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ABSTRACT 
 
This paper opens with a general discussion of terms in an energy functional which might be the basis from 
which equations governing stress, stability, and vibration analyses are derived. The energy expression includes 
strain energy of the shell and discrete stiffeners, kinetic energy of the shell and stiffeners, constraint conditions 
with Lagrange multipliers, and other terms arising from the change in direction of applied loads during 
deformation. Brief discussions are included of the coupling effect between bending and extensional energy 
needed for the analysis of layered composite shells or elastic-plastic shells, nonlinear terms, and the form that 
the energy expression takes upon discretization of the structure. 
 
A section follows in which the energy formulation for stress, stability, and vibration analyses of an elastic 
curved beam is given, including thermal effects, moderately large rotations, boundary conditions, and 
distributed and concentrated loads. The matrix notation and type of discretization are introduced here which will 
later be used for the analysis of shells of revolution. Terms in the local element stiffness, mass, and load-
geometric matrices are derived in terms of nodal point displacements, and it is shown how these local matrices 
are assembled into global matrices. The purpose of the section is to demonstrate the procedure for derivation of 
the analogous equations and quantities for shells of revolution or more complex structures. 
 
The next section is on elastic shells of revolution. It opens with a summary of what computer programs exist for 
stress, buckling, and stability analyses of such structures. The assumptions on which these programs are based 
are listed and the various components of the energy functional, such as strain energy of the shell and discrete 
rings, are identified and derived in terms of nodal point displacements. Included are a derivation of the 
constitutive law for anisotropic shell walls and a formulation of nonlinear constraint conditions, which are 
required for the treatment of segmented or branched shells with meridional discontinuities between segments or 
branches. Derivations of terms in the global stiffness and load-geometric matrices and the force vector are 
given, with tables tracing the origin of each term. The computational strategy for calculation of critical 
bifurcation buckling loads in the presence of prebuckling nonlinearities is given, with an example of buckling 
under axial compression of a very thin cylinder. This is a simple problem to formulate but a difficult one to 
solve numerically, owing to the existence of closely spaced eigenvalues corresponding to nonsymmetric 
buckling at loads close to the load corresponding to nonlinear axisymmetric collapse. A description of various 
pitfalls encountered in the search for the lowest bifurcation buckling load is given, including estimates of the 
critical number of circumferential waves in the buckling mode. Computerized formulations and run times are 
compared for various discretization methods, including finite difference energy models and standard finite 
element models, with an example showing comparisons of rate of convergence with increasing nodal point 
density and computer times required to form stiffness matrices. 
 



Hybrid bodies of revolution are discussed next. By "hybrid" is meant a body of revolution with both one-
dimensionally and two-dimensionally discretized regions. The formulation is particularly useful for the stress, 
buckling, and vibration analyses of branched shells or ring-stiffened shells in which one is particularly 
interested in local effects within a distance equal to a shell wall thickness of a branch or ring. An appropriate 
strategy for the solution of nonlinear problems with simultaneous geometric nonlinearity and path-dependent 
material properties is described, including the development of the incremental constitutive law for the tangent 
stiffness method of treatment of elastic-plastic structures. The two-dimensionally discretized regions are 
modeled with use of 8-node isoparametric quadrilaterals of revolution. Details are presented on the formulation 
of constraint conditions for compatibility at junctions between rotationally symmetric shell segments (one-
dimensionally discretized regions) and solid segments (two-dimensionally discretized regions). 
 
The paper closes with a summary of linear equations for general shells. Surface coordinates, the first and second 
fundamental forms, and the definition of a shell are introduced, and the assumptions corresponding to Love's 
first approximation are identified. The differences in commonly used or referenced formulations are listed, 
including differences with regard to kinematic relations, expressions for total strain anywhere in the thickness of 
the shell wall, and expressions for stress and moment resultants. Comments are offered on which theory is the 
most suitable for engineering estimates. 
 
 

 
 
Fig. 2 Comparison of convergence of the finite element method with the finite difference energy method (from 
D. Bushnell, Finite-difference energy models versus finite element models: two variational approaches in one 
computer program. Numerical and Computer Methods in Structural Mechanics (Edited by S. J. Fenves, N. 
Perrone, A. R. Robinson and W. C. Schnobrich), pp. 291-336. Academic Press, New York, 1973). 



 
ANALYSIS OF SHELLS OF REVOLUTION 
 
The importance of this class of structures is attested to by the numerous computer programs that have been 
written for analysis of stress, buckling and vibration of axisymmetric shells. 
 
 
COMPUTER PROGRAMS 
 
In Fig. 16 the names of computer programs or their authors are located in a space with coordinates that measure 
complexity of geometry versus generality of phenomenon. Each name indicates the capability of the 
corresponding computer program to perform the analysis indicated by the intersection of these coordinates. In 
this coordinate system increasingly general-purpose computer codes lie increasing distances from both axes. 
Other codes, existing just outside of the region depicted, apply to structures that are "almost" shells of 
revolution, such as shells with cutouts, shells with material properties that vary around the circumference, or 
panels of shells of revolution. 
 
The region shown in Fig. 16 is divided by a heavy line into two fields: Programs lying within the heavy line are 
based on numerical methods that are essentially one-dimensional, that is, the dependent variables are separable 
and only one spatial variable need be discretized; programs lying outside the heavy line are based on numerical 
methods in which two or more spatial variables are discretized. It is generally true that analysis methods and 
programs lying outside the heavy line require perhaps an order of magnitude more computer time for a given 
case with given nodal point density than do those lying inside the line. This distinction arises because the band-
widths and ranks of equation systems in two-dimensional numerical analyses are greater than those in one-
dimensional numerical analyses. Certain of the areas in Fig. 16 are blank. Those near the origin correspond in 
general to cases for which closed-form solutions exist and for which slightly more general programs are clearly 
applicable. The blank areas lying near the outer boundaries of the chart are for the most part covered by more 
general programs such as NASTRAN, SPAR, STAGS, STRUDL, ASKA, MARC, ANSYS and other general-
purpose programs described in Ref. [24]. (2011 NOTE: A bit of history!) 
 
As of 1980 the most commonly used computer programs for complex shells of revolution are those by Cohen 
[l],  Kalnins [2], Svalbonas [3], and Bushnell [18,25]. A typical summary of the capabilities of such programs is 
listed in Table 1. In general the shell-of-revolution codes represent implementation of three distinct analyses: 
 
(1) A nonlinear stress analysis for axisymmetric behavior of axisymmetric shell systems (large deflections, 
elastic or elastic-plastic). 
 
(2) A linear stress analysis for axisymmetric and non-symmetric behavior of axisymmetric shell systems sub- 
mitted to axisymmetric and nonsymmetric loads. 
 
(3) An eigenvalue analysis in which the eigenvalues represent buckling loads or vibration frequencies of 
axisymmetric shell systems submitted to axisymmetric loads. (Eigenvectors may correspond to axisymmetric or 
nonsymmetric modes.) 
 
Some of the codes [1, 18] have an additional branch corresponding to buckling of nonsymmetrically loaded 
shells of revolution. In the BOSOR4 program [18] this branch is really a combination of the second and third 



analyses just listed. 
 
 
Advantage of axisymmetric geometry: separation of variables 
 
The great advantage of the computer programs cited above is their efficiency. This efficiency derives from the 
fact that for the three types of analysis just listed the independent variables can be separated and an analytically 
two-dimensional problem thus reduced to a numerically one-dimensional model. Such a model leads to 
compact, narrowly banded stiffness, load-geometric, and mass matrices, as we have seen from the beam 
analysis of the previous section. The reduction of these matrices for solving equilibrium and eigenvalue 
problems is performed speedily on the computer. 
 
For example, the independent variables of the BOSOR4 analysis [18] are the arc length s measured along the 
shell reference surface and the circumferential coordinate theta. The dependent variables are the displacement 
components u, v and w of the shell wall reference surface. For the three types of analyses listed above it is 
possible to eliminate the circumferential coordinate theta by separation of variables: in the nonlinear stress 
analysis theta is not present; in the linear stress analysis the nonsymmetric load system is expressed as a sum or 
harmonically varying quantities, the shell response to each harmonic being calculated separately; and in the 
eigenvalue analysis the eigenvectors vary harmonically around the circumference. Buckling under 
nonsymmetric loads is handled by calculation of the nonsymmetric prestress distribution from the linear theory 
and establishment of an eigenvalue problem in which the prestress distribution along a given meridian, 
presumably the meridian with the most destabilizing prestress, is assumed to be axisymmetric. Thus, the theta-
dependence, where applicable, is eliminated by the assumption that displacements u(s,theta), v(s,theta), 
w(s,theta) are given by u(s)sin ntheta, v(s)cos ntheta, w(s)sin ntheta, or by u(s)cos ntheta, v(s)sin ntheta, 
w(s)cos ntheta. 
 
The advantages of being able to eliminate one of the independent variables cannot be overemphasized. The 
number of calculations performed by the computer for a given nodal point spacing along the arc length s is 
greatly reduced, leading to significant reductions in computer time. Because the numerical analysis is "one-
dimensional" a rather elaborate composite shell structure can be analyzed in a single "pass" through the 
computer. The disadvantage is, of course, the restriction to axisymmetric (or prismatic) structures. 
 
 
ENERGY FORMULATION-A SUMMARY 
 
The following analysis of a segmented, ring-stiffened shell of revolution is similar to that for the beam given in 
the previous section. It is based on energy minimization with constraint conditions. The total energy of the sys- 
tem involves (1) strain energy of the shell segments Us, (2) strain energy of the discrete rings Ur, (3) potential 
energy of the applied line loads and pressures Up, (4) kinetic energy of the shell segments Ts, and (5) kinetic 
energy of the discrete rings Tr. In addition the total energy functional includes constraint conditions Uc arising 
from (1) displacement conditions at the ends of the composite shell, and (2) compatibility conditions between 
adjacent segments of the composite shell. These components of energy and the constraint conditions are initially 
integrodifferential forms. They are then written in terms of the shell reference surface nodal point displacement 
components ui, vi and wi and Lagrange multipliers, Lambdai The integration along the reference surface 
meridian is performed numerically. Now an algebraic form, the energy is minimized with respect to the discrete 
dependent variables, ui, vi, wi, and Lambdai. 



 
In the nonlinear stress analysis the energy expression has terms linear, quadratic, cubic, and quartic in the 
dependent variables. The cubic and quartic terms arise from the "rotation-squared" terms which appear in the 
constraint conditions and in the kinematic expressions for reference surface strains e1, e2, and e12. Nonlinear 
material properties (plasticity) are not included here. For details on plastic buckling the reader should consult 
Ref. [26]. Energy minimization leads to a set of nonlinear algebraic equations which are solved by the Newton- 
Raphson method. Stress and moment resultants are calculated in a straightforward manner from the mesh point 
displacement components through the constitutive equations (stress-strain law) and kinematic (strain-displace- 
ment) relations. 
 
The results from the nonlinear axisymmetric stress analysis are used in the eigenvalue analyses for buckling and 
vibration. The "prebuckling" or "prestress" meridional and circumferential stress resultants N10 and N20 and the 
meridional rotation beta0 appear as known variable coefficients in the energy expression which governs 
bifurcation buckling and modal vibration. This bifurcation buckling or modal vibration energy expression is a 
homogenous quadratic form. The values of a parameter (load or frequency) which render the quadratic form 
stationary with respect to infinitesimal variations of the dependent variables represent buckling loads or natural 
frequencies. These "eigenvalues" are calculated from a set of linear, homogeneous equations. 
 
Similar linear equations, with a "right-hand-side" vector added, are used for the linear stress analysis of 
axisymmetrically and nonsymmetrically loaded shells. The "right-hand-side" vector represents load terms and 
terms due to thermal stress. The variable coefficients N10 and N20 and beta0 mentioned above are zero, of course, 
since there is no nonlinear "prestress" phase in the linear nonsymmetric equilibrium analysis. 
 
 
BASIC ASSUMPTIONS 
 
The assumptions upon which the following analysis is based are: 
 
(1) The wall material is elastic and behaves linearly. 
 
(2) Thin-shell theory holds; i.e. normals to the undeformed surface remain normal and undeformed. Transverse 
shear deformation is neglected. 
 
(3) The structure is axisymmetric, and in vibration analysis and nonlinear stress analysis the loads and 
prebuckling or prestress deformations are axisymmetric. 
 
(4) The axisymmetric prebuckling deflections in the nonlinear theory, while considered finite, are moderate; i.e. 
the square of the meridional rotation can be neglected compared with unity. 
 
(5) In the calculation of displacement and stresses in nonsymmetrically loaded shells, linear theory is used. This 
analysis is based on standard small-deflection analysis. 
 
(6) A typical cross-section dimension of a discrete ring stiffener is small compared with the radius of the ring.  
 
(7) The cross-sections of the discrete rings remain undeformed as the structure deforms, and the rotation about 
the ring centroid is equal to the rotation of the shell meridian at the attachment point of the ring. 



 
(8)The discrete ring centroids coincide with their shear centers. 
 
(9) If meridional stiffeners are present, they are numerous enough to include in the analysis by an averaging or 
'smearing' of their properties over any parallel circle of the shell structure. 
 
(10) The shell is thin enough to neglect terms of order t/R compared to unity, where t is a typical thickness and 
R a typical radius of curvature. 
 
(11) Prebuckling in-plane shear resultants are neglected in the stability analysis. 
 
(12) The integrated constitutive law is restricted to the form given in eqn (84). For example, any coupling 
between normal stress resultants and shearing and twisting motions is neglected. 
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Fig. 13 Stiffness matrix configuration for a two-segment, one-dimensionally discretized structure with 
intermittent fasteners (from D. Bushnell, Stress, stability, and vibration of complex branched shells of 
revolution. Computers & Structures 4, 399-435, 1974). 


