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Section 1

INTRODUCTION

The present document is the first of three volumes of the User's
Manual for the STAGS computer code. Together the three volumes describe
the code and give instructions for its use. The second volume contains
the user instructions and the third volume gives the results of a series
of example cases. The present volume presents a detailed description of
the basic theory (Sections 2 through 8). Nonlinear effects are discussed
in Section 4, "Plasticity," and in Section 5, "Geometric Nonlinearities."
Section 6 contains a discussion of special problems in discretized analy-
sis (finite differences or finite elements) of shells. Procedures for

solution of the algebraic equations are discussed in Section 7,

Before the high speed computer was available and suitable soft-
ware developed, it was hardly possible to perform an accurate analysis of
anything but the very simplest structural components. Today much better
tools are available, but this dces not necessarily mean that a good analy-
sis always is performed. Complex structures behave in a complex way and
therefore a good nonlinear analysis requires not cnly a good computer code
but also the participation of a well-trained analyst. Use cf a sophisti-
cated computer program without a reasonable understanding of its theoret-
ical background and the sclution procedures involved may be worse than a
"quick and dirty" solution because it leads to an unjustified sense of

security.

Structural analysis with large high speed computers is a relative-
ly new discipline, still being developed at a rapid pace. As a consequence,
there is a shortage of structural analysts whose ability allows them to
take full advantage of the moie advanced computer codes. It is often sug-
gested, therefore, that the computer pr;grams must be made easié¢r to use.

L



Unfortunately, there is sometimes a conflict between the demands for effi-
ciency and for ease of use. In many design applications such as flight
vehicles, ship structures, nuclear power plant components, the structural
analysis must be based on a mathematical model with a large number of
degrees of freedom. Often an adequate guarantee of the integrity of such
structures must be based on an analysis of their time dependent, nonlinear
response to the loading situation. A straightforward approach to problems
of this kind is usually prohibited by excessive cost for computer time.
The analyst must make many difficult decisions when forced to sacrifice
some accuracy in the final results in order to stay within budgetary
limits. In order to make good use of the computer codes now available,
the analyst must be quite familiar with the basic theory of structures so
that he can select the proper level of approximation in the governing
equations. He must have a good feeling for structural behavior so that

he can devise an adequate mathematical model. He must have a good background
in applied mathematics so that he can choose an acceptable solution pro-
cedure when given options and avoid use of codes that do mot imclude such

a procedure,

The objective of this volume is twofold. It serves as a documenta-
tion of the content of the computer code. In addition, the volume summarizes
in the simplest possible terms, the general information about theories and
procedures which it is felt that a good structural analyst should possess.
The volume includes only material that is believed to be of importance to
the user of the code. Although specialized for the STAGS user, the volume
is applicable in structural shell analysis in a broader sense. Tedious
details of the STAGS formulation primarily serving as documentation of the

code are not included.

Anyone who plans to make extensive use of the STAGS code is ad-
vised to acquaint himself with the content of the volume. It is particularly
important that the use of the code are due to approximations in theory
or solution procedures. Approximations involved in computations with

the STAGS code are summarized as follows:



(1)

(2)

(3)

(4)

(5)

(6)

A shell or plate theory constitutes an approximation which re-
duces the structural problem to dependence on two spatial coor-
dinates. The shell theory used in STAGS is a first order
theory (transverse shear deformations are neglected). 1In
addition, the theory is based on the assumption that strains
are small and rotations are moderately large. That is, if

the solution shows rotations larger than, say 0.3 radians,

the results may be inaccurate. Larger rotations in a limited

area, a boundary layer, does not generally prevent the solution

outside of this area from being of acceptable accuracy.

The constitutive relations are accurate for shell wall construc-
tions that are homogeneous. In the special routines for computa-
tion of shell wall stiffnesses, a homogeneous approximation is
used to represent an inhomogeneous construction (smeared stiffen-

ers, corrugated skin).

The material behayior in the inelastic range is complicated and no
available plasticity theory truly represents the material behavior
in all situations. The plasticity is restricted to small strains

(g < 0.1 or so), since it is based on engineering stress and

strain.

If some part of the structure is defined as a beam or a stiffener,

its cross-section is assumed not to deform or warp.

The discretization, local power series approximation of the dis~
placements, involves a truncation error (depending on the grid
size). Additional approximations are introduced in nonconform-
ing elements and sometimes in numerical integration with respect

to spatial coordinates.

The numerical integration in time involves a truncation error

(depending on the time step).
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The use of bifurcation buckling theory beyond its range of

applicability is discussed in Section 5 of this volume.



Section 2

SUMMARY OF THE THEORY

The response of a structure to its enviromment is given by the
solution of the differential equations of motion. These equations may be
derived through consideration of a small cubic element in a Cartesian sys-—
tem Xys %y X5 28 shown in Figure 2.1. The equation governing the motion

of the element in the X direction, for example, can be written

dav [aolllax1 + 3021/‘ax2 + 3031/3x3 - pul] - Fl = 0 (2.1)
where 011 represents the normal stress, 012 and 013 the shear stresses as
shown in Figure 2.1, and F. represents the sum of the components in the x_ -

1
direction of body forces and surface tractions. The body forces may, for

1

example, be caused by gravitational field and surface tractions, wherever
they occur, are applied forces or reactions. A dot signifies derivation

with respect to time, p is the mass density of the material, uy is the dis-

placement of the element in the x,-direction, and dV is the volume of the

1
element.

By use of the constitutive equations (Hooke's law generalized to

include anisctropic materials), the stresses can be éxpressed in terms of
strains. The kinematic relations give ihe strains as functions of the dis-
placement components. By substitution of the kinematic and constitutive
relations into the equations of motion, the stresses and the strains zan tea
eliminated so that the displacement components represent the only unknowns
in the governing differential equations. A more thorough discussion of
this topic, including definitions of stress and strain, is given in Ref.
2.1 (Chapter 33), for example. This discussion includes energy principles
and the transformations of strains and stresses from one coordinate system
to another. The concepts of true strain and true stress are discussed in
Chapter 46 of the same reference. However, in the following, the expres-

sions stress and strain refer to euginecering stress and engineering strain



Figure 2.1, Stresses on Small Element

2.1 The Variational Approach

For the moment only elastic deformation is considered and the force
vector {Fi} is tempnrarily disregarded. Then it can be shown that the state-
ment represented by Egs. 2.1 is equivalent to the requirement that the motion
of the structure between any two instants of time t, and t,; is such that the
functional fi (U-K) dt is at an extremum with respect to all admissible
variations whg}e U is the strain energy and K the kinetic energy. Admissi-
ble variations are functions that satisfy given continuity conditions and
geometric toundary conditions and are zero at 211 points of the body at the
beginning and the end of the time interval. The equilibrium equaticns can
be derived from the first variation of the energy functional by use of par-

tial integration with respect to time as well as to the space variables.



If the loading is such that it can be represented by the first

variation of a single function, then the system is conservative and the

equilibrium equations including body and surface forces can be derived from

the first variation of the Lagrangian function.

5

§ (U-K+W)dt = 0 (2.2)

t
| o

where W represents the potential of the force system, i.e., the negative
of the work done by these forces during the time interval. This is referred
to as Hamilton's principle. The question of what constitutes a conservative

force system will be discussed in the sequel.

If the motion of the structure is sufficiently slow, the kinetic
energy can be omitted. Then, under a conservative force system, the change
in total potential energy (U + W) is independent of the path by which the
structure moves from one configuration to another. In the static case,
Hamilton's principle degenerates into the principle of minimum potential
energy, i.e., .

§ W+w) = 0 (2.3)

This principle can be derived from the principle of virtual work (see Ref.
2.1, Chapter 3). The admissible variations (functions of the space varia-
bles only) are those that satisfy continuity conditions and geometric bound-

ary conditions.

Other energy theorems can be formulated (see, for example, REE.
2.2), but have not been used as a basis for the STAGS formulation and are
not discussed here. Two major advantages justify the choice of the varia-
tional method as a basis for analysis with STAGS. The resulting equation
systems are diagonally symmetric and only geometric boundary conditions
{corresponding to displacement constraints) need be enforced.

L 4
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The disadvantage with the variational method is its restriction

to conservative systems. Typical of a conservative force system is that

the work done by the forces is path-independent, that is, it depends on
the initial and final configurations only. An example of conservative
forces are those caused by a gravitational field. On the other hand, if
the forces are dependent on the deformation of the structure, the system
is nonconservative. Thus, aeroelastic problems are nonconservative. Ref.

2.3 contains a discussion of the conservatism of some special force systems.

A hydrostatic pressure load rotates with the structural deforma-
tion so that the force on the body always remains normal to the surface.
Pressure loading ("live load") therefore is not necessarily conservative.
However, it has long been recognized that if a uniform pressure p acts on

a closed body, the work done by this pressure is

w = pav (2.4)

where AV is the change in volume of the body. For this case then, the work

done by the pressure is path-independent and the force system is conserva-

-------------- tive. Tor plates and shells, Ref. 2.4 extends considerably the number of

cases in which a live pressure load is conservative. It is sufficient to
require that the pressure is continuous and that either of the following

quantities is zero at any point ou the boundary (of tue shell or plate):

1) The pressure p
2) The lateral displacement

3) The scalar product of the displacement vector (u, V)
and the normal to the shell poundary in the tangent
plane. That is, the boundary points are restricted
from d.splacement in the direction of the ir-plane normal

uny + yn,= 0 (see Figure 2.2).

2
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Figure 2.2. Normal to the Shell Edge in the Tangent Plane

2.2

Constitutive Relations
For the thrcc—-dimensional continuum, the constitutive relations
can be written in the form

. [Uij] = [C] {eij - aT - efj:} (2.5)

where ¢ iz a threce

AR B

by three matrix and o represents

i

the coefficient of ther-
mal expansion, T

the temperature abcve ambient, and

eij the inelastic part
of the strain component. For an isotropic material
r's v ol
¢ = L v 1 9 (2.6)
1-v 1
ot -\
[,0 * =]




For shells or plates special "two-dimensional" equations have

been derived and use of those offers improved computational efficiency.

Because all points of the shell are close to some reference surface, an

approximation is possible in which the displacement components at any
point of the shell are expressed in terms of displacements (and possibly
retations) gt the reference surface. In a shell theory the constitu-
tive equations are written in the form of stress resultants and

moments as functions of reference surface strains and changes of

curvature.

N
‘_ - _I = [K] ‘-e. -} 2.7)
where

fcz dz : fczzdz (2.8)

S The derivation of the K matrix is further discussed in Section 3.
The STAGS formulation is based on engineering strain. That is, it
does not take necking phenomena into account and the results are valid

only as long as the strains are relatively small, say below ten per-

cent.

If inelastic deformations are included, thc conservatismof the sys-
tem is lost, even if the applied loads are conservative. However, this prob-
lem is readily circumvented. Both thermal expansicans and inelastic strains

(Eq. 2.5) can be considered as loading terms. Notice that the strain energy

can be written

_ T ; . P
U = [eij] [c] leij - 4T - eij] (2.9)

f

For the purpose of structural anilvsis the only difference between

. P
T and €,, is that @ and T are independent parameiers while Eij depends on the

A

A

P
1]

2-6



deformation pattern. Hdwever, estimated values of the plastic strain

define "pseudo-loads,"

and the elastic problem corresponding to this
load is conservative. The values of the plastic strains can then be
successively improved and if convergence is obtained, the nonconserva-
tive problem is solved by consideration of a series of conservative

problems. The choice of plasticity theory is discussed in Section 4.

2.3 Kinematic Relations

The kinematic relations for the three-dimensional continuum are
simply given by

€,., = du,/ 9%,
i i’ 7%y

(2.10)
where the Eij are the six (note symmetry) components of strain. Nonlinear
terms caused by rotations need generally not be included in the range of
small strains. In the case of shell structures, a significant reduction in
the amount of computations is achieved since the equations can be expressed
in terms of two space variables. However, this reduction is not unique and
the topic has been subject to much controversy. Here only the kinematic
relations for a flat plate are considered (or in flat elements approximating
a shell).

The thinness of the shell makes possible the reduction of the prob-
lem to one with two space variables. On the other hand, for a thin shell
the rotations of structural elements can be quite large even in the range of
small strains. Consequently, geometric nonlinearities are often important

in thin shell analysis.

In derivation of the nonlinear kinematic relation, a line element
of length dx is considered that is initially parallel to the x-axis and
later displaced and deformed as shown in Figure 2.3. After the deformation,
the length of the element is ds* and its left-end point is given by the
coordinate values x*, z*, The displacements are denoted by u and w and

the rotation by @#. Hence



X—1—Jdx -—-l w
. :zif

| - N |

Figure 2.3. Line Element in Deformed State
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x* = x+u, x* = z4+w (2.11)

and

dx* = dx (1 + u,x), dz* = dx Wy (2.12)
From Fig. 2.3 '

(@s®)? = (@x*)? + (dz#)> (2.13)

It follows from Eqs. (2.12) and (2.13) that

2
ds* _ 2
(———dx) -1 o= 20, + (@) + (W, )2 (2.14)
The definition of the strain

e, = (ds* - dx)/dx (2.15)

can be rearranged into the form
2
2

_ ds™\
e, t 1/2 €. = 1/2 l(ag-} -1 (2.16)

s Substitution of Eq. (2.14) into Eq. (2.16) and the assumption that the strain
is small so that 1/2 exz can be dropped in comparizon to €. leads to
2 2

e, = U, + 1/2 (u,x + w,

. ) (2.17)

x

It can be shiown that this expression yields zero strain for a rigid body dis-
placement. A pure translation will obviously not result in strain so it is
sufficient to show that no strain is obtained jf the line element rotates

about its left end. In that case

xsinf, u

g
I

-x (1 - cos §) I
‘ (2.18)

-1 + cos §

sin ¢ ’ u,

w
’x x

?



That is from Eq. (2.17)

-

€ = U + 1/2 [(u,x)2 + (w,x)z] = =1 + cos @

(2.19)
+1/2 (1 + cos2 -2 cos @+ sin2 ) = 0

For the case of small strains, Equation (2.17) gives zero strain under pure

rotation of an element, independently of the size of the rotation.

For flat plates, the line segment may have one component of rota-
tion in the plane of the plate and one in the normal plane that contains

the segment. Consequently.

e, = u, +1/2 (u,xz + w,xz + ¢%) (2.20)

X
where @, as in Sander's (Ref. 2.4), shell equations represents a rotation
about the normal. However, differently oriented line segments through the
e same point may rotate through different angles. In an orthogonal
system the difference between the rotations of the two coordinate lines repre-

sents the shear strain. If @ represents an "aver=ge" rotation, we have

L apey

and . (2.21)
¢ = 1/2 (usy - V’X).

The strain in the x-direction obvicusly depends on in-plane rotation of a

iine segment in the x-direction.

Consequently, we have

m
it

2 2
u_ + 1/2 (u,x + Vi, +w, )
and (7 nq)

™
[

v,y + 1/2 (v,y + u,y +w, )

2-10



2.4 Approximations and Special Procedures

The ponlinear equations of motion govern the structural behavior.
These equations can usually not be solved anmalytically but numerical methods
are applied so that a system with a finite number of degrees of freedom is
obtained. Such a reduction to a finite number of degrees of freedom (dis-
cretization) is discussed in Section 6. Integration of the equations for the
reduced system answers all questions about the behavior of the structure in-
cluding those of static or dynamic instability. However, it is frequently
possible to obtain satisfactory results for special purposes by introduction
of certain approximations. Consequently, structural analysis usually consists
of the application of one or more of a number of special procedures that are
based on some simplification of the governing equations. Traditionally,
these procedures (stability, vibrations, etc.) have been considered as sep-
arate disciplines having little to do with one another. The high-speed
computer Has opened more options to the analyst and in order to make the
best possible use nf available computer programs, he needs a good under-
standing of the theory and of the relations between the different typos of

analysis. These relations are illustrated in a block diagram in Figure 2.4.

The basic equaticiis of motion for a discretized system may be

written in the form
Mi+D (g) 4+ B (g) + X (g) = F (2.23)

where u is the vector of displacement compcnents, M is the mass matrix, F
is a vector of external forces, and K the generally nonliinear stiffness
operator. The operators B and D include forces that are functions of

structural deformation and deformation velocity, respectively.

Clearly, if loads vary slowly, all time derivatives of displace-
ment components may be disregarded and a static analysis is sufficient. If
that is the case and if the system is conservative, the next question is
whether nonlinear terms should be retained. Partly due to economical con-
straints, the linear static stress analysis has becen by far the most com-~

monly used mode of analysis.

2-11
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If geometrical nonlinearities must be accounted for, it is possi- °*

s ble to obtain limited, but sometimes sufficient, information about their

effect without actually solving the nonlinear equations. A perturbation
technique then is used, in which
u = Au +u 2.2
wo= Ayt (2.24)
is substituted into the nonlinear equations. Here g4, represents the solution
of the basic equations after omission of nonlinear terms and A is a load para-
meter to be determined. The perturbation y

1
higher order terms in 4, can be discarded. 1In addition, all terms that do

is assumed to be small so that

not contain 4, can be subtracted out by virtue of the fact that’gO represents
an equilibrium configuration. Hence, the equation system is homogeneous in
- The so-called bifurcation buckling load is represented by the value of
A that allows nontrivial solutions to this homogeneous equation system. If
the precritical behavior is truly linear, the value of X so computed repre-
sents a bifurcation in the load displacement diagram. The bifurcation buck-
ling analysis can often be used as an approximation also for cases witﬁ non-

linear precritical behavior. For certain types of structures, such as shells

of revolution, it is sometimes practical to consider bifurcation from a non-

linear prebuckling path.

Except for the case of the purely dissipative systems including
structural damping or inelastic deformation discussed above, STAGS has not
been adopted for solution of nonconservative problems but otherwise it in-
cludes all the analysis procedures in general use. This means that any

type of analysis represented in the figure is included in STAGS except

those marked with a star.
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Section 3

CONSTITUTIVE RELATIONS (ELASTIC)

The constitutive relations define the stiffness of the material,
i.e., they express stresses in terms of strains. They were introduced in
Section 2. The discussion here will be restricted to the relations between
elastic strain and stress. The elastic strain is obtuined after the plas-
tic strain and the thermal expansion have been subtracted from the total
strain. Strains due to creep are not includedin STAGS. The method by
which the plastic strain components are determined is discussed in Sec~-

tion 4.

The special form of the constitutive equations used in shell
analysis gives stress resultants and moments in terms of elastic strain
components and changes of curvature at a reference surface. The moments
are given with respect to the reference surface,.not necessarily the neu-
tral surface. Approximations in shell or plate theory are based on the
assumption that any point of the shell is close to the reference surface.
Therefore, it is practical to define a reference surface cluse to the neu-

tral surface.

This section is restricted to a discussion of the form of the
constitutive equations that is used in the theory of deformation of shells
and plates. The shell wall stiffness matrix C relates the stress result-

ants and moments to the strains and changes of curvature

(N ( e )
X X
o *y (3.1)
.1
N Y
(= el o (
M ;‘2
\Mxy/ 2}11,2/
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BEAY
EhY

Unless the reference surface coincides with the neutral sur-
face, there will be terms in the C matrix representing the coupling be-

tween membrane and bending action.

Even if nonorthogonal surface coordinates are used in STAGS, the
stiffness matrix is formed in a set of orthogonal coordinates. The ele-
ments of the matrix are (internally to the computer code) transformed into

the system of surface coordinates on which the shell equations are based.

Generally, the elements of the C matrix are obtained through inte-
gration of the elastic constants for the material through the thickness of
he shell wall.

c = |12 _____ L (3.2)

where Co is a 3x3 symmetric matrix.
VP E13l

o Ep2 22 23
E E G

13 23

(3.3}

For an isotropic material E E23 =0, E E 9 = E/(l—vz),

13 11 F2
ElZ = vEll and G = E/[2(14+v)], For the isotropic monocoque shell, inte-

gration according to Eq. (3.2) leads to

= Et / (l"‘“z)

Ci1 = €y
€12 7 Y11 ,

= -v)/2] C..
033 [(1-v)/2] Ci1 o
c44 = c55 = (t /12)’011 4)
Cis = Yl
Cee = [G-w)/2] ¢,
Otherwise C,, = U

ij
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The C matrix is readily obtained through the integration indicated in
Eq. (3.2) also for shell walls with properties that vary through the
thickness in a continuous fashion (thermal degradation) or discontinu-

ously (layered shells).

The shell theory is based on the assumption that the shell wall
is homogeneous, i.e., the material and geometric properties are slowly
varying. However, it is possible and it has long been customary to ap-
proximate the behavior of heterogeneous shell walls, such as a skin with
closely spaced ribs, by the use of an equivalent anisotropic (or ortho-
tropic) skin. It is not always possible to find a shell wall that is truly
equivalent. For example, in a shell wall composed of one corrugated and
one smooth skin riveted or bonded together, the torsional stiffness in the
axial direction is relatively large as the torque is carried by closed
sections. However, the twist of the shell wall varies with the shell
coordinates, and therefore the closed sections are subject to deformation
of the cross section. This results in a reduction of the torsional stiff-
ness that is dependent of the deformation pattern and cannot be estimated
a priori. For deformation into a short wave pattern, the torsional stiff-
ness is severely reduced, but in along wave pattern (of buckling, for ex-
ample) it may be possible to use the closed section stiffness without re-
duction. The use of an equivalent shell wall approximation is discussed

in more detail in Reference 3.1.

In the following, a2 simple example is given for dcmonstration of
the principles involved in derivation of the properties of an equivalent
shell wall. Subsequently, the values of the elements of the C matrix are
listed for the types of shell walls that have been included as standards
in STAGS.

It is sometimes practical to base the derivation of the C matrix
on an expression for the strain energy density of the deformed shell. The
strain energy U is expressed in terms of strains and chauges of curvature

'
U = Uk,) i = 1 through 6 (3.5)



where

{n}=<8,€,Y,. T

1 x* Ey Kys Koo 2K35 >

2
If an expression for the demnsity of strain energy in terms of n

is available, the coefficients of the C matrix are obtained from

¢y 520/ 5 n, » n, (3.6)
As an example the elements of the C matrix are derived for an
isotropic skin with a set of closely spaced stiffeners of rectangular
cross section. As the skin stringer combination is replaced by a homo-
geneous shell wall, the contribution of the stringer to the shell wall is
uniformly distributed. Stiffeners handled in this way are usually referred
to as "smeared stiffeners.'" TFor simplicity it is assumed that the torsional
stiffness and the resistance to a change in geodesic curvature of the line
of attachment to the shell may be omitted. The classification of a struc-
tural component as a stiffener implies that all effects of warping and

cross section deformation are neglected. Consequently

= + in skin an
ex n n, z in skin d stringer
a1, + Ng z in skin
e =
y 0 in stringer (3.7)
_ ng + Mg 2z in skin
‘Y_
irrelevant in stringer

The geometric properties of the skin striager combination are

shown in Figure 3.1. The strain energy per unit area of the shell wall is

i
= o= + v
U >3 (cxex oyey + TXY vy ) ab (3.8)

v .
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Figure 3.1 Shell Wall with Stiffener

By use of the stiffness matrix C0 for an isotropic material, the
stresses are expressed in terms of the strains.

the thickness, the contribution from the skin is

After integration through

Et 2 2
U e [ﬂ + N, +2vM, 0, + (I-v)/2 7 ]
sk - Som oz [t T, M 3
3
. Bt

2 2
My + 7
24(1-v%) [ 4 >

" (3.9)
2
, 20T, g+ (1-v)/2 1) ]
Similarly the contribution from the stringer is
Fb 2 .2 v
Ystr ~ 2a [h'”l t o+ ht) M0,
(3.10)
, 2
p (B sblt ) 12]
3 2 4 4



or with .

A = bh = stringer area
I = bh3/12 = stringer moment of inertia
e = (h+ t)/2 = stringer eccentricity
I 2 2 2
Usrr = 3 [A N2 +2Aem M, + (L+Ae%) n4] (3.11)

By use of Eq. (3.5)

- _Et EA . _ _Et
Cn = 2t 3 Coz = 3
1 - \’ 1 - Y
_ VEt = -------——E‘t
Cp = .2 Ci3 ™ ZT+v)
-V
_ EAe
Cia = 3 (3.12)
B> E( + Aed) e
Cyq ™ 5 + 3 Ceg = T 32
1201 - v") 12(1 - v")
C - vEt3 C - Et3
45° Z0-v9 66 - ZAQ T V)

For the standard types of shell walls the position of the reference surface
is indicated in the User's Instructions (Volume 2). If the user decides te
use another reference surface, he specifies a shell wall eccentricity. The

properties are then adjusted in thc computer program. For example, corres-

ponding to an eccentricity of Z on the data card, the adjustments of C14 and
C44 are
€16 = Gt 2%
o (3-13)
C = 0, - C2 /C.. + Z2 c
44 “44 14" 711 11

s
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Section 4

THE THEORY OF PLASTICITY

The physical aspects of the strength of materials, in particular
for polycrystalline materials, have been studied by the physicists for the
last sixty years or so. The knowledge of the atomic structure and atomie
bonds makes it possible to compute with relative accuracy the elastic modulii
of metallic materials. 1In elastic deformation the bonds are strained. Plas-
tic deformation is a much more complicated phenomenon because it includes the
breaking of atomic bonds and the forming of new ones. The forces necessary
to break the bonds depend on the existing defects in the atomic lattice. Due
to extremely complicated interactions between dislocations, grain boundaries,
impurities, etc., it does not seem likely that a purely physical theory of

plasticity can be developed for use in engineering analysis.

Instead, phenomeuological theories based on measurements on the
macroscopic scale constitute the backbone of the practical plasticity analy-
sis. Derivation of such a theory is still difficult because some variables
defining the state of the materiéi, such as distribution of atomic disloca-
tions and configuration of microustresses, are not measured and not included
in the analysis. The plastiecity theory expressed in terms of the remaining

parameters of state therefore becomes history dependent.

A phenomenological theory of plasticity is a procedure by which a
set of constitutive equations in the multiaxial space can be derived from
experimental results, usually on uniaxial test specimens. The classical
theory of plasticity was developed during the first seventy years or so of

research in the area.

This section containe z brief discussion of this development. in-
cluding a review of its shortcomings. A few more recent theories that have
been developed with the purpose of overcoming these difficulties are also
presented. The state of the art in plasticity analysis is summarized, and
the reason for the choice of plasticity theories for STAGS is explained. A

more comprehensive summary of the state of the art is available in Ref. 4.1.
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4.1 Classical Plasticity Theory

Efforts to define the relations between stress and strain in the
plastic range begin with treatments by Tresca (1868), Sant-Venant (1870),
and Levy (1871). The ideas first proposed by these pioneers were further
developed by von Karman and Haar (1909), von Mises (1913), and others, re-
sulting in analysis procedures which we refer to as the classical plastic-

ity theories.

The basic elements deployed in the definition of the classical

plasticity theory are:

e An initial yield surface, bounding the part of the stress

space within which deformation is purely elastic.

e A flow law, indicating the "direction of plastic deforma-

tion," i.e., the ratios between the plastic strain com-

ponents.

¢ A hardening rule, specifying the modification of the yield

surface in the course of plastic deformation.

e A plastic modulus or hardening modulus, i.e., the ratio be-
tween increments in "effective stress' and "effective plastic

strain." 1In the classical approach, this ratio is assumed to

be independent of loading directionm.

The classical theory was developed step by step as experimental
data became available. Early efforts were devoted tc establishment of the
conditions for initial yield. Tresca's experiments led him to conclude that
yield begins when the maximum shear .stress reaches a critical level. It
was also noticed that the plastic flow under pure hydrostatic pressure is
negligible. thiis led to the definition of the deviatoric stress components
and the suggestion by von Mises and others that the initial yield limit

would be defined by the second invariant of these components.

)



Many experiments were performed with the purpose of deciding which
of these two yield criteria would most accurately reflect the behavior of
real materials. For most materials yielding begins gradually, and it is
difficult to determine the point of yield even with the sophisticated equip-
ment that is available today. Therefore, very carefully executed experiments
failed to give a clear indication in any direction, although it appears that
the von Mises theory would be the more accurate. The discussions in the
following will be based on the assumption that initial yield is determined

by von Mises' criterion.

Following Saint-Venant, von Mises assumed that increments in the
components of plastic strain are proporticnal to the components of the devia-
toric stress. This flow rule is identical to the criterion that a swmall in-
crement in plastic strain is normal to the yield surface and is usually re-
ferred to as the normality condition. Also, it implies that plastic deform-
ation takes place without change in volume, which is in agreement with experi-
mental observation. Later Drucker (1954) justified the normality condition on
the basis of energyv consideration. Experimentzl support for the flow rule was
provided by Lode in Reference 4.2. The work by von Mises was continued by
Prandtl (1927) and Reuss (193C) through inclusion of the elastic components of
strain. For materials without strain hardening the Prandtl-Reuss equations
represent an acceptable set of constitutive equations. For strain hardening
materials the definitions of the hardening laws and the hardening modulus pre-

sent problems.

A uniaxial tension test with unloading followed by reloading exhi-
bits the type of behavior indicated by the solid curve in Figure 4.1. It
appears reasonable to assume that unloading 2s well as reloading up to the
point of previous maximum stress takcs place according to the elastic law
and that unloading has no effect on the stress-strain relations on contin-

ued loading beyond the previous maximum.

With this idealized behavior on unloading and reloading, the yield

surface must always pass through the point of previous maximum effective
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Figure 4.1. Typical Stress-Strain Relations

stress. Consequently, the yield surface is continually changing during the
plastic deformation. The effective stress is implicitly defined by the yield
condition since it must take on a constant value on the initial yield surface.
The choice of the second invariant of the deviatoric stress components as a
________ measure of the effective stress is consistent with the von Mises condition
for initial yield. Loading takes place whenever the ;alue of the effective
stress is increasing and unloading corresponds to a decrease in its value.
A path in the stress space corresponding to a constant value of the second

invariant is called neutral loading.

The broken curve in Figurc 4.1 shows a typical relation between
stress and strain on stress reversal after loading in the plastic range. It
is noticed that after a sufficiently dcep reversed penetration into the plas-
tic range the solid and broken curves coincide, i.e., the stress as a function
of the total plastic strain is independent of the direction of the plastic
iflow. This leads to the conclusion that the effective plastic strain must be
expressed as an integral of some function of the plastic strain increments.
in view of the fact that plastic deformation takes place without change in

volume, it appears lougical to define the effective plastic strain as the
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integral of the second invariant of the incremental components of plastic
strain. This choice appears to be supported by available experimental re-

sults in Reference 4.3, for example.

If it is assumed that unloading and reloading to the same stress
follows the elastic law and that the relation between effective strain and
total plastic strain is independent of the loading direction, then the yield
surfacé expands uniformly during plastic flow so that it always passes through
the point of loading. According to this hardening law, the material remains
"isotropic" during coldwork. Such isotropy is generally not exhibited by real
materials, as indicated by the broken curve in Figure 4.1. However, in other
respects this model of material behavior agrees with cbservation, and it is
easy to apply. It is still by far the most commonly used theory of plastic~
ity. It is referred to as the classical flow theory with isotropic strain

‘hardening.

A major flaw in this theory is related tc the difference between
the tension and compression curves immediately upon the plastic strain re-
versal. This phenomenon was observed by Bauschinger (1886) who noticed
that after coldwork in tension the compressive yield stress appears to be
reduced approximately by an amount equal to the increase in thc yield
strength under the initial loading in tension. This observation led to the
definition of the so-called kinematic strain hardening theory (Reuss, 1935:
Prager, 1937; Shield and Ziegler, 1958). According to this criterion, the
yield surface translates with loading in the plastic range without change
in the shape or size. This theory is still based on the classical approach,

]

i.e., the hardening modulus is independent on loading direction.

A theory of plasticity expressed in terms of total stresses and
strains rather than in the increments was first presented by Hencky (1924).
This approach was further pursued by many other investigators. notably by
Nadai (1931). Such theories are referred to as deformation theories of
plasticity. They are definitely repudiated, by some experimental observa-

ticns and they do not have a sound theoretical basis. The first serious



objection to the deformation theories (with elastic unloading) was raised
on the grounds that they violate the continuity criterion. That is, a path
in the stress space on theoutside of but infinitesimally close to the path
correspond to neutral loading will lead to a finite change in the plastic
strain components while a similar path on the inside will result in no
additional plastic strain. However, deformation theories are very easy to
use and it has been shown in Reference 4.4 that whenever the curvature of
the loading path in the stress space does not exceed a critical value the
results obtained are practically identical to those from the classical flow

theory.

4.2 Limitations of the Classical Theory

Early experiments were designed to shed some light on the question
of whether a deformation theory or a flow theory would be more adequate for
practical plasticity analysis (Refs. 4.5 and 4.6). Although more acceptable
from a theoretical point of view, the flow theory did not appear to predict
experimental results more closely than the deformation theorv. The experi-
mental results were obtained by use of tubular test specimens subjected to
tension/compression or internal pressure in combination with torsion. The
initial application of torsion to a specimei: that is loaded beyond yield in
tension would correspond to neutral loading according to tlie classical flow
theory. Consequently, the instantaneous shear modulus would take on its
elastic value. Generally this was not found to be the case, but the sbear

modulus was considerably reduced.

Experiments on the buckling of plates and shells in the plastic
range did consistently show better agreement with the predictions of deform-
ation theory, Reference 4.7. Such results are consistent with the obse:rva-
tion that the instantaneous shear modulus is less than its elastic value for
a material subjected to normal strains in the plastic range. The results
from application of flow theories to bifurcation buckling problems esre gen-
erally unconservative because the inplane shear stiffness is overestimated.
The problem of plastic buckling has been discusscd extensively by Hutchinson

in Refercnce 4.8. »
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One of the problems that was encountered at an early stage in

the development of the theory was the Bauschinger effect. The kinematic

hardening model was specifically developed in order that this effect would
be accounted for. 1In Figure 4.2, a comparison is made of the results from
the isotropic and kinematic hardening rules to the typical belavior of a
metal under uniaxial loading with reversal. Also shown are results from
an analysis preccedure in which kinematic hardening is used in connection
with bi-linear representation of the stress-strain curve. This procedure
is presently recommended by AEC in Reference 4.9 for use in the case of

cyclic uniaxial loading.

STRESS A

KINEMATIC
BILINEAR

_/

-
’%\ ISOCTROPIC

. —
—
Figure 4.2. Stress—-Strain Curves with Stress Reversal

Experiments seem to indicate that after loading, in tension, for

example, beyond the elastic limit the yield stress in compression had de-

creased approximately by the same amount as the increase in the yield stress




in tension. However, the so-called hardening modulus, the rate at which

the stress increases with the effective plastic strain, is greater at the

onset of plastic deformation in compression, so that after a sufficiently
large reversed penetration into the plastic range experimental results again
come close to the predictions by the theory with isotropic strain hardening.
The kinematic strain hardening rule does not account for this change in hard-
ening modulus. Therefore, it does not appear to represent an improvement on
the isotropic strain hardening rule, except possibly for the case in which

a bilinear stressstrain curve provides a satisfactory representation.

The problem illustrated in Figure 4.2 is a reflection of the ina-
bility of the classical theory to cope with plastic anisotropy. Unfortun-
ately, most metals as used in engineering applications show some initial

anisotropy. Two types of plastic anisotropy may occur:

- e ''Crystallographic anisotropy" which is associated with the
texture, i.e., nonisotropic distribution of crvstal orien-

tations, observable in x-ray investigations.

® Coldwork-generated anisotropy of which the Bauschinger
offcct is themost generally recognized example. Since
coldwork generates microstresses, initially isotropic
materials will tend to beccome anisotropic during plastic
deformation. The Bauschinger effect may be defined as
inelastic anisotropy caused by coldwork-generated micro-

stresses.

11i11 (Ref. 4.10) has presented an extension of the classical
theory to include initial anisotropy. The theory consists of the defini-
tion of an initial yield surface to be used in connection with an associ-
ated flow law. As long as the hardening modulus is a function of the
effective plastic strain only, the theory fails to account adequately for
the modifications of the anisotropy that may occur as a result of loading

into the plastic range (generalized Bauschinger effect).
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4.3 Other Theories

The failure of the classical theories to predict the material
behavior in certain situations brought about the development of new the-
ories and the introduction of new concepts. Duwez (1935) introduced the
idea of a material consisting of a number of separate components, which
all undergo the same strain history. If the components behave in a simple
manner in the plastic range and have different material properties, the
composite will exhibit the complex type of behavior that is characteristie

of real materials.

A similar plasticity theory was presented by White (1950) and
the concept was further extended and refined by Besseling (Ref. 4.11).
This type of plasticity analysis is referred to here as a White-Besseling
theory. Since all the difficulties in the definition of a plasticity the-
ory seem to be related to the strain hardening, it appears advantageous
to assume that all the separate components exhibit ideal plasticity (plastic
flow under constant stress). The different components have different yield

strengths. If the components have the same elastic modulus and if they are

s subjected to the same strain, the yield stress of the composite will be the

same as that of the weakest of its components. However, since the other
components can take additional load, the composite will exhibit strain

. hardening with a piecewise linear stress-strain curve.

If the stress is reversed after loading beyond the yield limit for
one or more components, yield will occur in the reversed direction when the
average stress in the composiie reaches the value ¢ = 01 - 20y where 9 is
the wmaximum stress during initial loading and Oy corresponds to the yield
limit for the weakest components (the initial yield limit for the composite)
(see Fig. 4.3). As in the kinematic strain hardening theory, the yield
stress under the reversed lcad occurs at a level that is reduced by the
amount of strain hardening for lozding in the initial direction. However,
in contrast to the kinematic theory, the White-Besseling theory gives a

hardening modulus at the outset oi reversed yield which equals the harden-

ing modulus at initial yield. This agrees well with the experimentally
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observed material behavior. Due to the formation of a system’ of self-bal-~

ancing stresses in the separate components, plastic anisotropy develops

automatically in the model during loading in the plastic range.

o
— € ]
1
i
1
t
O, =~ :20
y
. i [
i 1
: :'
1 :
! I
0 € : | €

<

Figure 4.3. Stress—Strain Relations According to White-Besseling Theory

In this form ¢f the White-Besseling theory for plastic analysis,

the material behavior is defined through specification of

® The number of material components
e The relative volume of each component

® The yield strength of each component

Use of only one component results in the application of ideal plasticity.
With two components of which cne has an infinite yield limit (in practical
application large but finite), the White-Besseling theory becomes identical

to the kinematic strain hardening theory with a bilinear stress-strain curve.

The difficulties with the classical theory, i~ particular the
failure of the flow thcory in buckling analysis, inspired Batdorf aud
Budiansky (1949) to re-examine the problem of plastic deformation. These
investigators attempted to utilize the insight into the physics of metallic

materials in a mathematical plasticity theory. The approach is based on the
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concept of slip and is therefore referred to as a slip theory. The slip
theory as presented by Batdorf and Budiansky (Ref. 4.12) does indicate a
reduction in the shear modulus in the presence of normal strain in the
plastic range. The agreement is only of a quaiitative nature as the slip
theory overestimates the reduction in shear stiffness. The Batdorf-
Budiansky slip theory leads to excessive numerical manipulations and it
fails to predict the creation of plastic anisotropy with coldwork. While
it is doubtful that the concept can be modified sc that it becomes useful
in engineering analysis, it has served its purpose by demonstrating the
rossibility of defining models that give better results than the classi-

cal theories for the tension-torsion case.

Mroz (Ref. 4.13) introduced the concept of "a field of work-
hardening modulii.”" That is, he introduced a number of different yield
surfaces. On loading, all of these surfaces are being shifted in stress
space according to the rules of kinematic hardening. The hardening mod-
ulus depends on how many of the moduli are currently active. The results
obtained by use of the Mroz model are almost identical to those obtained
by use of the White-Besseling theory. Other models of material behavior
have recently been presented that employ non-intersecting yield and load-

ing surfaces.

Dafalias and Popov (Ref. 4.14) and Krieg (Ref. 4.15) presented
independently and almost simultaneously very similar models of this type
which improve the representation of material bLehavior for reversed plas-

tic loading. The yield surface is always contained inside a limit sur-

face. Both yield and limit surfaces can change with plastic luading.

The isotropic or the kinematic hardening rules or combinations of the two
can be applied. The hardening modulus is expressed as a function of the
distance in the stress space from the point of loading to the limit sur-
face along the normal to the yield surface. If the hardening modulus is
proportional to this distance, the material behavicr on reversed yield is
equally well represented as in the White-Besseling theory. The advantage
with the "Two-Surface" model is that a piecewise linear representation of

the stress-strain relation is not needed.
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4.4 The State of the Art

Although some efforts have been devotcd to evaluation of the
proposed procedures for inelastic analysis, many questions remain unan-
swered. The early efforts to determine the relative merits of the Tresca
and von Mises criteria for initial yield and the comparisons between the
flow and deformation theories led to inconclusive results. Later experi-
ments (Ref. 4.16) indicate that the flow theory gives a relatively good
prediction for the loading sequence torsion-tension-torsion but fails

for the sequence tension-torsion-tension.

The yield surface corresponding to the Batdorf-Budiansky slip
theory exhibits a corner at the end of the loading. This tends to explain
why the classical flow theories led to unconservative results in buckling
analysis. After publication of the siip theory, many experiments were
carried out with the purpose of determining whether or not such corners

did exist. Again, the results were inconclusive.

Clearly, there are several mathematical models of material behav-
ior with merits that warrant their inclusion in computer programs for dnel-
astic structural analysis. The isotropic strain hardening theory in many
cases leads to results that are as good as those obtained by use of more
complex material models. Since such factors as computer run time and stor-
age capacity must be considered, the isotropic strain hardening theory pro-

bably should be retained as am option in an efficient computer program.

At the ONR workshop on strain hardening at Texas A&M 1975, two
tybes of situations were identified in which many of the commonly used
theories appear to be inadequate. Results presented by Hunsaker, et al.
(Ref. 4.17) indicate that the isotropic strain hardening arnd the kinematic
strain hardening rules yield poor results in the case of cyclic loading.
On the other hand, the "mechanical sublayer" (White-Besseling) and the
Mroz models represent actual material behavior reasonably well. The
models presented by Krieg and by Dafalias and Popov improve considerably

cn the classical theories in the case of cyclic loading.
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For bifurcation buckling analysis the classical flow theory or

one of the more sophisticated theories, if appropriate, can be used for

the prebuckling analysis. However, for determination of the incremental
stiffness corresponding to buckling, the analyst is advised to rely on

the deformation theory.

Special problems occur when the loading is cyclic, i.e., the
loading in the plastic range is reversed a number of times. Accurate
representation of cyclic hardening or softening phenomena may require
that a hardening modulus is defined that varies with the number of

cycles experienced by the material.

The other situation in which difficulties are apparent is the
case in which sharp turns, other than full-reversal, occur in the loading
path in the stress space. Such turns may occur for example, during buck-
ling or collapse. Experiments indicate that even the more sophisticated
theories fail to represent adequately the incremental stiffnesses at or
immediately after such turns. There is in fact little evidence to indi-

cate that any of the theories so far proposed give acceptable results

except for near-proportional loading, including reversal on a proprotional
path. Other loading histories are referred to as complex ivading. Cases
with complex loading have been presented (e.g., Refs. 4.16 and 4.18) in
which the flow theory with isotropic strain hardening gives exceptionally
poor results. With the possible exception of a slip thentry, it seems un-
likely that any material model so far proposed will lead to reasonably

accurate results for the cases considered.
Three separate cases can be distinguished:

e Near-proportional monotonic loading; for this case all
commonly used theories result in practically ideptical

results for analysis of initially isotropic materials.

]
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® Uniaxizal lecading with reversal; for this case the classical

theories fail to represent the actual material behavior but

more sophisticated models have been developed and appear to

be adequate.

e Complex loading; for this case little is known about the

applicability of available theories.

4.5 Solution Techniques

Independently of which plasticity theory has been chosen, two
basically different techniques are appropriate for solution of inelastic
structural problems based on the displacement method. These may be termed

(Ref. 4.19, for example) the pseudo force method (also referred to as the

initial strain method) and the tangent stiffness method.

The pseudo force method is named so becasue the inelastic strains
(creep or plasticity) are treated in the same way as if they were applied
forces. That is, their contributions appear only on the right-hand side of
sz the equation system. The validity of this approach is discussed above in
relation to Eq. (2.9). The following outline of the procedure in the pseudo

force method applies with the use of any incremental (flow) theory.

At any time during the computations, an estimate of the values of
the degrees of freedom of the system, displacement and rotzation components,
is available. Generally, the solution vector in previous iterations is used.
For the first iteration at a load or time step, the estimate is obtained
through extrapolactinn frcw the previous solutions. Values of ithe plastic
strain in previous steps are saved, or equivalently, stresses and total
strains are saved sc the elastic and plastic parts of the strain can be de-
termined. Based on current total strain, computed from the displacement con-
figuration, and total plastic strain in previous load or time step, the plas-
ticity theory allows the computation of current plastic strains. These
strains coriespond to pseudo forces which are used when the total displace-

ments are computed in the next iteration. The iterative procedure has
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converged when the computed and estimated solution vectors agree within
predetermined bounds. At that point the requirement of minimum elastic

energy as well as that of the plasticity theory are satisfied.

The psuedo force method has the advantage that reformulation
and factoring of the second variation is avoided except when required
due to geometric nonlinearities. Whenever the stress strain curve has
a relatively small slope, the convergence with the pseudo force method
may be very slow because the second variation derived from the left-hand
side of the equation system corresponds to elastic deformation. If non-
linear terms are allowed to affect only the right-hand side of the equa-

tion system, the convergence cannot be improved by refactoring.

In the tangential stiffness method the effects of inelastic
deformation are introduced on the left-hand side of the equation system,
i.e., the stiffness matrix is modified so that it includes inelastic
effects. If {n} represents the components (in the stress space) of the
unit nprmal to the yield surface, the increments in plastic strain can be
written in the form

{aeP} = {n} AP (4.1)

P

where Ae® is the increment in total plastic strain, a scalar.

A matrix [CP} is defined so that

{AeP} = [CP] {Ac - Ae'} (4.2)

T s
where the components of €  represent the thermal expansion. If [C] repre-

sents the elastic stiffness matrix

1]

{Ac} Ic) (de - 2el - {n} AEP)

!

= 1c] ([1] - [cP]) {Ae - A’} (4.3)

>
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The tangential stiffness matrix then is given by the relation

ic’] = [c1 (11 - e’ (4.4)

where [I] is the identity matrix. The components of the normal {n} are
determined by the stress field at the beginning of the load step. There-
fore, [CT] can be determined from an estimate for AeP. At each load or
time step the plasticity theory and the equations of motion {(or equilibrium)
are enforced to give a corrected value cof the total plastic strain AP, Con-
vergence is obtained when the cerrected value agrees with the estimate. The
tangent stiffness method has the advantage that it allows improvement of the
convergence rate through updating of the second variation (the first var-
iation can be computed without reference to a tangential stiffness). The
matrix [CT], therefore, needs tp be computed only when slow coavergence
requires refactoring of the coefficient matrix. Possibly, the use of the
tangent stiffness method may lead to convergence difficulties, if urload-
ing begins at a significant part of the structure of the same load or time

step.

A gubincremental technique is sometimes used in plasticity analy-
sis. This system allows the use of larger step size. It is described in
detail in Reference 4.20. Whenever material rather ihan geometric nonlin-
earities are critical, the choice of step size is governcd by twe *ractors.
The first is related to the assumption that the plastic strain increment
vector is normal to the yield surface at a point determined by the stresses
at the beginning of the step. <Consequently, the step must bhe small encugh
so that changes in the direction of the normal tr the yield surface frow
one step to another are insignificant. Secondly, at any iteration the
application of the plasticity theory involves the spluiion of a nonlinear
equation system (of rank three for a first order shell theory). If the

step size is too large, this nonlinsar system may not have a real solution.

In the subincrement method the total strain increment, as ob-

tained from extrapolation or previous iteration, is subdivided into a
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number of subintervals. For each of these the plastic strain increment

can be made small enough so that the equations based on the plasticity

theory always have a solution and so that the effects of the difference
in direction of the normal to the yield surface between two adjacent sub-

intervals can be neglected.

4.6 Plasticity Theory in STAGS

STAGSC-1 includes the classical theories with isotropic or
kinematic strain hardening and the deformation theory. In additionm,
the White-Besseling theory is included for use in cases with more complex
loading history. This theory is easily applied to simulate ideal
plasticity and for representation of the kinematic strain-hardening

model with a bilinear stress strain relation

The solution technique in STAGS is based on a mixture of the
pseudo force and the tangential stiffness method. The first variation
is generally computed based on the pseudo force method. However, if con-
vergence difficulties are recurring, the tangential stiffness based on [CT]
will be periodically updated unless such action is disallowed by user

input.

The White-Besseling plasticity theory is implemented in the com-

puter program in the following manner:

&) The inelastic behavior of the material is defined through
specification of:
e The number of components
¢ The relative volume of each component

) The yield strength for each component
(2) The strains are estimated for all points in the shell over the

shell coordinates and through the thickness. This generally is

done through extrapolation from previous solutions.
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(3) A subroutine is called within which, for each of the material

components, the stresses corresponding to the assumed strains

are determined. The total stresses for the composite are com-

puted.

(4) Once total strains and stresses are known, the plastic part of
the strain increment can be determined and added as a pseudo-

load in an elastic analysis.

5) New gtrains are computed and used as estimates. The procedure
is continued until the computed strains agree to within a given

margin with the estimated strains.
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Section 5
GEOMETRIC NONLINEARITIES

5.1 Introduction

The shallow link system in Figure 5.1 illustrates the effect of
geometric nonlinearity on the structural behavior. Figure 5.la shows the
case in which the load is directed so that tension develops in the links.
As the links are extended, the angle 6 increases and the ratio between the
reaction force N and the applied load becomes smaller. The result 1is that
the structure stiffens with increasing load as is indicated by the diagram

showing the load P versus the deformation §.

In Figure 5.1b the load is applied in the opposite direction.

The angle between the links becomes less favorable as they shorten under
compressive forces. The structure is continuously softening until at the
limit point, P = PMAX’ the slope of the load displacement curve vanishes.

A perfectly straight, centrally loaded column is shown in Figure
5.2a. If the column is given a slight displacement, the internal elastic
forces will tend to restore the column to its original straight form. The
external force P gives rise to a bending moment that tends to increase the
deformation. For sufficiently small loads, the elastic forces dominate and
the straight [orm is the only possible equilibrium configuration. However,
if P exceeds some value, say P > PCRIT’ the column can be maintained in a
bent equilibrium form. This is a result of geometric nonlinearity. For
sufficiently small loads, the straight column is the only possible equil-
ibrium form; the deformation pattern exhibits no rotations and the column
behavior is linear. However, due to the nonlinear character of the govern-

ing equations, secondary solutions corresponding to bent equilibrivm forms,

do also exist, although not in the immediate neighborhood of the origin of

the load displacement diagram.
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a) Stiffening Structure

b) Softening Structure
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Figure 5.1. The Effects of Geometric Nonlinearity
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The column in Figure 5.2b illustrates the possible behavior of

a nonconservative system (see Section 2). The load, ™a following force,

is now directed along the tangent to the deformed column. In this case,
the external force as well as the elastic forces tend to restore the
column to its initial straight shape. If we release the column after
giving it a small displacement, it will start to vibrate around its equil-
ibrium configuration. The amplitude of the vibration will increase with
time if the following force is sufficiently large. In that case, the

smallest disturbance will eventually result in a violent motion. The

critical load in this case is the load level at which self-induced vibra-

tions develop.

In summary, geometric nonlinearities are the source of the follow-

types of behavior:

° The structure stiffens with deformation;

] The structure weakens with deformations so that its load
carrying capability is limited; )

° Secondary solutions of the governing equations may affect
the structural behavior; and

. Self-induced vibrations develop at some critical load level.

5.2 The Concept of Stability

The iast three of the types of behavior listed above are related

to the concepts of buckling and structural stability. The word buckling

conveys a visual concepticn of the structural deformation and does not have
a universally accepted scientific definition. Therefore, it is belter to
avoid use of the word in a discussion of the effects of geometric wonlinear-
ities. Our interest is in the load limit below which deformations and stres-
ses are of acceptahle magnitude. Structural stability is a useful concept
in a discussion of means to determine this load ilevel. For simplicity, the

discussion is at first limited to static systems.
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The definition of stable equilibrium of a deformable body fol-
lows as an obvious extension of the concept of stable equilibrium of a
rigid body. A given displacement field u corresponds to stable equilib-
rium if any additional permissible (by continuity and boundary conditions)
displacement field Au of sufficiently small amplitude produces elastic
forces that tend to restore the basic displacement field u. This is equiv-
alent to the requirement that the displacment field u corresponds to a
true minimum of the total potential energy. The body is in unstable equil~
ibrium if the potential energy has a maximum or an inflexion with zero
slope with respect to at least one of its degrees of freedom. For the
shallow link system shown in Figure 5.1b the load displacement relation
representing static equilibrium is indicated in Figure 5.3. The equilib-
rium is stable on the parts of the curve at which the load increases with
the deformation, and it is unstable (as indicated by a dotted line) in
the range where the curve has a negative slope. If the load is increased
beyond the limit point at A, there is no equilibrium configuration avail-
able in the immediate neighborhood. Therefcre, the structure must be set

in motion. In this particular case, the link system "snaps through" into

a configuration at point B with tension forces in the links.

For sufficiently small loads, a centrally loaded column exhibits
no rotation in its deformation pattern. In the range of small strain, its
behavior is linear. The path in the load displacement diagram that passes
through the origin is referred to as the primary path. If the path depicts
the maximum lateral displacement versus axial load it will coincide with
the vertical axis (Figure 5.4). Due to the nonlinear character of the gov-
erning equations, secondary solutions corresponding to bent equilibrium
forms do also exist, although not in the immediate neighborhood of the ori-
gin. Whether or not the primary path is linear, there is a possibility
that it is intersected by a path corresponding to a secondary solution as
indicated in Figure 5.4. The point of intersection between the two load

paths is referred to as a bifurcation point and the corresponding load is

called the bifurcation buckling load.
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Bifurcation points can be found by use of a linearized analysis.
This is discussed in more detail in Section 7. The equations that govern

the structural behavior are of the form

L(u) = 0 (5.1)

where L is a nonlinear differential operator. If u_ represents an equil-
ibrium configuration on the primary path, then L(uo) = 0. At any point of
intersection with a secondary path Eq. (5.1) must have multiple solutions.

The existence of multiple soluticns can be determined from
1 + 7 - = 4 .
L(Lo Au) L(uo) 0 (5.2)

All terms in this equation that do not contain the incremental displace-
ment Au cancel one another since L(uo) = 0, If, in addition, Au is infin-
itesimal so that higher order terms may be omitted, Eq. (5.2) becomes homo-
geneous. The trivial solution Au = 0 corresponds to equilibrium on the
primary path. The existence of a nontrivial solution at some load level
indicates the presence of a bifurcation point. This value of the load
parameter is the eigenvalue and the nontrivial solution for Au is the eigen-
function or, for a discrete system,the cigenvector. The eigenfunction defines
the deformation mode on the secondary path in the immediate neighborhood of

the bifurcation point. This deformation pattern, the buckling mode, is dis-

tinct from the deformation pattern on the primary path. Bifurcation can
occur only into some deformatiou pattern that is orthogonal tc the deform-

ation pattern on the primary path.

The meaning of this orthogonaliity requirement may be clarified by
observation of the behavior of a structure with soume degree of imperfecrion.
If, for example, a column has some small initial curvature or some eccen-
tricity in loading, the straight form is not an equilibrium configuration
at any load level. There is no bifurcation point, but the primary path
for the imperfect column gradually approaches the secondary path for the

perfect column as indicated in Figure 5.4.



It can be shown that the equilibrium on the primary path loses
its stability at the first bifurcation point. Consequently, the limit of
stability can be determined either through consideration of adjacent equil-
ibrium as discussed above or through a consideration of the total potential
energy of the system. The structure will cease to be in stable equilibrium
when the load is raised to such a level that the total potential energy is
no longer a true minimum. That is, the level at which the second wvariation
of the potential energy ceases to be positive definite. The behavior of the
initially crooked column illustrates a third somewhat less precise way to
determine the limit of stability: With a very small imperfection included,
a nonlinear analysis will indicate rapid growth of the secondary deforma-

tion mode as the btifurcation point is approached.

Te these three stability criteria, Ziegler (Ref. 5.1) adds a kin-
etic criterion. Stability analysis according to this criterion requires a dyna-
mic analysis. The structure under load is released after it is given a small
deformation. It is in stable equilibrium only if this procedure results in
a vibration with constant or decreasing amplitude. If the equilibrium is
unstable according to any of the three static criteria, the structure will
not return to the initial state but will move toward some other equilibrium

position. Ziegler's kinetic stability critericn will in addition reveal

the type of instability that manilests itself as a self-induced vibration.

In summary then, there are rour stability criteria:

¢ The Adjacent Equilibrium Criterion;
e The Energy Criterion;
° The Imperfection Criterion; and

. The Kinetic Criterion.

The first three are equivalent, but the fourth adds a capability
to predict self-induced vibrations. A vibration with increasing amplitude
means that energy is added to the system. The work done by a conservative
load system along a closed loop equals zero. Consequently, for a system
initially at rest, this form of instability can only occur if the load sys-

tem is nonconservative. For systems in motion, such as rotating shaft,

»
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self-induced vibrations are possible (critical rpm) even with conservative
systems. For such cases, instability can still be predicted by use of the
energy criterion. The kinetic criterion is only needed for analysis of

systems with nonconservative forces.

5.3 The Consequences of Instability

The primary interest of a structural designer is not whether one
form of equilibrium or another is stable, but rather how the structure res-
ponds to a given loading enviromment in terms of stresses and deformations.
The stability criteria will be meaningful only if it can be predicted also

how instability in a given case affects the general structurzl behavior.

The case in which stability is lost at a limit point will be con-
sidered first. If the load is controlled, rather than the displacement,
the structure will be set in motion when the critical load is exceeded.
Exactly how violent the snap-through is and how badly deformed the struc-
ture is after it has come to rest In another stable equilibrium configura-
tion can only be determined by use of a postbuckling analysis. A true rep-
resentation of the structural behavior will be gained if after static load-
ing to a lesvel just below the limit point, the analysis is restarted in a
dynamic mode (including damping) at a load level just above the limit point.
However, it is usually assumed that a limit point represents the ultimate load
carrying capability of the structure, although it is possible in a complex,
redundant structure that the snap-through only occurs in a small and rather

insignificant part of the structure.

The effect of bifurcation on the general structural behavior is
not immediately clear. As the equilibrium on the primary path loses its
stability at the bifurcation point, the structural benavior beyond bifurca-
tion is governed by the conditions on the secondary path. Thus a bifurca-
tion point signifies a load level at whichh a new deformation pattern begins

to develop. The primary path defines the prebuckling behavior and the sec-

ondary path the postbuckling behavior. If the equilibrium on the secondary

path is stable at the bifurcatien point, the structure mzy have considerable
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postbuckling strength. The loss of stability of the equilibrium on the pri-
mary path need not mean that the structure collapses. On the other hand, if

equilibrium on the secondary path is unstable at the bifurcation point, buck~

ling is sudden and the buckling load of the structure may be sensitive to im-
perfections. The behavior of the structure is much the same as it is at a
limit point. Acutaily, if a small imperfection in the form of the buckling
mode is included, a limit point will occur just below the bifurcation point
for the perfect structure. Three different types of behavior at a bifurca-

tion point are illustrated in Figure 5.5.

The type of behavior indicated by case (a) corresponds to stable
equilibrium on the postbuckling branch. In such a case, the occurrence of
bifurcation may be rather inconsequential. One such example is the spher~
ical shell subjected to a point load, in which case bifurcation means that
the dimple around the point load slowly begins to ovalize. The reduction
in stiffness, i.e., in the slope of the load displacement curve, is barely
noticeable. On the other hand, a column under an axial load shows a con-
siderable lateral displacement at load levels only slightly above the bifur-
cation buckling load. The cases (b) arnd (c) indicate the structural be-
havior in case the equilibrium is unstable on the secondary path. The limit

e point for the imperfect structure may be well below the bifurcation point

for the perfect structure.

Detailed information about the structural behavior beyond bifur-
cation can be obtained if the secondary path is traced through solution of
the nonlinear equilibrium equations. However, limited, but sometimes userul,
information may be obtained by use of the Koiter Theory (Ref. 5.2). This
theory is based on determination of the stability of equilibrium on the
intersecting secondary path at the bifurcation point. It does determine

which of the three cases in Figure 5.4 represents the structural behavior.

5.4 Static Stability Analysis

Before the high speed computer became available, solutions were
obtained to some buckling problems with linear precritical behavior. For

example, Euler solved the problem of column buckling more than 200 years
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ago and Lorenz published a solution of the bifurcation buckling problem for
an axially loaded cylinder in 1911. Approximate solutions were obtained
for some simple cases in which loss of stability occurs at a limit point.
Notable is the analysis by Brazier in 1926 of the collapse of long cylinders
in bending. Somewhat more difficult problems could be handled when digital
computers first were engaged in stability analysis, An example of how the
computer was used to improve previously existing solutions is provided by
the analysis of buckling of cylinders in bending by Seide and Weingarten
(Ref. 5.3). Buckling of cylindrical shells under axial compression was
considered by Stein in Ref. 5.4, where it first is recognized that bifur-
cation is possible even if the primary path is nonlinear. The production
of design charts for the handbooks remained the main purpose of stability
analysis for a few years after introduction of the high speed computet.
Eventually, more complex problems were solved and the number of independ-
ent parameters became too large to allow simple graphical representation.
At that point the research and development department would hand a special
purpose program to the stress analyst, who performed the still relatively
simple duty of punching input cards and reading a critical load from the
output.

The introduction of multipurpose r~edcs including effects of stab-
ility and geometric nonlinearities has greatly enhanced the capability of
making accurate analysis of complex structures, but it has aiso enormously
increased the burden on the stress analyst. The stress analyst must now
make major decisions regarding modeiing of the structure and analysis pro-
cedure so that failure is avoided without unnecessary penalties in weight
or cost. Consequently, he must have a relatively gcod understanding of the
basic principle underlying the theory of structural stability. Some of
these ideas were discussed above and additional detail is given in modern
textbooks such as Ref. 5.5. The practical approach to some specific struc-

tures is discussed in the following.

¢ 1
Flat plates with only inplane lcading exhibit linear behavior on

the primary path. If compressive stresses are present, there will be a
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bifurcation point. If the plate is perfectly flat, lateral displacements

begin to develop at the bifurcation bucklingload. For the imperfect plate,

the buckling load represents a load level at which lateral displacements
grow more rapidly. It has long been known that thin plates with supported
edges can carry loads well above the bifurcation buckling load. This is
due to the fact that a stress redistribution takes place so that more load
is carried by the material that is close to the supported edges. Handbooks
contain design charts and simple formulas for buckling loads and uitimate
loads of rectangular and circular plates with uniform loading. For more
complex cases, multipurpose programs can be used. For bifurcation buckling
analysis of flat plates, the number of degrees of freedom can be reduced.
All rotations and lateral displacements vanish on the primary path and all
inplane displacements vanish on the secondary path (in the buckiing mode).
In analysis with STAGS, it is possible to suppress such freedoms with data
cards and thus reduce computer runtime, However, in a postbuckling analy-

- sis, it is necessary to include all freedoms.

If a postbuckling analysis is used for computation of the ultimate

load, it is necessary to include a small imperfection or load eccentricity.

Otherwise the computer results obtained will represent those on the unstable
primary path. The behavior of flat plates under compression or shear is
generally of the type represented by case (a) in Figure 5.5. The equations

for the perfect plate have multiple solutions at loads above the bifurcation

buckling load. 1If equilibrium configurations are determined under increasing
load through soluticn of the nonlinear equations, extrapolated values are
usually used as initial estimates. Since the procedure tends to converge
toward the solution closest to the estimates, the solution cannot be expected
to automatically leave the trivial primary path at the bifurcation point and
turn onto the secondary path. However, when the solution procedure re-
quires refactoring of the coefficient matrix after a bifurcation point is
passed (see Section 5), it will be found that the matrix is not positive
definite. This means that the structural configuration defincd by the
analysis is not in stable equilibrium. ,
In order to find solutions on the secondary branch, it is neces-

......... sary to rerun the case including a small imperfection, sc that the solution
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follows a path like the dashed curve in Figure 5.5, case (a). An Important
an observation may be made here. If the solution representing unstable equil-
o ibrium for the perfect structure is substituted into the equilibrium equa-
tions for the imperfect shell, the individual equations will not be in bal-
ance but the residuals will be very small. Smaller imperfections lead to
smaller residuals and unless the convergence criterion used is sufficiently
severe, a false solution may be accepted by the computer. As in the case
of a true but unstable equilibrium configuration, refactoring would show
that the matrix is not positive definite (the computer cutput indicates
the presence of negative roots). Since the existence of roundoff errors
and the demands on computer economy set an upper limit for the convergence
criterion, the possibility must be recognized that the computer will accept
a solution that leads to small residuals in the equation system but still
doces not at all rapresent structural behavior. The existence of false con-
vergence is not restricted to flat plates, but it represents a problem that
often appears in nonlinear structural analysis. Whenever negative roots
indicate a problem of this nature it is necessary to rerun the case with a
larger imperfeciion amplitude to trigger the secondary deformation mode or
pnssibly with a more severe convergence criterion.

A shell of revolution with axisymmetric loading exhibits, in gen-

eral, nonlinear prebuckling behavior. A shallow spherical cap under external
pressure softens with load and a torospherical pressure vessel head under
internal pressure stiffens. One possible failure mode is axisymmetric col-
lapse at a limit point. Another possibility is that stability is lost as

bifurcation occurs into a nonsymmetric deformation wmode.

If advantage is taken of symmetry, stability analysis of axisym-
metric shelis becomes relatively inexpensive. The eigenfunctions are of the
form Au(x,9¢) = Au(x) sin(n¢) or Au(x)cos (n¢) where ¢ is the circumferen-
tial coordinate a%d n the number of circumferential waves in the buckling
mode. These buckling modes are mutually orthogonal and also orthogonal to
the axisymmetric nrebuckling state. Corresponding to each buckling mode

there exists an equilibrium path in the load displacewment space. None of
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these paths passes through the origin but a number of them may intersect

the primary path and each of these intersections corresponds to a bifurca-

tion point.

According to the discussion above, bifurcation need not be a
critical condition. For example, if a spherical cap is loaded by an inward
radial point force at the apex, the lowest bifurcation point corresponds to
buckling into two waves. Beyond bifurcation, the two-wave deformation pat-
tern grows slowly under increasing load. In other cases, structural failure
occurs approximately at or even below the bifurcation point because the ampli-
tude of the mode grows very rapidly beyond bifurcation, or because the equil-

ibrium on the secondary path is unstable.

If it is sufficient to consider axixymmetric collapse and bifurca-
tion only, the stability analysis for the axisymmetrically loaded shell of
revolution is reduced to a one-dimensional problem (i.e., the problem can
be solved by use of ordinary differential equations). The critical load
for the shell can be feound in the following way: The nonlinear prebuckling

equations are solved under stepwise increasing load. For each load step,

""" the value of the determinant of the coefficients in the homogeneous system for

incremental displacements (Cf. Eaq. 5.2) is computed for a range of values of
n. The computations are continued until for some value of n this stability
determinant changes sign, or until axisymmetric collapse occurs. The
latter case is jindicated by a horizontal slope in a graph depicting the load
versus some typical displacement. If the load is controlled rather then some
displacement the collapse load may be more easily recognized as the lecad at

which the stability determinant becomes zero.

A one~-dimensicnal analysis is possible as long as there is ne need
to trace the secondary branch or to include nonsymmetric imperfections. For
such cases, special programs exist and should be more efficient than the
more general codes such as STAGS. In BOSOR (Ref. 5.6), for example, a capa-
bility to compute bifurcation frow a nonlinear basic stress state is in-

cluded. This bifurcacicn buckling analysis is based on the tangential stiff-
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ness at some point on the nonlinear primary path. Since the tangential

stiffness varies with the 1load level, the bifurcation point is ex~-

actly located only if the eigenvalue equals zero. One of the procedures
used in BOSOR to close in on a true bifurcation point is illustrated in
Figure 5.6 for a stiffening structure. The first estimate of the critical
load can be determined by use of a linear basic stress state. The non-
linear equations are solved at this load level and subsequently a new
bifurcation buckling load is computed. This iterative procedure is con-
tinued as indicated in the figure until the eigenvalue is sufficiently
close to zero. For softening system the initial estimate is likely to
overestimate the critical load. Such an overestimate may result in the
presence of negative roots or in failure of convergence in the following
attempt to solve the nonlinear prebuckling equations. For such cases, a

somewhat more complicated strategy is provided in the program.

The effect of prebuckling nonlinearity on the bifurcation buck-
ling load for axisymmetrically loaded shells of revoliution is often insig-
nificant. For axially loaded cylinders, with clamped edges, the effect is
to reduce the critical load by about 10%Z. On the other hand, for a spher-
ical cap prebuckling nonlinearity may reduce the critical load by about 407%
or more. For a stiffening system, a bifurcation buckling anzlysis based on
a linearized primary path may locate a bifurcation point although in reality
buckling will not occur. Such an example is given in Ref. 5.7 in which a

torospherical pressure vessel head under internal pressure is considered.

The limit point corresponding to axisymmetric collapse usually
represents an upper bound of loading, This limit is genersally not secusi-
tive to imperfections. On the other hand, if bufurcation is critical, in-
formation is eoften needed about possible postbuckling strength or imperfec-
tion sensitivity. It is quite feasible, for example, that axisymmetric
collapse is critical for the perfect structure, but a slightly jmperfect
structure buckles into a nonsymmetric mode. Such is the case for a cylin-
der under an axial load combined with a small internal pressure. This case
may serve to illustrate one of the many pitfalls in nonlinear structural

analysis.
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Knowledge about post-critical behavior can be gained if the

secondary path of equilibrium is traced. The eigenfunction or buckling

mode represents the deformation pattern on the secondary path within

an infinitesimal neighborhood of the bifurcation point but the sinus~
oidal buckling pattern becomes distorted away from the bifurcation point.
Therefore, a one~dimensional analysis is not sufficient for the analysis
of postbuckling behavior or of imperfect shells. With stable postbuckling
behavior the secondary path can readily be found by consideration of a
shell with a small imperfection. This imperfection can have any form as
long as it is not orthogonal to the buckling mode corresponding to the
lowest eigeavalue. If for the imperfect structure the load is gradually
increased to a level above the bifurcation point, solutions are obtained
which are close to the displacements on the secondary path for the perfect
structure. These can be used as starting values if the secondary path for

the perfect structure is desired.

If the equilibrium on the secondary path is unstable, a straight-
forward nonlinear analysis of a shell with an imperfection leads to the

limit point. To determine the entire secondary path is more difficult in

this case. Howevér, it is generally égfficient to determine the value of
the load at the limit point. Thez entire path can often be computed if a
displacement is controlled rather than the load (controlled end shortening,
for example). Recent research papers have propsoed procedures that would
make it easier to find solutions bevond the limit point in the case of con-
trolled load. One possible method is to solve the nonlinear equations by

use of dynamic relaxation (see Sections 5.3 and 7,3),

A shell of revolution subjected to nonsymmetric loading will gen-

erally lose stability at a limit point. Bifurcation is possible whenever the
loading contains one or more planes of symmetry. In that case all deforma-

tion modes that are antisymmetric with respect to such a plane are orthogonal
to the deformation pattern on the primary path and these are possible bifur-

cation buckling modes. .
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+ Whenever symmetry planes in the loading coincide with symmetry
planes in the strncture, the size of the problem can be reduced. In a non~
linear analysis of the equilibrium configuration on the primary path, it is
assumed that the displacements are symmetric with respect to such planes.

At selected load steps, the determinant of the coefficients in the equations
for the incremental displacements can be computed. These are antisymmetric
with respect to the symmetry plane. A change of sign in this determinant
would indicate a bifurcation into an antisymmetric pattern. It is possi-
ble also to use repeatedly the eigenvalue analysis based on a nonlinear
basic stress state and tangential stiffness (see Figure 5.6). In that case,
the load on which the basic stress state is based is a bifurcation buckling
load or a iimit point if the computed eigenvalue equals zero. An automatic
procedure to close in on a bifurcation point as discussed above is probably
not suitable for shells with nonsymmetric loading or for general shells
because convergence can only be obtained if very good initial estimates are

available for the nonlinear prebuckling analysis.

As an alternate procedure, no advantage is taken of thc symmezry.
The entire structure is included in the analysis and a small antisymmetric
imperfection is added. This method may be somewhat more expensive, but it
yields some informatiun about possible postbuckling strength. When the
critical load is approached the antisymmetric ccmponent will begin to grow
more rapidly. However, the convergence criterion does not distinguish de-
formation in the buckling mode from the total deformation. Therefore, if
the imperfection is too small, its relative growth may be rapid but still
remain small in comparison to the growth of the total displacements. This
represents the type of behavior rcferred to as false convergence in the
discussion of flat plates above. The symmetric displacement pattern does
not satisfy the equations but the residuals in all the cquations are small.
The false solution is accepted because it corresponds to small residuals
(errors) in the equation system. The problem will be revealed on factoring
of the matrix.

The risk that the computer will accept a false solution is not

limited to the case in which a fictitious imperfection has been used tou
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trigger a specific deformation pattern. The deformation on the primary

path may contain only a small component of the collapse mode that is

triggered by nonaxisymmetric loading, i.e., the deformation pattern

that grows rapidly in the neighborhood of the limit point. In that
case, the load displacement curve will have a very sharp maximum as
shown in Figure 5.7. As this maximum is approached, the convergence
criterion may not function properly because the rapidly growing collapse
mode is dominated by the basic deformation pattern. The dashed line in
Figure 5.7 represents a path in the load displacement space along which
false convergence is likely because the equilibrium equations are almost
satisfied. Substitution of the false solution into the equation system
leads to small residuals although the solution is far removed from any
true solution. This situation can be remedied by introduction of a
fictitious imperfection in the analysis. As an example, consider a
very short cylindrical shell subjected to a lateral pressure of the

form .

s~
[

P, cos 2 ¢ (5.3)

where ¢ is the circumferential coordinate. Due to the nonlinear coupling
betweer, dif{ferent harmonics, the displacement pattern on the primary path
does not vary sinusoidally with the circumferential coordinate. All Fourier
components, symmetric about the plane through 6 = 0 and 7 are included in
the prebuckling deformation mode. However, the higher the wave number, the
smaller is the amplitude of the corresponding component. If the critical
wave number is relatively high, as is the case for a very short cylinder,

it is necessary to use an imperfection to trigger the critical deformation

pattern.

A shell of a general shape behaves similarly to ‘the shell of

revolution with nonsymmetric loading. In general, loss of stability occurs
at a limit point. Bifurcation points may exist if geometry and loading are
symmeiric about some plane. Again, if such plancs are present, the options
are availablc to take advantage of this symmetry by considering antisym-

metric bifurcation buckling modes with a nonlinear basic stress state or to
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introduce antisymmetric imperfections. The latter approach was used in an
analysis in Ref. 5.8 of the nonlinear behavior of elliptic cylinders under

axial compression.

The behavior of the elliptic cylinder under axial compression pro-
vides another illustration of the problem with a path in the load displace-
ment space that is far removed from any true solutioa but still results in
an insignificant unbalance in the equilibrium equation. As the ellipse
ratic approaches one (a circular cylinder), the symmetric component of the
collapse mode contained in the prebuckling deformation pattern vanishes.

For an ellipse ratio of about 1.4, it was possible (see Ref. 5.8) to estab-

lish the collapse load either after the convergence critericn had been tight-
ened or after symmetric impexfection had been introduced. TFor cylinders with
even smaller ellipse ratios solutions can only be obtained after introduction

of a symmetric imperfection.

Although in reality, all structures have some degree of imperfec-
tion and a situation of pure bifurcation never exists, the bifurcation
approach is often very useful. If it can be assumed that the prebuckling
behavior is linear, the bifurcation buckling approach leads to considerable
savings in comparison to a nonlinear analysis. Often previous expcriments
give some idea about the degree of imperfection sensitivity. In such cases
the bifurcation buckling load can be used in connection with a more or less
intuitively chosen knockdown factor as a design limit. The true imperfec-~-
tions are usually not known in detail. Therefore, this semiempirical method
represents the only practical approach. If the equilibrium c¢n the secondary
branch is stable, the bifurcation buckling load is useful as a conservative

estimate of the critical load.

If the bifurcation buckling load is not used directly as a design
limit, it may still be weorthwhile to perform a bifurcation analysis based
on a linear prebuckling state as a preliminary to a nonlinear analysis.

The bifurcation buckling load may be used as a guide in the choice of step

size and starting loads for the nonlinear analysis. The buckling mode can
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be used as a guide in the selection of an initial imperfection. A bifur-

cation analysis can be used in a preliminary study of the effect of grid

size.

Sometimes it is possible to use the bifurcation approach with a
linear prebuckling analysis as an approximation beyond its range of ap-
plicability. This can be done only if experience from similar cases
indicates that the solution is adequate. The bifurcation buckling anaiysis
may be a too conservative estimate of the collapse load if the structure
allows considerable redistribution of stress. On the other hand, if the
stiffness of the structure deteriorates due to geometrical changes caused
by the load, the bifurcation buckling load may be several times higher than
the actual collapse load. These problems are illustrated by some examples
in Ref. 5.9.

In the absence of planes of symmetry in geometry and loading,
bifurcation is extremely unlikely. It may in that case at first appear
meaningleczs to perform a bifurcation buckling analysis based on a non-

linear basic stress state. However, if a nonlinear analysis is carried to

’’’’ the design load, it may be useful to perform a bifurcation buckling.analy—

sis based on the final stress state. This would give sume idea about poss-
ible margin against collapse. Also, if negative roots appear on refactoring
of the matrix at some load step, a bifurcation buckling analysis may reveal
the reason for the problem, and the buckling mode may indicate what type of

imperfection should be included.
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Section 6
DISCRETIZATION PROCEDURES

6.1 Introduction

The structural response to a given environment is determined by
the equations cof motion of deformable bodies. If solutions are to be ob-
tained to these equations for a reasonably large class of structural con—
figurations, analytic solutions are clearly inadequate. Consequently,
the mathematical problem is recast into & numerical preblem for solution

on the computer.

The output from the computer consists of a sequence of numbers,
somehow representing the functions satisfying equilibrium equations and
boundary conditions. The solution may be represented by a linear combina-
tion of a set of "basis functions." Then the output vector consists of the

ST coefficients in this linear combination. This is the case if the Galerkin
or Rayleigh-Ritz procedures sare used. In finite difference or finite ele-
ment procedures, the solution function is represented by its discrete val-
ues at a number of points within the domain of the structure. The dis-
cretized methods, especially the finite element method, are more readily
applied in computer programs for structures of a general type. Therefore,
they have been gaining in popularity to the extent that presently all
major computer programs of significani scope are based on such methods.

The discretized methods make use of numerical differentiation and numerical
integration. A review of these operations here is intended to serve as a
background to a discussionof the different opticns that are available for
numerical analysis of shell structures. A review of some numerical pro-
cedures is presented in Section 6.4. Special probhlems in discretizatien
are discussed in Section 6.5 and a brief discussion of some specizl dis-
cretization configurations (finite difference and finite element procedures)

is given in Section 6.6. Finally, in Section 6.7, the special procedures
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selected for the STAGS program are presented together with a justification

for this choice.

6.2 Numerical Differentiation

Numerical differentiation consists of the replacement of the deriv-
atives of a function by difference quotients (or finite difference expres-
sions). Such expressions are generally based on local polynomial approxima-
tions. 1In the following a truncated Taylor series will be used for this
purpose. In the one~dimensional case (one space variable), the series can
be written in the form

2

n
£(x) = £(0) + x£’(0) +—’25 £00) + vun. =

= £ ) + & (6.1)
where the primes denote differentiation with respect to x. The remainder
R representes the sum of the terms that were excluded when the series was

truncated after the (n+l)th term. It can be shown that (see Ref. 6.1, for

example) .

‘ xn+l
o R £ ——=— F -
£ iy
(n+1) (6.2)
F = max (f(n+1) (z)): 0<tcz<x

This bound on the truncation error may be useful for estimates of the accur-

-

acy of the output vector.

By use of a suitably truncated Taylor series, the function values
at a number cf discrete node points can be expressed in terms of the deriv-

atives at each of a number of control points. In Equation (6.1) it is

assumed that x = 0 at the control point. A set of linear equations is
obtained and through solution of this, expressions are obtained for the
derivatives at the control point in tecrms of the function values at the sel-
ected node points. The number of node point values included must be equal

to the number of derivatives in the Taylor series. In the general case the




highest order derivative so determined will be of first order accuracy, i.e.,

the error E = O(h). 1If the highest order derivative included in the expan-

sion is of nth order, the kth derivative (k < n) will be of order (n - k + 1),

Figure 6.1 illustrates how finite difference expressions can be

derived in the two-dimensional space. A Taylor series approach gives

= Y4 - 1 2 'F” re
£lat N,) (£ +ay,f HBE A % #14F
(6.3)
+—;—B.?,f“

i3 + "')(at Pj)

where a prime indicates differentiation with respect to the X, coordinate

and a dot differentiation with respect to the X, coordinate.

-

X ConreoL PoINT

/5[/' o o Nope Point

Figure 6.1 Two-Dimensional Finite Ditrerence Grid
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If derivatives up to the second order are to be determined, it
is sufficient to specify for each control point a set of six pneighboring

node points (Ni to Ni ). By applying Eq. (6.3) at each of the six node

+5
peints, the following equation system is obtained

i 1 2 1.2 ]
£ Loy By 5oy Py 7 By £
1 2 1 2 ,
f2 Loy By Fopy iy 2 P2; 2
1 2 1 .2 .
£3 Loy By Fogy o3B3 By i
- (6. 4)
1 2 1 "
f4 Loy By 7oy ogfyy 2By 2
1 2 1 2 1l
L . =g £
f5 L agy By 3% 5P 7 Ps; j
1 2 ] 2 .
- = —— i f.
fe Looogy Bgs Ty % 2 Pe; 3
- —

The solution of the equation system (6.4) for fj and its deriv-
atives yields a set of finite difference expressions for the derivatives
at control point j. The error bound for the second order derivatives is
of order E = O0(h). The first order derivatives are of second order accur-
acy. Notice that if one of the second order derivatives were left out,
the remaining derivatives would he expressed in terms of five nodal values.
Then the first order derivatives are only of first order accuracy and the
expressions for the second order derivatives may be meaningless (E = O(ho))
Since there are four different third order derivatives, we must include ten

nodal function values in ordexr to raise the accuracy by one order to E =

O(h3) for first order and to E = O(hz) for second order derivatives. In
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finite difference analysis, it has been a rather common practice to deter-
mine lower order derivatives from a smaller set of degrees of freedom so
that derivatives of different order still are of the same order of accur-

acy (see Ref. 6.2, for example).

The nodal freedoms need not be restricted to function values. A
higher order derivative at a control point can be expressed in terms of
lower order derivatives at the nodal points. The second order derivatives
in the one-dimensional case can be obtained from the difference between two
adjacent first-order derivatives. The lower order derivatives are then
included among the degrees of freedom of the system. Such procedures are

discussed in Ref. 6.3, for example.

A different but equivalent procedure is usually applied in finite
element analysis. The coefficients in a linear superpcsition of a set of
polynomial shape functions are chosen so that the function values at the
nodes agree with the degrees of freedom. Since derivatives of all orders
are determined from these polynomials, lower order derivatives are usually

of higher order accuracy than derivatives of higher order.

The location of points at which derivatives are 2nproximated by
finite difference expressions can be chosen so that the order of accuracy
is improved. As an example, the one-dimensional finite difference config-

uration shown in Figure 6.2 is considered.

—

Y, >
—l b l‘——ﬁ(/“’f)-————*-
X

O 0
CONTROL 2
NODE T POINT NODE 2

'

Figure 6.2. One-Dimensional Finite Difference Grid



The degrees of freedom of the system are the function values fl

and f2 and the first order derivatives (rotations) fi and fé at the node

points. The second order derivative at some point in the interval is

determined.

A one-dimensional Taylor series expansion gives

2 3

_ ’ X o4 X w }_E_flv +
i:“fo_!-}{fo-*.z fo+Tf +24 o ve
and (6.5)
p ’ u 1 2. . m x3' 1v

In the following, for simplicity, the subscript zero referring
to the countrol point is dropped. The finite difference expression, the

second derivative £7, is obtained from the equation system

2 3 4

7 h 2 Su h 3 m h 4 1v _
f +h(1"’C{)f +-—-2- (1 C!) f +’g—' (1 oz) f + 24 (1"0!) f = fz -

2 2 33
f-haf’ + RO g« _ ha f’”+-131°f-flv=f
2 6 24 1

* (6.6)
2 5
e+ B Y -

£/ + h(l-o) £7 + s,

2 2
f"l - hof” w h™y F h3a3 flv

2 3

:B’l

The solution of this equation system includes

£ o= [6 (1-20) (£, -£) - 2h {2-30) B, + (i-30) B,

1
)

L2 1
6.7)

h2

2 lv 3

If a i5 chosen so that 6a2 - 6o+ 1=20, i.e., a = (1 j:l/#@)/z, then
the second derivative in Eq. (6.7) is of third order accuracy. The func-

2
tion y = 60 - 6a + 1 is shown in Figure 6.3. Points at which the ccetfi-
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cient of the first term in the error vanishes are sometimes in the finite

element literature referred to as stress windows (Ref. 6.4). The accuracy

of the local approximation at such points is one order higher than it is

at other points in the interval.

6xX+/

G
N
S~
X

Y:

Figure 6.3 Error Function

The analysis beccmes more efficient if numcrical derivatives
need to be determined only at points where they are most accurate. This

is further illustrated by the two finite difference schemes shown in

Figure 6.4.

With a uniform spacing the stress windows are located at the
node points for even order derivatives and halfways between them for cdd

order derivatives. With scheme A we find

T | _ Y 2w
£ 2h G-y -5 b f
(6.8)
PRV W Sl .2 v
Sy R R S U R

2h
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and with scheme B

1 1 .2
£/ = = (f -f ,,.) - == hef™
h Y+1/2  *-i/2 24 (.9)
v _ 1 ) ) .5 .21y
£ = o2 Cya72 "f4yyp "2 Tigyy) -~ 3z B
N—/ NO N+/
o) X o)
A
Scheme A
Ko My ) Neth
o o) X o o
7

Figure 6.4. Two Finite Difference Schemes

The somewhat paradoxical result here is that if we atteupt to
determine a first order derivative at PB with first order accuracy using
two points and the first of Eqs. (6.9), the error is of the second erder
because the coefficient is zero for the leading term in the deleted sequence.
Actually, it is only one quarter of the size of the error that is obtaiued
at a node point from a three poini scheme, Eq. (6.3). With a three point

scheme, second ordcr accuracy for the first derivative is ¢btained at any



point in the interval, but it 1s most accurately determined at the mid-

point between two nodes where it is identical to the expression from the

two-point scheme. On the other hand, the stress window for second order
derivatives is located at the node points and the error in f” in the sec-
ond of Eqs. (6.8) is less than the error of f” in the second of Egqs. (6.9).
A formula for the first derivative at a node point determined from two func-
tion values (forward or backward difference) is of the first order accuracy

only, i.e.,

£ (6.10)

6.3 Numerical Integration

The purpose of numerical integration is to compute an approximate

value of b

i dx
/ =) (6.11)

a

It is an essential procedure in finite element analysis and also in finite
difference analysis based on the energy approach, as discussed below in
Section 6.4. The value of the integral is determined after the range a £ x £ b
is divided into a number of small subintervals. For simplicity, the case in
which all intervals are equal is considered here. With the function values
determined at the midpoints of N intervals (see Figure 6.5a), the integral

can be obtained by use of the so-called rectangle rule, i.€.,

N
]f(x) dx ~ h Zfi (6.12)

i=1

If instead the function valucs are determined at points of division between

the intervals (including the end points, a, b), the trapezoidal rule can be

-

used as illustrated in Figure 6.5b.

b

+f, .00 £

f(x) dx = h (/2 £, + £ +1, -

z21i)) 6.13
+1/6 ln; ( )



pd

Figure 6.5. Numerical Integration Schemes

It is shown in Ref. 6.1 that both these methods are of second order accur-
acy. The rectangle rule is somewhat more accurate with the error bound
b-a h2

E = 24 £7(€); asEs<b (5.14)

whiie the error bound for the trapezoidal rule is

2
E = b-faz'h f7(€);a<E<b (6.15)

A number of procedures of higher accuracy have been proposed (Euler-
McLaurin, Stirling). The Newton-Cotes series of integration formulas are based
upon the passing of a polynomial through a sequence of function values and
integration of this polynomial over the subintervals. Since the trapezcidal
rule is based on a linear approximation over the subintervals, it may be
considered as the lowest order method in the Newton-Cotes series. A Newton-~
Coites formula of third order accuracy is obtained if we use second order
polynomials for interpolation between node points. This member of the

Newton~Cotes family is well known as Simpson's formula



b

_ h
/f(x)dx = 3 (f t4f t 26, t .ol 4f  + 1) (6.16)

n-1 n
a

Use of Simpson's formula requires that the number of subintervals is even.
Higher order Newton-Cotes formulas are increasingly restrictive with regard

to the permissible number of subintervals.

The dintegration procedure referred to as Gaussian Quadrature is
based on finding strategic positions for the points at which the function
value is determined. For demonstration cf the principle it is shown here

how a two pouint integraticn scheme is derived. If the function values at

"
]

t o £ are fl and f2’ where x is measured from the midpoint of the ele-

ment, the function is approximated by

f.+1 f, - £
1 2 2 1 \

Here, FZCx) is a function of second degree in x which vanishes at x = # a-%

while R is a power series beginning with the third order term. That is

£ +f f, - £ 2

1 2 2 1 2 4 2 (6.18)
= mr———— ——— + - v e .
{ > + =7 x+tc¢ (o ) x )+
ana
212
P =L 41 4 !’-3 2Ly (6.19)
-2

=]
o
(#]

> third order term will vanish if a =+ 1/2/3 or x = 5%5. If the function
is evaluated at these Gaussian points the integration is more accurate. The
position of the Gaussian points coinrides with the stress windows as defined
in the example on numerical differentiation above. The rectangle rule is

ideutical to the use of a Guassian Quadratuire over each of the individual
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intervals with only one integration point in each. In finite element

analysis numerical integration is usually carried out separately over

each element by use of Gaussian Quadrature. ¥For a polynomial of any
order the number of Gaussian points can always be chosen so that the
integration is exact. The above example with two integration points
gives the exact value of the integral for any polyncmial up to the

second order.

6.4 Numerical Sclution Procedures

The Galerkin MMethod

A widely used procedure for obtaining approximate solutions
to differential equations is known as the Galerkin method. The method
is applicable to partial as well as ordinary differential equations.

For simplicity, the equation is written in the form

L(u) = 0 (6.20)

------- where L is a differential operator and u represents the displacement field.

A solution is pursued in thc space of trial functions of the form

N
ug = E an(?)n {6.21)
n=1

where the basis functions, ¢n are kinematically admissible functions, i.e.,

they are continuous anid satisfy given boundary conditions. A trial function
consists of a linear superposition of a finite number of hasis functions.
The components of the output vector are the a - In the Gaierkin method, the

a are determined through solution of the egquation system:

N
= = s = (6.
Lu) ¢m dv L E an¢n ¢m av G; m=1, N (6.22)
v v \ n=1

where V represents the volume of the structure.
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Convergence to the correct solution is implied if

HeNea || 50 as N= = (6.23)

where uN is the solution of Eq. 6.22 and u the soluticn of the mathematical

problem L(u) = 0. The notation“u;]]represents a norm of the function u.
The norm of u on the domain V may be defined as

ol = [ u®av (6.24)
v

The question of convergence of the Galerkin method will be considered in

connection with the discussion of the Rayleigh-Ritz method.

The Finite Difference Method

In the original form of the finité difference method (in contrast

to the energy method discussed below), the derivatives in the equilibrium

equations are replaced by finite difference expressions (see Section 6.2).
An algebraic equatiou system is then formed in which each equation expresses
equilibrium at one of the control points. The number of cjuz.ions must be
equal to the number of degrees of freedom of the system. Many examples of
application of this procedure are given in the literature. .in Ref. 6.5,

it is applied in an 2nalysis of column buckling.

The practical problems involved in finite difference analysis are
much the same if finite differences are used in combination with the energy
approach. The discussion of these probiems is deferred to the paragraph on
finite difference energy methods. Here only t*2 conditions for convergence
with the grid size will be considered. Over the years many efforts (Ref.
6.6, for example) have been made to show that the method converges with de-

creasing nonde point spzacing to the solution of the diffcrential equation, i.e.,

||uh-u||~0as h-0 (6.25)
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where Uh is the finite difference solution corresponding to a node point

spacing h.

Rigorous mathematical proofs have been presented for special cases,
but due to the diversity of differential equation forms, boundary conditions
and shape of domain, it appears to be difficult to establish a general proof
of convergence. However, mathematical rigor has never been the trademark of
engineering analysis. Often the assumptions and simplifications in modeling
a structure are of such a naturc as to make the quest for mathematical rigor
rather extravagant. If the application of a reasonable method had been de-
ferred in anticipation of rigorous proof, technical progress might have been
considerably delayed. The finite difference approach is acceptable to an en-
gineering analyst without a completely general and mathematically rigorous
proof. The difficulty in proving convergence is due to the fact that the
error bound in the numerical approximation of a derivative contains a higher
order derivative of the solution function itself. If the solution function
varies continuously with the input data (the loads), then the derivative in
the error bound is itself bounded in terms of independent variables. Unless
such continuity can be established, the error bound on the local approxima-

tion becomes meaningless.

It is possible to define finite difference formulations that are
of order O(h) or better which still lead to spurious results. Consider, for
example, the case of a beam or a column. The second order derivative in the
column buckling equation is substituted by a three point central finite dif-
ference expression except at one internal point where either a backward or =a
forward difference expression is used. Then a beam is defined that has a

iink at the exceptional point.

It is proposed in Ref., 6.4 that the finite difference approach to
the solution of differential equations converges toward the correct solution

if:
1) The local truncation error vanishes with the gridsize; and
2) The solution varies continuously wi i the input data (loads)

for small values of h.
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The deformation of a beam with a link does not vary continuously

with the load sc the second requirement will exclude a spuriocus solution

such as the one for the column discussed above.

The Rayleigh-Ritz Method

The total potential energy of a static system is the sum of the
strain energy and the potential energy of the force system. The system is
called conservative if the change in the total potential energy in passing
from one configuration to another is independent of the path (compare Section 2).
A static conservative system is in equilibrium if its potential energy is
stationary. As formulated in Reference 6.5, the Theorem of Stationary Po-
tential Energy states: "Of all displacements satisfying the given boundary
conditions, those which satisfy the equilibrium equations make the poten-

tial energy a minimum."

The condition of minimum energy is then equivalent
to the requirement of structural equilibrium. The equilibrium equations

can be derived from the first variation of the total potential energy through
integration by parts. They are then referred to as the Euler equations of

the calculus of variations.

The equiiibrium problem for deformable bodies can also be sgolved
directly through minimization of the energy, bypassing the explicit equilib-
rium equations. 1In the Rayleigh-Ritz method a sequence of trial functions
is substituted for the displacement field. Each trial function is expressed
as a linear combination of a set of basis functions. The method is thus
closely related to the Galerkin procedure, although the trial functions are
substituted in%ts the expression for the total potential energy rather than

in the equilibrium equations. The sequence of trial functions is given by

N
N ;
u = E a_n¢n 3 N = l, 2, 3'. ¢« e s 0 (6. 26)

and the basis functions ¢n are clhiosen so that they satisfy displacement

boundary conditions. The unknown coefficients a are determined by the
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requirement that the total potential energy is stationary. Natural boundary

conditions (stress—free edges) are automatically satisfied because they cor-

respond to an energy minimum. Convergence toward the correct solution is
guaranteed if the set of trial functions is complete in the space of contin-
uous functions satisfying essential boundary conditions (displacement con-

straints). A convergence proof is given in Ref. 6.8.

The Galerkin method discussed above may be considered as an exten-
sion of the Rayleigh-Ritz method being applicable alsoc to differential equa-
tions that cannot be derived through a variational approach. It is shown
in Ref. 6.8 that the Galerkin method when applied to variational problems

with quadratic functionals is identical to the Rayleigh-Ritz method.

Before the introduction of the digital computer, the Rayleigh-Ritz
and Galerkin procedures were frequently applied with trial functions chosen
intuitively. Because of computational difficulties, very few terms were in-
cluded. With the arrival of the high-speed computer, it became popular to
use as trial functions 2 finité number of terms in complete series bf basis

functions (generally trigonometric series). With increasing demand for gen-

eral purpose programs, these methods have been gradually abandoned in favor

of [inite element and finite difference methods.

Finite Difference Energy Methods

The use of finite differences in a variational approach is dis-
cussed in Ref. 6.9 on page 182. Finite difference expressicnzs are intro-
duced directly into the energy expression and the potential enerzy ig mini-
mized with respect to the nodal displacement components. Convergence of
the procedure is not discussed in Ref. 6.9. An appeal may be made to equiv~
alence with a finite difference solution of the Euler equations discussed
above. A rigorous and general proof of convergence does not appear to be
available. However, whenever the procedure has been applied to a case with

a known solution, it has been found to converge toward that solution.

,,,,,,,,
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The advantages of introducing difference quotients into the potential
energy expression rather than into the equilibrium equations are that the coef-

ficient matrix of the resulting equation system is symmetric and the natural

boundary conditions are automatically satisfied. ¥Fcr a simple demonstration
of the method, the buckling of a column with uniform cross-section (compare Ref.
6.5, page 283) subjected to an axial compressive force P is considered. The
first variation of the potential energy vanishes for all equilibrium configura-
tions. The bifurcation buckling load can be defined as the load level at which
the second variation of the total potential energy vanishes. Hence, the criti-

cal value of P is obtained from

L

Xy =/ [EI(W,XX)Z - P(W,X)Z] dx = 0 (6.27)

o

Advantage is taken of the stress windows as discussed above (see Eqs. 6.8
and 6.9), if Lo is determined at midnodes and Vs ox at node points as shown

in Figure 6.6,

X MNODE POINTS
CONTROL PTS FOR W,yy

6 CONTROL PTS FOR W,

Figure 6.6 Finite Difference Scheme for Column

2 . ; . 2
Then, w, can be integrated by use of the rectangle rule but since Vs i 1S
most accurately determined at node points it will be integrated by use of

the trapezoidal rule. It follows that

N-1

2 1
/(w, J dx=n E 5 W - W) (6.28)

i=1
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N"l 2
""""""" 2 1 . 2 1
. /(W'xx) dx = ;—;Z (W2 - Zwl TWO) +h E [;-2- (Wi+1- 2w, +w _1)
i~2
(6.29)
1 2
4+ (WT\_-ZW,"'W )
Zh2 N-1 N N+1
Fictitious points corresponding to WO and Vo4 are introduced so

that the second order derivatives can be determined at the end points. For-
ward and backward derivatives could be introduced instead at these points o1

the rotations (Wk) at the end points could be uvsed as freedoms of the system.

After the number of uniformly spaced node peints has been chosen,
a homogeneous linear equation system is formed by differentiation of 62V
with respect to the degree of freedom. The load P appears as the eigenvalue

parameter., From Reference 6.5:

e Number of Nodes 2
on Half Column i PCR/[EI(W/L) ] )
3 0.9495
4 0.9774
5 0.9872
7 0.9943
] 0.9968
11 0.9979
© 1.0000

Since the finite difference expressions as well as the numerical
integrations are of second order accuracy, the error in the solution is ex-
pected to be proporticnal to the square of the spacing between node peints.
The natural boundary cenditions can be shown to be satisfied to the same
degree of accuracy. As the spacing equals L/2(i-1), the first two results

in the table above indicate that
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- -
L = -
¢ |zgey| = Peg - 0949
) ’ (6.30)
[ L ] 2 -— 0 4
. = - 7
c 2(4-1) PCR . 977

If the first of Egqs. (6.30) is divided by the second, an equation is obtained
that yields be = 0,9997. 1In view of the fact that the values of iéR for 3
and 4 points were rounded to four figures, this is as close to the exact solu~
tion as can be expected. By use of two solutions with very coarse node spac-
ing, and the assumption of second order accuracy, it is possible in this case
to predict a very accurate result through extrapolation. The method is gen-

erally referred to as Richardson's extrapolation.

In shell or plate analysis the displacements are functions of two
space parameters. In that case il is more difficult to utilize stress win-
dows to gain one level in the order of accuracy. Considerable effort has been
devoted to the task of defining efficient finite difference schemes for rec-
tangular nets with uniform spacing. Examples of two-dimensional finite differ-
ence schemes are the STAGS half-station scheme and the STAGS whole-station
scheme and Noor's scheme, shown in Figure 6.7. Noor's scheme and the STAGS
half-station scheme define node points for displacements in the plane of the
shell that are different from those at which normal displacements are defined.
This has considerable disadvantages in a complicated structure with intersect-

ing branches and attachments of bcams or springs.

Finite Element Analysis

In contrast to the finite difference method, the finite element
method was originally derived through phvsical and largely heuristic consid-

erations in the field of structural mechanics. As an afterthought, the method

6-19



........

SCHEME 1 (Half-Station)

T )

A

X w Defined
o u,v Defined

— Integration Area

2

SCHEME 2 (Half-Station by Noor)

= %

m

a

o

J

-

L)

oY,V

¢ X w Defined

O u Defined

jnnl

Sy

= 3

,\\\')

0 v Defined

— Integration Area For Sheqr u,y, v'x,w'xy

L Integration Ar

SCHEME

[was

o
ea For Direct (u'x.v'y.w'xx, etc.)

2 (Whole-Station)

\;7'» SIS
SE
s

NN

x u,v,w Defined

L

5

()

Figure

6.7.

\lmegraﬁon Area For Membrene Strain
Energy Uxs Vya Uy, Wy , etc.

~Integration Areu For Bending Strain

X Energy

Two-D Finite Difference Schemes

6-20



was given a mathematical interpretation. This led to considerable refinement
of the method and made possible its extensiocn to problems outside of the field

.

of structural mechanics.

The mathematical interpretation of the finite element method is
based on the Ritz principle. In a departure from the historical development,
the method is discussed here as an extension of the Rayleigh-Ritz method, much
in the same way as it is presented by Strang and Fix in Ref. 6.4 where the
reader is introduced to the finite element method primarily through a detailed
discussion of its application to solution 'of first order ordinary differential
equations. In the one-dimensional (ordinary differential equations) case,.the
domain of the equation is divided into a number of intervals, finite elements,

through the introduction of a sequence of node points.

The conditions under which a Rayleigh-Ritz analysis converges to the
right solution will now be discussed. Let c” be the space of all functions
which have continuous derivatives up to the nth order. If the functional under
the integral includes derivatives up the kth order, it is required that the
trial functions belong to Ck—l. Hence, for solution of problems with only
first order derivatives in the integrand, it is sufficient that that the trial
functions belong to the space Co, i.e., the rfunction itself must be continuous,
but its derivatives are allowed to have a finite number of discontinuities. A
sequence of piecewise linear functions satisfies this requiiement. Such a
space of trial functions is complete, becarse any function u in the soclution
space can be arbitrarily closely approximated by the limit of a sequence of

piecewise linear functions. The trial functions can be Written in the form

N o= Z :angn (6.31)

where the basis functions ¢n are piescewisz lincar, equal to one at node n and

zero everywhere else. The function ¢n is showvn in Figure £.8.
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Figure 6.8. Linear Basis Function ¢n

For a functional including derivatives of the second order, it is
required that the trial functions belong to Cl, i e., that the function it-
self and its- first order derivative are continuous. This is achieved if we
introduce rotations (first order aerivatives) as well as displacements as
nodal freedoms. In this case, the tzsis functions cannot be piecewise linear.
Only a polynomial of third or higher order can match any set of values of the
four freedoms, the function and its first order derivative at the two end

points of the element.

The trial functions corresponding to a third order polynomial can

be written in the form

N
uN = E (an¢n + bn Yn) (6.32)
n=1

where the basis functions ¢n and Wn can be defined as shown in Figure 6.9 and
Figure 6.10. With this choicze, the ¢n correspond to £ = 1.0, £7 = 0 at node

nand f = £ = € at all other nodes. The Wn give £ = 0, £7 = 1.0 .at node n
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and f = £ = 0 at the other nodes. This formulation is equivalent to the

first of Egs. (6.5) after insertion of the solution of the Eq. System (6.6).

/.0

NODE n

<
3
3
+
\

[
t

Figure 6.9. Cubic Basis Function ¢n

%, 2 3
PV .24
’ L 3 I Y=x 2k+/(1
/ xng,—f-;;z
S N— l X
NODE n-/ n n+/
h ] L

Figure 6.10. Cubic Basis Function Wn
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In application of the finite element method to the buckling of

a column, the above equation for the critical load (Eqs. 6.27) can be used

together with the cubic basis functions of Figures 6.9 and 6.10. First order
derivatives are determined with third order accuracy by a complete cubic.
Second order derivatives are of third order accuracy at the points defined
by @ = (L+1//3)/2 (see Fig. 6.2). Since the Gaussian Quadrature (Cf.
Section 6.3) also gives third order accuracy, the error bound is expected

to be E = 0(h3). The Euler load for a column with L = 6.0 and EI = 10./12.
is

PCR = 0.22846307
Finite element (or Rayleigh-Ritz) analysis with piecewise cubic basis func-

tions gives

Number of elements P
on half column (i) CR

1 0.23190140
0.22869537
0.22850905
0.22847706
0.22846843
0.22846645
0.22846371

N N

-3

The indication from these numbers is that the error approximately
varies with the fourth rather than the third power of the node pecint spacing.
A possible explanation is that eriors in first and second order derivatives
tend to cancel one another.

For plate and shell buckling or bending problems, the lateral dis-

placemerits w aprear in derivatives up to second order. The inplane displace-
ments u, v are only included in derivatives up to first order. Therefore,
admissable dispiacewent functions in the Rayleigh-Ritz sense are such that u

and v are in Co and w in Cl.
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At an element interface, as shown in Figure 6.11, this means that
u,v,w and dw/ 3% are required to be continuous, where [ is any coordinate in

the plane of the element not parallel to the boundary.

o Nopbe Pomwr

@ LLEmenT No.

Figure 6.11. Adjacent Plate Elements

Plate or shell elements that satisfy these conditions are referred
to as conforming elements. If such elements are used; convergence is asgured
(Rayleigh-Ritz equivalent), provided that the polynomial approximations are
at least of first order accuracy, E = 0(k). Convergence is from abeve, i.e
the coarser the grid is, the higher the strain energy in the system and the
higher the buckling load. Finite elements were used successfully for plate
and shell analysis before the method was established as a form of the Rayleigh-
Ritz procedure. These elements were not conforming.

Experience has shown .hat an analysis based on nonconforming ele-
ments may cunverge to the correct soluticn. In fact, it has often been
found (see Ref. 6.7, for example) that within the level of accuracy gener-—
ally required in engineering analysis the nonconforming elements show bet-

ier convergence properties. The reason for this is that the conforming ele-
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ments, with convergence from above, overestimate the stiffness of the

structure. Relaxation of interelement displacement constraints results
in an error of opposite sign. Moreover, this is an error of lower order
than the error introduced through truncation of the local power series

representing the displacements.

If two methods with different order of accuracy are applied to
models with identical grids, the ratio between the error bounds for the
two methods can be written in the form

R = chm?n, m>n (6.36)

where ¢ is some constant and m and n the orders of accuracy of the two
methods. For a relatively coarse grid, the error may be much smaller than
the error bound, and it is possible that a lower order method will give
more accurate results. However, for sufficiently smail grid spacing, the
lowest order term in the error will dominate and the higher order method
must result in a smaller error. The analysis with conforming elements con-
verges from above and the corresponding analysis with relaxed compatibilty
requirements gives a lower value of the strain energv. Since the analysis
with nonconforming elementz {bLeing of lower order) results in larger error
for small grid spacing, it may be concluded that a nonconforming element
cannot converge uniformly from above. Also, if for some grid size, the
nonconforming element underestimates the stiffness, the error can only be
increased by introduction of freedoms that do not affect interelement com-

patibility, such as displacements at internal nodes.

In addition to the use of nonconforming elements, Strang (Ref. 6.8)
lists among "variational crimes" the use of numerical integration and approx-
imation of domain and boundary conditions. Use of integration with too few
Gaussiap points tends, like displacement incompatibility, to weaken the sys-
tem. As a consequence of the tendency of such zpproximations to weaken a
structural model that otherwise is too stiff, the world of finite elements

is indeed one in which "crime" pavs!
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After the finite element method was given a theoretical foundation
as a form of the Rayleigh-Ritz procedure, the wisdom of using nonconforming
elements was questioned. However, the evidence of success in previous applica-
tions is compelling, and eventually the authors of Ref. 6.7 suggested that
non-conforming elements can be accepted if they pass "the patch test." For
plate and shell ements the patch test requires that constant strain and con-
stant change of curvature are maintained through any patch of elements when-

ever corresponding conditions are applied at patch boundaries.

It has not been established in a rigorous mathematical way that the

patch test is a sufficient condition for convergence to the correct solu-

“tion. However, Irons (Ref. 6.9) presents a heuristic argument for suffi-

ciency. With decreasing grid size the variation of strain and change of
curvature diminishes so that in the limit these quantities are essentially

constant in any loading case.

Regarding the necessity of the requirement, it is easy to con-
struct a counter example. Consider, for example, two elements, one of which,
21, is conforming and the other, £_., is nonconforming, does not pass the

L

patch test, and actuaily converges toward an inaccurate solution. If the
e e

stiffness matrices of 21 and 12 are K1 and KZ’ then a new element, 23, can
be defined so that its stiffness matrix Kg = (1 - &) Ki + aK; where o approach-

es zero with the grid size h. The element 23 will not pass the patch test
for any finite value of h. Howsver, in the limit, it is conforming so that
convergence to the correct solution is certain. For most element configura-
tions the patch test is indifferent to the size of the element. Therefore,
it is a praciical test, but possibly it should be relaxed so that compliance

is required only in the limit h - 0.

There is no clear distinction between the finite element method and
the finite difference energy method. It seems reascnahle to define as a fin-
ite element method a discretization scheme in which the displacement pattern
inside the element is determined without the use of nodal freedoms outside

the closed domain of the element. With this requirement, each basis function
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is nonzero at one node only. This simplicity allows a certain formalism in

the derivation of stiffness matrices and the development of comptuer programs.

The lucidity of the method .and its well established formulation are probably
the major reasons for its great popularity. The finite difference energy
method is somewhat less restrictive. The finite element method could have
been arrived at by specialization of the finite difference energy method. We
may notice that in the finite difference energy method we allow incompatible
trial functions in the one~dimensional as well as in more general cases. The
use of different polynomials fer different derivatives of the same function
in the finite difference discretization obviates a convergence proof based
on equivalence with the Ritz procedure. However, it can be shown that the
difference between equations based on this approach and one that is consis-

tent with a Rayleigh-Ritz approach vanishes with decreasing grid size.

6.5 Some Special Problems

In this section some special problems connected with the use of

discretized numerical analysis are discussed.

...........

° First, the choice of Gaussian points for the numerical integration
is considered. The strain energy is expressed as a polynomial in the spa-
ti«l coordinates. It is possible to choose sufficiently many integration
points tomake integration of a given order polynomial exact. If fewer
points are selected, the computer run time for formulation of a stiffness
matrix is reduced, but at the same time an error is introduced through in-
accuracy in the integration. This error usually results in an underestimate
of the strain energy in the element for a given displacement configuration.
As was pointed out above, this underestimation may in some cases be benefi-~
cial. On thc other hand, it may lead to spurious results. In particular,
some displacement pattern that produces no strain energy at all may be per-
mitted. In the literature (Ref. 6.4) such a displacement pattern is some-
times referred to as a spurious mechanism. In a rectangular constant strain
element (Figure 6.12), for example, one Gaussian point may be used (analo-

gous to the rectangle rule in one-dimensional discretization) - see Figure
6.5(a).
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For a flat element and with u denoting the displacement in the

x—direction, € = Uy o The stress window for ex is located at P with

e = + (6.37)

This expression is of second order accuracy, but a displacement pattern in
which

(6.38)
produces no strain energy at the integration point.

The ontion of using four integration points increases the foymula—
tion time considerably and at the same time it lowers the order of the error
bound. Therefore, it appears to be preferable to use only one integration
point and to use other means for suppression of the spurious deformation
modes. It is probably sufficient to include four {or possibly two) inte-
gration pcints only in elements along shell edges on which inplane dizplace-

ment components are not constrained.

. Special problems may be introduced if the scrain energy in the ele-
ment due to a rigid body displacement is net exactly zero, but rather approaches
zero with the node point spacing. For illustration of this problem, an element
of a circular arc is shown in Figure 6.13.

The case is considered in whicli the civcular arch is rigidly dis-
placed a distance § in the x~direction. The displacement comporants are

then defined by

§ sin (6 + @)

6§ cos (8 + @) (6.40)

o
i
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It is nct possible with a truncated power series in § to represent
this displacement pattern exactly. The strain energy in the arc due to this
rigid body displacement will approach zero only with vanishing grid size.
This problem will recur whenever the geometry of the element is defined by
use of polynomials that are of higher order than those that represent the
displacement components (super parametric mapping). There are cases in
which the rigid body displacement of an element is very large in compari-
son to the displacements corresponding to elément distortion. 1In such
cases convergence may be very slow for elements in which the rigid body
energy is not exactly zero but rather proportional to some power of the

nodal point spacing.

o In nonlinear analysis or in stability analysis, the direction
of convergence may present a special problem. It is often undesirable to
use elements resulting in convergence from below for the critical load.
Whenever the buckling pattern is local, a rather fine grid must be used in
the area where buckling occurs. If the convergence is from above, a coarser
grid can be used in the remaining part of the structure. With convergence
from below, a relatively fine spacing must be maintained over a larger part
of the structure, since otherwise the znalysis may indicate spurious buck-

ling in an area with lower stresses but coarser spacing.
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6.6 Some Opticns for Discretization

For plate or shell bending analysis, a fully satisfactory dis-
cretization procedure has still to be developed. Finite difference methods
generally fail to satisfy the requirement of zero strain energy under rigid
body displiacements. Further, the direction of convergence with the grid
size is unpredictable. Most conforming finite elements have a large number
of degrees of freedom and require many integration points. The computer
time for formulation of the first and second variations is large. Conform—
ing elements of lower order are very stiff and convergence with grid size
is slow. The tonforming plate or shell elements may have a place when a
very accurate solution is required or if for some reason convergence from

above must be assured.

A number of discretization options for STAGS are discussed in
this subsection. The shortcomings and possible advantages are briefly
discussed here. A more extensive analysis of the merits of the different

formulations is given in Appendix D. The results of a few convergence

"""" studies are also included in this Appendix.

STAGS H2lf-Station Scheme

The first version of STAGS (STAGS A) was based on the finite
difference discretization referred to in Section 6.4 as the STAGS half-
station scheme, Figure 6.7a. The primary weakness of this scheme is its
inefficiency in nonlinear and stability analyses. It is sufficient for
illustration of the problem to consider a beam element. The strain at the

neutral axis of the beam is

/
/

, 2 2 R
€, = U, +1/2 (u, + w,x) (6.41)
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For definition of thz strain € the spatial derivatives u, and O nust
be determined at the same integration points. If w is defined at the node
points and u at half stations, it is not possible to use the most favorable
expression (the stress window) for u, as well as for LAWE p

In addition to inefficiency for geometrically nonlinear problems,
the half-station scheme has the disadvantage that it requires the definition
of inplane displacements at fictitious points outside the shell boundaries.
Finally, the strain energy due to a rigid body displacement of a shell element
of general shape is not exactly zero but it vanishes with the fourth power

of the mesh size.

STAGS Whole-Station Scheme

The STAGS whole-station scheme is illustrated in Figure 6.7b.
With the membrane and bending energies integrated over different sets of
integration points, it is possible to make use of the stress windows for
u, as well as for LENE This results in much better convergence for the

buckling or collapse loads.

However, the whole station scheme suffers from difficulties con-
nected with too few integration points. The strain free displacement pattern
discussed in Section 6.5 occurs for certain boundary conditions. Furthermore,
the stress windows for membrane strains do not coincide with those for the
changes of curvature. Therefore, the accuracy for a given grid size deter-
iorates when coupling between membrane and bending stresses is included
(shells with eccentric stiffening). .Again, the strain energv under a rigid

body motion is unot cxactly zero.

Modified Whole-Station Scheme

In an effort to remove the major shortcomings of the schemes shown
in Figure 6.7, a third finite difference scheme was developed. The integra-

tion area (the element) was divided into. four different subareas, 1 through 4
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as shown in Figure 6.14, and the different quantities in the expressions

for strain and change of curvature were determined at the locations indi-

cated.
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Figure 6.14. Finite Difference Scheme for STAGSC

This formulation was introduced in a later STAGS version (STAGSC).
In many applications it proved to be more efficient than any of the schemes
shown in Figures 6.7a and b. However, it requires somewhat longer time for
formulation of the first and second variations and the rigid body displace-
ment problem is more acute because the strain energy due to rigid body dis-

placement is proportional to the square of the mesh size.

Curved Element: STAGC

In all the three finite difference schemes discussed above only

the three displacement components are usaed as nodal freedoms (with the
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. exception of nodes on branch boundaries in STAGSC). Advantage is taken of

stress windows so a second order accuracy 1s obtained with a minimum number

of node point values involved in each expression. Therefore, analysis with
these STAGS versions has been quite efficient despitc the shortcomings dis-

cussed above.

The exclusion of rotations as freedoms makes programming quite
involved if beams and rotational springs are included in the model or if
branch connections along internal gridlines are allowed. Therefore, a
scheme was derived for STAGS in which the two inplane rotation components
were included as additional degrees of freedom at each node. In that case,
the lateral displacement and two rotations at each corner of the element
provide twelve nodal freedoms for determination of the lateral displacement
field within the element. Since a complete cubic contains no more than
ten terms, two fourth order terms were added to the displacement function
(compare Eq. 6.3). Twelve corner displacements and rotations are determ-

ined from

2 2
wo= a + a; x + a, ¥y + b11 x" + bl2 x, + b22 y
+ c x3 + c xz +c X ? + (6 ;2)
111 112 ¥ Y T €100 %Y T €y ¥ .
3 3
g9 XY Hdygy, XY

The expressions for thc second order derivatives of the lateral displace-
ments so obtained are of third order accuracy at the four integration points.
With the displacement field depending on degrees of freedom on the element
boundéry only, this ccnfiguration can be classified as a finite element.

The shell wall rotation around a boundary between two elements can only be
determined as a first order function from freedoms that are common to two
adjacent elements (corner rotations). The displacement field allows cubic
variation of this rotation and consequently the element iz nonconforming.
This reduces the method to one with a first order accuracy. It may be hoped,

however, tnat for grid sizes in the practical range the error due to noncon-
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formity is still of approximately the same size as the truncation error in
the local expressions for the changes of curvature. If that is the case,
it seems reasonable to determine the membrane strain energy to the same
order of accuracy as the bending strain energy. This is achieved if the
inplane displacement fields are expressed by use of a complete quadratic.

The displacement in the x-~direction is defined by

u = ul + u2

where the coefficients in the polynomial

U = a + bl X + b2 y + Cig XV

are determined in terms of the displacement components at the element cor-
ners, The correction term u, representing the so-called bubble modes dis-

2
cussed in Reference 6.4, page 176, completes the quadratic

B 2 2
u, = ¢y C-z7) + Cy1 (n~-n1n")

where f and n are dimensionless space coordinates chosen so that they are

zero or one on element boundaries (iscpaiametric mapping).

The two terms of u2 vanish at corner nodes, The coefficients Cqq

and ¢,y are included as degrees of freedom of the system. The displacement

v in the y-direction is treated in the same way.

Use of the bubble modes results in nouconforming inplane displace-
ments. However, it is shown in Ref. 6.4 that a rectangular element with

bubble modes will pass the patch test.

Due to the higher order accuracy in the local power series, this
element appears in many applicaticns to be more efficient than any of the
finite difference formulations discussed above. However, due to the lack of

conformity, questions can be raised regarding its reliability, particularly



for elements with nonrectangular plan form. Also, the strain energy due to

a rigid body displacement is not exactly zero.

Flat Element: STAGF

A flat element was developed for use in STAGS so that one formula-
tion would be available in which the strain energy due to rigid body displace-
ments is exactly zero. The resulting formulation has much in common with the
elements discussed by Kaspar William in Reference 6.10. Some of the equations
presented in Ref. 6.10 have been used directly in the derivation of the stiff-

ness matrix.

As a background to this discussion, a node point on a curved shell
surface is considered as shown in Figure 6.15. At the node the three dis-
placement components, u,v,w, are obvious degrees of freedom of the system.

The two rotation components, Bl and BZ’ along the tangent to the gridlines
must also be included as freedoms in a bending element. The practice with
respect to the third rotation component varies. This compcnent is not unique-
ly defined, as in the presence of a shear strain, differently oriented line
segments through the node will rotate through different angles. Clearly, the
rotation of the Loundary line between elements 1 and 2 (see figure) have no-
thing to do with the rotational compatibility between elements 2 and 3. Hence,
there is more than one degree of freedom corresponding to the rotation compon-
ent 83. If the shear strain at the node is the same in each of the four ele-
ments, there are two freedoms corresponding to normal rotation, each repre-
senting the rotation of one of the two gridlines intersecting at the node.
Equivalentlv, an average rotation and a shear strain can be defined as deg-

rees of freedom.

When a curved shell surface is approximated by flat elements, the
geometric model has slope discontinuities between adjacent elements. The
conditions for displacement compatibility between the elements become quite
complicated in this case. For simplicity a cvlindrical surface is used here

for demonstration of the consequences of clope discontinuities. Two adjacent
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Figure 6.15. Flat Element on Curved Surface

Figure 6.16. Flat Elements on Ciccular Cylinder
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flat elements in a representation of a circular cylindrical surface are

shown in Figure 6.16. The superscripts refer to the element number.

The rotation components in the direction of the common boundary
W) _, @

must be the same for both elements, i.e., Bl 1 .

However, the

other two rotation components are coupled.

(Bz(l) _ B?fz)) cos of2 + (Bgfl) + 83(2)) sin«/2 = 0

and (6.45)
(53(1) - B:,SZ)) cos of2 - (Bz('l) + Béz)) sinaf2 = 0

Therefore, whenever o # 0, the normal rotation component must be
included as a freedom in the system in order to make possible the enforce-
ment of rotational compatibility. Usually the compohent 83 is not allowed
to affect the inplane displacement fields. [Then if the elements are in the
same plane (o = 9) the normal rotation component does not contribute to the
strain energyand the equation system becomes singular. If the angle between
the elements is small, the system becomes ill conditioned. Generally for
flat elements used in shell analysis the normal rotation ccmponent is dis-
carded as a freedom if the angle between the element is less than some pre-

determined value.

The inplane displacement components (u,v) occur at most in first
order derivatives while the changes of curvature are functions of the sec-
ond order derivatives of the transverse displacement component w. There-
fore, w is usuzlly represented by higher order polynomials than those repre-
senting u and v. Typically w is represented by bicubic and u and v by bi-

quadratic polynomials.
For two flat elements at an angle with one another complete dis-

placement compatibility (all trial functions in CO) requires that along the

entire boundary
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(V(H -V(Z)) cos af2 + (w(l) +w(2)) sinaf2 = 0

and (6.46)

(W(I) - w(z)) cos af/2 - (v(l) +w(2)) sinaof2 = 0

Clearly, these conditions cannot be satisfied if w along the bound-
ary is represented by a third order and v by a second order polynomial. The
result is that in the traditional form the flat element is too flexible. The

buckling load converges rather slowly from below.

The flat element can be considerably improved if displacement com-
patibility is enforced. This requires that v be determined from a set of
freedoms similar to the set from which w is determined along an element bound-
ary in the axial direction. As w along the boundary is determined from the
discrete values of w and Vs at the end points, it is necessary to determine
v from end point values of v and Vs Thus, v must be cubic in the x-direc-

""" tion,

Similarly for completz compatibility the displacement component u
must be determined from the end point values of u and u,y. Discrete values
of Vg and u,y can be obtained from the average rotation and the shear strain
at the node. Consequently, il ihese quantities are introduced as degrees of
freedom, a third order polynomial can be used for v in the x-direction and
for u in the'y—direction. An element of this iype was developed for use in
STAGS. In order to make the inplane dispiacement at least quadratic, midside
nodes were introduced. At these nodes the displacement tangential to the
element boundary is used as a degree of freedom. With 7 degrees of freedom
at corner nodes and 4 at midside nodes; there are a total of 32 degrees of
freedom per element. The details of the derivation of a stiffness mairix

for this element are given in Appendix C.
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AHNMAD~-Type Elements

It is not necessary to use a flat element in order to permit rigid
body displacements without strain energy. Any shell element geometry can be
made free from rigid body strain energy if its reference surface is defined by
polynomials that are at most of the same order as those representing the dis-
placements. This so-called isoparametric property is taken advantage of in
the Ahmad elements (Figure 6.2e). Such elements are obtained by adaptation
of a three-dimensional element for shell analysis and were first introduced
by Ahmad (Ref. 6.11) and further developed by Pawsey (Ref. 6.13). Ahmad-
type elements can be used for moderately thick shells since transverse shear

deformations are included.

A three-dimensional element is shown in Figure 6.17. The degrees
of freedom of this element are the three disnlacement components at each of
the 24 node points. However, the number of freedoms may be reduced if the
approximations usually made in thin shell theory are introduced, i.e., it
is assumed that the stress in the direction of the normal to the middle sur-
face can be neglected and that the normals remain straight during deforma-

tion. The assumption of a first order shell theory that the normals remain
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Figure 6.17. Three-Dimensional Element



normal to the middle surface is not made, and therefore the transverse shear
deformation is approximately accounted for. With the displacements varying
linearly through the thickness, a second order shell theory is obtained. It
still overestimates the shear stiffness because it corresponds to congtant
shear stress through the thickness rather than to a parabolic distrihution.
This may be compensated for if the modulus for transverse shear is reduced

by a factor of 1.2.

The degeneration into a shell element is achieved by introduction
of rotations as freedoms at each of the nodes on the middle surface. The
displacements at the inner and outer surface are expressed in terms of these
freedoms by use of the assumptions of &hell theory. There are five degrees
of freedom at each of the midsurface nodes. Two Ahmad elements are illus-
trated in Figure 6.18. There are five degrees of freedom at each of the
midsurface nodes, two rotation and three displacement components. Thus, the
element AHMAD]1 has 40 degrees of freedom and AHMAD2 has 60. In both cases,
there is only one midside node on each normal to the shell surface, so this
normal must be assumed to remain straight during deformation. The stiffness
matrices for the two elements were programmed for nonlinear analysis by Bob

Clark in Department 81-12, Lockheed Missiles and Space Company.

The strain energy is computed from the displacements in the equiva-
lent tbhree dimensional element. Bending and membrane actions are not separated.
Therefore, it is necessary to use at least two layers of integration points
through the shell thickness. TFor the element AHMAD], Gaussian integration
is used in the three directions with a 2 x 2 x 2 set of integration pointe.

Use of more points results in a system that is too stiff. Pawsey (Ref. 6.12)
shows that with a linearly varying bending moment, the transverse shear strain
is accurately determined only at the pesitions [ = % 1/1@, that is at the loca-
tion of the Gaussian points in a two-point scheme. With the element AHMAD2 a

3 x 3 x 2 set of integration points must be used in order that strain-free

displacement mcdes be prevented.

The AHMAD-type elements have been used extensively in linear stress

analysis. They are curved shell elements with zero strain energy under rigid
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Figure 6.18. Two AHMAD Type Elements
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body displacements. The parabolic representation of the curved surface essen-
tially eliminates slope discontinuities at element boundaries (in the unloaded
state). Unless the element is used in combination with other types of elements,
}t will pass the patch test even if nonrectangular. However, the formulation
time is relatively long and questions have been raised about their usefulness
for very thin shells (Ref. 6.13). A discussion of the implementation of the

AHMAD-type elements iu STAGS is included in Appendix D.

The Clough-Felippa Elements: CFT, CFQ

A quadrilateral element was constructed by Clough and Felippa (Ref.
6.14) through decomposition cf the element into four triangular subelements.
The four triangles in one element need not be in the same plane. The element

is conforming for flat plate analysis.

The original triangular bending element LCCT-12 includes 12 degrees
of freedom to allow a piecewice cubic variation of the lateral displacement,
w. It is conformingin plate analysis and yields exact solutiomns for rigid
body displacement and cases with constant strain. The basic triangular ele-
""" ment is divided into three triangular sybelements. Each of the three sub~
elements are triangles with two of iis corner points common with those of the
basic triangle. The third .orner, common for the three subclements, is an in-
terior point in the basic triangular element. The subdivision is shown in

Figure 6.19,

For each of the subclements, the freedoms are w, Bx, By at each
corner, where BX and By are rotatjion componenis in an element-bound Cartesian
system. A tenth freedom is provided by the rotation component in the direc-
tion of the element boundary at the midpoint of the only boundary line that
is external to the basic triangle (see figure). With 10 degrees of freedom,
then the 10 coefficients in a complete cubic for the lateral displacement w

can be uniquely determined.

The number of degrcec of freedom of the system can be reduced on

the element level in two different ways. Freedoms at internal nodes do not
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Figure 6.19. Triangular Subelement

couple with those in adjacent elements. Therefore, it is possible through
minimization of the strain energy to express these freedoms in terms of the
freedoms on the shell boundaries. This procedure is usually refcrred to as
static condensation and does not introduce additional approximation. Free-
doms can alzo be eliminated by the introduction of constraints. For example,
the displacement at a midpoint node on an element boundary can be expressed
as the average of the values of this displacement component at the end points
of the boundary. This introduces constraints on the deformation and conse-

quently makes the element less flexible.

In the basic iriangular element, w, Bx, By are freedoms at four
nodes and in addition there are three rotation comopouents at midiength for
-~ total of 15 degrees of freedom. In the linear analvysis the internal free-
doms can be eliminated by use of static condensation which means tnat the
basic triangle has 12 degrees of freedom. In nonlinear analysis the useful-
ness of coandensation is doubtful. It is possible in addition tc eliminate

the rotations 84, BS’ and 66 by use of the restriction that the rotation
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component in the direction of the element boundary varies linearly from one
corner to another. This would result in a triangular element with nine deg-

rees of freedom.

The Clough~Felippa quadrilateral element is composed of two or four
basic triangular elements as shown in Figure 6.20. Unless static condens-
ation is used, there are a total of nine corner nodes with three degrees of
freedom at each and eight midside nodes with one degree of freedom at each
for a total of 35 degrees of freedom in the bending element. By use of static
condensation, all the unknowns at internal nodes can be eliminated on the ele-
ment level and thus only sixteen degrees of fireedom would be left, If in addi-
tion the midpeint rotation is eliminated by use of the constraint that the
rotation, varies linearly along the element boundary, a conforming quadrilateral

element is obtained with 12 degrees of freedom.

The inplane displacement field for a triangular element can be repre-~
sented by a full quadratic for each of the two components u and v (each of
these containing six terms). The twelvc coefficients inthe two second order
polynomials for u and v are expressed in terms of twelve nodal degrees of free-
dom. These are u and v at each of the corners of the triangle and the dis-
placements parallel and normal to the element boundary at midside nodes (see
Figure 6.21). In the quadrilateral element, there are 26 external and 10 in-
ternal degrees of freedom. If internal freedoms gre eliminated through static
condensation and freedems at midside nodes by artificial comstraints, the mem-
brane element would have only eight degrees of freedom. For a complete quad-
rilateral, accounting for membrane as well as bending action, there are 61 deg-
rees of freedom (35 + 26). By use of condengation the number of unknowns can
be reduced to 32 (16 + 16). By constrzining the element so that midside nodal
values are eliminaied as unknowns, a quadrilateral membrane bending element can

be derived with as few as 20 degrees of freedom (12 + 8).
The triangular nand quadrilateral versions of the Clough-Felippa ele-

ments are referred to here as CFT and CFQ, respectively. The availability of

a triangular element in a shell program is important for the case of modeling.
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Figure 6.20. Decomposition of Quadrilateral Element

Figure 6.21. Freedoms in Membrane Element
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In STAGS triangular elements are used automatically at the apex of closed
shells of revolution and at the end points of "discontinued gridlines."
The CFQ element is conforming in plate analysis. However, if adjacent
triangles are not in the same plane, displacement incompatibility will
occur (compare discussion of the STAGF element above) unless the element
is constrained. The triangular element is expected to have only limited
use in STAGS. Consequently, the efficiency is less important and no other

formulation for triangular element is presently contemplated.

The quadrilateral element CFQ may be useful primarily for linear
analysis in which case full advantage can be taken of static condensation.
The unconstrained element requires considerable computer time and becomes
nonconforming for curved shell analysis. If constraints are introducead,

the convergence with gridsize may be too slow for efficient operaticn.

6.7 Discretization in STAGS

An early version of the program, STAGSA, is still being used
although it is restricted in scope. This version is based on the half-
station scheme discussed in Section 6.6. Other finite difference schemes

have been used in intermediate "unoffirial" versions of the program.

The STAGC version will initially include the follewing elements

discussed above:

The flat quadrilateral STAGF element
The AHMAD1 and AHMAD2 elements

The Clough~Felippa triangle (CFT)

The Clough-Felippa quadrilateral (CFQ)

The Clough-Felippa elements are used without condensation. A con-
tract with AFFDL, Wright-Patterson, provides funding for evaluation cf the
relative efficiency of the different formulations. After conclusion of this
task, it should be possible to provide the STAGS user with advice regarding
the choice between the different formulaiions. One or more of the formula~

tions may be eliminated as less efficient.



-

If it is required that rotations be included as nodal freedoms,
the bending energy can be expressed with a third order accuracy without
use of nodal displacements outside of the closed domain of the element. A
lower order accuracy with very rapid formulation is excluded in that case.
Consequently, an element formulation is chosen rather than one based on

finite differences.

The computer time for formulation of the stiffness matrix with
any of the elements discussed abcve is several times in excess of the form-—
ulation time with STAGSA. This may be compensated by the possibility to
use a coarser grid with the higher order elements. However, with the
simplest finite difference formulation, a second order accuracy can still
be maintained in many cases. In particular, this formulation may be useful
whenever a relatively fine grid already is required for adequate description
of the structure. Therefore, a finite difference formulation is also in-
cluded in the evaluation under the AFFDL contract. Some form of the finite
difference scheme will be reintroduced if the work under the contract indi-

cates that such action would be appropriate.
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Section 7
SOLUTION PROCEDURES

7.1 Introduction

In this section capital Latin letters ars ccnsistently used to
denote a matrix. A general operator is denoted by 2 capital letter followed
by a parenthesis. Vectors are referred to by lower case Latin letters and

scalars (with a few obvious exceptions) by Greek letters.

Depending on the chosen ‘mode of analysis, the discretization of the
physical model leads to a linear equation system, an eigenvalue problem, a
nonlinear algebraic equation system, or in the case of transient analysis,
an initial value problem. For any of these problems, a number of different
procedures are available and the ideal choice between those is often case de-~
pendent. Some control parameters set by the program may have profound effect
on the computer time required for solution. Therefore, it is important that
the user has some understanding of solution procedures involved.

After the displacement functions and their derivatives in the gov-
erning cguations have been replaced by finite difference or finite element
approximations (see Section 6), the strain energy density at integration point

i can be written in the form

pat = %(zi)T ptzt (7.1)

where D1 is u 6 x 6 positive definite matrix and z" is a cclimn vector of
strains and curvature changes at station i. The matrix D" is dependent on the
material properties and the geometiic parameters of the shell. The vector z"
is a quadratic function of the displacement unknowns and thus v’ is a fourth-
order polyncmial. The vector of stress resultants s at station i is given

by

s = D 2 (7.2)
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The total strain emnergy I' is obtained by integration of the strain

energy density over the structure. The procedures of integrating by a Gaus-

sian scheme (including the rectangular integration) over each element and

adding over all elements can be written in terins of one scalar product
' = Au-a (7.3)

where a is a vector representing the weighting factors for all integration
points and Au is a vector whose elements represent the strain energy density
at these points. In shell analysis the sum of all the components of the vec-

tor a equals the total area of the shell reference surface.

The total potential energy Il is obtained after the work @ done by

the external forces is subtracted from the strain energy
I = T'-2Q (7.4)

The work done by uniformly distributed 1oads can be integrated in
the same way as the strain energy. Let v:.L be a vector whose elements are
the three displacement components in a Cartesian system at integration point
i and let the vector gi represent the values of the tractions (load per unit
area) in these directions. If the vector Aw represents the density of the
work done by the external forces at integration point i, its ith component

is given by
Awi = vo g (7.5)
it follows that
I = {Au- Aw) * a . (7.6)
The components of Au are at least second crder in the displacement freedoms

X and the components of w are of first order. Consequently, the first varia-

tion of the work done by the external forces is a vector of constants, that
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is, it yields the load vector or the right-hand side in the equation system.

Derived in this way the load vector is sometimes referred to as a consistent

load vector. In a nonconservative system the tractions g may be displacement
dependent. In that case the work done by the external forces will contribute

also to the second variation of the total potential energy.

Frequently a distributed load or a line load is represented by
point forces (or moments) at the nodes. In that case the work done by the

external forces is instead obtained as the scalar product
2 = x - f (7.7)

where the vector x reprecents the freedoms of the system (displacements and

rotations) and the vector f represents corresponding nodal forces and moments.

The equations of motion also include inertial forces and possibly
damping. In the discretized system the contributions of the inertia forces
are represented by a mass-matrix times the displacement unknowns. The ele-

ments of the mass matrix can be determined so that the kinetic energy A ob-

------ tained from the mass matrix equals the integral over the structure of the kin-
etic cnergy density. In this integration, displacement velocities are obtained
from the rate of change of the degrees of freedom of the system and the func-
tions used for approximation of local displacements (inside the element). Con-

sequently. the elements of the mass matrix M can be obtained from

A=%—(>’<)TM§<=%q-m (7.8)
where m is a vector with one component for each integration point represent-
ing the product of the mass density and the weighting factor in the Gaussian
integration. The components of the vector q are obtained as the sum of the
squares of the displacement velocities at each of the Gaussian points. Since
each of thesa velocities generally depend on a number of the freedoms the mass
matrix will have off diagonal entries. Derived in this way it is referred to

as a consistent mass matrix.




Frequently, a so-called lumped or diagonal mass matrix is used.

The simplest way to derive such a matrix is to concentrate the mass at the

node points. In that case the entries in the mass matrix corresponding to

the three displacements at each node are readily computed. All off diagonal
elements and sometimes those that correspond to rotational freedoms are set
equal to zero. For certain operations to be discussed below it is necessary

to attach some mass to the rotational freedoms. One possibility is to include
the "rotary inertia", that is, the contribution to the rotational inertia that
is due to the shell thickness. The rotary inertia is an extremely small con-
tribution and therefore other ways to lump the matrix have been proposed (see
Ref, 7.1) For any fixed deformation mode an equivalent diagonal matrix can
be defined. However, this matrix will not give accurate results for other
deformation modes. One possibility is to use the values of the consistent mass
matrix on the diagonal for elements corresponding to the rotational freedoms.
Consequently, the diagonalization of the mass matrix introduces an additional
approximation. The ideal choice of a mass matrix depends on the basic type of

analysis and on the solution procedures invclved,
The following discussion will first be concerned with the case of
static structural behavior. A necessary condition for static equilibrium is

that the total potential energy be stationary. This condition requires the

vanishing of the first variation of Il and leads to the equation
L = f (7.9)
where the operator L( ) is defined by
L (x) =Grad I (7.10)

Consequently, L( ) is a "stiffness" operator which relates displacement com-

ponents and external forces and is nonlinear in the geuneral case.
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7.2 Linear Equation Systems

When only linear terms are included in the definition of the strains
and changes in curvature, L( ) is a linear operator which may be readily rep-
resented in matrix form. The elements of this matrix, A, are derived from
the quadratic terms in the strain energy, while the work done by the external
forces (and thermal effects) contribute a right-hand side toc the equation sys-
tem. The matrix is positive definite and Eq. (7.9) may be solved by one of

many direct or iterative methods.

In one-dimensional cases, beams and shells of revolution, the coef-
ficient matrix is narrowly banded, and the computer time involved in solution
of a linear system is aimost negligible. For two- or three-dimensional cases
the maximum bandwidth is much larger, but the matrix is sparse, i.e., most of
the elements inside the band are zero. The efficiency of the solution proced-
ure depends largely on effective utilization of the knowledge of the location

of zero elements in the matrix.

The skyline method is based on the decomposition of the matrix in

two factors, one of which, the upper triangular matrix U has all its nonzero
entries above the diagonal znd ihe other, the lower triangular matrix L has

all its nonzero entries below the diagonal. Civen the linear equation system
Ax = vy (7.11)
the triangular matricegs U and L are determined so that
A = LU . (7.12)

Then the original system (Eq. 7.11) can be decomposed in twc equation systems

to be solved sequentially

Lb = vy
‘Ux = b (7.13)
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If the original matrix X is symmetric and positive definite, then there exists

a unlque decomposition in triangular matrices with only positive real numbers

on the diagonal such that (see Ref. 7.2)
v = L (7.14)
The matrix decomposition is referred to as factoring of the matrix.

The determinant of the matrix A is equal to the product of all the elements

on the diagonal of the factored matrix U.

Equation systems with a relatively small bandwidth are particularly
well suited for solution through decomposition or factoring. The reason for
this is that the triangular matrices have the same ‘''skyline'" as the original
matrix A, that is, in each row the upper matrix U will have no nonzero entries
beyond the last nonzero entry in A. Consequently, no computer storage space
is required for the "tail" of each row and no operations need to be carried out

for corresponding matrix elements during factoring and forward and backward

‘sweep (solution of Eqs. 7.13) Procedures are available fer automatic re-

numbering of the unknowns so that the skyline may be kept as low as possible.

The strain energy in the linear case can be written as a quadratic

form

Cij X, xj (7.15)

=
]
w D133

I} ~-10

ft

The appearance of negative values on the diagonal in the factored matrix
would indicate that the quadratic form is not positive definite. Since the

strain energy must be positive definite the occurrence of such negative roots

in the linear analysis can oniy be due to an error in the model or to some
numerical problem. Lii:e2r dependence among the equatiors would result in
zeru values of diagonal elements in U. Due to round-off errors, however,
these values will noc be exactly zero and they may come out as small negative
nunbers. Therefore, if an element on ihe diagonal, pousitive or negative is

of the same order of size as normal round-off errors; it may be assumed that
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the system is singular. This can occur, for example, if linearly dependent

boundary conditions have been specified or whenever boundary conditions and

other constraints allow rigid body displacements. When a zero (fcr all
practiral purposes) occurs on the diagonal during factoring with STAGS,
corresponding freedom is eliminated, and a message to that effect is in-

c¢luded in the output.

If relatively large negative numbers appear on the diagonal, it
is likely that the system is ill-conditioned (barring input errors). That
is, the roundoff errors are large enough to make the results meaningless.
In that case, computations with STAGS are discontinued, and an error message
is printed. Ill-conditioning does not necessarily lead to megative roots.
Consequently, it is possible that a conditioning problem remains uncovered
until "equilibrium forces" are printed. Lack of equilibrium in the final
solution probably indicates ill-conditioning. If the ill-conditioning is
severe, a change in modeling seems advisable. 1In less severe cases accept-

able solutions may be obtained by use of a linear refinement of the sclution.

The STAGS user can obtain such z refinement of the solution by requesting a
nonlinear solution with the nonlinear terms suppressed. If the first linear
solution is not too far off from the true solution, convergence will rapidly

be obtained and the final solution will be accurate.

If constraints are introduced by way of Lagrangian multipliers (see
Section 8) the positive definiteness of the quadratic form is lost. The
factored matrix will have one negative root for each of the constraints in
a linearly dependent set. If the number of negative roots is less than the
muiber of constraints imposed by use of Lagrangian multipliers, the set cf

constraints is probably not linezrly independent.

The alternatives to the skyline method are iterative methods and
other direct sparse matrix methods snch as matrix partitioning, wave front
type methods and the conjugate gradient method. If branches of the structure
are connected in an unfavorable way such methods may prove to be superior to
the skyline method. An efficient computer program for structural amalysis

probably should include optional solu.icon methods.



The present version of STAGS includes the skyline method only.

A study of other possibilities is presently underway.

7.3 Nonlinear Equation Systems

When geometric nonlinearities are included, L( ) becomes a poly-

nomial operator of third degree and iterative methods must be employed for

solution of the equations. Special problems with material nonlinearities

will be discussed separately. For a general collapse analysis, it is nec-
essary to solve the operator equations, Eq. (7,4) for a sequence of values
of the applied loads. 1In fact, the only practical method often is to solve
the equations at a number of load steps chosen so that the initial solution
is nearly linear and subsequent solutions change only moderately from one
step to the next. Such a procedure (sometimes referred to as the continua-
tion method) is mandatory for two reasons: first, the feasibility of the
iterative methods of solution depends on reasonably good initial approxima-
ations and second, a reliable detection of collapse requires such a stepwise
procedure because of possible non-uniqueness of solutions to nonlinear equa-
tion systems. For solution of the nonlinear algebraic equation systems that
are typical for structural analysis a large number of algorithms are avail-
able, ususally designed to determine a sequence of equilibiium configura-
tions under increasing load. It may be helpful t5 classify the methods zs

is done in Ref. 7,3 in the four groups:

Newton-1like methods
Method of Successive substitutions
Initial-value methods

Minimum search procedures

The regular Newton method is illustrated here in the case with only one un-

known x. The solution of the problem F(x) = 0 is defined by the recursion

formula

Lol
I

ol x - F (xn) / ¥ (xn) (7.16)
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A geometric interpretation of the regular Newton method is shown in Figure
7.1la. A variation of the regular Newton method, usually referred to as the

modified Newton method has been found useful in many cases. The method is

defined by the equation

X41 = %, °F (xn) / F° (xo) (7.17)

A geometric interpretation of the modified Newton is given in Figure 9.1b.
The basic difference between the twe methods is that in the regular Newton
method the derivative in the denominator is always based on the current
soclution while in the modified method the derivative at the initial estimate
is used in all iterations. With the modified method it is pcssible to update

the derivative after xo has been shifted to a later estimate (xo = xn).

Both the regular Newton and the modified Newton are readily gen-
eralized to n-dimensional space. In the n-dimensional case the computation
of 1/F”(x) corresponds to the factoring of a matrix of n-th order. For very
large systems the modified Newton method becomes more efficient since refact-
oring is expensive. In the modified Newton method the "obsolete’ factored
matrix is often maintained (unchanged) for a series of load steps. One prob-
lem with the modified Newton method ic illustrated for the case with one un-
known in Figure 7.2b. If the estimates at a new load step falls at points
where the curve has a lesser slope than it has at the true solution, the
iterates oscillate and a very close estimate (small load step) is required
for convergence. In such cases the regular Newton (Figure 7,2a3) may be pre-

ferable even for rather large systems.

In the method of successive substitutions the nonlinear terms are

considered as pseudo-loads added to the right-hand side of the equation sye-
ten. They are determined by use of the values of the unknowns in a previous
iteration. It may be noticed that mathematically this method is equivalent
to a modified Newton method in which updating and refactoring of the coerfi~

cient matrix are not permitted at any load step.
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.Fig. 7.2  Oscillating Convergence With the Newton Methods

7-10



The initial-value type methods include the incremental method

(sometimes referred to as the tangent stiffness method). In this method the

N.

=

tangential stiffness is computed at the beginning of each load step. Within ,
each load step the displacements grow linearly as dictated by this stiffness. s
The method allows drift from the correct solution. Consequently, the load
step must be very small and since refactoring is required on each step the

method is not economical.

In a "self-correcting" version of the incremental method, the un-

balance in the nonlinear equations is evaluated and added to the load vectior
corresponding to the following load step. The self-correcting version of the
incremental method is identical to a regular Newton method in which only one
iteration is made at each load step. Hence, if a relatively coarse converg-
ence criterion is used, the Newton method will work as a self-correcting in-
cremental method, except that an extra iteration may be inserted if the solu-~
tion tends to drift too much. Use of the self correction method instead of
the regulafﬂﬁgégogwééthod in a computer program for nonlinear analysis de-
prives the user of automatic corrective actinn when the solution is drifting
too far. A feasible variation is to compute the norm of the first variation
on each step and to insert a zero load step whenever this norm (unbalance)

ic too large. However, tiiis would essentially be identical to the use of the

regular Newron method.

Another initial-value type method is usually referred to as dynamic
relaxation. When this method is used, the equatiouns cof motion are solved
rather than the static equilibrium equations. Damping is introduced so that
the static equilivprium configuration is asymptotically approached. The method
is certainly not competitive with the modified Newton method for systems with
only moderate nonlinearity. For imperfection scnsitive structures the dynamic
relaxation method may be the mest practical way to find equilibrium configura-

tions in the postbuckling range.

Minimum search methods are applied directly to an energy expression

rather than to equations of equilibrium or motion. They have seen little use

in structural analysis and little can be said abcut their relative merits.
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It appears that based on the present state of the art, it is advis-
able to include in a computer program for nonlinear analysis the option of

using:

The regular Newton method, or

The modified Newton method.

Dynamic relaxation may at times be a competitive method. However,
it is not fully developed since good procedures for automatic determination
of suitable values for the elements of the fictitious mass and damping mat-

rices are not presently available.

The extension of the Newton methods to multiple degree of freedom
systems is facilitated by intvroduction of the concept of the derivative L°( )
of L() (Ref. 7.4). After substitution of the current solution vector

the derivative L°( ), sometimes called the Frechet derivative of L( )},

becomes an n by n matrix whose elements are

L . = = o (7.18)
i Z 7
Most of the elementary properties of ordinary derivatives also hold for the

rechet derivatives L°( ) of an operator L( ).

The elements of L” are functions of a particular displacement vector
x. The Frechet derivative will usually be denoted L; to indicate this depend-
ence. With the use of the derivative L°( ) of the operator L( ) Newton's meth-
od may be readily generalized to obtain a solution of Eq. (7.9). The iteratiom
is defingd by (compare Egqs. 7.4 and 7.11).

. . =1
X = (Lx ) f -1

(51 — %)
ktl Tk X Xy (7.19)

If the initial estimate x, is sufficiently close to a solution x and if L;

0
is not a singular matrix, the iteration converges to x. Under these z2ssump-
tions, it alsc can be shown that the converged solution is unique in some

neighborhood of x 7.4), .

7-12



Similarly, with the aid of the derivative L;, the modified Newton
method may be applied to the operator Equation (7.9). The general form of

the iteration then becomes

P — -, —1 -—
L, (xk+1 - xk) = (Lx Yy * f L, (7.20)
m k k

The modified Newton method provides accurate solutions whenever it converges
independently on the size of the load step (numerical errors do not accumu-
late) and at the same time avoids the necessity of frequent recomputation and
factorization of the derivative matrix L°. The effective use of the modified
Newton method requires imtelligent choices of the size of load steps and the
criterion that determines when the derivative L” should be recomputed and
factored. The STAGS program contains some built-in decison making capability
regarding these questions. However, it is still necessary for the user of
the program to consider the best overall "strategy' relating to these choices.
Methods for automatic choice of step size and strategy have been suggested in
the literature (Ref. 7.5, for example) but have yet to be evaluated in prac-

tical analysis with respect to their reliability.

The solution pfocedures commonly used for problems including mater-
ial nonlinearity are discussed in Section 5. The pseudo f£sice method corres-
ponds to the method of successive substitutions Jdiscussed above. In the pre-
sence of geometric nonlinearities use of this method may at some load level
lead to divergence independently of the size of the load sten. It appears
that if only material nonlinearities are included the method will not diverge
but convergence may be very slow. It is feasible when material as well as
geometric nonlinearities are present to treat the material nonliuecarities as
pseudo forcee and still use one of thé Newton methods to solve the nonlinear
algebraic equations. However, if the geometric nonlinearities make it nec-
essary to update and refactor the matrix, it seéms practical to include non-

linear material effects in the update.
The STAGS user is allowed to use either of the two Newton methods

for solution of the algebraic equations. The material nonlipe=rities can

either be treated «c nseudo-forces or, at the uscr's choice, the effects of
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plasticity can be included in any update of the tangential stiffness matrix

(L; j in Eq. 7.18). The reason for incilusion of the pseudo force method for
?

plasticity is that numerical problems may be encountered with simultaneous
iteration on geometric and materisl nonlinearities. It is recommended in
Ref. 7.5 that the geometric nonlinearities are treated in a separate inner
loop. However, for two—dimensional problems this does not appear practical

as it would result in a large number of refactorings at each load step.

A dynamic relaxation capability is within the scope of STAGS, but
methods for automatic determinatiocn of mass and damping matrices are not in-
cluded.- The method is probably unsuitable when material nonlinearities are
included because of the path-dependence of plastic strain. For certain cases

of post-buckling behavior it may be the only viable way to obtain a solution.

7.4 Eigenvalue Analysis

In bifurcation buckling and vibration anmalysis the assumption is
made that the incremental displacements, corresponding to the buckling or

vibration modes, are of infinitesimal amplitude. Thus, higher order terms

in the incremental displacements may be discarded and the equilibrium equations
or the equations of motion are homogeneous. That is all the terms in the equa-
tions are of the same order in the unknowns. Obviousliy, suvch a system has

the trivial solution
x, = 0; i = 1,n (7.21)

If the coefficient determinant equals zero the syctem also has nontrivial
soluiions. Whenever a vectoé x of unknowns sacisfies the equation system,
then clearly all vectors ax satisfy the system. The soiution of a homogen-
eous equation system determines the size of the unknowns relative to cne
ancther but not their absolute size. Consequently, a buckliing or wvibration

analysis yields a deformation mode only. Due to the original assumption the

analysis is valid only for small displacements.

The coefficients of the homogeneous system may be functions of

some parameter that can be chosen so that the determinant becomes zero. 1In
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a buckling analysis this eigenvalue parameter is represented by the value of

the applied load, a load factor, and in a free vibration analysis by a natural

frequency.

The mathematical characterization of bifurcation buckling is dis~
cussed in Section 5. The homogeneous equation system is obtained through
substitution of a displacement field x = X + x., where X, represents an equil-

1

ibrium configuration on the primary path and the infinitesimal x. the buckling

1
mode. The formulation is also provided by the generalized Newton method.
Let X be a solution of Eq. (7.9) under a given vector of external forces.
If a neighborhood, no matter how small, of X contains another vector y which

satisfies the eguation

L@y = £ (7.22)

then bifurcation is said to take place under the load f£f. It follows that a
necessary condition for bifurcation is that L; be a singular matrix, i.e.,

that °

det (L; ) = 0 (7.23)
o

Classical bifurcation buckling theory may be obtained easily from Eq. (7.23)

It is assumed that x  may be written
X = A X (7-24)

where X, is the linear solution corresponding to a load vector fL. Thus, Eq.

(7.23) becomes

det (LXXL) = 0 ] (7.25)
Equation (7.25) is an algebraic eigenvalue problem of the form

det (A-12B-22¢C) = 0 (7.26)
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In classical bifurcation buckling analysis, the C matrix, which arises from

the prebuckling rotations, is usually omitted and the eigenvalue problem

A = AB (7.27)

is obtained.

When bifurcation takes place on a nonlinear primary path the sub-
stitution X, = AxL is not valid. The most straightforward way to solve the
problem in that case would be to compute the determinant (Eq. 7.25) for
increasing values of the load factor until a zero crossing is found. It is
also possible to apply the eigenvalue approach at some point along the prim-
ary path. In that case the primary path is linearized so that it corresponds
to the tangential stiffness matrix evaluated at that puint. Since the tan-
gential stiffness varies with the applied load, a rigorous estimate
of the bifurcation load is only obtained if the eigenvalue is exactly zero.
Consequently, a procedure based on eignevalue extraction must include the
computation of a series of eigenvalues so arranged tiat the computed values
converge to zerd. The use of bifurcation buckling analysis with a nonlinear
stress state ig further discussed in Section 5. The formation of the A and

B matrices of Eq. (7,26) will be counsidered briefly. The elements of the

Ax_
mined according to Eq. (7.13).L The rules for computing derivatives of poly-

Frechet derivative matrix L (which define the matrices A and B) are deter-
nomials are easily programmed, and the formation of the A and B matrices
therefore is well suited to automatic treatment on the computer. Thus, for
example, if x, and xi are the ith and jth displacement components, the fol-
lowing is obtained:

m 2
v ak Al

I 3 -
2 7.28
ENE Wl o

The kth term of the sum is (compare Eys. (7.1) and (7.2))
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Zar® 26T ko aT ket 7 2
. % =, =, " °L = Py (7.29)
i 3 i I 3

In the first term on the right-hand side of Eq. (7.29), note that si is the
linear stress resultant vector at integration point k and that only the quad-
ratic terms in the strain vector need be considered in forming the partial

derivatives

BZ(Zk)T
X, =
i 3

Contributions from this term go into the B matrix. Assuming the prebuck-
ling rotations may be neglected for the classical theory, the last term of
Eq. (7.29) gencrates contributions to the A matrix only. The A matrix then

is identical to the linear stiffness matrix.

Analysis of natural or free vibrations of a structure is based
on the equations of motion. It is assumed that any damping can be omitted
and that the force vector is independent of time. A solution is obtained

through substitution of
x = x_ + §x, sin (wt) (7.30)
into the equation of motion
ME+ L (x) = £ (7.31)

where M is the mass matrix, f the force vectur and L( ) the generally non-
linear stiffness operator. The displacement field X, represents a static
equilibrium configuration and the vibraiicn amplitude § is assumed to be
infinitesimal. The vibration mode is represented by X, generally normal-

ized so that its largest components equal 1.0.

. After substitution of (7.31) in (7.30) the conditions for static

equilibrium are subtracted out (eliminatine the force vector), terms of
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higher than first order in § can be discarded. An eigenvalue problem is

then obtained in the form

we M+ Lix = 0 (7.32)

The frequency w is the eigenvalue parameter. The coefficients in L7 are
dependent on the vector X Therefore, the frequency depends on the load
applied to the structure. However, it makes no difference if the basic
stress state has been computed from a linear or a nonlinear analysis and
inclusion of the effects of prebuckling rotations does not lead to any
complications. Use of the consistent mass matrix gives a more accurate
representation. However, use of a lumped matrix results in a weaker sys-
tem and sometimes if the element stiffness converges from above with grid-
size it may be found that convergence to engineering accuracy is bet*er with
the lumped matrix. For any element configuration with convergence from be-

low (nonconforming) it is probably best to use the consistent mass matrix.

Bifurcation buckling as well as vibration analysis then leads to

a generalized eigenvalue problem of the form

Ax = A Bx (7.33)

where A represents a stiffness matrix, possibly a tangential stiffness matrix
containing nonlinear terms from the basic stress state. The A matrix is
symmetric and positive definite (or at least non-negative definite). The B
matrix is always symmetric and, in the case of vibration pretlems, also non-
negative definite. However, for bifurcation buckling the B-matrix, the

geometric stiffness matrix,may have negative eigenvalues. The properties of

A and B ensure that Eq. (7.33) has only real eigenvalues.

It may be noticed here that the substitution indicated by Ea. (7.30)

equivalentiy could have been written

wt

x = x_+ 8§ x, e (7.34)

1

Tn that case all the eigenvalues are purely imaginary.
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The eigenvalues of the system are the roots of a nonlinear alge-

braic equation in A. If A is an n x n matrix, this equation is of the nth

order and there are n eigenvalues (provided there is no linear dependence
among the equations). The matrix is then referred to as being of rank n.
To each eigenvalue Ai corresponds one eigenvector, X, (with undetermined

amplitude) satisfying the homogeneous equation system;

It is not necessary and generally not practical in analysis of
large systems to compute the eigenvalues directly. Whenever an eigenveactor

x; of the matrix A is known, the correspouding eigenvalue can be computed as

(x.)T A Xy
A, = ————k (7.35)
=)' x
i i
C
Whether X, is an eigenvector or not, the expression on the right-hand side

of Eq. (7.35) is referred to as the Rayleigh Quotient.

The Power method is a very simple, and, in case only a few eigen-

values are needed, very efficient method in which the eigenvectors are com-

puted first. Applying this method to the eigenvalue problem
A-21I)x = 0 (7.36)

where I is the identity matrix, a starting vecior X, is first selected.

Subsequently, a sequence of vectors Xj is obtained through solutiomr of the

equation system

Axi+1 = % i=0,1,2.... (7.37)
This procedure converges toward the eigenvector corresponding to the largest
eigenvalue of the system. It is shown in Ref. 7,2 (p. 210), for example,
that the error tends to zero at the same rate as (Azlkl)i where ll and AZ

are the two largest eigenvalues (Al > Az) and i the number of iterations.
Consequently, when the eigenvalues are well separated the convergence is

_______ rapid but when Al and Az are close, the convergence is slow.
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Convergence can be expedited by use of a spectral shift., That is,
in the original eigenvalue problem A + A - 0B is substituted. The problem
then is formulated so that the eigenvalue parameier becomes the excess in
the buckling load or the square of the vibration frequency a2bove a fixed

value o.

In both buckling and vibration analysis the main interest is in
the lower eigenvalues. These can be obtained by use of an inverse power
iteration. The inverse power iteraticn with a spectral shift is described

in the following.

After introduction of the shift the eigenvalue is of the form

(A-0B) x = Bx (7.38)

Substitution of
Q- a-om s (7.39)

yields .
X = Qx or (quivalently) (Q - I) x = 0 (7.40)

that is, a problem of the form discussed above (Eq. 7.36) is obtained.

The iteration converges to the eigenvectors corresponding to the
smallest eigenvalues, i.e., the bifurcation poinis or frequencies that are
closest to the spectral shift o. ‘The error in the smallest eigenvalue
approaches zero at the same rate as [()\l - c)/(kl-q)]“ where ll and A

2

are the two smallést eigenvalues of the original system and Al <'X2.

The iteration by itself has some drawbacks including

® Slow convergence when cseveral eigervalues are close to the

smallest eigenvalue.
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o Difficulty in controlling the iteration and shift points

in a systematic way so as to find a number of eigenvalues

and eigenvectors.

¢ Rather high computation cost when a number of shift points

are used.

e High charges for auxiliary storage; the factored stiffness

matrix must be read into core once for each iteration.

The convergence of the power methods can be accelerated to improve
the efficiency. Frequently used schemes are the Aitken 62 process and Chebyshev

polynomial acceleration.

The disadvantages with the need for many shift points for determina-
tion of a series cof eigenvalues can be overcome if the iteration process is
designed to yield a sct of vectors V1o Vo5 o+e Ty which span the subspace gen-
erated by the first k eigenvectors. Let y = (yl ces yk) be such a set of vec~—

tors. The eigenvectors of the original system of rank n can then be obtained

from the solution of a system of rank k. A number of power iteratiohs mav be

carried out between each tlie the reduced system is solved.

In STAGSC the simultaneous iteraticn with Chebyshev polynomials is
used to reduce the problem. The reduced problem is soived by Householder
transformations foliowed by application of the LR algorithm (Ref. 7.2). “The
details of the Chebychcv acceleration and the simultaneous iteration proced-

ure are given in Appendiv D,

7.5 Transient Analysis

Static structural aralysis leads to a pure boundary value problexn,
that is, boundary conditions specify local conctraints on the solution func-
tions and possibly on their spatial derivatives. Natural boundary condirions
(on forces and moments) supply constraints that are automaticzlly satisfied
if variational methods are used. Constraints cn displacements and rotations

must be enforced by use of side conditions in the wvariational prchlem
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VWith the addition of time as an independent parameter, initial
conditions must also be specified. The analysis of transient behavior of a

structure then leads toc a mixed initial wvalue and boundary value problem.

From a purely mathematical point of view time as an independent para-
meter is in no way different from the space variable. The special character
of the initial value problem is caused by the fact that only at time zero are
all the degrees of freedom (displacements and velocities) specified. In a
mixed problem a solution is sought to a set of differential equations that

satisfy:

o The boundary conditions, i.e., local constraints at all

values of time.

e The initial conditions, i.e., the values of all displace-
ments and their first order time derivatives (velocities)

at the initial time.

From a computational point of view an important difference between
boundary value and initial value (or mixed) problems, is that in the latter
it is not possihlz to avoid some propagation of error. In a quasistatic
analysis (a boundary value problem) the nonlinear static equations are de-
fined at each load step. By use of one of the Newton-type procedures, for
example, an accurate solution can be obtained at any loadstep independently
of the guality of the previous solutions. In the ingegration of the equa-
tions corresponding to the-initial wvalue problem, this is not the case, An
error early in the analycis resulis in inaccurate initial conditions for the
subsequent deformaiion history. The érreor cannot be recovered. As will be
seen in the sequel, the initial value prcblem is also encumbered with certain

difficulties related to numerical 'stability of the solution procedure.

A transient analysis of a deformable Liody entails the solution of

the equation

Mt + Dx + L(x) =f (7.41D)
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where x is the vector of discrete values of the displacement components, M
and D are mass and damping matrices and L( ), in the general case, is a non-
linear stiffness operator. If the system is linear, L( ) becomes the stiff-

ness matrix L.

If damping is neglectad the homogeneous part of the system of dif-

ferential equations
ME+Lx = O (7.42)

is linear with constant coefficients. The solution of these equations, as
discussed above is represented by the free vibration modes 9, with corres~
ponding frequencies mn. The solution of the equations of motion can be writ-

ten as a linear superposition of vibration modes

Xx = Qa (7.43)

where Q is a matrix in which each of the n columns consists of an eigenvector
of the system (vibration mode). Substitution of this solution into the equa-

tion of motion yields (without damping)
MQ4a+XQa = f (7.44)

or after premultiplication with the transpose of Q

o FMQi+q KQa = Q¢

Due to the orthogonality between the eigznvectors the matrices
QTMQ and QTKQ are diagonal. If they are normalized so that all elements in
QTKQ are equal to unity, the equation system is uncoupled and of the form
- 2 T

4 + wi a = @ £, i = 1, n (7.45)

where wy iz the vibration frequeuncy correcponding to the ith node. The

T .
diagonal elements of Q MQ are then referred to as the gencralized masses of

7-23



corresponding vibration modes and the elements of the vector QTf are the

generalized forces.

In the linear case then a solution can be obtained in terms of a
superposition of vibration modes. Frequently some of the vibration modes
have little influence on the deformation pattern. They are then removed
from the system and a becomes a vector with m components where m < n and
is a rectangular (m x n) matrix. STAGS does not include an option for modal
superposition. However, vibration modes and frequencies and corresponding
generalized masses can be computed and stored on file for use subsequently

in a modal superposition.

If nonlinear terms are included the medal approach as defined
above becomes impossible since the nonlinearities introduce couplings be-
tween the different modes. Also in many linear cases the method is imprac-
tical because too many modes are needed for an accurate description of the
deformation pattern. 1In such cases the discretized equations may be inte-
grated directly. The modal decomposition remains important in such cases as
a tool in the study of accuracy and stability of different integration pro-

cedures.

For the purpose of integration (in time) of the equations of motion
for the discrete system, a discretization in time is introduced. That is,
the components of the solntion vector x are represented by their values at
a number of discrete 'points in time". The displacement components are ex-—
pressed as functions of time by use of polynomials chosen so that they match
the seclution vecior at appropriate values of the time parameter. The basic
principles in the numerical solution procedure is demonstrated here by use

of an ordinary differential equation of the form

y = £ @G, t)
(7.46)
y (&) = vy,

It is assumed that the solution y(c) in some way has been obtained at a

sequence of timesteps, say up to and including the mth step. The known
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values of the function and its first order time derivatives are referred to

as the historical data. The solution at the (m + 1)th time step is obtained

by the passing of a polynomial through a number of the historical data. The

order of the method is given by the order of the truncation error (see Section
6). A higher order method requires a correspondingly higher number of histor-
ical data. For simplicity it is assumed that the equation is linear and that

the timestep At is constant. Substitution of a power series then leads to

the form

mrl mtl
) o yg = ot ) Bi y

i=1 i=1

(7.47)

i

If the term B is excluded, Yy €20 be solved directly from histori-

w1 Tkl
cal data. 1In that case the procedrre is referred to as an explicit integra-

tion method. If the term containing 3 is included in the series, then
—_— & Y+l

current relation between ¥ and y given by the differential equation (Eq. 7.46)
is included in the set of equations from which Yor1 (and §m+l) is computed.
Such methods are referred to as implicit integration procedures. There are
some very basic differences in the behavior between explicit and implicit
methods. Since the differential equation must be satisfieé for current solu-
tions in the implicit method a typical structural analysis requires the solu
tion cf a large algebraic equation system at each timestep. On the oiher

hand. the fact that the elastic force balance is not enforced at the current
step in the explicit method leads to special problems with numeric instability.

In view of these differences the methods are discussed separately.

Among the explicit schemes it appears that no other method in any
case would offer substantial advantages in comparison to the central differ-
ence scheme {(see Ref. 7.6). Therefore this is the only explicit method con-
sidered in the following. It can be shown (see Ref. 7.7, for example) that
if the timestep in integration of a one-degree-of-freedom system with the

central difference scheme is chosen to be more than Atcr where

Atcr = 2/w (7.48)
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and w is the frequency of the system (in cps), them any error introduced in
the system will grow exponentially. 1In practical analysis this mathematical
instability becomes quite evident, the solution vector grows very rapidly.
The solution is accurate if the timestep equals the critical. The solution

does not become more accurate if At is somewhat less than Atcr.

For a linear system with mnay degrees of I{reedom it is necessary

for stability that the timestep be chesen so that

At £ 2/w .
t < 2e " (7.49)
where Woox is the highest eigenfrequency of the system. Fecr nonlinear equa-
tions it has been suggested (Ref. 7,.8) that the same equation for the criti-
cal step can be used if ® oo represents the maximum eigenvalue of the system

under current stresses.

The equations of motion for a discretized structural system con-
sist of a set of coupled second order differential equations. Each of these
equations can be decomposed into two first order differential equations.

The decomposition is not unique. It was shown in Ref. 7.9 that a procedure
proposed by Jensen (Ref. 7.10) is favorable both with respect to tlie numeri-
cal work involved and the rate of error propagation. Acccrdingly,; the equa-

tions of motion are written

(7.50)

In implementation of this scheme it is favorable, for reducticn of propaga-
tion of roundoff errors to define the auxiliary parameter y at half stations
in time (see Ref. 7.11) The solution algorithr is given by the recurrence

formulas

1

= x + At M .1-D
x5 g TAEMT Oy g - Dy ) (7.51)
yi+% = yi—% + At (£ - 1L ‘Xi)
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The method is self-starting. With initial velocity loading, the initial

value of y_% is obtained as M % where x is the vectnr of initial displace-
ment velocities. With Xy~ 0 the values of x can be obtained from the
first of the cquations, for subsequent substitution in the second equatiom,
etc. If a load is applied to a system at rvest, X, =Y_ = 0 and the pro-

2
cedure can be started by solution for y+% in the second equation.

It is necessary therefore in integration with explicit methods
that some mass is attached to each degree of freedom. If Lagrangian multi-
pliers are included for enforcement of side conditions, it is not
possible to use explicit integration unless special arrangements are made.
Also, a mass must be attached to each of the rcotational degrees of freedom.
If only the rotary inertia (proportional to the cube of shell thickness)
is included thke critical timestep is very small. On the other hand, a con-
sistent mass matrix is nondiagonal and in that case execution of the first
step indicated by the Eq. (7.51) entails the solution of a large equation
system. Therefore, the use of a consistent mass matrix with the explicit
method is generally not recommended. The best choice is probably a care-
fully chosen lumped matrix with relatively large masses to go with the rota-
tional freedoms. Since these masses vanish with the grid size convergence to
the correct solution is not jeopardized; only the raic of convergence with
grid size depends on the choice of mass matrix elements corresponding ito the
rotational freedoms. The choice of time step for explicit integrationm is

further discussed in Volume 2, Section 6.

Characteristic for discretized structural systems is that the
eigenvalues (vibration frequencies) vary over a wide range. Such systems
are usually referred to as stiff, and their integration presents special
problems. The critical timestep in explicit integration corresponds to II
timesteps on each period of the highest frequency in the system. 1In an
analvsis of stress wave propagation the deformation corresponding to the
low~-frequency modes is of little interest and thc central difference schemz
discussed above presents a suitable method. However, for an accurate repre-
sentation of the wave propagation a rather fine grid (see Ref. 7,12) and con-

sequently a smzil timestep is needed.
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. In most cases of dynamic analysis of structural shells (dynamic
stability problems), the deformation modes corresponding to the lowest fre-

quencies are of primary importance. The period of these deformation modes

is usually very large in comparison te the critical timestep and explicit
methods with a time step based on the highest frequency become hopelessly
uneconomical for large systems. For such problems an integration method

is needed that remains stable for large time steps.

Much can be learned about the accuracy and stability of implicit
integration methods through application to the free vibrations of a one-
degree-of-freedom system (Ref. 7.13). The performance of a method is judged
on the basis of frequency distortion and artificial damping for a freely
vibrating system. The energy in a vibrating system is usually preserved for
one specific value of the product of timestep and frequency. As the time-
step is increased beyond the ideal value for the method the artificial damp-
ing becomes increasingly larger; the energy is gradually decreasing. For
smaller values of the timestep energy is gradually added to the system. Con-
sequently, if the integration is carried over a sufficiently long time the
function (displacement) will grow beyond any bound. This is referred tc as

e instability, although of a somewhat different character than that encount-
ered in explicit integration. For a system with more than one degree of
freedom, the solution of the homogeneous part of the equations of motion can

be written in the form

(7.52)

In the linear case without damping all the ki (eigenvalues) are imaginary and
exit.be:ames sin (wt) (compare Eq. (7.30)). Tha mcdes are uncoupled and the
discussion of stability of the solution of single degree of eystems applies
to zach of the vibration modes. The instability manifests itself in a multi-
degrez-of-freedom system as a gradual growth of a vibration in the mode (or

modes) for which wAt is below the criticai value.
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Some implicit methods of second order or lower are called uncon-
ditionally stable. This means that the error is on the side of decreasing
energy for all values of At. It has been shown that no method of higher

than the second order can be unconditionally stable.

In a stiff system the higher modes will be poorly represented in
a solution based on an implicit method. Frequently these are of no interest
and the most prominent feature of the implicit methods may be that they allow
the analyst to sacrifice some accuracy in order to make the analysis econom-
ically feasible.

For a system with complex eigenvalues (li =, i Bi in Eq. (7.52))
the stability criterion must be defined in the complex plane. With any given
integration method there exicts a curve in this plane symmetric about the real
axis, so that the energy remains constant during integration if the complex
pair liAt for a one-degree-of-freedom system fall on this line. If a smaller
timestep is chosen, instability will occur and if AAt falls outside the curve,
artificial damping is introduced. For a linear undamped system all eigen-
values are on the imaginary axis. If structural damping is added the eigen-
values will be complex pairs with a negative real part. That is, all eigen-
values are in the left half-plane. An integration method for which the un-
stable range is confined tc the part of the complex piane where the real part
is positive is called A-stable. Consequently, an A-stable method is uncondi-

tionally stable for all linear structural systems.
The stability boundaries are shown in Figure 7.3 for a few fre-
quently used implicit integration methods. with the exception of Gear's

third order method these are A~stable.

The trapezoidal method is a simple and efficient implicit method.

Applied to the equation

(7.53)
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the trapezoidal method leads to the integration formula

1
Xl "%y T RRE G, B FFx s )] (7.54)

The method is implicit since X 41 appears on the right-hand side. The equa-
tions of motion are reduced to a set of the first order form (Eqs. 7.50).
In the discretized analysis of a multiple-degree-of-freedom system, the term

F(xn+1, tn+l) introduces couplings between the unknowns (x_,.). Hence, an

equation system must be solved for each time step. For th2+%rapezoida1 method,
the vertical axis separates the stability zones so that the entire left half-
plane corresponds to stability. Consequently, the method is unconditionally
stable and for linear undamped system the energy corresponding to all the dif-

ferent free vibration modes is maintained constant during integration in time.

The stiffly stable methods by Gear were designed specifically for

stiff systems. Characteristic for Gear's and other stiffly stable methods

is that they do not include historical values of the displacement derivatives
(velocities) as a basis for the approximating polynomials. Gear's second order
method is A-stable but all higher order methods have some region of instability
in the left half-plane. The higher order methods can remain stable at all time-
steps in the presenre of some structural damping. The coefficients in the multi-
step method 2re given in Appendix D feor Gear's second and third order methods

and for K. C. Park's method. The stability boundaries for these methods are

shown in Figure 7.3,

The stability criteria are nct exactly valid if nonlinear terms are
included, i.e., if the stiffuess oeprator L( ) (Eq. 7.41) is nonlinear. Rig-
orous criteria for this case have not been developed. The eigenvalues of the
stiffness operator (the Frechet derivative) vary with the applied load. It
seems reasonable to apply the same criteria in the nonlinear case with the
only difference that current values of the eigenvalues are used. However,
the stability depends not only on the eigenvalues tLieuselves, but also on
their rate of change. Stability limits determined on the basis of current
eigenvalues give an approvimation and can be used tc initiate a2 trial and
error procedure, Since the stiffly stable methods do not use histori.zl
values of the velocities it seems less likely that their stability bound-

ary would be scasitive to the presence of nonlinear terms (see Ref. 7.6).
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A nonlinear system can have eigenvalues with a positive real value.
Such a situation will occur if the current displacement configuration in the
static case would correspond to unstable equilibrium, for example, if the
axial stress in a column temporarily exceeds that corresponding to the Euler
load, the structural stiffness is negative. In the nonlinear case no inte-
gration method exists that can be considered unconditionally stable. There~
fore, it may at times be difficult to decide whether a rapid growth in dis-
placement is caused by actual physical instability or by spurious mathematical
instability. Presumably, the former would result in uniform rapid growth of
one displacement pattern and the latter in an oscillation with increasing
amplitude. Still, it seems advisable to include a check on the energy bal-
ance in a computer program for transient analysis of nonlinear systems. That
is, at each timestep the sum of the increments in the kinetic and strain ener-

gies is compared to the work done by external forces during the timestep.

Regarding the choice of mass matrix for use in implicit integration
it appears that the consistent mass matrix generally should give more accurate
results. It is possible though that if the structural stiffness is over-
estimated (conforming elements) the error in the diagonalized matrix will
tend to compensate for this stiffness and may improve the results in the

range of engineering accuracy.

Little is known about the structural damping. In practical analy-
sis it has been customary for convenience to chose a damping matrix that is
proporiional either to the mass matrix or to the stiffness matrix. In the
former case the eigenvalues (of a linear system) will be located on a circle
in the left half-plzne. With damping proportional to the mass matrix they

are located on a line in the left half-plane parallel to the imaginary axis.

The STAGSC code includes as options: The explicit central differ-
ence scheme and the following implicit schemes:

® The trapezoidal method
e Gear's second order methed
e Gear's third order method

e Park's method
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In the User's Instructions (Volume II), advice is given regarding the choice

between optional procedures.

Presently only a diagonal mass matrix is available. In the case
of imilicit integration the masses corresponding to the rotational freedoms
include only the rotary inertia. In cases of explicit integration these
mass matrix elements are chosen so that the vibration modes corresponding
to pure membrane action will determine the timestep. Addition of an option

to use a consistent mass matrix is desirable.

The user can define structural damping that is proportional to the
mass matrix or to the stiffness matrix (linearized). 1In addition the user is
allowed to define an "intensity of damping" as a function of the shell coor-
dirate. Such damping may be uscful in some cases to represent damping caused

by a surrounding medium.

None of the STAGS versions includes a check on energy balance. How-~

ever, such a check would definitely be a valuable addition to the program,
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