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1. Introduction

Thin cylindrical shells in compression buckle explosively as is known from numerous ex-

periments. What happens visually during the buckling phase has been revealed only at some

isolated instances where high speed video recordings were made of these phenomena, see for

example (Ref. 1). But as far as it is known the actual buckling process of a cylindrical shell

has never been numerically simulated. We believe that the most likely reason for this is that

the whole arsenal of computational tools that are necessary for this task were not yet available

at the time such calculations were contemplated.

But the situation indicated above has changed. The potential of the present day finite

element software and the power of the computer hardware has increased so much that the re-

strictions mentioned no longer exist. To illustrate this point we present here the numerical

computation of the collapse process of a cylindrical shell under prescribed edge displace-

ments. The shell that we chose for our computational experiment was manufactured, measured

and tested some twenty years ago by Singer, Arbocz and Babcock under carefully controlled

conditions in a laboratory environment (Ref. 2).

2. Description of the problem

In buckling experiments on cylindrical shells one chooses usually between two options of

load application. The first is the case of dead weight loading by which the load is controlled in

a direct way (Figure 1). In the second case, the load is introduced by means of a forced end-

shortening controlled by the testing machine (Figure 2). For an introduction to the terminol-

ogy and concepts that are used here refer to (Ref. 3).

If one wants the shell not to be destroyed in the testing machine, the second option of

loading is to be preferred. In that case (Figure 2), the shell becomes unstable in a limit point

for the end-shortening, rather than at a limit point for the load as in Figure 1. The dynamic

snap that takes place in that case will be along the dotted vertical line in the figure, at least, in

the ideal case that the end-shortening control is perfect. The snapping motion ends at a stable

post-buckling state at value of the total load much smaller than the limit load. It is worth

noting, that if the shell is fully clamped, the static pre-collapse equilibrium curves in both

loading cases are identical because they are defined by sets of equations that are equivalent.



This is thereasonthatthe limitpoint for the loadin case 2 can be equated to the limitpoint

for the load in case 1.

It is now possible to state the objective of our computational experiment The objective is to

compute the loading path I in figure 2 and the subsequent snap to the post-buckling state II.

Of considerable interest is here the change in shape of the post-buckling displacement pattern

during this process and the final shape that belongs to the post-buckled state II.

Load Dynamic Process
0

I • Static, stable pre-collapse

II • Static, stable post-collapse

Displacement

Figure 1 Simulation of a collapse process (dead weight loading)

3. Shell model used in the computations.

A detailed description of the test program dealing with the buckling tests is given in the

reference already mentioned (Ref. 2). The test specimen, called AS2, is an integrally machined

stringer stiffened cylindrical shell of which the deviations from the cylindrical form were care-

fully measured. During the experiment, the wave pattern in the pre-collapse state was observed

to be dominated by a mode of one half wave in the axial direction and 9 waves in the circum-

ferential direction. In the post-buckling state after the snap, the pattern had changed to one

half wave in the axial direction and 10 full waves in the circumferential direction.

In (Ref. 4) computational models were defined for this shell with a geometry based on the

measured imperfections. The models were used to check theory with experiment, that is
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whetherthe collapse loads predicted by numerical models are anywhere near the experimen-

tally determined collapse loads I. Because the computer facilities of the time were limited in

capacity, the models were somewhat simplified in order to economize on the number of com-

putational degrees of freedom that were needed. The simplifications basically concern the

adaptation of some symmetry in the imperfection pattern and ensuing deformation after the

load is applied.

Load

I

Dynam_ Process

I

i

i

H

I" Static, stable pre-collapse

II • Static, stable post-collapse

end-shortening

Figure 2 Simulation of a collapse process (prescribed end-shortening)

In this report, we will make use of one of these simplifications. It is the so-called 7 mode

imperfection model which has two planes of symmetry. This is the mid-plane perpendicular to

the axis and a plane through the axis. We chose this model not only to verify whether the re-

sults reported in (Ref. 4) could be reproduced but also because we did not want to start our

computational experiment with the most demanding model in existence (in terms of de_ees

of freedom). It is true that the displacement pattern this model will take before collapse cannot

1 They were.
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bein agreementwith theactualtestresultbecausetheimperfectionpatternsimply lacksthe

appropriateterms.On theotherhandit canbeexpectedthat thedeeppost-bucklingstateis
not stronglyinfluencedby the initial imperfectionssothat the post-bucklingstatesof the

modelmightshowthegeneralshapethatwasobservedin theexperiment(Ref.4).
Thecalculationsthatwepresentherearecarriedoutwith theQ-STAGSshellfiniteelement

program, amodernizedversionof STAGS-C [ STAGS= StructuralAnalysisof General

Shells](Ref.5).In thisprogram,theimperfectionsareintroducedatthelevelof thestrain
measures.ThismeansthattheGreen- Lagrangestrainsfor theimperfectshellarecomputed

as-.

1 _ [(u,i)TuO,j+ (uO,i)T u,j]Y*ij= _"(gij - _ij) = yij(u) +
(1)

where (.),i = the usual notation for partial differentiation with respect to the reference

coordinates, u0 are the deviations from the perfect cylindrical shape and u the displacements

due to the deformation of the shell measured from the imperfect shape. The symbol Yij stands

for the strain expressions calculated for the perfect shell. The imperfections are thus not

simply introduced by displacing the nodes from the cylindrical surface, but they are calculated

as extra contributions to the original strain measures for the perfect cylinder as it is done in

the classical analytical imperfection sensitivity studies. Incidentally, the possibility to

introduce imperfections in terms of a double Fourier expansion is a standard option in

STAGS and we made gratefully use of it here.

For the computations it is only necessary to take into account one quarter of the shell with

the _ven imperfection mode. However, for the sake of a more comprehensive visualization of

the deformed shell, we took here into account a full len_h model of the shell segment of 180

degrees in circumferential direction. We used the standard shell element denoted by 410 (Ref.

6) to discretize the shell. This places the current analysis in the context of small strain - large

rotation theory (Ref. 7, 8). The mesh that we selected was identical to that of (Ref. 4), i.e.

(2 x 21) x 131 node points in axial and circumferential direction respectively, leading to ap-

proximately 25000 computational degrees of freedom. The boundary conditions at the loaded

edges correspond to fully clamped.

4. Computations and results

The pre-collapse loading path was calculated with the standard path following method that

is available in Q-STAGS (Refs. 9, 10). The typical shape of the pre-buckling state is pictured

in Figure 3. When the limit point was passed, we took the solution dk (which is unstable)

closest to the limit point and used this value to formulate the initial conditions for a transient

analysis but this not before we introduced some damping to the model. The damping

coefficients were based on a free vibration study of the loaded shell prior to the collapse point.
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Figure 3 The pre-buckling state

(not to scale)



Figure 4 State of deformation at the beginning of the snapping motion

(not to scale)
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Figure S Stable postbuckling state

(not to scale)



For the initial conditions we chose: Starting configuration d(0) = dk 2. End-shortening Au =

Auk + e > Au*; where Au* is the value that corresponds to the limit point (d*; Au*) and e is a

small positive number. Initial velocity d' = 0. The end-shortening Au was kept constant during

the dynamic response calculations. Note that the starting configuration chosen in this way

cannot be close to an equilibrium state because the end-shortening is above the limiting value

Au*.

For the dynamic response calculation we used the implicit method available in STAGS

which was developed by Parks (Ref. 5, 11 ). The number of time steps that were needed to

reach a new stable equilibrium state was 211. During the buckling process the kinetic energy

increases from zero to a number of peak values before it goes to zero again when the structure

comes to rest. According to our calculations, the time interval between the beginning of the

snapping process and the moment at which the cylinder comes to full rest is of the order of

magnitude of O(10 -1 sec). The stability of this new state was checked by switching the time

integration procedure to the quasi static solution procedure. (Note that the stability of an equi-

librium state is marked by a positive definite tangent stiffness matrix). It is of interest to note

that the buckling mode pattern during the dynamic snap changed from 14 full waves in cir-

cumferential direction at the start of the snapping process 3 (Figure 4) to 10 full waves in the

stable post -snapping state (Figure 5). The 14 full waves that are present near the limit point

are due to the simplified (symmetrical) imperfection pattern that was used for this model. On

the other hand, the 10 full waves (at displacements of the order of magnitude of 30 times wall

the thickness (crest to crest of the waves)) in the post-snapping state correspond to what was

observed in the experiment (Ref. 2).

It is finally noted that the results presented here were obtained on a Sun 4 work station

after many nightly hours of operation.

5. Conclusion

We have shown in this paper that the numerical simulation of an actual buckling process is

feasible with a present day finite element code. Although the model considered here is still

one step away from the full scale experimental model with its measured imperfections (Ref. 2,

4), it contained nevertheless all the ingredients that are necessary for a full scale analysis. It

seems to us that the approach sketched here could be of use for problems of a more practical

nature. In particular, we believe that the method will be useful for the solution of so-called

mode jumping problems that occur with axially compressed stiffened panels.

2 Step 13 of the first static run.

3 This is the 53 th step of the time integration procedure. Note that the displacement patterns displayed in

Figure 3,4 and 5 are not at the same scale. The displacements in Figure 5 are roughly 10 times larger than in

Figure 4.
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