———— d eP. =0 (38)
afsy) O a(ter) ©F

The increment in stress results from an increment in elastic
strain

e

- €
do Sjj = oC;jrs do€,s (39)
where OC?/rs is a component of the elasticity tensor. The

components of the ““tangent stiffness’’ constitutive tensor
oCij,s can be derived from Egs. (34-39) (see [31]):



acijrs = oCiejrs
oF oF
C.: — e e
ovifmn t ovrspq t
. a(a smn) a(o SPQ) {40)
dF dF e 3F dF
+ B et
t .p t o k2pg t t
a(o emn) d (osmn) a(osksz) a(oqu)

This tensor relates the increments of 2nd Piola-Kirchoff stress
to the increments of Green-Lagrange strain at a material point.
It is calculated at all of the Gaussian integration points in each
finite element at each time or load increment.

VARIOUS HARDENING THEORIES

In computerized nonlinear analysis of metallic structures
there is general agreement about the validity of the von Mises
initial yield criterion and its associated flow law. However, this
is not the case for hardening laws. There are many models for
the subsequent changing of shape and location of the loading
surface as plastic flow proceeds. These models are formulated
in papers such as [157-163] and [211- 213] and reviewed by
Armen [80, 165], Knets [81], Almroth [82], Hunsaker,
Vaughan and Stricklin [79], Michno and Findiey [104], and
Hecker [105] . The brief review given here follows those given
in Refs. [79], [80], and [82].

Isotropic Hardening

This theory is the simplest to apply in computerized anal-
ysis, requires the least amount of storage of data, and hence
is the most popular. The loading surface is assumed to expand
uniformly about the origin in stress space, maintaining the
same center, shape, and orientation as the initial yield surface.
Figure 22 shows in two-dimensional stress space the yield and
loading surfaces for a case in which the stress state moves from
point 1 to point 2. Unloading and subsequent reloading in the
reverse direction will result in yielding at point 3. The isotropic
hardening law was formulated based on experimental evidence
that a material, loaded in tension into the plastic range and
then unioaded and reloaded into compression far enough into
the plastic range, will follow the same effective stress-effective
strain curve as if ithad been continuously loaded in tension.
This behavior is demonstrated in Fig. 23. However, the iso-
tropic model violates the observation initially made by
Bauschinger (1886) that upon reloading in compression, the
material yields at a lower stress than it would have if it had
been loaded in compression initially.

Kinematic Hardening

This theory grew out of observations by Bauschinger
(18886), who noticed that after cold-work in tension the
compressive vield stress appears to be reduced by an amount
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approximately equal to the increase in the yield strength (strain
hardening) caused by the initial loading in tension. Therefore,
the kinematic hardening model, originally formulated by
Prager [157] and modified by Ziegler [158], is based on the
assumption that during plastic deformation the loading surface
translates as a rigid body in stress space. The size, shape, and
orientation of the initial yield surface is maintained, as il-
lustrated in Fig. 24. The yield surface and loading surface are
shown for an initial shift of the stress state from point 1 to
point 2. The center of the yield locus translates to a new
point, &;;. Upon reloading in compression the material yields
at a smaller stress at point 3 than it would have if it had been
initially compressed along the path 0-3. The kinematic mode!
is illustrated in stress-strain space in Fig. 23 for a case in which
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FIG. 24 KINEMATIC HARDENING (FROM ARMEN [80] )

the actual stress-strain curve is modeled in a bilinear fashion.

it is seen that the kinematic model reflects the initial yield in
compression better than does the isotropic model, but that the
hardening modulus after yield is too small, resulting in an
underestimation of the absolute value of the stress as the
material is further strained in compression. Models of combin-
ed kinematic and isotropic hardening in which the loading sur-

face translates and expands simultaneously have been formulat-

ed by Krieg and Key [214] and Hodge [221].

Multiple Subvolume Models

The failure of both isotropic and kinematic models to pre-
dict what happens in the “‘near plastic” range for reversed and
nonproportional loading has led to the implementation of
more elaborate material models in nonlinear structural analysis
computer programs. The STAGSC1 program for the static and
dynamic analysis of general shells [207] includes a mode! in
which the material is assumed to consist of a mixture of sepa-
rate components which all undergo the same strain history. All
components have the same elastic modulus and exhibit per-
fectly plastic behavior. Each component has a unique yield
stress and occupies a certain fraction of the total volume. Use
of only one component results in an elastic-perfectly plastic
material; use of two components leads to a model which is
identical to kinematic strain hardening with a bilinear stress-
strain curve; use of many components constitutes a model! in
which the stress-strain curve is approximated by a series of
line segments. This idea of treating strain hardening material
as an amalgam of separate elastic-perfectly plastic components
was originated by Brandzaeg in 1927 [222], Duwez in 1935
and White in 1950 and later refined by Besseling [159]. The
model is known by various names, including White-Besseling,
mechanical sublayer, and subvolume. {The name “sublayer” is
unfortunate because it implies that each component in the
amalgam occupies a distinct volume or layer, which is not the
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case. The various components are assumed to be mixed homeo-
geneously).

Figure 26 shows the behavior exhibited by the White-
Besseling model for a simple one-dimensional case. Since the
components are all subjected to the same strain, the propor-
tional limit of the composite will be the same as that of the
weakest of the components. However, since the other com-
ponents can take additional load, the composite will exhibit
strain hardening with a piecewise linear stress-strain curve. If
the stress is reversed after loading beyond the yield limit for
one or more components, yield will occur in the reversed
direction when the average stress in the composite reaches
the value 0 =0, - 20y, where g, is the maximum stress dur-
ing initial loading and oy, is the yield limit for the weakest

FIG. 256 STRESS-STRAIN RELATIONS ACCORDING TO
WHITE-BESSELING THEORY (FROM ALMROTH [82])

component. In contrast to the kinematic theory, the White-
Besseling theory gives a hardening modulus at the outset of
reversed yield which equals the hardening modulus at initial
yield, hence agreeing much better with material behavior
observed in tests. The material behavior in the White-Besseling
model is completely defined by a segmented approximation of
the tensile stress-strain curve. This segmented approximation
provides the required specification of the number of material
components, the volume fraction of each component, and the
yield strength of each component.

Mroz (160) introduced a similar model called “a field of
work-hardening moduli.”” The Mroz model contains a number
of different yield surfaces which lie within one another and
translate in stress space according to the rules of kinematic
hardening. The hardening modulus depends on how many of
the moduli are currently active. Results obtained with the
Mroz model are almost identical to those obtained with use
of the White-Besseling model.
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The main advantage of the White-Besseling and Mroz
models is the better representation of the material behavior
upon reversed loading into the plastic range. Figure 26 shows
a comparison with an experiment of Christman, et al. {223].
The multiple-material models are obviously superior to the
isotropic and kinematic models. The main disadvantage of the
White-Besseling and Mroz models is that they require about N
times more computer storage than do the isotropic or kinema-
tic models, where NV is the number of material components.
Hunsaker, et al. [79], elaborate on computer storage require-
ments for all of the hardening models discussed so far.

Hunsaker, Vaughan and Stricklin [79] present compari-
sons of test and theory for the isotropic, kinematic, White-
Besseling, and Mroz hardening models in cases involving uni-
axial cyclic loading (Fig. 26) and proportional and nonpropor-
tional biaxial loading. Figures 27a and 27b show results for the
hoop (tangential) stress component in a commercial cold-
drawn tube loaded by combinations of tension and internal
pressure which are increased nonproportionally. The four
hardening models are compared to tests by Marin and Hu
[224] . Contrary to the opinion expressed in [80], the simple
isotropic model is superior in this and in the other nonpro-
portional loading case studied by Hunsaker, et a/. [79]. The
White-Besseling and Mroz models behave in a similar way. The
kinematic model, as programmed by Hunsaker, et al. [79],
gives the worst predictions.
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2 i surfaces change with plastic loading. The hardening modulus is
expressed as a function of the distance in stress space from
the point of loading to the limit surface along the normal to
the yield surface. Figure 29 shows some parameters and the
behavior of the Dafalias-Popov model in a uniaxial loading
model. The general formulas derived in [212] can be specializ-
ed to reproduce purely kinematic hardening or combined
isotropic-kinematic hardening. Figure 30 shows a comparison
between test and theory for random cyclic loading of a steel
specimen. Two curves were made to match by a curve-fitting
procedure, the upper curve of the loop labeled @ and the
lower curve of the loop labeled ® . The initial plateau was

YIELD SURFACE

° — o
\___/< X
T~ BOUNDING SURFACE . /
T S~ BOUND
FIG. 28 SCHEMATIC REPRESENTATION OF THE YIELD /
AND BOUNDING SURFACES AND ILLUSTRATION OF 8
THEIR MOTIONS (FROM DAFALIAS AND POPOV [212])
0 ) ¢
Two-Surface Theories /

Eisenberg and Phillips [161] define two distinct surfaces in _}._ A Sin Y
order to account for noncoincident yield and reloading stress 3 _/‘/(
states. Krieg [211] and Dafalias and Popov [212] presented /}7:; BOUND
independently and almost simultaneously very similar models /
of this type which improve the representation of material be-
havior for reversed plastic loading. The yield surface is always FIG. 29 ELEMENTS OF THE DAFALIAS-POPOV
contained inside a limit or bounding surface, as shown in Fig. HARDENING MODEL FOR UNIAXIAL LOADING (FROM
28, which is taken from Ref. [212]. Both vield and bounding DAFALIAS AND POPOV [212])
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treated separately. Agreement between test and theory for the
rest of the stress-strain plot is excellent. The approach to multi-
axial loading as presented by Dafalias and Popov is not tied to
any hardening law and appears to be sufficiently general and
sound to warrant further investigation and incorporation into
computer programs for nonlinear structural analysis.

Yield and Loading Surfaces with Corners

The hardening theories described so far are ail associated
with smooth yield and loading surfaces. Therefore, such
theories will not change the discrepancies between flow and
deformation theories noted previously in connection with the
prediction of bifurcation buckling of cruciform columns,
spherical shells, and flat plates. As emphasized by Sewell
[225], this discrepancy is diminished by a hardening model in
which the loading surface develops corners. Batdorf and
Budiansky [162] developed such a mode! based on the con-
cept of slip. Figure 31 shows the growth of the loading func-
tion as the stress state moves from point 0 to point 3. The
unshaded region is the initial vield surface. Since the stress
state is generally at a corner, the resulting constitutive equa-
tion is complex. The complicated material manipulations
required for implementation of this model have led to its
neglect in computerized structural analysis. However, it does
give better results than the classical theories for the case of
tension-torsion loading of simple test specimens. The slip
theory does not account for the Bauschinger effect. Koiter
[29] showed that the slip theory corresponds to a loading
surface which has a vertex at the stress point. In three-dimen-
sional stress space this vertex is the tip of a cone the generators
of which are tangents to the initial vield surface.

Hodge and Berman [163] review piecewise linear vieiding
and hardening. The oldest and most widely used piecewise
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FIG. 31 SLIP THEORY HARDENING (FROM ARMEN [80] )
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FIG. 32 PIECEWISE LINEAR HARDENING WITH INTER-
DEPENDENT LOADING PLANES (FROM ARMEN [80] )

linear yield surface is the Tresca criterion. Figure 32 shows a
hardening rule of interdependent loading planes proposed by
Hodge [226] in which the Bauschinger effect is accounted for.

Other Models

Armen [80] briefly reviews other nonlinear material
models, including models for initially anisotropic metals,
models with hydrostatic stress dependence, rate sensitive
models, nonisothermal models, and models without a yield
surface. The reader is referred to Armen’s paper and the papers
referenced there for further details.

INTEGRATED CONSTITUTIVE LAW FOR ELASTIC-
PLASTIC PLATE AND SHELL ANALYSIS

The constitutive laws discussed in the previous section
apply to incremental stress and strain at a point. In the analysis
of plates and shells the variation of total strain through the
thickness is generally assumed to be linear. A three dimensional
problem is thereby reduced to a two dimensional problem.

in discrete models of plates and shells an arbitrarily chosen
reference surface is divided into finite elements. The stiffness
matrix of each element, whether it be an initial stiffness matrix
of the undeformed structure of a “tangent” stiffness matrix
including geometric and material nonlinearities, has the form

K= (8"CcBda 41)
in which d4 is the element area, B is a matrix relating nodal
point degrees of freedom to incremental strains and changes
of curvature of the reference surface, and C is the constitutive
matrix relating incremental strains and changes in curvature of
the reference surface to incremental stress resultants and



moments. For example, in shell analysis in which transverse
shear deformations are neglected

S=ce (42)

where the transpose of S and the transpose of & are
sT = (Nl,Nz,le,M1,M2,M12) (43)
67T = (é1,62,6p, K1, Ky, 2Kp) (44)

and C is a 6 x 6 symmetric matrix containing elements such as

Za 22 2
Cu = le Eu dz ; C44 = le E“ z° dz

22 (45)
C]4 = "le Ell Zdz

in Eq. (43) Ny, My, N5, M, are the stress and moment result-
ants in the 1" and "'2” coordinate directions and N5, M,
are the inplane shear resultant and torsion resultant. Equation
(44) lists the corresponding reference surface strains, changes
in curvature and twist. In Eq. (45}, z; and z,, the limits of
integration over the shell wall thickness coordinate 2z, depend
on the location of the reference surface, and £,; is a com-
ponent of the constitutive tensor analogous to ,C;;, in Eas.
(21) and {22). Equations (45) are valid if the shell is thin
enough so that the ratio of thickness to a typical radius of
curvature can be neglected compared to unity.

There are two ways of formulating the constitutive law for
elastic-plastic plates and shells. The most frequently used and
most generally applicable way is to find the tangent stiffness
components £y, , etc. at a number of points through the wall
thickness and perform the integrations indicated in Eq. (45)
numerically. This requires calculations such as indicated in
Eq. (40) and storage of data such as total plastic strain com-
ponents corresponding to every integration peint through the
thickness and over the surface of the structure. The advantage
of this method is its broad applicability. The shell wall can
consist of layers of different materials which can be loaded and
cycled in an arbitrary way. The disadvantages are the require-
ment of computations and storage of data corresponding to a
large number of control stations.

The less frequently and fess generally applicable way of
formulating the constitutive law is to express it initially in
terms of stress resultant rates S and reference surface strain
rates é at a point on the two dimensional reference surface,
rather than in terms of stress rates 0 and strain rates é,-,-
at an arbitrary point in the three-dimensional shell wall con-
tinuum. The yield criterion, flow law, and hardening law must
now be expressed in terms of resultant rates S and reference
surface strain and change in curvature rates e. The advantages
of this method are the diminished requirements of computa-
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tions and data storage. The tangent stiffness is calculated and
associated data stored only at control stations on the reference
surface. The disadvantage is its limited applicability. It is use-
ful only for shells with one kind of material through the wall
thickness and there is almost no experience with application
to strain hardening materials. This second method of formulat-
ing the constitutive law is described in detail in Ref, [219].

PLASTIC BUCKLING OF RING-STIFFENED
SHELLS OF REVOLUTION:
PREBUCKLING AND BIFURCATION BUCKLING
STRATEGIES

INTRODUCTION

As mentioned previously, the plastic buckling analysis of
axisymmetrically loaded axisymmetric shells is a sort of half-
way house between the asymptotic analyses of Hutchinson,
Tvergaard, and Needieman (Refs. [2-18]) and the general non-
linear analyses of Swanson [166], Schrem [168], Hellen
[169], Zudans [170], Marcal [171], Henshell {1731,

Pifko [174], Bathe [203], Argyris [206], Almroth [207],
Mondkar [208], their coworkers, and other developers of
general-purpose computer programs. The nonlinear prebuck-
ling behavior can easily be modeled including moderately
large deflections and nonlinear material behavior. Limit points
on load-deflection equilibrium curves such as point A in Fig. 1
and bifurcation points such as point B in Fig. 2a can be cal-
culated with relatively small amounts of computer time be-
cause the discretization is one-dimensional. Only the meridian
needs to be discretized because displacements are axisym-
metric in the prebuckling analysis and vary harmonically in
the circumferential direction in the bifurcation buckling
analysis. One-dimensional discretization leads to stiffness
matrices with very small average bandwidths that can be
calculated, stored, and factored efficiently. Therefore, com-
plex shells with discontinuities, branches, ring stiffeners, and
layered wall construction can be analyzed inexpensively. It is
feasible to use a rigorous strategy to solve the nonlinear
axisymmetric prebuckling problem, inciuding at each load
level nested iteration loops: an inner loop for nonlinear be-
havior due to moderately large displacements and an outer
loop for elastic-plastic-creep material property updating. The
strongly convergent and therefore very reliable Newton-Raph-
son method can be used in the inner loop and a subincremental
strategy can be used in the outer loop. The relative efficiency
and economy with which such one-dimensional numerical
problems can be solved on the computer permits parameter
studies that are not feasible with more general multi-dimen-
sionally discretized configurations.

The axisymmetric shell problem deserves emphasis also
because it is of special significance to the pressure vessel and
piping industry. Most tests are on simplified models of actual



structures, and one of the first simplifications is to neglect
structural elements that destroy axisymmetry. Over the last
twenty years there have, therefore, been many tests involving
plastic buckling of axisymmetric shells. Greater understanding
of the plastic buckling pracess is gained by numerous compari-
sons between test and theory. In this way the significance of
imperfections, post-yield strain hardening, and nonproportional
material loading can be evaluated.

This section and the next are both devoted to shells of
revolution. In this section a strategy for solving problems with
both material and geometric nonlinear behavior is described,
both for prebuckling and bifurcation buckling analyses. The

" following section contains numerous examples with compari-
sons between test and theory. Most of these examples are taken
from Refs. [22, 23, and 227-233]. The theoretical results were
obtained with use of the BOSOR5 computer program [22],
which is applicable to segmented, branched, ring-stiffened shells
of revolution with or without discontinuities between segments
and branches. Figure 33 shows an example of an axisymmetric
branched shell structure with nodal points indicating discretiza-
tion. Discrete rings are modeled as segmented substructures
attached to the shell reference surface as shown in Fig. 34. The
cross-sections of the dicrete rings do not deform but are free
to rotate and translate with the portion of the shell to which
they are considered to be attached. The type of input data
required by BOSORS is indicated in Fig. 35 (with the thick-
ness of the input data deck greatly exaggerated!}. Details of
the derivation of equations are given in [195, 196, 228, and
22].

Seg. @, Ps. 8

[Seq. B, P1. 1
\Seq. ®, Pt. 21

Discontinuity D1(9}=-Q.75

7
seg. @, Pr.10 D Seq. €, P1.16
Discrete ring
. B PL L
. ‘8), P15
Seg. @, Pt 7 e

) Discontinuity Di{6)= -0.75

Seg. @, P1. ¢
Seg. @), P1.5

See Detail & T
;NL
Discontinuity: ~

DETAIL A

P14
Pt 9

Seg.
Seg.

-

FI1G. 33 BRANCHED RING-STIFFENED SHELL OF
REVOLUTION WITH NODAL POINT DISCRETIZATION

76

Shell

Shell Reference

! Surface DISCRETE RING

{3 Segments)
Discrete Ring
Attachment Point

NOTE: Discrete ring oftochment point is considered to be
located on the shell reference surfoce.

FIG. 34 DISCRETE RING AS MODELED IN THE BOSORS5
COMPUTER PROGRAM (FROM BUSHNELL [22])
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BASIS ASSUMPTIONS

The analysis summarized here and the results presented in
the next section are based on the following assumptions and
approximations:

1. Thin-shell theory holds; i.e., normals to the undeform-
ed surface remain normal and undeformed. Transverse shear
deformation is neglected.

2. The structure is axisymmetric and prebuckling deforma-
tions are axisymmetric.

3. The axisymmetric prebuckling deflections in the non-
linear theory, while considered finite, are moderate: The square
of the meridional rotation can be neglected compared with
unity.



4. A typical cross-section dimension of a discrete ring
stiffener is small compared with the radius of the ring.

5. The cross-sections of the discrete rings remain unde-
formed as the structure deforms, and the rotation about the
ring centroid is equal to the rotation of the shell meridian at
the attachment point of the ring.

6. If meridional stiffeners are present, they are numerous
enough to include in the analysis by an averaging or “smearing’’
of their properties over any parallel circle of the shell structure.

7. The shell is thin enough to allow neglect of terms of
order t/R compared to unity, where ¢ is a typical thickness
and R is a typical radius of curvature.

8. In the integrated constitutive law [C in Eq. (42)]
coupling between normal stress resultants and shearing and
twisting motions is neglected.

TWO ANALYSIS PHASES: AXISYMMETRIC PREBUCK-
LING AND NONSYMMETRIC BIFURCATION BUCKLING

Shell-of-revolution codes for plastic buckling represent
implementation of two distinct analyses:

1. A nonlinear stress analysis for axisymmetric behavior of
axisymmetric shell systems {including large deflections, elastic-
plastic material behavior, and creep).

2. An eigenvalue analysis in which the eigenvalues represent
bifurcation buckling loads of axisymmetric shell systems sub-
jected to axisymmetric loads, and eigenvectors represent axi-
symmetric or nonsymmetric buckling modes.

The efficiency of computer codes for shells of revolution
derives from the fact that for the two types of analysis just
listed the independent variables can be separated and an
analytically two-dimensional problem thus reduced to a
numerically one-dimensional model. Such a model leads to
compact, narrowly banded stiffness, load-geometric, and
rnass matrices.

For example, the independent variables of the BOSORS
analysis [22] are the arc length s measured along the shell
reference surface and the circumferential coordinate 6. The
dependent variables are the displacement components u, v
and w of the shell wall reference surface, which can be expres-
sed in the form

nmax
uls,8) = u,ls) + 2 wu,(s)sinn
=N mipy
vis, 8) = % v, (s) cos nd (46)

wis, )= w,ls) + .;"3 w, (s) sinnf

Nonlinear Prebuckling Stress Analysis

In the nonlinear prebuckling phase only the axisymmetric
displacement components u, (s} and w,, (s} in Eq. (46) are
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nonzero. Terms linear through quartic appear in the total pre-
buckling energy functional. This energy functional, originally
an integro-differential form, is converted into an algebraic form
by appropriate discretization and numerical integration over
the meridional coordinate. The simultaneous nonlinear al-
gebraic equations obtained by minimization of the algebraic
form with respect to nodal point displacement components
U,; and w,; and Lagrange multipliers A; are solved as describ-
ed later.

Results from the nonlinear axisymmetric stress analysis are
used in the eigenvalue analyses for plastic bifurcation buckling.
The prebuckling meridional and circumferential stress result-
ants Vi and Ny and the meridional rotation 8, appear as
known variable coefficients in the energy expression which
governs plastic bifurcation buckling.

Plastic Bifurcation Buckling

In the bifurcation buckling analysis the symmetric and non-
symmetric displacement components contained in the sum-
mations indicated in Eq. (46) are considered to be infinitesi-
mal, kinematically admissible variations of displacements from
the “prebuckled” state u, (s), w,, (s) obtained from the non-
linear stress analysis. Since the buckling displacements Up, Yy,
and w,, are infinitesimal, one need only retain linear terms in
Up, v, , and w, in the kinematic relations and constraint condi-
tions.

Hence the energy functional governing bifurcation buckling
becomes a hamogeneous quadratic form in nodal point dis-
placement components u,, jo Ynir Wp; and Lagrange multipliers
A, ;- The values of the load parameter (eigenvalues) which
render the quadratic form stationary with respect to UpioVyir
Wp i Ayj represent buckling loads, and the normalized eigen-
vectors represent buckling modes. The minimum critical load
as a function of circumferential wave number n is found by
means of a strategy to be described later.

Prebuckling Solution Strategy — A Double Iteration Loop

The prebuckling iteration strategy used in BOSORS is as
follows. At each load level or time step there are two nested
iteration loops. in the inner loop the set of simultaneous non-
linear algebraic equilibrium equations with given fixed material
properties and plastic creep strains is solved. This is the
“Newton-Raphson loop”. In the outer loop the strain-depend-
ent material properties, the constitutive matrix (C), the meridi-
onal and circumferential plastic strain components e, €5, and
creep strain components €5, €5, are calculated. Double itera-
tions at a given load level continue until the displacements no
longer change. In this way the favorable convergence property
of the Newton-Raphson procedure is preserved, equilibrium
is satisfied within the degree of approximation inherent in a
discrete model, and the flow law of the material is satisfied at
every point in the structure. This strategy is itlustrated in the
flow chart shown in Figure 36.
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Figure 37 shows the convergence with trial number of the
central normal displacement of a centrally loaded elastic-plas-
tic flat circular plate. (A "“trial” is defined in Fig. 36.) In this
case a very large load increment, AP = 500 Ib, is used in order
to better illustrate the double-loop iteration process. Nine trials
are required in. order to achieve convergence of the displace-
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ment distribution within a tolerance of 0.1 percent. The first
Newton-Raphson iteration on the first trial yields the linear
elastic solution. This BOSORS solution {w,,,,, = 0.08718 in.)
agrees with the formula tabulated in Roark [234] (w_
=0.08703 in.). Throughout the first trial the material is treated
as elastic, since this is the first load step and thus no previous
history of plastic flow exists. Four Newton-Raphson iterations
are required in this first trial for convergence to the nonlinear
elastic solution. The solution vector thus obtained is used as in-
put for the determination of how much plastic flow occurs,
and a new solution is obtained after five Newton-Raphson
iterations in Trial #2. Two Newton-Raphson iterations are
required for convergence in each of trails four-eight, and a
ninth trial is required to ensure that the change in material
properties between Trial #8 and Trial #9 is so slight that it
affects the displacement vector by less than 0.01 percent. The
predicted maximum normal displacement is 0.17532 in.

THE SUBINCREMENTAL METHOD

In practically all nonlinear analyses the load is applied
incrementally and the response is determined for each value
of the load. Each load leve! involves the solution of a system
of simultaneous algebraic equations, the rank of this system
being equal to the number of degrees of freedom in the discre-
tized mathematical model. Let us henceforth refer to this
system of simultaneous equations as “System A", In most
analyses in which material nonlinearity is included, the itera-
tion loop for the solution of System A contains calculations
for determination of the plastic strain components. Usually
these quantities are obtained in a one-step process in which
the total increments of strain accumulated from one load level



to the next are allocated among elastic, plastic, and possibly
creep components. The relative magnitudes of the various
components are known, at least as the load step begins, be-
cause the analysis contains a flow theory and the position of
each material point in stress space is known from the converg-
ed results associated with the previous load level. The direction
of plastic flow for each material point is generally considered
to be constant for the entire load increment. For example, it
may be assumed that this direction is parallel to the normal to
the yield surface at a location in stress space determined by
the converged result at the previous load level. Determination
of the plastic strain components requires in the general three-
dimensional case solution of a set of six simultaneous equations
at each material point and in the case of axisymmetric defor-
mations of thin shells of revolution the solution of two si-
multaneous equations at each material point. We shall hence-
forth refer to this small system of simultaneous equations as
“’System B”.

The prebuckling analysis on which BOSORS is based dif-
fers from many other analyses in two respects. The calculation
of the plastic and creep strain components is removed from
the iteration loop in which System A is solved, and a sub-
incremental approach is used for calculation of the plastic
and creep strain components so that the direction of flow is
permitted to change continuously within a single ioad interval,

The removal of the calculations involving plastic flow from
the iteration loop for the solution of System A removes an
objection pointed out by Tillerson et a/. {54}, to the use of
the Newton-Raphson method for problems involving elastic-
plastic material. They found that the “Newton-Raphson’ pro-
cedure failed to converge if they used the tangent stiffness ap-
proach because of indications of alternative loading and
unloading from iteration to iteration. Since the coefficients of
their System A changed in a discontinuous manner in suc-
cessive iterations, their strategy could not really be called a
Newton method. In the BOSORS analysis the Newton-
Raphson method is used with success.

In the subincremental process the total increments of strain
accumulated from one load level to the next are divided into
subincrements of a certain magnitude. For each subincrement
the direction of plastic flow is considered to be constant, given
by the normal to the vield surface at a location in stress space
determined by the result at a previous subincrement. For each
strain subincrement the stress subincrements are determined
from the flow law and the given relationship between effective
stress subincrement and effective plastic strain subincrement
(the uniaxial stress-strain curve). Thus, the equation System B
is solved for each subincrement and each material point.

The Need for the Subincremental Method

Why is the subincremental method needed? This question
can perhaps be best answered with reference to the equations
which form the simultaneous System B {(creep neglected):

35
{Ae} = (D] {40} + Ae™® ;—ig (47a)
do )
E-E L
= oY {ac) + —L Aa%—% (47b)
EET oo 0

4 E-Ep o6
= [D ]{Ao} + et f(Ao,-l- ———5 (47c)
EET o0 0

in Eq. (47a-c) the left-hand side Ae is the known vector of
strain component increments; Ao is the unknown vector of
stress component increments; A€P is the unknown effective
plastic strain increment, which in Eq. (47b) is expressed in
terms of the effective stress increment AZ and in Eq. (47c¢) in
terms of the effective stress component increments through
the nonlinear “loading’” function f(Ao,-/-). The vector (35/d0),
represents the components of a unit normal to the yield sur-
face at a point in stress space fixed by the stress components
0y calculated at the previous load level at which a converged
solution has been obtained. The nonlinear System B can in
principle be solved for the stress component increments Ao,-j.
However, it often happens, especially at stress concentrations
where Ae,j is relatively iarge, that System B does not have a
solution. Figure 38 demonstrates what happens. A sequence
of values of AEP can be tried in Eq. (472) to generate the solid
curve in Fig. 38(a). The dashed curve is the stress-strain curve.
ideally, the value of A&P which satisfies all of the conditions
is computed as one of the intersections of the two curves. in-
deed, solutions can be obtained in this manner as long as the
effective strain increment is less than about 0.1 percent, For
larger strain increments, however, the result shown in Fig.
38(b) is common. The subincremental method prevents this
anomaly.

Another problem in calculating Aa,-j from Eqs. (47) arises
from the fact that the tangent modulus £, is a nonlinear func-
tion of €# or 6. In the BOSORS analysis the actual stress-strain
curve is replaced by a series of straight line segments, As the
load is increased from one level to the next, £ changes in a
discontinuous way that is not possible to express in a simple

EFFECTIVE STRESS

EFFECTIVE STRAIN

FIG. 38 SCHEMATIC REPRESENTATION OF THE
SOLUTION OF EQS. (47) WITHOUT USE OF THE SUB-
INCREMENTAL METHOD (FROM BUSHNELL [196])



functional form. It is necessary to divide the increment such

that at every material point ET is constant within any subincre-

ment.

Paths in Strain Space and Stress Space

The subincremental method is especially advantageous
when applied to problems in which the paths followed by
material points have less curvature in strain space than in stress
space, which is usually the case for thin shells stressed beyond
the proportional limit.
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FIG. 38 PATHS FOLLOWED IN STRESS SPACE AND
STRAIN SPACE BY A MATERIAL POINT IN AN
INTERNALLY PRESSURIZED TORISPHERICAL VESSEL
HEAD OF MILD STEEL (FROM BUSHNELL [196] )

Figures 39 and 40 illustrate this behavior. Figure 39 shows
the paths in strain and stress space followed by the point for
which the effective strain is maximum in an internally pres-
surized mild steel torispherical pressure head. Whereas the
straining of the material is nearly proportional throughout the
range of pressure, the loading of the material is approximately
proporticnal only until the effective stress reaches the yield
stress, after which the path in stress space follows the yield
surface in a counterclock-wise direction. A similar phenomenon
occurs for a centrally loaded flat plate, results for which are
shown in Fig. 40. Here the path in strain space is more curved
because of the direction of loading and certain peculiarities of
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FIG. 40 PATHS FOLLOWED IN STRESS SPACE AND
STRAIN SPACE BY A MATERIAL POINT IN A CIRCULAR
FLAT PLATE WITH A CONCENTRATED LOAD, P
(FROM BUSHNELL [196])

the geometrically nonlinear behavior. Still the curvature of
this path is not as great as that of the path in stress space. The
subincremental method is especially suitable for problems such
as these because of the non-proportional loading of the
material. | the subincremental method had not been used,
many more load steps would have been required to avoid the
aforementioned difficulties associated with the solution of
Eas. (47).

Fewer Load Steps Needed

A basic advantage of the subincremental method, then, is
that it allows the use of much larger load increments than
would otherwise be possible. The magnitude of the subincre-
ment can be determined such that in Egs. (47a-c) ET is con-
stant within a subincrement and the nonlinear function f(Ao,-j),
now f(do,-j), where ‘d" indicates “‘subincrement’’, can be
linearized. Furthermore, if the material creeps, the magnitude
of each subincrement can be established such that the change
in effective stress during a subincrement is less than a certain
preset percentage of the current effective stress. This criterion
is important because the creep law used in BOSORS is derived
from tests in which the stress is held constant,

Trade-Off in Computer Time

There is a trade-off in the use of the subincremental
method. Fewer load steps need to be taken to cover a given
{oad range, which generally means that the often large simulta-



neous equation System A must be solved fewer times than
would otherwise be the case. On the other hand, incremental
stress components and plastic and creep strain components
must be calculated for each subincrement. Therefore, relatively
more computer time must be used for determination of the
behavior of the material. A great advantage of the subincre-
mental method is that it makes the elastic-plastic analysis more
reliable. The maximum size of a subincrement is preset. There-
fore, more subincrements will automatically be used for
material points corresponding to stress concentrations. In this
way the errors incurred by linearization of Eqs. (47a-c) and by
changes in the direction of plastic flow within an increment
are made less severe. Details including creep effects are includ-
ed in Ref. [196].

STRATEGY USED {N BOSOR5 TO FIND MINIMUM
PLASTIC BIFURCATION BUCKLING LOADS

The BOSORS user chooses a range of circumferential wave
numbers, 7. ton.., and a starting wave number n, which
he feels corresponds to the minimum bifurcation load. He also
chooses appropriate quasi-static functions of time for the load-
ing. (Distributed loads, line loads, and temperature may all
vary differently with time.) The user chooses a time range and
time increments such that whatever load range and load incre-
ments he is interested in will result. For example, if the user
wants to determine the buckling pressure of a shell with some
spatial temperature distribution which does not change with
time, he provides two time functions for the loading: a con-
stant for the temperature function and a time-linearly-varying
pressure coefficient. The actual temperature and pressure are
products of the appropriate time functions and spatial distri-
butions. This strategy is essential for problems involving creep
and not difficult to get used to in other problems.

Given this input, BOSORS calculates the determinant of the
global stability matrix. This determinant is calculated for each
time increment until it changes sign or until the specified time
range is covered. During this phase of the calculations the
circumferential wave number is held constant at n,.

If the determinant changes sign BOSORDS sets up, for values

of n within the specified range n.;, to n.  , eigenvalue prob-
lems of the type
(K1n + }\nKzn) (CI,,) =0 (48)

The quantity (K4, ) represents the stiffness matrix correspond-
ing to n circumferential waves for the structure as loaded at the
time step just before the determinant corresponding to n = n,
changes sign. (K5, ) is the load-geometric matrix, which is
derived from the terms

{49)

(BT (N,) (R) + ()T (P (U)
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for the sheli plus analogous discrete ring terms. In expression
(49), N, and P represent the increments of prebuckling stress
resuitants and pressure from the time step just before the
determinant sign change to the next time step. Quantities R
and U represent transformations from shell wall rotation and
displacement components to nodal point degrees of freedom.
In solving Eq. (48) for A,,, one is not as interested in the

actual values of the eigenvalues \,, as in finding the minimum
A, with varying number of circumferential waves, n. The actual
values of A, cannot generally be used to obtain the buckling
load, that is

Ncr #Naf + >\n No (50)
because the elastic-plastic tangent stiffness often changes pre-

cipitously with increasing load in the neighborhood of the
bifurcation point.
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FIG. 41 (A) STABILITY DETERMINANT AT n =n, AS
FUNCTION OF LOAD L; (B), (C) EIGENVALUES AS
FUNCTION OF NUMBER OF CIRCUMFERENTIAL WAVES,
n (FROM LAGAE AND BUSHNELL [229])

Figure 41 shows graphically the search for a minimum
bifurcation buckling load. For the initially chosen wave num-
ber n,, the stability determinant | Ky {n,, L)} | is calculated for
each load increment, as shown in Figure 41 {(a). The load, L, is
increased until one or more eigenvalues are detected between
two sequential load steps or until the maximum allowable user-
specified load has been reached.



Under normal circumstances, at this point in the calcula-
tions a series of eigenvalue problems of the form (48) is set up
and solved, where:

Kifn] = the stiffness matrix corresponding to n cir-
cumferential waves of the structure as loaded by
L, (See following definitions and Fig. 41}

K2({n) = the load-geometric matrix corresponding to the
prestress increment resulting from the load in-
crement L, - L,

L, = the load state just before the sign change of the
stability determinant, or the second-to-last load
for which the prebuckling analysis converges

L, = the load state just after the sign change of the
stability determinant, or the last load for which
the prebuckling analysis converges

Ay = the eigenvalue

9n = the eigenvector

n = the number of circumferential waves lying in a

range My, SN Mo, withng o andn
provided by the program user. Note that the
initial guess 77, also lies in the range n,; < n,
S NMenax» @nd corresponds, in the user’s judg-
ment, to the minimum bifurcation load.

BOSORS computes the eigenvalues A,, and eigenvectors q, for
Mnin SN <mmax in wave number increments of Piner {which
is also supplied by the program user). Typical results are shown
in Fig 41(b) and 41(c).

I the precritical behavior is nonlinear, the tangential stiff-
ness varies with the load. An eigenvalue analysis will therefore
yield a rigorous solution to the bifurcation problem only if the
tangential stiffness happens to be evaluated at the bifurcation
buckling load, i.e., if the computed eigenvalue is zero. If the
material were elastic and if geometric nonlinearity were mild,
the buckling load would be very nearly
{(51)

Ly -Lg)

Lep =Ly + 2

crit

However, especially because of the nonlinearity of the material,
the tangent modulus of which often changes very steeply for
stresses above the proportional limit, the eigenvalue A, crie S
not be used to calculate L, as in Eq. (51) if plastic flow occurs
before L. In praoblems involving plastic buckling, the purpose
of the series of eigenvalue problems is to find the critical cir-
cumferential wave number, N4 . and 1o obtain buckling mode
shapes. |f the situation shown in Fig. 41 (b) exists, then it is
known that L <L, <Ly, at least for n;, <n <P ax- (1t
may be necessary in some cases to explore another range of n
to obtain a global minimum L.} If the A, follow the pattern
shown in Fig. 41{(c), then it is known only that Lo, <Ly.ltis
necessary in this latter case to generate another series of values
of the stability determinant |K; (n, L) as in Fig. 41 (a), this
time with n=n_, instead of n=n,. The BOSOR5 program
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automatically performs this additional calculation and the
bifurcation buckling load is identified as being in the load
interval L; SL< Ly for which |Ky (n,, L) first vanishes.
If the analyst needs a sharper definition of L., he may restart
the case with the initial load L |, the initial wave number n
and a smaller load increment.

crit
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FIG. 42 PREDICTED BUCKLING MODE AND HOOP
STRESS RESULTANT DISTRIBUTIONS AS FUNCTIONS OF
PRESSURE FOR GALLETLY'S MILD STEEL SPECIMEN
MS3 (FROM BUSHNELL AND GALLETLY [231])

The strategy just described works well if the destabilizing
prebuckling stress resultants vary monotonically with increas-
ing load. However, there are important cases, such as internally
pressurized torispherical and ellipsoidal pressure vessel heads,
which often exhibit more complex behavior. For example, Fig.
42 shows that the peak compressive circumferential stress
resultant Ny, in the toroidal knuckle region of a mild steel
vessel head initially increases with increasing pressure. Shortly
after yielding [N,, | begins to decrease and it continues to de-
crease as the pressure is further increased. In this case bifurca-
tion buckling occurs at a pressure for which the plastic region
is spreading but the destabilizing hoop resultant INag| is de-
creasing. The strategy described in the previous paragraph will
yield erroneous values for n_, if this situation exists. This
problem is solved by calculation of K, (n) from L, alone,
rather than from the difference L,-£,. (Notice, however, that
this change in strategy is not appropriate for cases involving a
combination of loads, some of which are eigenvalue parameters
and others of which are not).



The program user may select either the incremental flow
theory or the deformation theory as a basis for calculating the
stability determinant. These two options were programmed for
BOSORS because buckling loads obtained with use of deforma-
tion theory are often in better agreement with test results than
are those obtained with use of flow theory. As implied earlier,
the reasons for this anomaly are not yet well understood, but
it is clear that the post-yield biaxial hardening and flow laws
are involved. Sewell [225] suggests that the discrepancy is due
to the formation of a corner on the loading surface.

EXAMPLES OF PLASTIC BUCKLING OF
VARIOUS SHELLS OF REVOLUTION

The purpose of this section is to convey to the reader a
physical appreciation of plastic buckling. Many examples with
comparisons between results of test and theory are presented
for axially compressed monocoque cylinders, externally pres-
surized ring-stiffened cylinders, and externally and internally
pressurized shells of more complex shape. The effects on
plastic buckling of creep and of fabrication processes such as
welding and cold rolling are briefly examined. The conclusion
gained by these numerous comparisons between test and
theory, in which agreement is generally good, is that buckling
loads for shells that fail plastically are not very sensitive to
initial imperfections.

AXIALLY COMPRESSED MONOCOQUE CYLINDERS

Tests have been conducted on cylinders by Lee [235],
Batterman [236], Sobel and Newman {237}, and others refer-
enced in Sewell’s survey [4]. Tests on truncated cylinder-like
(steep) conical shells have recently been conducted by Ramsey
[238]. in all the tests, end displacement was controlled. End
effects are ignored in early analyses of plastic buckling of
axially compressed cylinders. Batterman [236) uses flow

theory and Gerard [239] uses deformation theory. Murphy
and Lee [240] were the first to include the effect of radial end
restraint on plastic buckling load predictions. Their predictions
are shown in Figs. 43 and 44, with the results of Batterman
[236], Gerard [239], and Bushnell [22] superposed in Fig.
44. End effects are accounted for in the analyses of Bushnell
[22], who used the BOSORS5 computer program, and Sobel
and Newman [237], who used STAGSC [207] . All of the
studies in which end effects are included are based on incre-
mental flow theory and all predict that the limit load occurs
before bifurcation, as shown in Fig. 1. The comparisons be-
tween BOSORS predictions and Lee’s tests [235] are listed in
Table 5 and between BOSORS predictions and Batterman 3
tests [236] are listed in Table 6.

Two important conclusions can be drawn from the results
presented in Figs. 43 and 44 and Tables 5 and 6:

1. the inclusion of end radial restraint essentially eliminates
the discrepancy between test and theory, and reveals that, in
the case of plastic buckling of axially compressed cylinders
tested in the usual way, it is not necessary to resort to the use
of a bifurcation buckling analysis with deformation theory or
flow theory with a singularity in the loading surface in order
to bring test and theory into agreement.

2. Fairly thick metallic cylinders (R/r < 90} are not very
sensitive to initial random imperfections if they buckle at
stresses above the material proportional limit. The axisym-
metric bulge which develops near an end, so evident in Fig. 1
and in Murphy and Lee’s prediction shown in Fig. 43,
represents a predictable “imperfection’” that grows with load
and is much more significant than any unknown imperfections
due to fabrication or handling errors.

Gellin [241] shows that collapse loads of axially compres-
sed cylinders buckling in the plastic range are not as sensitive
to initial axisymmetric imperfections as are collapse loads of
elastic cylinders. (Hutchinson [7] demonstrates the same result
for externally pressurized spherical shells, as shown in Fig. 9.)

TABLE 5 COMPARISON OF TEST AND THEORY FOR AXIALLY COMPRESSED CYLINDERS

Test [Lee Highest Lowest
{1962)] BOSORS5 Test Test

Modet R/t Load {Ib} Prediction* BOSOR5 BOSORS5
A300 461 5,400 5,202 1.038 -
A110 9,080 8,923 1.019 0.884
A210 29.2 8,680
A310 7,890
A120 14,500
A220 19.4 14,840 14,328 1.036 1.005
A320 14,400
A130 35,000
A230 9.4 36,100 33,200 1.087 1.054
A330 36,000

* Axisymmetric collapse predicted in all cases
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TABLE 6 COMPARISON OF TEST AND THEORY FOR AXIALLY COMPRESSED
CYLINDERS TESTED BY BATTERMAN (1965)

’ BOSORS
Test Stress Prediction® Test
Model R/t {psi) {Clamped Edges) BOSORS5
9 116.61 31,770 44643 0.712
8 114.56 33,030
10 7 113.60 35,600 43,478 0.820
17 89.33 43,950
26 85.95 43,690 45,063 0.970
16 56.52 51,380 52,282 0.983
25 54.93 50,640
15 44.69 55,490
24 4418 53,380 55,663 0.959
4 26.61 58,200
3 26.56 58,200
2 26.44 57,100
1 26.18 58,600
5 25.94 59,570
6 25.88 58,760 57,422 1.023
14 19.71 61,580 59,175 1.041
23 19.66 61,480
13 14.02 64,110
22 13.93 63,790 62,886 1.014
18 9.76 70,000
19 9.76 69,320
20 9.76 69,840 71,225 0.980
12 9.70 69,630
27 9.70 69,230

* Axisymmetric cotlapse predicted in alf cases.
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o 2 & 6 .8 10
AXIAL COORDINATE, L/R
FIG. 43 RADIAL DEFLECTION PROFILES FOR

CYLINDER UNDER INCREASING AXIAL LOAD (FROM

MURPHY AND LEE [240])

This fact, the fact that the tangent modulus of most metals
decreases by more than an order of magnitude within a stress
range of 20 percent of the 0.2 percent yield stress, the fact that

high quality cylinders with the relatively low radius-to-thickness

ratios required for plastic buckling are easier to fabricate than
those with high R/t and the fact that significant predictable
axisymmetric bulges due to radial end restraints grow as the
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FIG. 44 COMPARISON OF TEST AND THEQRY FOR
PLASTIC BUCKLING OF AXIALLY COMPRESSED
CYLINDERS (ADAPTED FROM MURPHY AND LEE [240])

load is increased, combine to reduce dramatically the deleter-
ious effect of random unknown imperfections. We can there-
fore make fairly accurate predictions of collapse loads of
axially compressed cylinders tested in the usual way. Note that
this conclusion may not apply to cylinders in which the ends
are locally tapered and other devices are introduced into a test
to prevent failure due to bulging as shown in Figs. 1 and 43.



RING-STIFFENED CYLINDERS UNDER EXTERNAL
HYDROSTATIC PRESSURE

Lee [243] calculated bifurcation buckling loads of elastic-
plastic ring-stiffened cylinders with use of a Rayleigh-Ritz
method. Others who have studied this problem are referenced
in Sewell’s survey [4]. In Ref. [228] are given comparisons
between test and theory for 69 machined ring-stiffened alumi-
num cylinders tested by Boichot and Reynolds [242]. The
geometry is given in Fig. 45. Dimensions of all the specimens
are tabulated in Ref. [228] .

" 0
1/64"R I/32°R

Typica! on (F) Models

(O) RING

FIG. 45 ALUMINUM RING-STIFFENED CYLINDER
TESTED UNDER EXTERNAL PRESSURE BY BOICHOT
AND REYNOLDS AT THE NAVAL SHIP RESEARCH AND

DEVELOPMENT CENTER, MARYLAND (EROM
BUSHNELL [228])

Of the 69 test specimens, 24 {designated “F*’ in Fig. 45)
had fillets near the boundaries and where the rings join the
shell wali. From the photographs in [242] from which Fig.
46 is reproduced here, it appears that practically all of the
specimens without fillets fractured during failure. However,
it is not possible to determine from the test data alone whether
fracture caused the failure or whether fracture occurred later
as the shell was deforming in its buckling mode. On the other
hand, there is almost no evidence of fracture occurring in the
case of the 24 specimens with fillets. Therefore, it is reasonable
to predict that better agreement between test and theory will
be obtained for the specimens with fillets than for those with-
out.

Furthermore, analytical predictions that are too high for
the specimens without fillets would lead one to favor the
hypothesis that failure was caused by fracture rather than
buekling in these tests, since the analytical model (BOSORS)
is incapable of predicting fracture. This would be particularly
true if the too high predictions correspond to the thicker
specimens for which imperfections are less significant.

There are three different nominal radius/thickness ratios
involved in the test series: B/t = 12, 20, and 50. Buckling
pressures for the R/t = 50 specimens are somewhat sensitive
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FIG.46 SOME OF THE BUCKLED RING-STIFFENED
ALUMINUM CYLINDERS TESTED UNDER HYDROSTATIC
PRESSURE BY BOICHOT AND REYNOLDS (1985). TOP
SPECIMENS WITHOUT FILLETS, WITH EVIDENCE OF
FRACTURING; BOTTOM SPECIMENS OF SIMILAR
GEOMETRY BUT WITH FILLETS (FROM BOICHOT AND
REYNOLDS [242]).

to imperfections because buckling, especially of the models in
this class with small ring stiffeners, occurs at average stresses
that are barely in the plastic range. Indeed, the test results for
the thinnest specimens exhibit the most scatter, as indicated
in Fig. 47.

Figure 47 gives the comparison between test and theory. The
generally upward sloping trend results primarily from the fact
that the analytical model becomes increasingly conservative
with increasing 5A/ (Rt). The discrete rings are assumed to be
attached to the shell at a single point with the shell free to
bend in the axial direction in the immediate neighborhood of
this point. The neglected effect on the shell meridional bend-
ing stiffness of the finite thicknesses of the rings leads often to
predictions of axisymmetric collapse with relatively short axial
wavelengths when the test specimens actually fail nonsym-
metrically. The short-wavelength axisymmetric mode of failure
is hindered by the increased local meridional bending stiffness
afforded by the finite axial intersection lengths of shell and
rings more than is the relatively long wavelength general in-
stability mode of failure. Bushnell [228] includes modifica-
tions in the discretized BOSORS5 mode! to account for this
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FIG.50 LOAD-DEFLECTION CURVES FOR EXTERNALLY
PRESSURIZED RING-STIFFENED CYLINDER WITH AND
WITHOUT PRIMARY CREEP INCLUDED IN THE
ANALYSIS {(FROM BUSHNELL [22])

increased local meridional bending stiffness and thereby
obtains agreement between test and theory for models with

large b/~/Rt.

ELASTIC-PLASTIC CREEP BUCKLING OF AN
EXTERNALLY PRESSURIZED RING-STIFFENED
TITANIUM CYLINDER

The BOSORS program [22] was used for the analysis, and

the configuration and locations of nodal points in the discretiz-

ed model are shown in Fig. 48. Symmetry conditions are ap-
plied at the symmetry plane. Figure 49 shows the loading
schedule and gives the creep law. Solutions were obtained for
each time indicated by a dot. Figure 50 gives load-deflection
curves for computer runs in which the creep is neglected and

R ik © LT T PP SRR . SP

O

(a) (b)

FIG. 51 (A) PREBUCKLING DEFLECTED SHAPE AND (B)
{B) BIFURCATION BUCKLING MODE FOR RING-
STIFFENED CYLINDER WITH CREEP NEGLECTED IN
THE ANALYSIS {(FROM BUSHNELL [22])

FIG. 52 AXISYMMETRIC COLLAPSE OF RING-
STIFFENED CYLINDER WITH CREEP INCLUDED IN THE
ANALYSIS (FROM BUSHNELL [22])
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included. If creep is neglected the predicted failure mode is
nonaxisymmetric bifurcation buckling with 12 circumferential
waves at a pressure of about 1810 psi. The prebuckling deflect-
ed shape (exaggerated) and the bifurcation buckling mode are
shown in Fig. 51. With creep included, the predicted failure
mode is axisymmetric collapse at a pressure of about 1700 psi.
The growth of the axisymmetric buckle is shown in Fig. 52.

SHELLS OF REVOLUTION WITH COMPLEX SHAPES
UNDER EXTERNAL PRESSURE

During the past several years Galletly and his coworkers at
the University of Liverpool have been performing tests on
shells of revolution of various shapes under external and inter-
nal pressure. The method of testing and some BOSORS pre-
dictions are described in Ref. [227] . Some of these predictions
are presented in Figs. 53-60.

Cone-Cylinder Combination

For the externally pressurized cone cylinder shells shown
in Fig. 53 prebuckling plastic flow is confined to narrow axi-

0.054 £0.00! —=={

symmetric bands including the junctures. Accordingly, the
BOSORS model is set up as shown in Fig. 54, with the
plasticity analysis being performed only in segments 2 and 3

in order to save computer time. Figure 55 gives the nonsym-
metric bifurcation buckling pressures, mode shapes, and criti-
cal numbers of circumferential waves. In this case, the effect
of plasticity is to produce a hinge at the juncture. (In an elastic
analysis of these configurations the hinge would be introduced
only in the stability equations, not in the prebuckling equa-
tions.) A buckled specimen is shown in Fig. 56.

Pierced Torispherical Head

For externally pressurized torispherical shelis pierced by
cylindrical nozzles, an example of which is shown in Fig. 57,
prebuckling plastic flow is confined to a narrow axisymmetric
band including the juncture between the cylindrical nozzie and
spherical head. Some plastic flow also occurs near the juncture
between the spherical and toroidal portions. Figure 58 shows
the BOSORS5 model and predicted prebuckling deflected shape
{exaggerated). The critical bifurcation pressures and mode
shapes are given in Fig. 59. The buckling mode has one cir-

0.054 #0.001

¥
1.35"
- — ¥ 2.7
1.35"

FIG. 53 ALUMINUM CONE-CYLINDER SPECIMENS
TESTED UNDER EXTERNAL PRESSURE BY
GALLETLY AT THE UNIVERSITY OF LIVERPOOL
(FROM BUSHNELL AND GALLETLY [227])



Symmetry Plane

MESH POINT DISTRIBUTION

Seg No. of  Moaterial
*  No. Points Type
] 23 Elastic
.2 13 Elastic-Plastic
3 7 Elastic - Plastic
4 12 Elastic

(a)
BOSORS MODEL

(b)
g PREBUCKLING
e DEFLECTED SHAPE

FIG.54 DISCRETE MODEL OF THE 45 DEG. CONE-CYLINDER
SPECIMEN AND EXAGGERATED VIEW OF THE PREBUCKLING
DEFLECTED SHAPE AT THE BUCKLING PRESSURE (FROM
BUSHNELL AND GALLETLY [227])

cumferential wave, that is, the normal displacement varies
around the circumference as cos n8 with n = 1. Tilting of the
nozzle was also observed in the tests, as shown in Fig. 60.

More details of these tests and analysis are given in Ref.
[227].

In the two classes of plastic buckling problems shown in
Figs. 563-60 the prebuckling plasticity is confined to local axi-
symmetric stress concentrations near slope discontinuities
between shell segments. It is shown in Ref. [227] that prob-
lems of this type can be solved fairly accurately with an elastic
model in which the assumption is made, only in the stability
part of the analysis, that a hinge exists between the two seg-
ments where the slope discontinuity occurs. This hinge cannot
transmit any incremental buckling modal meridional moment
resultants. The use of deformation theory rather than flow
theory has a very slight effect on the predicted bifurcation
loads. From the excellent agreement between experimental
and theoretical results, it can be inferred that the critical
elastic-plastic buckling pressures of these shells are not sen-
sitive to initial imperfections.
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ELASTIC-PLASTIC BUCKLING OF INTERNALLY
PRESSURIZED TORISPHERICAL VESSEL HEADS

Summary of Past Work

Interest in internally pressurized torispherical heads was
stimulated by the failure of alarge fluid coker undergoing a
hydrostatic proof test at Avon, California, in 1956. Galletly
[244, 245] determined from an elastic, small-defiection anal-
ysis that the stresses exceeded the yield point of the material
by considerable margins over substantial portions of the vessel.
Galletly’s work [244] stimulated Drucker and Shield [246,
247] to perform limit analyses of shelis of revolution using
simplified yield surfaces for a Tresca material. Other elastic-
plastic analyses of torispherical shells were published by
Gerdeen and Hutula [248], Crisp and Townley [249], and
Simonen and Hunter [250] . Calladine [251] presented a novel
analysis of the limit pressure of torispherical heads which gives
results similar to those obtained by Shield and Drucker [247].
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FIG. 59 BIFURCATION BUCKLING MODES AND
COMPARISON WITH GALLETLY'S TEST RESULTS
(ADOPTED FROM BUSHNELL AND GALLETLY [2271)

Savé [252] conducted a series of tests on torispherical, tori-
conical, and flat heads. Several papers on the elastic-plastic
analysis of pressure vessel heads may be found in Ref. [253],
including contributions by Gerdeen [254] , Mescall [255], and
Marcal [256] . Other references to work in this area are given
by Esztergar [257].

The possibility of nonaxisymmetric buckling of internally
pressurized torispherical heads was first predicted by Galletly
[245]. Fino and Schneider [258) reported such buckling in a
head designed according to the ASME Code, but at a pressure

slightly below the design pressure. It is likely that the unexpec-

tedly fow buckling pressure resulted from nonaxisymmetric
imperfections generated when spherical and toroidal gores
were welded together to form the very large head. Mescall
[259] was the first to present a solution of the nonaxisym-
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FIG. 60 GALLETLY'S BUCKLED SPECIMENS:
{A) SPECIMEN A3
(B) SPECIMEN A6
(COURTESY G. D. GALLETLY)

metric stability analysis. He used elastic small deflection
theory. Adachi and Benicek [260] conducted a series of
buckiing tests on torispherical heads made of polyvinyl
chloride (PVC), chosen primarily because of the high ratio of
yield stress to Young’s modulus, which ensures that buckling
occurs before large scale yielding. The correlation of elastic
analysis with these tests was much improved by inclusion of
nonlinear geometric effects. Thurston and Holston [261] were
the first to account for moderately large axisymmetric pre-
buckling meridional rotations in the stabil ity analysis of these
heads. Since publication of Ref. [261] many computer pro-
grams have been written which calculate nonsymmetric bucki-
ing loads of arbitrary elastic shells of revolution including
geometric nonlinearity in the prebuckling analysis and pre-
buckling shape changes in the stability analysis [262-266] .



Recently, several papers have appeared on nonsymmetric
buckling of elastic-plastic pressure vessel heads: Brown and
Kraus {267] calcudated critical pressures for internally pres-
surized ellipsoidal heads with use of small deflection theory,
-Bushnell and Galletly [227] found buckling loads for exter-
nally pressurized torispherical heads pierced by nozzles and
for conical heads with use of large deflection theory in the
prebuckling analysis, and Bushnell and Galletly [231], Lagae
and Bushnel! [229], and Galletly [268, 269] used the
BOSORS computer program to compare theoretical predic-
tions with tests by Kirk and Gill [270], Patel and Gill [271],
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FIG. 61 TEST SPECIMEN NOMINAL GEOMETRY (FROM
PATEL AND GILL [271])
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FIG. 62 DISCRETIZED MODELS FOR THE BOSORS
ANALYSIS (FROM LAGAE AND BUSHNELL [229])

92

and Galletly [268, 269] for buckling of internally pressurized
torispherical and ellipsoidal heads.

The work presented in Refs. [229-231] is summarized here.
Figures 61-72 and Table 7 are from these sources.

Figure 61 shows the configuration of Kirk and Gill’s [270]
and Patel and Gill's [271] torispherical specimens, and Fig.
62 shows the discretized models analyzed with BOSORD.
Figure 63 shows the configuration of Galletly’s specimens with
an exaggerated view of a deformed meridian at the bifurcation
buckling pressure.

Bifurcation and Post-Bifurcation Behavior

Circumferential (hoop) compression develops wherever the
radius r is diminished from that in the undeformed state. it is
this hoop compression that causes nonsymmetric bifurcation
buckling. The value of the buckling pressure p,,. depends most
strongly on the value and meridional distribution on the hoop
stress resultant M,q, on the curvature of the deformed meridian
in the region where N, is compressive, on the material pro-
perties, and of course on the thickness of the shell. The cir-
cumferential bending rigidity, Css, is probably the most
important component of stiffness in the calculation of the
stability determinant because the critical circumferential wave
number n,. is usually very high for buckling under internal
pressure and the strain energy associated with the buckling
mode thus varies approximately as Cssn? o (Plots showing
how Css changes after yielding are given in Fig. 73.)

The development of visible buckles in these cases is a pro-
cess and not the single event predicted by a bifurcation (eigen-
value) buckling analysis. As the pressure in a test specimen is
increased above some critical value, a very localized, isolated
incipient buckle forms in the knuckle region, invisible to the
naked eye but detectable by a sensitive probe or a strain gage.
The buckle grows slowly at first, and then more rapidly, and
suddenly becomes visible. This visible buckle generally covers
most of the knuckle region in the meridional direction but has
a very short circumferential wavelength. After formation of
the first buckle, the pressure can be further increased sub-
stantially, causing the formation of other visible buckles in the
knuckle region, each one isolated circumferentially from its
neighbors. An isolated buckle, generated by circumferential
compression in the knuckle region, apparently causes the relief
of this compression within a sector surrounding the buckle,
thereby preventing the formation of the uniform buckle pat-
tern typical of buckied axially compressed cylindrical or exter-
nally pressurized spherical shells. Figure 64 shows two of Patel
and Gill’s buckled specimens. Figure 65 shows the growth of
a minute incipient buckle pattern in one of Patel and Gill’s
specimens over a pressure range 0.402 <p < 0.612 MN/m?.

The theoretical results displayed here are derived from an
analysis which is founded on the assumption that one is
especially interested in the pressure at which the first incipient
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AXIAL COORDINATE ({inches)

2
RADIAL COORDINATE (inches)

FIG. 63 ALUMINUM OR MILD STEEL TORISPHERICAL
HEAD TESTED UNDER INTERNAL PRESSURE BY
GALLETLY AT THE UNIVERSITY OF LIVERPOOL:

(A) BOSORS DISCRETE MODEL; (B) EXAGGERATED
VIEW OF PREBUCKLING DEFLECTED SHAPE AT THE
BIFURCATION BUCKLING PRESSURE (FROM BUSHNELL
AND GALLETLY [231])

FIG. 64 TWO OF PATEL AND GILL'S SPECIMENS AFTER
TESTING (FROM PATEL AND GILL [271])

bucklie forms. Therefore, buckling is treated as a single event,
predicted by means of the eigenvalue formulation summarized
in the previous analysis section.

Figure 66 gives comparisons of predicted and measured
incipient buckling pressures for the heads shown in Fig. 62,
The ranges of pressures over which the buckling patterns were
observed to develop are also indicated in Figure 66. In Fig. 66:

P pressure at which the first buckle was

ACT
fully developed

Pc LEAR = pressure at which the first buckle could
be felt by touching the surface of the
specimen

PINC‘P‘ENT = pressure at which the first buckie was

detected by a sensitive probe revolved
around the circumference at a station in
the toroidal knuckle
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FIG. 65 DEVELOPMENT OF BUCKLES AT SPHERE/
TORUS JUNCTION IN SPECIMEN 2D (FROM PATEL AND
GILL [271])

Table 7 lists test and predicted incipient buckling pressures
for all of the internally pressurized torispherical specimens
analyzed with BOSORS. Plastic flow prior to buckling occurs
in a fairly broad axisymmetric band near the junction between
the spherical and toroidal portions. The thicknesses of the test
specimens varied in both the circumferential and meridional

_ directions. Typical circumferential variations of thickness in
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the toroidal knuckle where buckling occurs are shown in Fig.
67. BOSORS runs were made using the minimum thicknesses
measured at each meridional station. In the BOSORS models

as in the actual specimens the thickness varied in the meridional
direction by as much as 30 percent.

Stress-strain curves for the specimens and maximum ef-
fective strains at buckiing are shown in Fig. 68. Some predict-
ed buckling mode shapes with critical numbers of circum-
ferential waves appear in Fig. 89. The normal displacements
in these buckling modes vary around the circumference as cos
nB. Comparisons of axisymmetric prebuckiing displacement
and strains predicted from BOSORbS and measured in one of
Kirk and Gill’s specimens [270] are shown in Figs. 70 and 71.

There is reasonably good agreement between test and theory
for the aluminum specimens. Discrepancies may be due to the
fact that the actual specimens were nonsymmetric because of
circumferentially varying thickness and meridian profile,
whereas the BOSORS models are axisymmetric. Also, the
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material flow law (associated with von Mises yield surface)
and hardening law {isotropic) may not be adequate to describe
the actual plastic behavior. Figure 72 shows that with a small
amount of strain hardening the path followed by a material
point in stress space as the pressure is increased monotonically
is sharply curved. We do not yet understand metal plasticity
well enough to be able to predict with certainty the state of

a structure that has undergone nonproportional biaxial load-
ing.

Results given by Lagae and Bushneli [229] indicate that
reasonably accurate predictions of incipient buckling can be
obtained with models in which constant thickness is assumed,
the model thickness being taken as the average measured thick-
ness along the toroidal knuckle meridian for which this average
is minimum. The quality of the theoretical predictions of
incipient buckling as well as the behavior of the test specimens
as the pressure is increased above the incipient buckling pres-
sure indicate that these types of vessels are not particularly
sensitive to initial imperfections.
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FIG. 67 MEASURED THICKNESS AROQUND THE
CIRCUMFERENCE AT THE LATITUDES WHERE THE
MAXIMUM NORMAL BUCKLING MODAL DISPLACEMENT
IS PREDICTED TO OCCUR (FROM BUSHNELL AND
GALLETLY [231])

A definite explanation of the disagreement between test
and theory for the mild steel specimens does not yet exist. It
is possible that the buckling mode associated with the lowest
predicted eigenvalue grows very little in the post-buckling
regime and so this mode was therefore not observed in the
tests. Possibly the use of minimum thickness everywhere
explains the discrepancy, for this minimum does not actuatly
correspond to any one meridian. However, it is felt that this
is not a likely explanation.
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More likely is the fact that because circumferential nonuni-
formities in thickness, such as shown in Fig. 67, cause rela-
tively large circumferential prebifurcation bending strains to
develop as the pressure is increased, the compressive destabiliz-
ing circumferential stress resultant grows more slowly with
increasing pressure than predicted by the axisymmetric
BOSORS model. More details are given in [231] .

Conclusions

Several conclusions are drawn in [231] based on test results
and BOSORS caiculations:

1. The major effect of moderately large axisymmetric pre-
buckling deformation is to cause the band of circumferential
compression which occurs in the knuckie to increase more
slowly than in proportion to the pressure. [See Fig. 73 (a) for
example.] Thus, buckling pressures predicted with use of
geometrically nonlinear prebuckling theory are higher than
those predicted with use of linear prebuckling theory.

2. A smaller counteracting influence of moderately large
deflections is due to the effect of the increase in meridional
radius of curvature of the knuckle region during prebuckling
deformations on the nonaxisymmetric stability analysis: This
curvature change causes a reduction of the predicted buckling
pressure from a value that would result if terms related to it
were dropped from the eqguations governing the stability
analysis.

3. For monotonically increasing pressure above that causing
initial yielding, the circurnferential and meridional stresses in
the knuckle do not increase proportionally. The curvature of
path in stress space followed by a given point depends very
strongly on the amount of post-yield strain hardening exhibit-
ed by the material from which the vessel head is fabricated:
The less the strain hardening, the more this path is curved, as
shown in Fig. 72.

4. As might be expected, the predicted buckling pressure
obtained with elastic-plastic analysis is less than that obtained
with elastic analysis.

5. Use of deformation theory rather than flow theory in
the stability analysis leads to lower predicted buckling pres-
sures.

6. The distribution and magnitude of the hoop compres-
sion in the knuckle region depends very strongly on the degree
of strain hardening exhibited by the material. The peak com-
pressive hoop resultant in a vessel head fabricated from mild
steel or other material with negligible strain hardening increases
initially with increasing pressure, but very soon starts to de-
crease as the knuckle is stressed into the plastic range. [See

Figs. 42 and 73 {c).] In contrast, if the material exhibits a
moderate amount of strain hardening, the peak compressive
hoop resultant continues to increase. [See Figs. 72 and 73
{a).] This difference in behavior of the destabilizing hoop
resultant affects the strategy to be used for calculation of bi-
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furcation buckling eigenvaiues, as pointed out in the discussion
associated with Fig. 42.
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7. Buckling occurs only for very thin specimens. For ex-
ample, with 2:1 heads, nonsymmetric buckling occurs only if
the diameter-to-thickness ratio is greater than about 500, |t
is not presently within the state of the art to fabricate by
machining specimens of reasonable size for testing in the lab-
oratory with thickness variations around the circumference
less than 5 to 10 percent. These small nonaxisymmetric varia-
tions cause the growth of circumferential waves in the knuckle
at pressure well below the buckling pressure. It is felt that the
circumferential nonuniformity is responsible for rather large
discrepancies between measured and predicted strains in the
knuckle region of torispherical shells for pressures exceeding
the proportional limit of the material.

8. The observed buckling pressure depends on how buckl-
ing is defined. In the tests on torispherical shells performed by
Galletly [268], the first buckling pressure is defined as that
pressure at which the first buckle becomes visible to the un-
aided eye. In the tests by Kirk and Gill [270], the buckling
pressure is defined as that pressure at which a short-wavelength
disturbance is first detected by a sensitive displacement trans-
ducer rotated around the circumference at the midpoint of the



knuckle. In one of Kirk and Gill’s specimens there was more
than a 50 percent increase in the pressure from that at which
the transducer detected a small wave to that at which the wave
grew to such a size that it become visible. (See Ref. [231] for
more details. )

9. Finally, it is concluded that in order to obtain a fuller
understanding of the elastic-plastic behavior of thin vessel
heads under internal pressure, a better understanding of the
biaxial flow of metals subjected to nonproportional loading is
needed, as well as the capability to manufacture very thin test
specimens in which the tolerance on axisymmetry of thickness
is about an order of magnitude smaller than is possiblé with
state-of-the-art fabrication techniques.

EFFECT OF RESIDUAL STRESSES AND DEFORMATIONS
ON PLASTIC BUCKLING

In 1958 Ketter [272] identified four sources of residual
stresses and deformations of fabricated metal structures: dif-
ferential cooling during and after rolling sheet metal, cold
bending, various erection procedures, and welding. He con-
sidered the effect of differential cooling in the fabrication
process on buckling loads of axially compressed I-beams.

Cold Bending

Several authors have investigated residual stresses due to
cold bending. Almen and Black [273] give the residual stress
pattern through the thickness of a bar which has been bent
about a circular die. Queener and De Angelis [274] derive ap-
proximate formulas for residual stresses and the ratio of die
radius R, to final radius after springback R for materials
with stress strain curves of the form o = Ke”. They performed
tests for various materials and a wide range of R,/Ry, obtaining
good agreement between test and theory. Their treatment is
based on deformation theory. Lunchik [275] determined the
effect of cold bending on buckling loads of cylindrical pres-
sure vessels. He calculated effective stress-strain curves for
the prestressed material by averaging effective stresses and
strains at twelve stations through the thickness of the shell
wall. Such curves depend on the service loads. Lunchick'’s
model is based on elastic-perfectly plastic material and de-
formation theory. it is determined in [275] that bending
residual stresses have the greatest weakening effect for cylindri-
cal shells in which the effective stress in the wall is near the
material proportional limit at the buckling pressure calculated
with neglect of these residual stresses. For such structures, the
reduction in buckling pressure due to cold bending can be as
much as 30 percent.

Shama [276] derived a simple method for calculating the
magnitude and distribution of cold bending residual stresses
for any beam cross section. The effects of the shape of the
stress-strain curve, section characteristics, and the degree of

bend are investigated. Tacey [277] has written a computer

. program for the calculation of the residual stress distribution
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and the effective stress-strain curve of cold bent beams for a
wide range of practical cross section geometries. The
Bauschinger effect and possible inelastic behavior on spring-
back are accounted for. The hardening rule used in Tacey’s
program is a combination of isotropic and kinematic rules.

Welding

During the 1970's much work was done on the numerical
modeling of multipass welding. The ASME volume, Numerical
Modeling of Manufacturing Processes, [278], contains several
papers on this subject [279-284] . Masubuchi [285] wrote a
survey of the field in 1975. Three frequently referenced papers
are by Hibbitt and Marcal [286], Nickell and Hibbitt [287],
and Friedman [288] . The results presented in these papers are
generally obtained from sophisticated computer programs for
multidimensional analysis. Although the heat conduction and
the thermal stress problems are uncoupled, the models include
nonlinear boundary conditions for solid and liquid regions,
temperature-dependent material effects, latent heat effects,
and convective and radiative heat transfer boundary condi-
tions.

it is impractical as of this date to incorporate such elaborate
models of the welding process into an analysis of buckling of a
ring-stiffened shell with many welds. A simple, computa-
tionally efficient model is introduced in [22], in which buck-
ling pressures are calculated for a welded ring-stiffened el-
lipsoidal shell. The shell and rings are assumed to be machined
and stress relieved separately and then welded together. The
effects of weld shrinkage are simulated in {22] by means of
the assumption that a certain amount of material in the local
neighborhoods of each weld is cooled below ambient temp-
perature to a difference approximately equal 1o the annealing
temperature. The residual stress distribution thus generated is
characterized by local tensile circumferential yielding near the
welds and elastic circumferential compression over the rest of
the cross sections of the shell wall and ring stiffeners. The
structure prestressed in this way remains axisymmetric, of
course, but the radial shrinkage varies in the meridional direc-
tion, introducing an axisymmetric imperfection with a charac-
teristic wavelength equal to the ring spacing. The weld effect
thus modeled reduces the predicted buckling pressure by about
10 percent.

Bending and Welding

Few papers exist in which residual stresses are calculated for
more than one fabrication process. Chen and Ross [288] cal-
culate residual stresses from cold bending a flat sheet into a
cylindrical shape and then welding the longitudinal seam. They
suggest that these residual stresses will cause early column
buckling of long cylinders under axial compression. in his



computer program, Tacey [277] permits introduction of
arbitrary initial stresses and then calculates residual stresses for
a series of up to ten sequential bending processes. Faulkner
[290] gives a survey of work done on calculation of residual
stresses due to welding ring stiffeners to cylindrical shells and
cold bending sheets into cylindrical shells and beams into rings.
He states that when ring stiffeners are welded to a cylindrical
shell of thickness ¢ there is tensile yielding over a length of
shell equal to 2nt and over a length of the ring web equal to

nt. These tensile regions are balanced by compressive residual
stresses distributed over the remainder of the shell and ring
cross sections. Typical values of ) obtained from measurements
are in the range 1.5 <1 < 4.5. The radial shrinkage at the
welds is approximately 10 percent of the shell thickness ¢

Effect of welding on the plastic buckling pressure of an
ellipsoidal ring-stiffened shell

The geometry of an ellipsoidal shell with internal ring stiff-
eners isshown in Fig. 74. The purpose of the analysis of this
structure is to determine the effect on predicted buckling pres-
sure of axisymmetric distortions and residual stresses due to
welding the rings to the shell.

STIFFENERS FORE
NORMAL TO SHELL

Figure 75 shows the BOSOR5 mode! which consists of 313
degrees of freedom in the axisymmetric prebuckling analysis
and 466 degrees of freedom in the nonaxisymmetric stability
analysis. Symmetry conditions are imposed at the equator in
both the prebuckiing and bifurcation buckling analysis. (It was
determined in preliminary runs on the computer that the
lowest bifurcation buckling pressure corresponds to a mode
symmetric rather than antisymmetric about the symmetry
plane.) The locations of the discrete ring attachment points
and centroids are indicated in Fig. 75 (b).

The effect of the welds shown in Fig. 76 (a) is introduced
into the analytical model by means of the temperature distri-
bution shown in Fig. 76 (b): A certain amount of the material
of ring web and shell wall in the neighborhood of the welds is
considered to be cooled down below room temperature. The
value 1000 F corresponds approximately to the anneal tem-
perature of the steel from which the structure is presumed to
be fabricated. The anneal temperature is used as a reference
value because residual stresses are relieved for higher tem-
peratures than this. The zero-stress temperature distribution
corresponds 1o the weld region being hot (above 1000 F) and
the rest of the material being at room temperature. As the
weld material cools down from 1000 F to room temperature,

& STIFFENERS NORRAL TO

AFT MAJOR AXIS OF

© ELLIPSE

SHELL THICKNESS - 0.25 **

FIG. 74 STEEL ELLIPSOIDAL SHELL WITH INTERNAL
RING-STIFFENERS WELDED TO IT. THIS STRUCTURE IS
SUBMITTED TO EXTERNAL PRESSURE (FROM
BUSHNELL [22] ).



FI1G. 75 BOSORS5 MODEL OF THE RING-STIFFENED
ELLIPSOIDAL SHELL: (A) NODAL POINTS;

(B} LOCATIONS OF DISCRETE RING ATTACHMENT

POINTS AND CENTROIDS {FROM BUSHNELL [22])

stresses build up in the shell and ring, tensile in the region that
was originally heated above 1000 F and compressive elsewhere.
Thus, the nonzero stress state corresponds to a uniform
ambient temperature distribution. In BOSORS it is not pos-
sible to generate a nonzero initial thermal stress state with a
uniform temperature distribution. Therefore, one must
simulate the growth of residual stresses and deformations by
treating the weld region as if it were cooled down below
ambient temperature,

Figure 77 shows the prebuckling axisymmetrically deform-
ed shape with increasing external pressure and a comparison
with and without welding effects. The relatively advanced
scalloping of the meridian corresponding to p = 4100 psi with
the weld effect arises because of increased local plastic flow
near the ring attachment points. The ring at the plane of sym-
metry moves inward rapidly with pressure increasing above
3500 psi because the flange yields and flows plastically, having
zero tangent modulus for p > 35600 psi. {There is more welding
required in the neighborhood of this ring than the others be-
cause the ring must first be welded to one of the halves of the
shell and then the two halves of the shell must be welded to-
gether. Hence, in this area more of the material is cooled down
by an amount approximately equal to the anneal temperature.)

Figure 78 shows predicted incipient buckling modes with
and without the weld thermal effect. The lowest predicted
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BUSHNELL [22])
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FIG. 77 PREBUCKLING DEFLECTIONS WITH INCREAS-
ING PRESSURE AND COMPARISON WiTH AND WITHOUT
THE WELD COOL-DOWN EFFECT (FROM
BUSHNELL [22])

critical pressure corresponds in both cases to nonaxisymmetric
buckling with five circumferential waves. The buckle modes
are quite different in the two cases because of the increased
amount of prebuckling plastic flow in the ring at the plane of
symmetry predicted with the model which includes the weld
effect.
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F1G. 78 PREDICTED BIFURCATION BUCKLING MODES BR-4 BR-4A
AND PRESSURES WITH AND WITHOUT THE WELD COOL- (a) (b)
DOWN EFFECT INCLUDED IN THE ANALYSIS (FROM
BUSHNELL [22] FiG. 79 BUCKLING PATTERNS IN:

(A) THE COLD BENT AND WELDED SPECIMEN
BR-4 (p,, = 390 psi)

(B) THE MACHINED SPECIMEN BR-4A
o, = 540 psi)
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EFFECT OF COLD BENDING AND WELDING ON
BUCKLING OF RING-STIFFENED CYLINDERS

The BOSORS5 computer program can be used for calculation
of bifurcation buckiing of cold bent and welded ring-stiffened
cylinders under external pressure. Residual stresses and de- 26.688 1D
formation from cold bending and welding can be included in
the model for buckling under service loads by introduction of
these manufacturing processes as functions of a time-like para-

meter, “time,” which ensures that the material in the analytical
model experiences the proper sequence of loading prior to and ﬁ ] ! § 1 |
. . . . . i H 1
during application of the service loads. The cold bending }..’.;.4,9&-;—7,11—4—7,%7,11—%7.11——%5.02—1&-[-1
process is first simulated by a thermal loading cycle in which 3 3
the temperature varies linearly through the shell thickness,

initially increasing in ““time"’ to simulate cold bending around "W
a die to radius R, and then decreasing in “time"” to simulate - SHELL N
—F-O.QS / \

|

0.231

£0.l32

B

springback to a final somewhat larger design radius R. The

welding process is subsequently simulated by the assumption

that the material in the immediate neighborhoods of the welds [L 7.11
is cooled below the ambient temperature by an amount that
leads to weld shrinkage amplitudes typical of those observed

in tests. Buckling loads are calculated for a configuration includ-
ing and neglecting the cold bending and welding processes.
These predictions are compared to values obtained from tests
by Kirstein and Slankard [291] and Slankard [292] on two
nominally identical specimens, shown in Figs. 79 and 80. The
specimen designated BR-4 was fabricated by cold bending the SHELL

shell and then welding machined ring stiffeners to it, and the BULKHEAD

specimen designated BR-4A was carefully machined. Details of

the analysis and predictions are given in [232]. FIG. 80 DIMENSIONS OF SPECIMENS BR-4 AND BR-4A
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ELASTIC-PLASTIC BENDING AND BUCKLING
OF PIPES AND ELBOWS

The elastic-plastic collapse and bifurcation buckling analysis
of straight and curved tubes subjected to bending is needed for
design and evaluation of nuclear power plant piping compon-
ents, offshore pipelines, and other structures involving tubutar
members. Most of the recent work on piping has been motivat-
ed by a desire to be able to predict stress, stiffness, and limit
moments of piping systems in nuclear reactors. Since the most
flexible and highly stressed piping components are elbows, a
significant portion of the total effort has been focused on test
and analysis of various elbows under in-plane and out-of-plane
moments. in the offshore oil industry, the laying of underwater
oil pipelines involves bending of rather large diameter straight
pipes in the presence of external hydrostatic pressure. The
degree of ovalization of the pipe cross section under bending
is very much affected by the external pressure, as will be seen
later.

ELASTIC MODELS

The bending of elastic piping components is explored in
Refs. [293-301] . Brazier [293] was the first to calculate col-
lapse moments, including in his theory the important effect
of increasing ovalization (flattening) of the pipe cross section
as the bending moment is increased. Clark and Reissner [294]
use an asymptotic formulation in which ovalization of initially
curved tubes under bending is assumed to be symmetric about
a tube diameter normal to its plane of curvature. Wood [295]
expanded Brazier’s treatment to include pressure, and Reissner
[296] further improved the theory by including higher order
nonlinear terms and introducing the effect of pressure on the
bending of slightly curved tubes. Aksel’rad [297] was the first
to predict bifurcation buckling of straight pipes under bending,
including the effect of flattening of the cross section in the pre-
buckling analysis. In all of the analyses just cited, end effects
are ignored; the pipes are assumed to be infinitely long.
Stephens, et al. [298], used the STAGS computer program
[207] to calculate collapse and bifurcation buckling of initially
straight tubes of finite length. For tubes with radius-to-thick-
ness R/t=100 they carried out a parameter study, predicting
limit and bifurcation bending moments for length-to-radius
ratios 3.4<L/R< 20. They included internal and external pres-
sure in their analysis.

Elastic analyses of piping elbows have been performed by
Dodge and Moore [299] who wrote a computer program,
ELBOW, based on a model similar to Clark and Reissner's
[294] and Hibbitt, et a/. [300], who introduced a curved pip-
ing finite element into the MARC computer program [171].
This element, called no. 17 in the MARC element library, is
based on neglect of elbow end effects. Discretization is in the
circumferential coordinate only. Sobel [301] used the MARC

no. 17 element in a convergence study with mesh size. He re-
ferred to Clark and Reissner’s asymptotic formulas to establish
optimal finite element nodal point density in the hoop direc-
tion as a function of elbow geometry. Rodabaugh, et &/ {302]
performed a study of 45, 90, and 180 deg. elbows, determin-
ing the stiffening effects of straight pipes attached to the ends
of the elbows. They used the EPACA computer program [170]
for their analysis in which end effects are included. Although
EPACA includes the capability to treat structures made of
elastic-plastic material, the work described in Ref. [302] is
restricted to elastic behavior,

BENDING TESTS ON ELASTIC-PLASTIC
STRAIGHT PIPES AND ELBOWS

Several test programs on bending of elastic-plastic straight
pipes and elbows have been carried out in the past decade. Bolt
and Greenstreet [303] give load-deflection curves for 14 com-
mercial 6-in. diameter carbon stee! elbows and one 6-in. dia-
meter stainless steel elbow with and without internal pressure.
Vrillon, et al. [304] compare test and theory for the in-plane
bending of a 180 deg. elbow subjected to both opening and
closing moments. They used the TRICO program [205] for
their analysis, Sherman [305) tested several straight pipes,
noting formation of relatively short axial wavelength buckles
just before collapse. A comparison between one of Sherman’s
experiments and theoretical results obtained with a modified
version of the BOSOR5 computer program [22, 306] is given
later. Sobel and Newman [307] describe a test on a 90 deg.
elbow carried out on the multiload test facility (MLTF) at the
Westinghouse Advanced Reactors Division. Bung, et al. [308],
ran tests at elevated and room temperature on 304 stainless
steel elbows. Comparisons between the test resuits of Sobel
and Newman [307] and Bung, et a/, [308] , and theoretical
predictions obtained with the modified version of BOSORS
referred to above are presented in a following section.

ELASTIC-PLASTIC PIPING ANALYSIS

There are basically three types of elastic-plastic piping
analysis for the prediction of stress, stiffness, and buckling
failure of straight and curved tubes and combinations thereof:

1. A “brute force’ method in which the tubes are divided
into a two-dimensional field of finite elements.

2. A simplified model in which tube end effects are ignored
and discretization is in the circumferential coordinate only.

3. A further simplified model in which resultant forces and
moments integrated over the tube cross section are related to
strains and changes in curvature of the tube axis.

The STAGSC computer program [207], the EPACA code
[170], and the TRICO code [205]} have been used for the
“brute force” analysis of elastic-plastic elbows attached to
straight pipes. Vrillon, et a/. [304], Roche and Hoffman
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[309], and Skogh and Brogan [310] used these general pur-
pose shell analysis computer programs to calculate moment-
deflection curves for combinations of straight pipes and el-
bows, including elastic-plastic material behavior and moder-
ately large deflections. Remseth, et a/. [311], calculate elastic-
plastic collapse of straight tubes subjected to combined bend-
ing and external pressure in a two-dimensionally discretized
mode! in which arbitrarily large rotations are permitted. These
nonlinear analyses require large amounts of computer time.
The more economical but less rigorous one-dimensionally
discretized model has been employed by Mello and Griffin
[312] and Sobel and Newman [313], who used the MARC
computer program [171] element no. 17 [300], and by
Bushnell [306], who modified BOSORS [22] to obtain
predictions for the bending and buckiing of straight pipes and
elbows. The most economical and more approximate beam-
type models have been used by Roche, et a/. [314], Spence
and Findlay [315, 316] and Calladine [317]. Popov, et af.
[318], used a beam bending mode! combined with a rigorous
axisymmetric large deflection elastic-plastic analysis to predict
axial wrinkling of pipes under combined internal pressure, axial
loading and flexure. However, they neglected the important ef-
fect of ovalization of the pipe cross section during bending.

AXISYMMETRIC MODEL OF PIPE OR ELBOW
BENDING PROBLEM

In the following section resuits from an approximate anal-
ysis of the second type (one-dimensional discretization) are
given for various configurations. The theoretical results were
obtained with a modified version of BOSORS5 [22, 306]. In
[306] a uniformly curved pipe is treated as if it were partof a
toroidal shell. The model is similar to that described in Ref.
[319]. Bending in the plane of the curvature of the pipe
centerline is applied by means of an appropriate temperature
distribution over the pipe cross section, as is described in
{306] and summarized here. Every cross section of the uni-
formly curved pipe is assumed to deform identically. There-
fore, the structure can be treated as a shell of revolution, a
torus. Figure 81a shows the undeformed curved pipe reference
surface with centerline radius of curvature b and meridional
radius of curvature a. The centerline radius of curvature of the
deformed pipe reference surface (Fig. 81b) is R and the cross
section has ovalized such that a generator that was originally
at a radius

r=b+acosg¢

is now at a radius R +z, where z is given by
z = (a + w) cos¢ - u sing (52)

If we assume that the centerline remains inextensional, the
reference surface axial strain is
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Rearrangement of Eq. (53) and use of the relationships

cos¢ = r/R,; sing = "= - dr/ds (54)



leads to the expression

a(;— —7;—) cos¢ 5

€ = (W/Ry + ur'/r) +

o

1+2

b cosg

in which R, is normal circumferential radius of curvature of
the reference surface of the undeformed torus, 7 is the radius
to a point on the torus reference surface, and ¢’ is the deriva-
tive of r with respect to meridional arc length s. Figure 82
shows these quantities.

Simulation of the Pipe Bending Problem
by Thermal Loading of a Torus

In order to use BOSORS to treat the problem of elastic-
plastic bending and bifurcation buckling of a curved pipe, it is
necessary to write the axial strain given by Eq. (55) as a stress-
producing prebuckling hoop strain for the shell-of-revolution
{torus) analysis. This is easily done by definition of the pre-
buckling stress-producing hoop strain as

€ = €3 ~ Oy AT (56)
in which, from Eq. (55}, it is seen that
_ b .
€ =% {(W/R, +ur'/r) (57)

] coso

5 )

G AT = -a( ;— (58)

1+ —Z— coso

In this way, the problem of bending of a curved pipe is simulat-
ed by a problem of a nonuniformly heated torus. Further de-
tails of the analysis are given in [306].

BENDING, LIMIT MOMENT, AND BIFURCATION
BUCKLING MOMENT OF A STRAIGHT PIPE

Figures 83-86 pertain to the elastic-plastic bending, col-
lapse, and bifurcation buckling of straight pipes tested by
Sherman [305] . (In Sherman’s test there was no pressure,
however.)

Figure 83 shows test results and the results of two BOSOR5
runs, one in which the pressure is zero and the other in which
the pressure is one-half the external pressure P, that would
cause buckling in the absence of an applied bending moment,
M. The pipe material is elastic perfectly plastic with a yield
strength of 421 N/mm?. The quantity k is the curvature
change of the pipe axis (Fig. 81). With zero external pressure,
bifurcation buckling is predicted to occur at an applied
moment slightly below that corresponding to nonlinear col-
lapse due to flattening of the cross-section. Thus, in a test of
such a pipe one would expect to see relatively short axial-
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FIG. 83 BENDING OF STRAIGHT PIPE WITH AND WITH-
OUT EXTERNAL PRESSURE
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FIG. 84 OVALIZATION OF STRAIGHT PIPE WITH AND
WITHOUT EXTERNAL PRESSURE UNDER IMPOSED
CURVATURE k = 0.0432 m™!

wavelength wrinkles or a single wrinkle appear just before
failure. Indeed Sherman observed the formation of such
buckles in his tests.

With external pressure, ovalization or flattening of the
pipe cross section is predicted to occur more precipitously
with increasing applied curvature change k = (1/R - 1/b).
Note, however, that the maximum moment-carrying capabil-
ity of the pipe is not much less than that of the pipe without
external pressure. In the case treated here, bifurcation buckling
occurs with a somewhat shorter axial wavelength at a value of
k slightly greater than that corresponding to collapse due to
flattening of the cross section. Hence, if the moment M is ap-
plied rather than the curvature change k, axial wrinkles might
not appear before failure. Figure 84 shows the predicted
deformations of the pipe cross sections with and without
external pressure at k = 0.0432 m™'. The deformations are
exaggerated but plotted to the same scale in Figs. 84 (a) and
84 (b).

Figure 85 shows the axial stress resultant at several values
of applied curvature change k for the case with external pres-
surep = 1/2p,, = ET*/D*. The plots clearly show the growth
of the plastic regions as the applied curvature is increased.
Yielding begins when the applied moment is about 10° Nm,
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well below the maximum moment. The development of ex-
treme fiber stresses at the equator are shown in Fig. 86 for the
case p = 1/2 p,.. The plastic biaxial loading of this elastic-
perfectly plastic material is far from being radial (radial = pro-
portional loading) as the centerline curvature & is monoton-
ically increased.



BENDING AND LIMIT MOMENT OF
ELASTIC-PLASTIC ELBOWS

Figures 87-90 show results from application of the BOSORS
analysis [306] to in-plane bending of 90 and 180 deg. piping
elbows. The BOSORS predictions are compared to tests and
to other analyses.
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FIG. 87 COMPARISON OF TEST AND THEORY FOR
BENDING OF 90 DEG. ELBOW. TEST BY WESTINGHOUSE
ADVANCED REACTOR DIVISION, 1978.

Figure 87 gives a comparison of BOSORS results with a
test of a 90 deg. elbow by Sobel and Newman [307] and an
analysis in which the MARC element no. 17 is used for the
elbow. The test was for a closing moment. Analytical predic-
tions are shown for both opening and closing moments. The
quantity ., is the part of the end cross-section rotation
attributable to beam-type bending, which is not included in
the BOSOR5 model.

Figure 88 shows a comparison of test and theory for a 180
deg. elbow tested by Bung, et af. [308] . The theoretical results
labled “TRICO” and “TEDEL" were obtained, respectively,
by Roche and Hoffmann [309] and Roche, eral. [314].
TRICO is a general nonlinear computerized shell analyzer
[205] and TEDEL is a program based on a simplified non-
linear beam model. The axial and hoop strains plotted in Figs.
89 and 90 correspond to an increase in d of 76 mm. There is
reasonably good agreement between the BOSORS predictions
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and measured strains. {(Note that the definition of hoop angle
¢ differs from that in Fig. 82)

SUMMARY AND SUGGESTIONS FOR
FURTHER WORK

SUMMARY

In the introduction, plastic buckling is itlustrated by an
example of a rather thick cylindrical shell under axial
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compression. Two types of buckling, limit load collapse and
bifurcation, occur in the case of the cylindrical shell shown

in Fig. 1. The limit load collapse demonstrates the need for
general nonlinear analysis in which both moderately large
deflections and elastic-plastic material behavior are accounted
for. The bifurcation of the equilibrium path after considerable
bulging near the boundaries has occurred and after yielding of
the material demonstrates the need for a theoretical test of
uniqueness of equilibrium which includes moderately large
prebifurcation deflections and post-yield plastic flow. A cap-
sule of recent improvements in analysis techniques and in our
understanding of the plastic buckling process is then given.
The introduction concludes with a chart (Fig. 3) showing how
plastic buckling, as described here, fits into the overall picture
of static and dynamic structural analysis.

Certain conceptual difficulties with regard to plastic bifurca-
tion buckling are next discussed, with particular emphasis be-
ing given to the rationale leading to Shanley’s model of elastic-
plastic column buckling and the paradoxical discrepancy be-
tween buckling predictions from flow theory and deformation
theory.

An important goal of the following sections is to bring
together under one roof, so to speak, three major areas of
activity in plastic buckling research: asymptotic post-bifurca-
tion analysis, general nonlinear analysis, and analysis of shells
of revolution.
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In the section on asymptotic post-bifurcation analysis the
recent work of Hutchinson, Tvergaard, Needleman, and their
coworkers is summarized.

The main contribution of their work is to give us an
improved physical understanding of the stability of structures
loaded into the plastic range and of the effect of initial imper-
fections on the load-carrying capacity of these structures.

In the sections on general nonlinear analysis, the develop-
ment of general-purpose computer programs by Marcal, Bathe,
and others is described with particular emphasis being given to
formulation of the equations, elastic-plastic material models,
and strategies for solving large systems of nonlinear equations.
The main contribution of the many workers in this field has
been to provide us with greatly improved analytical tools for
the analysis of complex structures which undergo large deflec-
tions and nonlinear material behavior.

In the sections on plastic buckling of axisymmetric shells,
the basic equations are given followed by numerous examples
in which plastic collapse and bifurcation buckling predictions
for shelis of various shapes are compared with tests by Lee,
Batterman, Galletly, Gill, and others. The main contributions
of this theoretical and experimental work are to provide a
greater physical understanding of limit load collapse and
bifurcation buckling for a class of structures of particular
significance to the pressure vessel and piping industry, to
iHustrate the application of a computerized analysis method
to these axisymmetric shell problems, and to reveal that criti-
cal loads for these structures are not very sensitive to initial
imperfections when the material has been stressed beyond its
proportional limit.

This work closes with a discussion of elastic-plastic bending
and buckling of pipes and elbows. Comparisons between test
and theory are given for collapse and bifurcation buckling of
straight pipes and elbows of various geometries.

IMPORTANT AREAS NOT COVERED HERE

The important area of dynamic plastic buckling has not
been covered here. References [320-334] deal with this prob-
tem, which is shown in Fig. 3 as a special case of nonlinear
dynamic response. Other areas not explored here include crash-
worthiness, a name sometimes given to large deflection, elastic-
plastic dynamic response analysis when it is applied to stiffen-
ed vehicular structures [335-337] ; and fluid-structure or solid-
structure interaction, which is important for predicting the
response of submarine structures to hydrodynamic shock
waves and the response of nuclear structures such as contain-
ment vessels and piping to earthquakes [338, 339]. Also,
buckling of structures made of composite material that be-
haves nonlinearly and irreversibly is not covered. An example
is a nuclear containment vessel made of reinforced concrete,
which displays rather complex behavior under biaxial loading,
as described by Murray and his coworkers [340-341] .



Various finite elements used for shell analysis are not des-
cribed; only the Ahmad element [154] as modified by Zien-
kiewicz, et al. [155], and Pawsey and Clough [156] is briefly
mentioned because of s great popularity. Various adaptive
finite element mesh refinement schemes, such as that discuss-
ed by Babuska and Rheinbolt [342], are not enlarged upon
here. Creep buckling is only discussed for situations in which
there is combined creep and plasticity; the important work
of Samuelson [343] is omitted.

Finally, the important area of simple formulas for plastic
buckling is neglected. Griffin [344] presents inelastic and
creep buckling formulas for axial compression, bending, and
twisting of cylindrical shells, and Neale [345] describes a
method for estimation of plastic buckling loads. Gerdeen
[346] has written a survey of limit analysis and Nicke! [347]
has written a survey of simplified analytical methods involving
plasticity and creep.

SUGGESTIONS FOR FURTHER WORK

Plastic buckling is a difficult field for the engineer or
designer to understand. The simultaneous presence of moder-
ately large deflections and nonlinear path-dependent material
behavior leads to a mulititude of possibilities for misusing
sophisticated state-of-the-art computer programs created to
explore plastic buckling. If the load increment is too large the
solution may fail to converge. It may converge to the wrong
answer because of an inadequate model of the path-dependent
material behavior in the plastic range, because the discretiza-
tion is too coarse, or because of drift from the equilibrium
path. If the load increment is too small, excessive computer
time will be used. A discretization which is optima!l for a pre-
bifurcation analysis of a structure is not necessarily adequate
for the bifurcation phase. Boundary conditions may differ in
the prebuckling and bifurcation buckling phases. Load-deflec-
tion paths for structures under destabilizing loads, especially
thin shell structures, often appear to be almost linear until
they abruptly change direction near the critical load. This
abrupt change in stiffness requires the use of variable load or
time increments.

Most computer programs for plastic buckling analysis re-
quire decisions by the user that he or she, through lack of
general knowledge about the phenomenon of plastic buckling
or mistaken intuition with regard to the specific case at hand,
may not be adequately prepared to make. This frequent
mismatch between the computer program and the user can be
diminished by the introduction of strategy parameters into the
program that cause some of the decisions about {oad or time
step discretization and method of solution of the nonlinear
equations to be made automatically. The mismatch can be
further diminished by education of the user in two ways:
education about plastic buckling in general, gained for example
by a reading of survey papers such as this one and by analyzing
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many structures over a period of time; and education about
the specific case being treated, gained perhaps by plots, com-
ments, and advice provided by the computer program and its
documentation. Almroth, et a/. {348, 349] offer many sug-
gestions regarding automated selection of strategy parameters
and solution techniques based on computerized evaluation of
data obtained during a series of previous load steps.

In addition to our expending future effort to develop
automated adaptive computerized modeling and solution
strategies and user education, we need a better understanding
of the time-independent and time-dependent, nonlinear, ir-
reversible behavior of metals and composite materials under
muitiaxial stress fields. We need better ways 1o handle the
effect of fabrication processes on buckling of assembled
structures—processes which include hot and cold rolling plate,
cutting plate, cold bending to a prescribed radius, and weld-
ing. We need ways to avoid errors associated with poor numeri-
cal conditioning near limit points and bifurcation points along
equilibrium paths. After all these years and articles devoted to
finite element analysis of sheli structures, the best method of
discretization of a curved surface with finite bending stiffness
is still an open question. Finally, we need simple design for-
mulas for structurally simple but phenomenologically com-
plex problems such as plastic buckling of internally pressurized
torispherical or ellipsoidal pressure vessel heads and collapse of
pipes and elbows under combined bending and internal or
external pressure.
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