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Last year we demonstrated that Element-Independent Corotation based on polar 
decomposition at the element centroid permits analysis of systems undergoing large-strain 
response with standard off-the-shelf elements originally designed for moderate strains. This 
capability has implications for a wide variety of problems of special importance to aerospace 
structures, many of which consist of thin members best modeled by shell elements, where a 
plane-stress and linear through-the-thickness strain variation approximate quite closely the 
actual response. Given the motivation to minimize problem size and computer resource 
requirements, it is very desirable to have shell elements that can handle large membrane 
strains and at the same time faithfully reproduce plane stress response in the presence of 
severe thinning of the shell cross section. In this paper, we shall present our strategy for 
computing results presented last year for shells. We shall demonstrate superior accuracy 
and convergence properties for large-strain response for a variety of standard shell elements 
with and without transverse shear deformation. 

Nomenclature 
F, U = deformation gradient and right stretch tensor, respectively 
ε = strain 
Ci, Kb = Mooney-Rivlin material constants and bulk modulus, respectively 
( ) ij,•  = derivative of indicated quantity with respect to engineering strain component ij 

iλ  = i’th eigenvalue of U. 
J = determinant of U 
Q = matrix of eigenvectors of U with each eigenvector a column in Q. 
Ω, ω = spin of eigenvectors Q  
S = stress conjugate to a given strain measure 
e = square of stretch eigenvalues 

( )kl
ijH  = variation of strain component (ij) with respect to a unit variation of tensor strain component (kl) 

iv  = the third component i’th eigenvector of U (component along the shell director) 
p = hydrostatic pressure required to enforce volume and stress constraints 

I. Introduction 

Last year1 we demonstrated that Element-Independent Corotation2-4 based on polar decomposition at the 

element centroid permits analysis of systems undergoing large-strain response with standard off-the-shelf elements 
originally designed for moderate strains. In that work, we showed that with only modest changes to existing 
corotation software, a displacement field is presented to the finite element kernels that is irrotational (pure straining) 
at the centroid, and approximates pure strain over the rest of the element. We also demonstrated that strain based on 
a linear small-displacement formulation approaches Biot strain in the limit of a fine grid, which provides an 
excellent starting point for the implantation of large-strain material models. We followed that presentation with 
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several examples of large strain response for a material based on a Mooney-Rivlin potential function. What we did 
not do in that paper is to derive the material models as they apply to the shell and solid elements used for these 
examples. Although for solid elements, the derivation is based on standard methods5, the use of shell elements 
allowing transverse shear deformation poses special challenges to the generation of the consistent tangent material 
stiffness matrix. In this paper we shall cover the development of the material model in the form of a UMAT for both 
solid and shell finite elements. We shall also show that for plane stress shell analysis, the volume constraint can be 
introduced directly, simplifying the implementation considerably.  Finally, we shall demonstrate the method with 
examples. 

II. Theoretical Development 

A. Strain measures 
 As covered previously1, strains derived from a linear strain-displacement relationship applied to displacements 
based on the updated Element-Independent Corotation methodology approach Biot strains in the limit of fine 
discretization. We achieve such a displacement field by first straining the body and afterwards by rotating the 
element rigidly until the nodal displacements match the system displacement field. The operation is identical to 
polar decomposition at the centroid, hence its association with Biot strain.5-7 Several of the elements also have the 
ability to generate Green’s strain. For this reason, we shall be covering both Biot and Green strain measures: 
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In this set of equations, F is the displacement gradient, I is the identity matrix of order 3, R is an orthogonal rotation 
matrix, and U is the right stretch tensor. The superscripts G and B refer to Green and Biot strains, respectively.   

B. Mooney Rivlin Potential Function 
We have chosen the Mooney-Rivlin5 potential function to illustrate our large strain response: 
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Here, 1C  and 2C  and bK  are material constants, the iλ  are the principal stretches, and 

 ( ) ( ) 321detdet λλλ=== UFJ  (3) 

represents the fractional volume change for the point in question. This form of the potential function applies also to 
compressible materials; however, for most situations including those treated here, the bulk modulus bK is large 
compared to the other material response constants. 

C. Procedure for computing the stress—solids  
The stress field for solid elements is the easiest to derive because all six stresses participate, and no explicit 

constrains are imposed. It can be shown by standard methods that the stress is the derivative of the potential function 
as a function of the principal stretches. Stresses derived in this manner are expressed in the principal coordinate 
system, defined by the eigenvalue problem that diagonalizes the stretch tensor U: 
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Q is an orthogonal transformation. In this principal strain system, the stresses are: 
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Here we have the stresses conjugate to Biot strains. The reader will notice that they are diagonal in this coordinate 
frame. For Green’s strain, we have 
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In this case, 

 2
iie λ=  (7) 

The procedure for computing stresses given strains in a reference frame is to first compute the principal strains 
and their directions Q. The stresses computed by Eq. (5) or (6) are then transformed back to the reference frame and 
returned to element kernels. These computations are easily performed in a “UMAT” or user written constitutive 
processor that has available to it (among other things) indicators as to what the strain measure is, the strains in the 
reference frame, and the material constants. 

D. Eigenvalue and eigenvector derivatives 
 The other quantity that is required for a nonlinear material is the material tangent modulus. In contrast to the 
very simple procedure for computing stresses, additional terms come into play for the tangent modulus because of 
the rotation of the principal strain directions (eigenvectors) as a function of perturbations to the input strains. Even 
though the methods for deriving the tangent modulus for solids are off the shelf and appear very often in the 
literature (for example in Ref. 5), it is instructive repeat some of this development here, partly because it is difficult 
to find all the needed information in one place. We begin by restating Eq. (4) as follows: 

 UQQΛ T=  (8) 

If we take the variation of Eq. (8) we obtain 

 ( ) QUQUQQUQQΛ δδδδ TTT ++=  (9) 

where the variations of the stretch tensor are assumed to be independent. The left hand side of Eq. (9) is diagonal, 
whereas the matrices on the right hand side are in general full. One will also notice that because 
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the “spin” matrix δΩ is antisymmetric and has only three independent components.  If we substitute (10) into (9), we 
obtain 
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Given the definition of Λ, the only solution for Ω is as follows: 
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where we have defined 

 UQQU δδ T≡  (13) 

The quantity on the left hand side of (13) is just the variation of the tensor strains expressed in the principal system 
coordinates. Note that these variations are in general not diagonal. Finally, we have 
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We also have for the diagonal term the following relationship: 

 iii Uδδλ =  (15) 

Eq. (15) is what permits us to transform the strains into the principal system, compute the stresses by a simple 
derivative, and transform the result back: the variation of the eigenvalue is identical to the variation of their 
respective diagonal component in the stretch tensor. The explicit form for the transformation of the stresses from the 
principal system back to the reference system comes from the inverse of Eq. (8):  

 T
dQQSS =  (16) 

where dS are in diagonal form in the principal strain system. If we wish to compute the tangent modular matrix, we 
need to take the variation of (16); it will soon be apparent that the rotation of the principal directions gives rise to 
off-diagonal shear terms. The variation of Eq. (16) yields 
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The new off-diagonal terms come from the spin of the eigenvectors5. The d subscript is used here to refer to the 
diagonal stresses, and its variation is with respect to the principal stretches. 
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E. Tangent modulus for solids 
 Eq. (17) provides all the necessary information to compute the tangent stiffness for solids. The last term in Eq. 
(17) is very straightforward, with a simple differentiation of (6) yielding for Biot strain the following: 
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If we apply the first two terms in Eq. (17d) to the stresses from Eq. (6) we obtain the following additional terms: 
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There are two additional shear terms obtained by a cyclic permutation of the indices on λ and BS . Please note that 
in this and all other equations, we use comma notation in the subscripts to indicate partial derivatives; for example, 
in Eq. (19) we mean the derivative of the shear term (23) with respect to strain component (23). There is a factor of 
one half in Eq. (19) because the tangent modulus here is defined in terms of engineering strains instead of tensor 
strains. One must pay particular attention to the second term in the first bracket of Eq. (19). Its explicit derivation 
goes as follows: 

 

( ) ( )
( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

=−
0.

0
0

33221

1133222113

Symm
SS
SSSS

BB

BBBB

dd δω
δωδω

δδ ΩSΩS  (20) 

In this equation, the change in shear stress component BS23δ  is equal to ( )BB SS 33221 −δω . The same applies to the 
other terms by a cyclic permutation of the indices; there are no other nonzero shear terms for the tangent modulus in 
the principal strain coordinate system. Now we make use of Eq. (12). When we substitute in the values for δω, we 
notice that explicit limits exist for the ratios of the type 
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Limits like this will appear repeatedly in what follows, and there will never be a case where any tangent stiffness 
term does not posses a well-defined limit when one or more eigenvalues are equal. We shall henceforth present only 
the results of the limiting process in what follows for shells. 
 
 For Green’s strain, we have the following nonzero tangent stiffness terms: 
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The shear terms are 
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with the other shear terms given by a cyclic permutation of the indices on e and GS . For the tangent modulus for 
either strain measure, one must transform it back into the reference frame using standard methods.  

F. Shells without transverse shear deformation 
 One can easily extend the procedure described above for solids to plane stress analysis using shell elements 
without transverse shear deformation. In this case, we take J=1 in Eq. (2) and eliminate the last term. It is then a 
simple matter to use the fact that the stress normal to the shell surface is zero to solve for the unknown hydrostatic 
pressure required to enforce the constraint J=1. The procedure is explained fully in Ref. 5 and will not be repeated 
here. The procedure involves computing the variations in the principal strain space and then transforming the result 
back, just as in solids. When there is no transverse shear, one of the principal directions remains normal to the shell, 
so the volume constraint is easy to apply. The resulting stresses are 
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for Biot strain and 
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for Green strain. The tangent modulus is similarly straightforward: 
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Again here, there is a factor of a half in the last term because here we are using engineering strains for the shear 
term. The Green’s tangent modulus is also straightforward: 
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G. Shell elements with transverse shear deformation 
Difficulties arise immediately when applying the results of the previous section to shells exhibiting transverse 

shear deformation. This is because the direction in which the “normal” stress is zero no longer is normal to the shell, 
but instead follows the shell director that rotates slightly away from the shell normal in response to shearing. Thus, 
all three principal strain directions can rotate, making the constraint of zero “director” stress expressed in the 
principal system a function of the principal strain eigenvectors. Explicitly, the zero stress constraint becomes 
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Here, we are assuming that the third component in each eigenvector i belongs originally to the shell normal in the 
undeformed state, an arrangement that is easy to achieve in practice. The last equation comes from the 
orthonormality of the eigenvectors. The requirement of zero stress along the director is found by differentiating the 
potential energy function with respect to the principal stretches and applying Eq. (28): 
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The first equation in Eq. (29) is the general expression for the Biot stress expressed in the principal strain system. 
The new quantity p in Eq. (29) is the unknown hydrostatic pressure required to enforce the volume and zero stress 
constraints, which is solved by the second equation. The rational for the definition of p is explained in Ref. 5 and 
will not be repeated here. The nonzero strain along the director comes from the requirement that J = 1: 
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Here the strains are in their original system. The explicit solution for the strain in the third direction is 
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So far everything is quite straightforward. One first computes all six strains using the volume constraint expressed in 
Eqs. (30) and (31). One then solves for the principal directions, obtains the principal stretches, and obtains the 
stresses. Stresses are subsequently transformed back into the reference system.  

H. The tangent modular matrix 
It would appear that one could follow exactly the same procedure as for stresses to obtain the tangent modular 

material stiffness matrix. One would work as with solids and shells without transverse shear: solve for the normal 
strain, find the principal directions, and treat each variation in the principal system as independent. The result would 
be very similar to what we have done before. 

Unfortunately, such a procedure fails miserably. The reason of course is that the strain variations are not 
independent. Whereas for shells without transverse shear maintain one principal direction along the normal that does 
not change as the structure deforms, the constraint in (28) depends on the third component of all three eigenvectors 
in a situation where their components along the shell normal are changing. For stress, this presents no problem, 
because the variation of the principal stresses in that system depends only on the diagonal members of the strain, and 
not the eigenvectors except for Eq. (29b) that is applied explicitly. Not so for the tangent modular matrix.  
 To obtain this stiffness, we must perform our variations in the original system, and then transform these 
variations into the principal strain system to compute the stiffness components. To begin the process, we first 
compute the variation of the normal strain (in the reference state that is normal to the shell) as a function of the other 
five strains. This comes from the differentiation of Eq. (31): 
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The variations for the shear terms are with respect to the engineering strains that are twice their tensor values. From 
Eq. (32) is clear that the variation of the normal strain is an explicit function of the other five strains. To obtain the 
stiffness, we take a unit variation of each of the five strains in turn and only then transform them into the principal 
strain system. 
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In this equation, each matrix represents the variation of a particular independent strain component indicated by the 
superscript in parenthesis, with the new dependent term being the third diagonal term that comes from the volume 
constraint. The transformation of each strain variation into the principal strain system comes from Eq. (8): 
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Because each of these matrices stem from unit variation of the labeled strain component, they can be substituted 
directly into Eq. (17) to get the corresponding variation in the stress. All of the stress variations computed in this 
manner apply to that particular component of strain labeled by the superscripts. When one arranges strains into a 
vector as is common practice for finite element analysis, these variations actually become a particular column in the 
tangent modular stiffness matrix.  
 We begin with the last term in Eq. (17) by taking the derivative of the stresses, including the pressure term as a 
function of the stretches and the eigenvectors. By the chain rule, the differentiation of the stresses (Eq. (28) 
becomes: 
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The last term in Eq. (35) is the dependence of the stress on the third component iv  of each eigenvector i. It is 
straightforward to show that in the principal reference frame, 
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The remaining terms for the spin are obtained from a cyclic permutation of the indices. These equations are valid 
because of the orthonormality of the eigenvectors and Eq. (12). Here the reader is reminded that the subscripts on 
H  refer to a particular component in that matrix, whereas the superscripts refer to the strain component being 
varied. 
 It would appear that the last relationship in Eq. (36) would present problems when the two stretches approach 
each other. Again, however, the limit exists. To see this, we examine Eq. (29b) that defines the pressure p. If we 
differentiate this, we are left with polynomials like this: 
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where α is some positive or negative integer, and where we are taking the variation with respect to the eigenvector 
components. Written out, the cross product from Eq. (36b) expands to 
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We now apply Eq. (36c) to the derivative terms in Eq. (37b) to yield the following sequence of equations: 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
2

2
1

21
21122

1
2
3

13
13312

3
2
2

32
3223,

212131313232321

312213231132123321,

222

222

222

λλ
λλ

λλ
λλ

λλ
λλ

λλωλλωλλω

λωωλωωλωω

αααααα

αααααα

ααα

−
−

+
−
−

+
−
−

=

−+−+−=

−+−+−=

vvHvvHvvHP

vvvvvv

vvvvvvvvvP

klklkl
kl

klklkl

klklklklklkl
kl

 (39) 



 
American Institute of Aeronautics and Astronautics 

 

10

Clearly the limits are similar to Eq. (21), so that all expressions are well-defined. 
 We use Eq. (35) to obtain the derivatives of the stresses, as follows: 
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The first term is the explicit derivative of the stresses with respect to the stretch iλ , and the second term is the 
derivative of the pressure term. Only this latter term has dependence on the direction of the eigenvectors, where we 
shall be using Eq. (39c). To obtain the derivative of the pressure, we first rearrange the equation defining p (Eq. 
(29.b) like this: 
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The variation of p becomes 
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Finally we compute the explicit derivatives and use Eq. (39) to obtain 
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where we have taken the appropriate limits. The indices (subscripts) here cycle from 1 to 3 in a modular fashion; for 
example, if i=2, i+1=3 and i+2=1. The parentheses used for some of the subscripts are for clarity only. By 
combining Eqs. (42), (43) and (40), we have all the derivatives of the diagonal stress terms. 
 We use the first two terms in Eq. (17) to obtain the shear derivatives: 
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This gives the variation of the indicated (off diagonal) components of stress as a function of the independent strain 
component kl due to the rotation of the eigenvectors. This is the only shear contribution, yielding for Biot strains the 
result 
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 The tangent modulus for Green’s strains will be shown without proof. Their derivation is done in exactly the 
same manner as for Biot strains and presents no further difficulties. The equations defining the stress and the 
pressure are as follows: 
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The H matrices are slightly modified, as are the strain derivatives along the director: 

 

( ) ( )

( ) ( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

13,33

13

23,33

23

12,33

12

22,33

22

11,33

11

201
000
100

   ;
210

100
000

   ;
200

001
010

200
020
000

    ;
200

000
002

εεε

εε

HHH

HH

 (47) 

and 
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Eq. (35) is unchanged, with the remaining quantities required expressed as follows: 
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With Eq. (42) unchanged, we use the following to compute the derivative of the pressure term: 

 ∑
= ++

++
++++

−
⎥
⎦

⎤
⎢
⎣

⎡ +
+=Γ

3

1
2

2
2

1

21)(
)2)(1(21

)(32
2, 4

i ii

iikl
iiii

kl
iiiikl ee

eeHvvHevC  (50) 

and  

 [ ]∑
=

−
+

−
+++++

− +−=
3

1

1
2

1
1

)(
)2)(1(21

)(22
, 2

i
ii

kl
iiii

kl
iiiikl eeHvvHevD  (51) 

The reader is reminded of the modular nature of the subscripts in Eqs. (50-51). Finally for the shear terms, we have 
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This completes our derivation of the tangent modular matrices for both Biot and Green strain measures. The section 
on implementation will show that in practice, it is very simple to translate and test these relationships in a simple 
UMAT that can be run in either the Structural Analysis of General Shells (STAGS)8 or ABAQUS finite element 
codes. 
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I. Shell kinematic correction 
With the development in this section, we have derived stresses and the tangent modular stiffness matrix for 

solids and shells with and without transverse shear. For membrane response based on a total Lagrangian formulation 
that may or may not include corotation1, all the effects of shell cross section thinning have been taken into account. 
There is no kinematic constraint on such stretching, and the only limitation is the applicability of the Mooney-Rivlin 
potential function to the actual physics of the problem. In fact, there is no restriction whatsoever to extending the 
formulation to other more generalized potential functions, or to other strain measures, such a logarithmic. However, 
when the contribution of bending energy becomes important, one other correction is required. For shell elements, the 
(assumed linear) variation of the strain through the thickness depends on the thickness coordinate. Fortunately, most 
problems where bending dominates have small changes in the shell wall thickness; for almost all problems with 
significant thinning, the membrane terms dominate the response completely. Unfortunately, should the case apply 
where the thickness change is important, it is much more difficult to modify the kinematics in the style of UMAT. 
For STAGS we were able to do the modification in the through-the-thickness integration routine, by computing 3λ  
and multiplying that by the thickness of the undeformed section before performing the integration. When we ran the 
examples that follow this section, we saw almost no difference in results, even for the case that has significant 
bending. The way most finite element software is organized makes the computation of the tangent modular terms 
that come from thickness modifications very cumbersome. We were able to get good solutions without these small 
terms. 

III. Implementation Considerations 
 The strategy common to all elements includes determination of the principal strains and their eigenvectors. 
Following this operation, we compute the stresses and the tangent modular matrix. Finally, we transform the 
resulting stresses and the tangent modular matrix back to the original reference system for use by the finite elements. 
The argument list to UMAT provides all the necessary information for these basic operations except for whether the 
Green’s or Biot strain measure is chosen at the element level. For STAGS, it was a very simple matter to overcome 
this restriction; we suspect that a similar situation exists for ABAQUS. For solids and shells without transverse 
shear, the UMAT is quite compact, and was very simple to construct. 
 

 
 

Figure 1. Software organization for shells with transverse shear deformation. 
 

Transform strains to 
principal system 

 
Compute stresses  

Loop over strain components Done?

Transform stress 
& tangent matrix 
back to reference 

coordinates 

Output results and 
exit 

Eqs. (31-34) for H  

Eqs. (40), (42-43), (45) for a 
given column of tangent matrix 
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 The situation is a bit more complicated for shells with transverse shear deformation. In this case, the stress 
computation is just a straightforward as before, but the tangent modular matrix requires additional steps. Fig. 1 
illustrates the major steps in the procedure. The added complexity comes in the form of a loop over the 5 
independent strain components. It turns out, however, that the extra effort is limited to keeping track of the strain 
indices and applying the equations mentioned in the boxes.  
 The implementations for all elements were tested using finite difference, with results matching the precision of 
the finite difference operation itself.  

IV. Example Problems 

J. STAGS finite elements 
Three shell elements and three solid elements will be mentioned in the results that follow. The following list 

contains some basic information about each element: 
 

1. E410: an incompatible 4-node C1 shell element based on a cubic transverse displacement field, but 
linear in the in-plane directions. Available with the nonlinear Green’s strain option. 

2. E480: an Assumed Natural Strain (ANS9) 9-node shell element based on isoparametric quadratic 
Lagrange interpolation. 

3. E330/E430: a triangle based on the work of Madenci10. 
4. E881 & E883: 8 & 27 node ANS solid brick elements11. 
5. E885: an isoparametric 20 node “Serendipity” element. Available with Green’s strain nonlinear option. 

K. List of example problems 
We present the following example problems to demonstrate the effectiveness of our UMAT software:  
 

1. A constant “extrusion” demonstrating equal performance of shell and solid idealization for plane stress 
response. 

2. A constrained “extrusion” case 
3. The Ogden12rubber disk (ABAQUS benchmark problem 1.1.713). 
4. The Yamada & Kikuchi14 indentation problem. 
5. Bending of a hexahedral block. 

L. “Plane stress” extrusion  
The following example compares the response of brick elements and shell elements for a plane stress, uniform 

extrusion problem:  
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
 

Figure 2. Uniform extrusion that doubles the length of a unit cube. 
 

The boundary conditions allow the two free sides to contract uniformly in response to a unit extension of the free 
edge (shaded). The three hidden faces are symmetry conditions, as shown. We performed three analyses: 

Symmetry 
Free 

Uniform 
extension 

1.0 

1.0 
1.0 

Mooney Rivlin Properties: 
 
C1 = 80psi 
C2 = 20psi 
Kb = 1.E5psi 
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1. Biot strain, E881 brick element. 
2. Biot strain, E410 shell element 
3. Green strain, E410 shell element 

 
All runs produced identical response, with data summarized in Table I: 
 

Table I: Extrusion test case response. 
 

 Lateral Contraction Strain End Reaction Force 
E881 Brick .29285 1.0            315 (lbs) 
E410 Shell .29289 1.0            315 
E410 Shell (Green’s) .29289 1.5            315 

 
One can see that the response for all three runs is identical, including the lateral contraction. Although Green’s strain 
is numerically larger, the forces generated are exactly the same. Even though the shell kinematics are very different 
from those of solids, with the constant volume and zero stress constraints applied explicitly, the response of the shell 
element is identical to the solid brick element.  

M. Constrained Extrusion 
This case illustrates a plane-stress response, but this time with lateral motion restrained at one end: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Constrained extrusion case geometry. 

 
For solid element models, the top surface is free and the bottom is “symmetry,” as shown above; this 

corresponds to the plane-stress conditions used in the shell models. The plate was loaded by a uniform end extension 
of 2 inches. Again, both solid and shell element yielded almost identical results, with the same reactions and 
deflected shapes. We ran E410, E885 (Serendipity 20 node brick), E883 (27 node ANS brick), and E881. Where 
applicable, results for Biot strain were compared to Green strain, with identical reaction forces and identical 
displacements. The deflected shape is illustrated in Fig. 4. This is the first example where there is local rotation of 
individual elements, and where the strains vary. It is comforting to know that for six separate analyses using two 
strain measures and four elements we obtained identical lateral displacements as a function of position, and the same 
reaction force of 64.29 lbs. The material properties are identical to the preceding problem. Figure 5 shows just how 
close the match is for the lateral deflection as a function of distance along the free edge of the plate. 
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Figure 4. Constrained extrusion case response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

gure 8: Comparison of response of various elements and strain measures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Comparison of response of various elements and strain measures. 
 

N. Response of rubber disk to live pressure load 
The problem chosen here is taken from ABAQUS13 to be used as a benchmark for hyperelastic response for 

strains of the order of 400% or more. Two disk thicknesses are analyzed in Refs. 13 and 15, but the thicker disk we 
chose is by far the most challenging for shell elements. The model is described in Fig. 6 below. This example poses 
a severe test to both our solid and shell elements, for different reasons. For shell elements, significant thinning of the 
disk exercises our implementation of the constant volume and zero stress constraints. For solids, the response is very 
sensitive to the bulk modulus, hence convergence problems are to be expected. For the E881 solid, we were able to 
satisfy the volume constraint exactly at the centroid by treating the pressure as a Lagrange constraint and solving for 

Contours: lateral displacement. 
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the pressure indirectly, by the method of Felippa16. This method alters the solution sequence of operations to include 
a second evaluation of the internal force vector and a method to update the value of the pressure Lagrange 
multiplier; it was extremely simple to implement that algorithm into STAGS. For other elements, we did not attempt 
to account for incompressibility except by using a large bulk modulus. In Fig. 7 we find the normal deflection of the 
center of the disk plotted as a function of pressure for all the elements mentioned above. The busy nature of the plot 
testifies to the almost exact agreement every element had with the ABAQUS benchmark and Ogden’s12 results, 
clearly demonstrating the capability of the methods used here. One will notice that there are two curves for the E881 
solid element case; one curve is for the top surface, and the other is for the bottom. They do not match because the 
cross section thins enough for the difference to be seen on the plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6. ABAQUS benchmark disk problem. 
 

There were a few problems, however.  The E883 and E885 solid elements were slow to converge because we 
had to use such a large bulk modulus to get volume-conserving results; hourglassing took place if we enforced the 
volume constraint only at the centroid. The E885 20 node solid was especially vulnerable, with locking or 
hourglassing depending on whether we applied the bulk modulus at all integration points or only at the centroid. We 
included two curves of this element to demonstrate just how sensitive it is to the bulk modulus. The lower curve is 
response of the top surface for the bulk modulus stated in Fig. 6; the upper curve is the same response for a bulk 
modulus one order of magnitude higher. These are problems particular to a given element that were not tackled here. 
The E410 Green, E410 Biot, and E330 Biot formulations converged at about the same rate, yielding excellent results 
in the fewest load steps. This problem shows that our methods are capable of computing very large strain >400% 
response within a total Lagrangian framework and using standard, off-the-shelf (actually rather antique) finite 
elements. To see just how extreme this case is, we ran a quarter model so we could plot a picture, shown in Fig. 8. 
 

Finally, the reader will notice that the E883 ANS element is not included in this example because up to the 
present time, we were not able to overcome locking that results from a large bulk modulus and its full 3x3x3 
integration. 
 

Constant live pressure
loading over surface 

t = 12.7 mm 

“Simple support” 

Portion modeled 
(axisymmetric) 

r =190.5 mm  

Mooney Rivlin 
Properties: 
 
C1 = .55MPa 
C2 = .138MPa 
Kb = .69GPa 
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Figure 8. Final deformed shape of inflated rubber disk. 
 
 

O. The Yamada Kikuchi indentation problem 
 This problem tests our methods with a plane-strain response that includes very large material strains and 
rotations.  Originally due to Yamada & Kikuchi14 and also found in Refs. 5-7, this problem consists of a rectangular 
block with a uniform indentation on its left top half, allowed to slide but otherwise restrained on three edges, and 
free on its top right half, as shown in Fig. 9. The imposed displacement boundary condition requires careful 
consideration. In our results, displacements parallel to the loaded edge (heavy black line) are permitted. This 
boundary condition is not the same as having a heavy steel plate push on the material and allowing the material to 

Axial Biot strain 

Initial radius of disk 

 

 

E881 Biot, top 
and bottom 
surfaces. 

E885 Biot 
& Green, 
Kb = 10 Kb 

E885 Biot & 
Green, Kb 

 

E480, E330, 
E410 Biot, E410 
Green, ABAQUS, 
Ogden 

Figure 7. Response of pressure-loaded disk. 
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squeeze out. Rather, it means the nodes are free to move along the edge, which also allows the loaded section itself 
to expand or contract. The boundary condition is the same as the one used by Moita6, which for a rather coarse grid 
like the one he used is displayed in Fig. 10. The element in this picture is a plane-strain form of the E410, with our 
solid elements giving essentially the same results. Colors represent vertical displacements, and as in our previous 
examples, deformed shapes are not scaled. The reader will note the strong similarity with Fig. 14 in Ref. 4. To get a 
better understanding of this problem, we conducted a mesh refinement study using the total reaction force on the 
loaded segment as the measure of convergence. Figure 11 summarizes a series of analyses with two solid elements 
and two strain measures. Clearly convergence is slow, as would be expected if response in the area adjacent to the 
loaded edge (where strains vary significantly over a very short range) determines convergence. Figure 12 shows an 
example of a much finer grid and the huge distortions near the reentrant corner. We had serious problems with ill-
conditioning and locking, especially for the E410 which became useless for the finer mesh models. Although we 
were able to extend the utility of the E881 brick by applying the bulk modulus term to the centroid only and using 
the method in Ref. 16, doing the same thing for E885 caused hourglassing, just as in the ABAQUS disk. However, 
as in previous examples, these are element kernel details not germane to the methodology developed here. 

 

Figure 10: Response of indentation problem, coarse grid. 

 Uniform applied displacement Free edge 

2. 

1. 
Thickness =.2 
w= 0

Mooney Rivlin Properties: 
(non-dimensional) 
C1 = 1.5 
C2 = 2.0 
Kb = 1.E5 
 

1. 

 

Figure 9. Indentation plane strain problem 
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Figure 11. Comparison of reaction force as a function of mesh density. 

 
 
 

 

 
Figure 12. First principal strain for the 81 x 21 E881 mesh (Biot strain). 

 

P. Bending of a hexahedral block 
This final example demonstrates behavior unsuitable for shell elements because the strain is far from linear as a 

function of the distance along the thickness direction. We are, however, able to show the effects of the volume 
constraint and significant transverse shear deformation as the block deforms. The geometry and boundary conditions 
are shown in Fig. 13. As one can see here, this is quarter model of a block 2 x 1 x .5 units long. The tractions are 
allowed to vary slightly along the thickness direction (see formula in Fig. 13, where z is in the thickness direction) to 
induce an initial normal deflection that will increase in response to the axial loading, as would be found in the 
elastica problem. The material properties are identical to the previous example (Fig. 9). In this analysis we used only 
the E881 solid element with the volume constraint imposed exactly at the centroid of each element.  

 

E885 Biot, 81x41 

E885 Green, 41x21 

E881 Biot
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81x41 
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 We carried the analysis beyond the point of maximum normal deflection, yielding the following final 
configuration, as shown in Fig. 14. 

 
 

Figure 14. View from axial symmetry plane showing strains. 
 

This particular view is directly out from the axial (long) symmetry plane that coincides with the plane of the 
paper. One of the things the reader will notice is the flaring out of the section as one moves away from the symmetry 
plane. Another feature is the very large axial strain of over 58%. As expected, the transverse shear is very 
significant, especially in the center of the segment. Figure 15 shows a sequence of responses to increasing load, but 
this time looking from the free loaded end toward the symmetry plane at the midspan; since this symmetry boundary 
coincides with the plane of the figure, the deformation there is confined to that plane. In both Figs. 14 and 15, the 
deformation is not exaggerated, and therefore represents the physical appearance of the block. 

Figure 13. Geometry, loading, and boundary conditions of hexahedral block. 
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Figure 15. Looking along axial direction toward midspan, showing B

22ε  strain distribution. 
 

 
Figure 16. Expanded view of final configuration showing B

22ε  
 
The reader will note the “squashed” elements near the symmetry plane; they appear that way because the 

viewer’s perspective is almost tangent to these elements. It is very clear that there is huge distortion in the plane of 
the misdpan. Finally, in Fig. 16 we show an expanded view of the final configuration with the figure tilted slightly to 
the right; this view offers an improved perspective of the deformation. 

Modest deformation 

Significant deformation 

Final deformed 
shape 

Loaded 
edge 

Loaded 
edge 
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Figure 17. History plots of displacements at midspan symmetry boundary. 

 
 
Figure 17 gives further insight into the response by showing a history of the deflection of the four labeled points 

in Fig. 13. In that figure, the reader will see four darkened circles with letter labels, each of which corresponds to 
one of the traces labeled with the same letters in Fig. 17. Two features stand out in these plots. First, the response 
has the characteristics of sudden buckling that occurs at a total axial load of about .38. The onset is gradual because 
of the small moment imposed on the beam. Before buckling, the compression of the block causes it to expand 
uniformly in both the lateral and transverse directions. This is illustrated by the small negative transverse 
displacements of both curves on the second (right side) plot. Immediately after the buckling, the beam bends and the 
side with the compression flares out (here, negative lateral displacements), and on the tensile side, positive (inward) 
deflections. The beam also curls, as shown on the first plot. Along the line AB, the transverse displacements begin to 
diverge because of this curling. Likewise, similar behavior is revealed along line CD. Similarly, compression forces 
the beam to thicken at point A, and thin at point C, resulting in the difference shown by their respective curves. Most 
all of this behavior stems from the volume constraint accompanied by large transverse shear strains, all of which can 
be seen in Figs. 14-16. 

 

V. Summary and Conclusions 
In this paper we completed what we started in Ref. 1, where we demonstrated that corotation based on 

irrotational deformation at the element centroid yields an excellent approximation to the Biot strain measure when 
the basic element kernels possess a simple linear strain-displacement relationship. In that earlier paper, we 
demonstrated the efficacy of the method for several example problems involving large strain. Here we presented the 
details of a straightforward material model definition based on the Mooney-Rivlin potential function suitable for a 
UMAT implementation. The model applies equally well to plane-stress shell-element or solid-element response. The 
examples herein show just how well the method works. We also showed in the examples that both the Green or Biot 
strain measures yield identical responses, confirming that the material model is correctly derived from the strain 
energy potential function.  It is clear from the way the material model is derived that the method can be extended to 
any number of more general potential functions, or other strain measures if so desired. Biot and Green’s strain are of 
course suitable strain measures for more complex material behavior, including large scale plastic deformation. 
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