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Section 2

EXAMPLE CASES

2.1 General

The example cases presented in this section are inti..ded to serve

as a complement to the instructions given in Volume 2. Whenever a user

finds the instructions unclear, it is hoped that he will find an example here

that clarifies the point in question. The sample cases can also be used for

the purpose of training personnel in the use of the code.

After definition of a cas e,the'inpu't"cards are shown together with

selected parts of the output. The following cases are included:

1.

Paraboloid with meridional stiffening. Bifurcation buckling

for axial compression with fixed internal pressure.

Elliptic cylinder. Bifurcation buckling and vibrations with

nonlinear prestress. Axial c'ofnp;}‘essiqri, R

Cylindrical panel with free edges. Vibrations with nonlinear

prestress (point load).

Conical shell with end ring. Linear stress analysis.

Pressure load.
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10.

11.

12.

13.

Plates of variable thickness, connected with torsion springs.

Free vibrations. p

Spherical‘ cap with gravity load. Triangular elements at apex.

Linear analysis.

Quadrilateral plate with discrete stiffening (off and on grid lines).

Geometrically linear inelastic analysis.

Cylinder with one rectangular cutout. Bifurcation buckling

under axial compression.

Bent tube (cylinder and torus). Bifurcation buckling analysis

under bending.

Spherical shell roof with square plan form. Buckling with

nonlinear prestress under gravity load. Beam and spring

elements.

Cylindrical shell with ellipsoidal head. Vibration analysis

and transient response analysis with forced displacement

history.

Two connected paraboloids. Bifurcation buckling under

thermal loading.

Cylindrical shell with two rectangular cutouts. Cutout covers

are attached at eight points. Bifurcation buckling under axial

load.

2.1.2



et A2 M i s s 4=

14. Cylinder with two circular cutouts. Isogrid stiffening.

Bifurcation buckling analysis under axial compression.

Table 2.1 summarizes the different features of the example cases.

Throughout the example cases the SI system of units has been used as

follows: -
Quantity ' / : Unit Symbol
Distance millimetres mm
Force newtons N
Pressure
Stress mega pascals MPa
Modulus ' :
Lineload newtons /millimetre N/mm
Mass kilogram : kg
Temperature degree Celsius °c
Time second ( s
Velocity millimetre/second mm/s
Acceleration millimetre/second/second mm/s?
(Gravitational acceleration = 9807 mm/s2)
Density Kilogram/millimetre cube k g/mm3

N

Angles are usually giver,i: in degrees rather than in the SI unit.
i .

/
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2.2

2.2.1

Example Case 1

Example Case 1: Paraboloid with Meridional Stiffening

Case Description

Geometry:

A paraboloid shell with meridional stiffening is considered. The

generator is defined by the equation 'n2 =4 x 6.35 x E. Dimensions are

indicated in Fig. 2.1.

!

t R, =6.35 ,7 |7~
: * // ! \\
R = 25.4
b / \ .
/
/ \
A A
i
L = 50.8
|

l ¢ Fig. 2.2 Meridional Stiffeners

Meridional stiffeners, with rectangular cross-section as shown in

Fig. 2.2 are attached with 6° of spacing.

2.2.1
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Example Case 1

—_—

- — T
V 0.635
| \’/ . |

Fig. 2.2 Meridional Stiffeners

Both edges are clamped in rigid end plates.

Material:

The single layer shell wall as well as the stiffeners are made of
aluminum with

70 000 MPa

=
0

0.3

1

Load:
The shell is subjected to a uniform internal pressure of 0.2 MPa. In

addition axial compression is applied at the center of the end plates until

buckling occurs (uniform end shortening).

Mode of Analysis:

A bifurcation buckling analysis is made. It is as sumed that the shell

C will buckle in 5 circumferential waves. It is sufficient to consider a shell

2.2.2



Example Case 1

segment corresponding to one quarter of a wave, i.e. the analysis is applied to

. o . . ‘ . . . .
a segment covering 18" in the circumferential direction. Stiffeners are smeared

(see Vol. 2).

Grid:

A reasonably accurate analysis should be obtained by use of 11 points in

the axial and 5 points in the circumferential directions.

2.2.2 Note-

The structure defined here is a shell of revolution with axisymmetric load.
For such a configuration it is known that buckling will occur in a mode that is
sinusoidal in the circumferential direction. Computer programs for shells of
revolution, such as BOSOR, are specialized for this purpose by taking advantage

of this fact. Therefore, STAGS is not the most suitable program for analysis of

this particular case.

2.2.3 Input Preparation

Stiffener spacing:

Since the circumference of the shell varies with the axial coordinate, the
stringer spacing is variable. However, for smeared stiffeners, the spacing is
defined by use of the surface coordinate values. In this case the spacing is given

in degrees and regular data cards can be used.
\

The two end plates are free to move relé.tive to one another in the axial
direction. We can consider the shell clamped at the large end ( £ = 76.2). At

the other end the shell edge is constrained from motion in the radial direction.

2. 2‘3



Example Case 1

This condition must be enforced by use of a user written UCONST since the

condition involves two displacement components, U and W (see Fig. 2.1).

Constraints against rotation and tangential displacement V can be introduced

by the regular boundary condition cards.

We have
' 1 —
anfag =2 /6.35 3 € %= /6.35/¢

i.e. at the shell edge

/6.35/25.4 =0.5

dn/dg
i.e. tga = 0.5
We have the constraint u sing tw cosg =0oru+2w=0

In order to obtain better balance between the size of the coefficients

in the final equation system, it is recommended that the equation is multiplied

by the shell wall modulus.

The lineload at the small end will correspond to 1. N/mm if we apply

a loads of 2//5 cos o in the U-direction. and -1/5 -sino in the W-direction.

‘Data cards and user written subroutine UCONST and WALL are shown

in Table 2.1.

2.2.4 Output

2.2.4
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Example Case 2

- 2.3 Example Case 2: Elliptic Cylinder

2.3.1 Case Description

Geometry:

An elliptic cylinder with dimensions as shown in Fig. 2.3 is considered.

e

L = 400.

Fig. 2.3 Elliptic Cylinder

" Both ends are simply supported (the shell is free to rotate at edge

supports).



Example Case 2

Material:

The single layer shell wall is made of steel with

E = 210 000 MPa

v = 0.3

and the density

p=0.810" kg/mm3

Load:

A uniform axial line load is applied at one end.

Mode of Analysis:

The purpose of the analysis is to determine the collapse load (or
shortening). While the prebuckling displacement pattern is symmetric about
a plane containing the shell axis and the shortest radius, the collapse mode is
either symmetric or antisymmetric about that plane. For simplicity we
assume that the collapse mode is symmetric about the mid-plane and about a
plane containing the shell axis and the longest radius. One possible way to
determine the lowest collapse load is to consider a segment covering 180° and

half the length of the cylinder. A small imperfection is introduced to trigger

antisymmetric deformation. A monlinear analysis is performed under gradually

increasing load until the load displacement curve approaches a point with a

horizontal tangent. The other possibility, chosen here, is to analyze a 90° half

length segment only. In the nonlinear analysis symmetry conditions prevail on

all sides except the loaded edge. A nonlinear analysis then will reveal only the

2.3.2



" of the vibration frequency corresponding to the critical mode.

- Example Case 2

load corresponding to symmetric collapse. An additional run is made in which

bifurcation buckling into an antisymmetric mode is considered (nonlinear pre-
Bifurcation buckling into a symmetric mode does not represent a

buckling).
rigorous solution, since the precritical deformation pattern contains a com-
ponent of the buckling mode. However, for this case it is known to give results
reasonably close to the collapse load (limit point). If we consider bifurcation
from some point above zero load from the nonlinear configuration the approxi-
mation should be better. There, we will also attempt to determine a ‘nurnber
of bifurcation buckling loads correspon;iing to antisymmetric modes at the

different levels of the stress state. Such buckling loads may indicate that the

critical load is being approached. This can also be indicated by the vanishing

We will perform

four different analysis

1) Nonlinear symmetric analysis, save data on file

2) Buckling analysis, symmetric modes
(The rea.son"for this analysis is explained in the discussion
of output) ’

3) Buckling analysis, antisymmetric modes

4) Vibration analysis, symmetric modes

Grid:

“We will use a grid with 9 gridlines in each direction.

2.3.2 Input Preparation

In order to get some idea about the collapse load let us consider an
equivalent cylinder with the radius of curvature equal to the maximum radius

of curvature of the elliptic cylinder. The elliptic cylinder will probably collapse

2.3.3



Example Case 2

at a somewhat higher value of the line load. With a uniform shortening, rather
than uniform load, the difference presuﬁably would be bigger. The critical
load (bifurcation) for the equivalent cylinder is 1680 N/mm. This corresponds
to a stress that is well into the inelastic range. However, we chose to ignore
this fact, rather than to use another example which would require the use of

a finer grid.

With a base load of 1700 N/mm (L-2) we would want to interrupt the
analysis if a load factor larger than 12. (card E-1) is reached within the
allotted time. This may indicate errors in input data. We allow a total of
3 cuts of stepsize in order to prevent the load'step to become smaller than

0.125 in which case we would like to interrupt the computations and reconsider

the strategy.

Input data cards for the case are shown in Table 2. 2.

2.3.3 Output

2.3.4
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Example Case 3

2.4 Example Case 3: Cylindrical Panel with Free Edges. Transient Response

2.4.1 Case Description

Geometry:
A shallow cylindrical panel with geometry as shown in Fig. 2.5 1is

considered. The longitudinal edges are free and the curved edges are simply

supported.

SIMPLE SUPPORT

FREE _ - )

FREE

SIMPLE SUPPORT

Fig. 2.4 Cylindrical Shell Panel

2.4.1



Example Case 3

Material:

The single layer shell wall is made of aluminum with

E = 70 000 MPa
v =0.3
5= 0.26 1072 kg/mm”>

Load:

The shell is subjected to impulsive loading. The load is applied at the
center of the panel and directed towards the cylinder axis (see Fig. 2.4). The

size of the impulse is 10" N sec.

Mode of Analysis:

. . . : -3
A transient response analysis is carried out over a time span of 10

seconds. We will use the option of explicit time integration (see Volume 2).

Only a quarter of the panel needs to be considered because of prevailing

symmetry conditions.

Grid:

We will use a grid with 6 lines in the axial direction and 5 in the cir-

cumferential direction (3° spacing).

2.4.2 Input Preparation

The velocities used for computation of the time step (Vol. 2,Eq. 6.1) are:

-5

C = V70 000/ (0.91 - 0.26 - 107°)

1.72 1 05 mm/sec

2.4.2



Example Case 3

/70 000/ (2.6 * 0.26 - 107°)

Q
n

1.02 10° mm/sec

1

The grid spacings in the two directions are

AB =6 mm Aa=-3-§-(—)'21'r'60=3.14mm
The time step is
1//1.72-105>2Jr 1.02 - 10° 2_173.10-5
3.14 6 oo
At = Min [~ .
> L = 31.10°

0.25 - 1.72 - 102  (1/6)% + (1/3.14)

Since the analysis is nonlinear we choose a slightly shorter time step

At=1.6" 10-5 sec

The impulsive loading is applied by letting a constant load P act

over a period equal to one time step.

;-3
p - 10" - 2.5 N.

1.6 - 107>
The load profile in time will be defined by use of data cards.

2 : 62.5 if T<l.6 - 107°

PA = :
0 if T=>1.6 * 10

2.4.3



CA=3 Q2

TP
¢ 1 @
G 9 'y
£
9 '21 ‘a
. R * 3
2 120p0 " ‘2 0
' “ 9tpnna’
(786 0 @ @ a

\ P

¢!
f
e

100t

@

2 N oI

<

-

AQ
¢
IS

0

9
9

.ﬂ.

‘n

P 92=d’'vZ=d’Ted‘240'1=0’2=7"1=1 )
.a-z.“:s.m.H.«-H.mna.ﬁ.osﬁum.auu.ﬁ.m ¢ 0IANTINT JHVY SONYD INIMOIT04 IHL I
TINVA T3NS IVIIHANTIADY § 3Sv) 37dWy X3

¢ osep ordwexy 10y spie) ®BIe(
e¢ *7 d1qEL

O

2.4.4



-~

Example Case 3

There is no"daiﬁping and the parameters SUP and THOLD (G-1 card)
are irrelevant for analysis with a’constant time step. Input data cards are

shown in Table 2. 3.

2.4.5



Example Case 4

!

2.5 Example Case 4: Conical Shell with End Ring

2.5.1 Case Description

Geometry:
A c¢onmical shell of sandwich construction with a ring attached at one

end is considered. Dimensions and support conditions are indicated in

Figure 2.6.

250.

250, |
]
W
W CcCOos Q¢
usina
500. - Y
w cosa = usind
f
; t (Vovrr IO 'j:.25
STRESS j ) 71
OUTPUT / 5
PO'NTS | 1 VT DDl 2l L honbnblidomdedilnd kD ’ .25
(o]
/ / SHELL WALL
\

SRR HRNNNANN
\\\\\\\\\\\\ !

- 30. -

|
6.
{

0o

VIEW A
END RING

Fig. 2.6 Conical Shell
2.5.1



Material:

The shell is of aluminum sandwich construction.

carries only transverse shear.

in the STAGS program).

Shell wall; inner and

E

v

Stiffener:

Load:

Example Case 4

The middle layer

(Transverse shear deformation is neglected

outer layers:

= 70 000 MPa
= 0.3

= 26 900 MPa

= 70 000 MPa

= 0.3
= 26 900 MPa

A uniform external pressure of 0.1 MPa is applied.



Example Case 4

. Grid:
Since the load as well as the structure is axially symmetric a specialized
program could have been used. Using STAGS we consider a narrow strip, say

52. two columns are defined. In the axial dircction we define a grid that has a

constant spacing within cach of thrce scgments as shown in Figurc 2.7.

Mode of Analysis:

A linear stress analysis is requested. Displacements, stress resultants

and stresses are printed at all points. Stress in the stiffener is computed for

the three points marked in Figure 2.6.

- 150 —— wolew— 75, —s=| 25, |==— SEGMENT LENGTH (mm)
0. 150. 225. 250. AXIAL DISTANCE (mm)
- 10 s 8§ —| 6 |la—— NO OF SPACINGS
ROW 1 ROW 25

Fig. 2.7 Grid in Axial Direction

2.5.2 Input Preparation

» Stiffener properties:
For a rectangular stiffener we can use the special input only if the

angle o (Figure 2.6) equals 90°. The general case is illustrated in Figure 2.8.



Example Case 4

z

“77

Figure 2.8 Stiffener Geometry

We notice that the Az-axis is positive in the opposite direction to
X . This is necessary in order that Al, )\2, A3 be a right-handed system.

For notations see M-3 card (Volume 2)

ht = 180 mm2

SA =
h/2  t/2
_ + : 2
SIY = / / (N cos o - € sina)” dEdY) =

-h/2  -t/2;

/ =-1-i—}-12 (h2 cosza + 1:2 sin2 o) = 7020 mm4

: i
h/2 t/2

~ SIZ = / f (nsine - ’;‘,cosa’)2 dgdn = !

| -h/2  -t/2

2 4

= % (h2 sin” o + tzcosza) = 7020 mm

2.5.4



Example Case 4

h/2 t/2
SIYZ = -f -(Mcosqg - Esing) (Nsina + E cos ) dEAN =
-h/2 -t/2
= % sin ¢ cos o (h2 - tZ) = 6480 mm4
SEY = 10.61 mm
SEZ =-10.61 mm ST =30- 63/3 = 2160 mm?

Stress output points:

U1(1) 0.0 , 33 sin 45° = 23.3 , 27 sin 45° = 19.1

1]

0.0 s -19.1 , - 23.3

Z1(I)

Boundary Conditions:

At the small end of the cone the shell is free to rotate but the three

displacement components are constrained.

At the large end of the cone the shell again is free to rotate. The
circumferential displacement can be constrained on regular data cards.
The displacement in the axial direction is constrained, i.e. , Usina -

W cosa = 0. We léave both U and W free on the regular data cards and
enforge the condition U - W = 0 (¢ = 450) in a user written UCONST. The -

condition is enforced at columns 1 and 2 and row 25.

The regular data cards and the user written subroutine are listed

in Table 2.4. .

2.5.5
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Example Case 5

\ ) L R

2.6 Example Case 5: Plates with Variable Thickness

2.6.1 Case Description

A rectangular wing consists of two plates with variable thickness
connected to onc another by two hinges with torsional springs. Geometric

data are shown in Fig. 2.9.

Y
Z\
2 . —
1 3 /
500.
: ) /.
= : i X
- 250:. 4'-1 | ‘_l
len———————— 400, 100:;

Fig.2.9Plate Assembly

The two torsion springs are positioned 100 mm from the plate

: edges ( Y = 100, Y = 400 mm). The thickness of the plate combination
. is |
C 6. + 54.% X/250. if X <250

and 60. - 54,/ (X-250) / 250.if X > 250

2' 6.1
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Example Case 5

On the larger plate the edge at Y = 500 is clamped. All other edges

on both plates are free except for the hinges with torsional springs connection

between the plates.

Each of the torsional springs have a stiffness of 107 N mm/radian.

Material:

The single layer plate wall is made of aluminum with

70 000 MPa

=
0

0.3

<¢
0

and the mass density
p=0.26x 10-5Kg/mm3

Load:

There is no load on the plate assembly.

Mode of Analysis:

An analysis is requested which gives the four lowest modes of

small vibration and corresponding frequencies.

Grid:

A finite difference grid with a 50 mm spacing in both direction is

considered to be adequate.

2.6.2



Example Case 5

2.6.2 Input Preparation

The two plates are defined as two separate shell branches. The
hinges with torsional springs represent the only connection between the
plates. The hinge connection is represented through user written sub-

routine UCONST, while the torsional springs are introduced as finite

elements.

The plate thickness must be defined by a user written subroutine
WALL. For the larger plate (BRANCH 1)

X<250;T=6. +0.216 X

I

X>250;T=114. - 0.216 X

For the second plate we can set X = 400. on side 1 in which case
we have:

T =114. - 0.216X

Input data cards and the user written subroutine UCONST are shown

in Table 2.5. Therefore there are no branch connection cards (NINT=0 on

B-1 card). h |

2.6.3
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Example Case 6

2.7 Example Case 6. Spheric'al Cap with Gravity Load

2.7.1 Case Description

L]

Geometry:

A spherical cap as shown in Fig.2.10is supported at four points

around the circumfercnce.

Fig.2.10 Spherical Cap on Point Support
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Material:

The single layer shell wall as well as the stiffeners are made

of aluminum with

E = 70 000 MPa

Ty = 0.3

Load:

The shell is subjected to gravity load directed along the axis.

The size of the load is 1.5 MPa.

Mode of Analysis:
A linear stress analysis is requested. Due to symmetry

conditions only a 45° section of the cap needs to be considered.

Grid:
A grid with 9 gridlines in each direction is suggested. The grid .

is made somewhat closer in both directions in the neighborhood of the

point support. /
/

‘ /
2.7.2 Input Preparation /

The cap will be modeled as a shell branch extending from O = 1°

to the edge at @ = 8°. At the apex we will cover the one degree hole by |
use of 8 triangular finite elements. The finite difference grid has rows at

O =1, 2.5, 4, 5, 6, 6.5, 7, 7.5 and 8° and columns at

C o = 0. , 2 5, 9,15, 21, 29, 37, 45°

2. 7.2
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Example Case 6

Since the load has components both in the normal and tangential
(along meridian) directions and these vary with the shell coordinate the

easiest way to define the load is by use of a user written subroutine

USRLD.

In the normal direction, we have PW =-1.5cos O and in

“tangential direction Py =1L 5 sin @ MPa.

On the finite elements we apply one third of the load on the element
at each corner. The two loads (on each element) at the circumference are

most easily applied as a line load on the shell segment. The load at the

apex is one third of the load on the 1. 0° cap, that is on a circle with a

radius of

r= R sin 1.0°=1.75.

On the finite element node at the apex we apply in the x-directibn
(global system)
45

_ 1 & b3 sk B3 2 =
Px— 3 360 1.5 s 1.75" = 0.6 N

The line loads on the shell segments are

- 2%0.6 % cos (1.0%/ (1.75 * ¢ * 45/180)

o)
1

-0.873 cos (1.0°) N/mm

2.7.3



Example Case 6

and

P = 0.873 sin (1.0%) N/mm.

Boundary Conditions:

Symmetry conditions prevail along the meridional edges (sides |
2 and 4) while the sides 1 and 3 are left free. The support at 8 =0,

@ = 8 is introduced by use of load cards (zero displacement).

Input data cards and user written subroutine USRLD are shown

in Table 2.6.
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Example Case 7

Example Case 7 Quadrilateral Plate with Discrete Stiffeners

2.8.1 Casc Description

Goomch-y:

A quadrilatcral plate with five discrete stiffeners is considercd.

‘The geometry of plate and stiffeners is shown in Fig. 2.11

g PN
o
=

@%

-———— 500, — SECT. A-A f

STR1

1 ( [

200. *T

_%; ' il
CLAMPED t—— 300. ‘—’I

{
i

>
Ly

Fig.2.1l1 Quadrilateral Plate with Stiffeners
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Example Case 7

The plate thickness is uniform and all the stiffeners have the same

cross-section. Two of the pla{tc cdges are clamped as shown in the figure

and the other two are free.

Material:

The plate is made of a composite material consisting of three fiber-

reinforced layers, cach of . 05 mm thickness and with the fiber orientations

0°, 90°, and 0° with respect to the x-axis.

k4

Each of the layers have the following material properties

E, = 290000 MPa
E, = 6100 MPa

= 4200 MPa
vy, = -0065

The stiffeners are made of the same material with the fibers running

in the direction of the stiffener.

Load:

The plate is subjected to a uniform lateral pressure of 0.5 MPa.

Mode of Analysis:

Linear stress analysis.

2.8.2
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Example Case 7

Grid:
A reasonably accurate analysis'should be obtained by use of a

gi‘id with 9 points on the side along the x-axis and 7 points on the side

along the y-axis. A uniform spacing can be used.

2.2.2 Input Preparation

A standard geometry routine is available for the quadrilateral
plate. For this case the inplane displacement components are not
orthogonal. The angle ( (see Fig. 3.10in Volume 2) between the fiber
direction in the layers and the shell coordinate X’/ varies with the shell
coordinate Y/, Fig.2.12 Consequently a user written subroutine WALL

will be needed for definition of the shell wall properties.

CONSTANT X

xX3,73
"1 ©)
CONSTANT Y

X1y — ‘

@ J, ¢, (LAYER é) ,

Fig. 2.12 Orientation of Material Coordinates
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——

X The angle ¢ (in degrees) for layers 1 and 3 is given by

ST -(180 n)arctaﬁ[( dy/3X) / (3x/3X)]

/

The angle ¢ for the second layer is given by

In the standard geometry routine

x = (x4-x1)'X + (xz-xl) Y + (x1 - %, + Xy - x4) XY + Xy
y =y y) X+ -y ) Y+ lyy -y, tys-y) XY Ty

Here X is the distance along the side lel = X4V4 (side 4) normalized
with respect to the length of that side. X is zero at x;y, and X5, Y50 it is
equal to 1.0 at‘x3, V3 and X, y4). Y is the distance along the side x;y, =
XY, normalized with the respect to the length of that side (side 1).

Substituting actual values for the corner coordinates we find

]
1

300 X + 200 XY (a)

<
I

200 Y /;+ 200 XY (b)

/
/

or
dy/aX = 200Y

dx/3X 300 + 200.Y

1

i
i

The tangent for the slope of a gridline at constant Y is

ol

2.8.4
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dy . __200Y _ _ y/1.5+7)

dx 300 +200 Y

We have three stiffeners off gridlines, and the location of these
are most easily defined by use of a user written subroutine GSLAG. Two
of the stiffeners run on a constant value ot the Cartesian coordinate x,

- . W1 .
say X 1th_.
- 3OOX+200XY:XO

YC

I}
1

(x, - 300X)/ 200X

0
>
0

XC X / (300 + 200Y)

200 X0
(300 + zooar)z

F = 3(XC)/d3Y = -

For a stiffener on constant value of the cartesian coordinate vy,

we have

200Y + 200XY .= y_

XC = (y, - 200Y) / (200 Y)

YC = yO/[200(1+X)]

G =2 (YC) /3K = - —22—,
200 (1 + X)
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Example Case 7

Stringer noi 1 starts at x,y = 200, 0 and ends at x,y = 200, 280.

That is (from equations (a) and (b) ):

XS, YS = 0.667, 0.0

XE, YE=0.4, 1.0

Stringer no. 2 starts at x,y = 300, 0 and ends at x,y = 300, 320
XS, YS=1.0 , 0.0
XE, YIE=0.6, 1.0

Stringer no. 3 starts at x,y = 0, 200 and ends at x,y = 400, 200

1
o
o
-
[«]

XS, YS

1

[
[
o
152

XE, YE

Data cards and user written subroutine WALL and GSLAG are

shown in Table 2.7

2.8.6
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Example Case 8

2.9 Example Case 8: Cylindrical Shell with Rectangular Cutout

2.9.1 Case Description

Geometry:

A circular cylindér with a rectangular cutout is considered.

Dimensions are shown in Figure 2.13

Figure 2.13 Cylinder with Cutout

The two ends of the cylinder are rigidly attached to rigid

end plates.

2.901



Example Case 8

Maté rial:

The shell has a single layer. aluminum wall.

70 000 MPa

=
n

0.3

Load:

The shell is subjected to axial compression through the application
of two opposite forces at the center of the end plates. The end platés are

free to rotate.

Mode of Analysis:
A bifurcation buckling analysis is requested. The buckling mode
is assumed to be symmetric about the midplane and an symmetric with

respect to a plane through the cylinder axis and the center of the cutout.

Grid:

Due to symmetry in geometry and loading, we consider a segment
covering 180° circumferentially and half the cylinder length. It is most
efficient to use a grid with points concentrated in the area where the Abuckling

occurs. A grid pattern of this type is suggested in Fig. 2.14 and used in the

example case input.

20 9.2
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100.

Example Case 8

= SEGMENT LENGTH

CUTOUT =51 4 XIAL DISTANCE {mm)

— f“ ('ZUTOUT

| VI IS

el

| o YWI2Z22 222222 L L2228 L 22l Ll lllid >
el 5 fp-fasct 10 == NO. OF SPACINGS
= 2 14 321

- NO., OF SPACINGS

1 CIRCUMFERENTIAL COORDINATE

= [N DEGREES

la— 40° >L——-—- 140°

SEGMENT ANGLE

Fig. 2.14 Grid Spacings for Cylinder with Cutout

2.3.2 Input Preparation

The description of the geometry offers no difficulties in this case.

The load can be applied either by definition of a force or a displacement.

The computed buckling load is the same in those cases. (For a nonlinear

collapse analysis, it would be better to increment the axial displacement.)

2.9.3



Example Case 8

The only difficulty lies in the definition of boundary conditions.
The end plates will tend to rotate on application of the load as shown

in Figure 2.15.

h
!

Fig. 2.15 ‘Deformed Cylinder

One way to define the case is to add a fictitious very stiff ring at |
the cylinder end and to apply an axialline load along the edge. However, if
the ring is too stiff the equation system may become ill conditioned; and if

it is not stiff enough the chosen ring properties will affect the deformation

2.9.4



Example Case 8

of the cylinder. Anqgther way to define the case is to use a user written
subroutine, UC@NST , to constrain the points on the cylinder edge to
remain on a circle, that is free to translate and rotate. Neglecting non-

linear terms in the boundary conditions we have v = w = o. That is we can

define simple support conditions. The end plate rotates through an angle

Q and translates through the distance u_as shown in Fig.2.16.

Fig.2.16 Displacement of Cylinder Edge

The rotation of the end plate can be expressed in terms of any

two values of the axial displacement.

With g = 0 at the center of the cutout the column no 14 will be

at ¢ = 90°. Hence we can set:
tgq = (U (1) - U(14)) /R

The points on the cylinder edge will remain in the same plane if

2. 9.5
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U = U(14)+ R cos 8tnQ

Since 6 (or the surface coordinate Y) is not available in UCONST
we define:

J < 9,05 = (J-1) 51/180
For

I> 9%e; = 40n/180 + (J-9) 101 /180
(T = column number)

and the condition

U (J) = U(14) + (U(1) - U (14))cos 0y

This condition is enforced for all values of J except J=1 and J=14.
U(14) is the load parameter (determined by data cards L-1, L-2). U(l)

is unrestrained to give the plate the freedom to rotate.

Finally the rotation of the edge is given by the condition that the shell
wall remains normal to the end plate. This requires that B, (rotational
freedom) is given by

Bl =-tg Q cos 6 or

Bl (J)= -(U (1) -U(14)) cos QJ/R

for J=1, 23
The total number of constraints is
NCONST = 21 + 23 = 44
Data cards .and user written subroutine UCONST are shown in Table 2.8.
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Example Case 9

2.10 Example Case 9: Curved Tube in Bending

2.10.1 Case Description

Geometry:
A curved tube consists of a cylindrical shell attached to a segment

of a toroidal shell. Dimensions are shown in Fig. 2.17

——— | 2 ;>

ooz g -o{z-:___
—I r o
!

X =0 X = 10. ;tz
SECTION A-A

Fig. 2.17 Curved Tube
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Example Case 9

“ Material:

The single layer shell wall as well as the two ring stiffeners are

made of aluminum with

70 000. MPa

trj.
I

0.3

Load:

The tube is subjected to a bending moment M at each of the free
cdges. The applied line load is proportional to the distance to the axis, i.e.,

proportionally to cos §, where g is the angular coordinate. The total applied

- moment is 2*106 Nmm.

Mode of Analysis:

A geometrically nonlinear static analysis is requested.

Grid:

A reasonably accurate result should be obtained with 13 gridlines
in the circumferential direction: In the ''axial direction' we use 5 gridlines
on the cylindrical part and 9 glj‘./idlines on the toroidal part.

\

2.10.2 Input Preparation \

Cartesian coordinate systems and the numbers corresponding to the

boundary lines on each of the two branches are shown in Fig.2.18. The directions

( of the surface coordinates are also indicated. We notice that the Y-coordinate

2.10.2



Example Case 9

The bending moment can be introduced as a number of point forces

on regular data cards or through a user written subroutine USRLD., A

USRLD-routine is defined here.

The line load on the free edge of the cylinder varies as

N =N cos (Y)
o

X

Where No = M/(ZRZ) = 2:::106/(2>;<104) = 100

In order to prevent rigid body translation of the shell we enforce the

condition V = 0 at column 7 (90°) at the symmetry plane. W = 0 at
column 1 (0°) would also prevent rigid body translation, but this condition
may cause excessive radial displacement since loads are applied in a "weak"

shell direction. Load cards (L-1, Li-2) are used for this purpose.'

Data cards and user written subroutine USRLD are shown in Table 2.9.

2.10.3
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on the cylinder, branch 1 side 3, is positive in the opposite direction to the
X coordinate on the torus, branch 2 side 4. Therefore, on the D-1 card

NBOUND must be negative.

BRANCH 2 (TOROID)

BRANCH 1 (CYLINDER)

Fig.2.18 Coordinate Systems for Torus-Cylinder Combination
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2.11 Example Case 10. Spherical Shell Roof with Square Plan Form

2.11.1 Case Description

Geometry:

A spherical shell roof with square plan form is considered. The

geometry is shown in Fig.2.109.

—»lloo.I-I —ef0}e—
250* T Y 2£.

10. n 330. | ?
_2’704 _l_ SECTION B-B
SECTION A-A
SPERICAL ROCF
R = 20000-
f = ]m.

u
g
/

Fig. 2.19 Spherical Shell Roof
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Example Case 10

The roof is rigidly attached to the beams at each of the four

corners. The verticals carry axial loads only. -

Material:

The roof is made of concrete with

= 30 000. MPa
= 13 000. MPa
v - .15

p = 3.4 10'61<g/mm3

The beams and the vertical bars are made of steel with

210 000 MPa

=
i

<
I

0.3

Lioad:

The shell is subjected to a uniform vertical load (gravity). The

load intensity is 0.01 N/mmz.

‘Mode of Analysis:

A lineé.r stress analysis is requested. Due to bsymmetry conditions
only one quarter of the roof needs to be considered if triangular shell
elements are used it would be possible to do the problem with one eighth of

the shell, due to the diagonal symmetry.
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Example Case 10

Grid:
We will use a grid that is squé.re in the projection on the plane.

Scven rows and seven columns should give reasonably accurate results.

2.11.2 Preparation of Input

The coordinate system used in the standard geometry routine is
not suitable with this type of boundaries. Therefore, we will derive a

user-written geometry routine, LAME. The Cartesian coordinates are

shown in Fig. 2. 20.

Fig. 2.20 Geometry
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Example Case 10

The two surface coordinates are defined by

= x/R

Y y/R

Lines of constant X and Y values form a grid that is rectangular

in its projection on the plane. Consequently we have

x = RX

y = RY

R V1 - X2 - Y2

N
1l

In order to obtain somewhat simpler expressions in the derivation of

the geometric constants, we can substitute

X = cosu«
Y

= cos B

\/T - X2.Y2= cos Y

The derivation of geometric constant is somewhat less tedious if this

: /
substitution is used. /

We have then, for example: \

[

-2
d (cg:; y) _é_ (1-x%-Y2) © (-2X) = - cos a/cos ¥y
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Example Case 10

We will find use for the following derivatives

3/3X (cos ¢, sina, cos vy, (cos Y)-l, (cos y)_z ) =

= (1, - cota, - cos a/cos vy, cos a/cos3y, 2 cos Q//cos4y)

and

d/3Y(cos B, sin B, cos v, (cos Y)'l, (cos y)-z ) =

= (l,=cot B, - cos B/cos y, cos B/cos3y, 2 cos B/cos4y)

x,X=R x,Y=O
Y’X:O Y’Y'—'R
z, ¢ = -R cos oa/cos vy %y = -R cos B/cos ¥y

The coefficients of the first fundamental form are:

A = R\/I+cosza/coszy = R sinp/cos vy
= Rsin o / cosy

C = R2 cos o cos B/. cc')s2 %

2

A‘ZB2 - C2 = R > \’sin2 o sinZB - cos2 o cos2 B
: cos’y
= RZ/cosy

The normal to the surface has the components

(RZ.COS o / cos vy) / (R% / cos v) = cos o

B
1]

X
_ 2 ' 2 e
n, = (R cosp / cos y) / (R” / cos y) =cos B

n, =‘R2/(R2cosy) = cos vy
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Example Case 10

The length of the normal should equal unity:

@)szd + co.sz g + cos2 vy = 1.

x xx= 0
Y xx= 0

o R cos o . 2 3
Z,xx = - Cosy --RcoscvcosY - R sin“ B/ cos™ v
x,XY=0
Yoxy= 0
Z,xy = -R cos o <22 = ~-Rcosa cosB / cos3 Y

cos™y

*yy= 0
*yy= 0

_ R cos B _ _ . 2 3
Zyvy© " Cosw R cos B 3 = R sin“«o / cos™ v

cos’y

It follows that the coefficients of the second fundamental form are:

D = ngz,yy=-cosy "’ R 2 = - R siriZB/ coszy
cos ¥y
3 2
E =n,z yy=-cosy " R cos o cos B/cos y:-RcoscrcosB/cos v

F = n, z,yy=- oSy ° R sin2 a/cos3y = -R sinzaf / éoszy
The derivatives of the geometric coefficients are:

= = RsinB cosa/ cos3y = Acosa/coszy
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dA
oY

oB

o/lo/
alles!

U %

vy Vo
*<IlU X‘U

i

o/lo/
=i

1

cos B

1

cos B

R |sinB 3
cos’y

cos vy

R coto cos2 B/ cos3 v

BcosB / coszy

sin B

Example Case 10

- Rocotp cos’a / cos3y

R2 cos B (cos o * 2 cos cv/cos4 v + 1/coszy)

= R cos B (sinZB + cosza) / cos4Y

R% cos o (<:os2 B+ sin® a) / cost Y

- 2R sinZB/ cos4y

-2R cos B cos®a / cos? ¥y

- R cos B (sin2 g + con o)/ cos? v

- R cos « (sin2 ot coszs) /cos4 v

-2R cos « cosz/B/cos4y

/

= 2R sin2 o cosB/coSS4 Y
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Example Case 10

Another user written subroutine is needed to define the loading.

The distributed pressure is most ea.sily defined by its components in the

Cartesian system

PP = (0., 0., -0.01)

A transformation matrix' was defined in LAME which transforms a
vector from the X/, Y’/, Z’ - system to the x, y, z system. The inverse
of this matrix would transform the load vector P into a vector with its
components in the X/, Y/, Z’ directions. A subroutine INVER3 residing
in the STAGS program can be called for inversion. In‘ USRLD we define
the vector PP and the same transformation matrix as in LAME. Afterv
that we call INVER3 to obtain the transformation matrix TI. The vector

PN gives the intensity of the three surface tractions and is obtained by

multiplication of PP and TI.

The points ABCDE in Fig. 2.20 are element nodes. B and E are
auxiliary points, whose position are determined by definition of the

cartesian coordinates. The plane through points B and E is located at

2 = 20000 Y1 - (3/200% = 19,744

Hence the coordinates for B are

3 000, 0, 19,774

and for E
0, 3 000, 19,774
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Example Case 10

Due to symmetry conditions point B is constrained from motion in
the y direction and from rotation about x- and z-axes. Point E is constrained

from motion in the x-direction and rotation around the y- and z-axes.
Cross-section properties for beam (H9% card)

A =310 % 10 +2 % 100 %20 = 7100 mm?

AX ~ 330 % 10 = 3300 mm?>

AZ=0.8% 2 %100% 20 = 3600 mrn2

XI = 133.8 % 10° mm?*

6 4

ZI =3.33 10" mm

Torsional constant:

3

AJ = (310 =107 + 2% 100 =% 203) / 3=0.62 % 106 mm4

By setting ¢ = 0.0 we will obtain stresses in a system with the ®;

coordinate coinciding with the x’ axis, the ®, coordinate is always normal

tog,.
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Example cases 11 to 14 are in preparation.
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