July 2, 2009
A WARNING TO BOSOR4, BIGBOSOR4, BOSOR5 USERS

The purpose of this document is to caution BOSOR4, BIGBOSOR4, and BOSORS5 users about
generating shell segment geometries in which the meridional curvature, 1/R1 (called “CUR1”) varies
within a given shell segment, such as is the case for ellipsoidal shells. For an example in which this
gives rise to significantly unconservative predictions, please see Fig. 1 below. Here follows an email
message sent to a colleague at NASA Langley Research Center in June, 2009.

Dear Colleague,

In the BOSORS5 model of the shell we've been corresponding about there was at least one, maybe
two, of the biggest shell segments that were designated as ellipsoidal.

I'm a bit uneasy about the use of the ellipsoid geometry option in BOSOR4 and BOSORS. The reason
is that the BOSOR4 (BIGBOSOR4) and BOSORS5 finite element tends to "lock up" when the
meridional radius of curvature varies within a single shell segment, as it does for the ellipsoidal
profile. The "lock up" seems to be very mild in the case of a perfect ellipsoidal shell, but it is none-the-
less there, and it causes unconservative predictions.

| would feel more confident about your BOSOR5 model if you could eliminate the ellipsoidal segments
and replace them with "equivalent ellipsoidal" segments, that is, segments that consist only of
torispherical segments in which the meridional radius is constant within any one segment of the
BOSOR5 model. You can replace each one of the ellipsoidal segments in your present BOSOR5
model with several torispherical segments in a way analogous to that displayed in Fig. 2 of the
attachment below.

Included in this message are some pages from my paper presented at the 50th AIAA SDM
conference in May, 2009 (AIAA Paper 2009-2702). | extracted only the pages from that very, very
long paper that are relevant to this "equivalent ellipsoidal" topic.

Best regards,

Dave (Bushnell)
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ABSTRACT

GENOPT, a program that can be used to optimize anything, and BIGBOSOR4, a program for stress,
buckling, and vibration analysis of segmented, branched, stiffened, elastic shells of revolution, are
combined to create a capability to optimize a specific kind of shell of revolution: an internally isogrid-
stiffened elastic ellipsoidal shell subjected to uniform external pressure. Optimum designs are obtained
for isogrid-stiffened and unstiffened axisymmetrically imperfect and perfect titanium 2:1 ellipsoidal
shells. The decision variables are the shell skin thickness at several user-selected meridional stations, the
height of the isogrid stiffeners at the same meridional stations, the spacing of the isogrid stiffeners
(constant over the entire shell), and the thickness of the isogrid stiffeners (also constant over the entire
shell). The design constraints involve maximum stress in the isogrid stiffeners, maximum stress in the
shell skin, local buckling of an isogrid stiffener, local buckling of the shell skin between isogrid stiffeners,
general nonlinear bifurcation buckling, nonlinear axisymmetric collapse, and maximum normal
displacement at the apex of the dome. Optimum designs first obtained by GENOPT are subsequently
evaluated by the use of STAGS, a general-purpose finite element computer program. It is found that in
order to obtain reasonably good agreement between predictions from BIGBOSOR4 and STAGS it is
necessary to model the ellipsoidal shell as an "equivalent" ellipsoidal shell consisting of a spherical cap
and a series of toroidal shell segments that closely approximates the true ellipsoidal meridional shape.
The equivalent ellipsoidal shell is optimized with up to four axisymmetric buckling modal imperfections,
each imperfection shape assumed to be present by itself. Computations include both plus and minus
axisymmetric buckling modal imperfection shapes. At each design cycle and for the plus and minus
version of each axisymmetric imperfection shape the following analyses are conducted: 1. linear general
axisymmetric bifurcation buckling analysis (in order to obtain the axisymmetric linear buckling modal
imperfection shapes), 2. nonlinear axisymmetric stress analysis at the design pressure, 3. nonlinear
axisymmetric collapse analysis, and 4. nonlinear non-axisymmetric bifurcation buckling analysis. For
each axisymmetric imperfection shape the design margins include an axisymmetric collapse margin, a
general buckling margin, a margin involving the normal displacement of the apex of the shell, and local
skin and stiffener stress margins and local skin and stiffener buckling margins within two approximately
equal meridional regions of the equivalent ellipsoidal shell. There is generally good agreement of the
predictions from STAGS and from BIGBOSORA4 for the elastic behavior of the perfect stiffened and
unstiffened optimized shells and for the behavior of the imperfect stiffened optimized shells with
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axisymmetric buckling modal imperfections. Optimization with the use of only axisymmetric buckling
modal imperfections has a disadvantage in the case of the unstiffened imperfect shell under certain
conditions: the optimum design of the axisymmetrically imperfect unstiffened shell evolves in such a way
that, according to predictions from STAGS, a non-axisymmetric buckling modal imperfection with the
same amplitude as an axisymmetric buckling modal imperfection causes collapse of the shell at an
external pressure far below the design pressure. This disadvantage is easily overcome if, during
optimization cycles, the unstiffened shell wall in the neighborhood of the apex is forced to remain thick
enough so that local axisymmetric buckling does not occur primarily at and near the apex but instead
occurs primarily in the remainder of the shell. An extensive study of some of the previously optimized
elastic shells is conducted with STAGS including elastic-plastic material properties. The effect on collapse
pressure of initial imperfections in the form of off-center residual dents produced by load cycles applied
before application of the uniform external pressure is determined and compared with the effect on
collapse pressure of imperfections in the form of non-axisymmetric and axisymmetric linear buckling
modes, especially the non-axisymmetric linear buckling modal imperfection with n=1 circumferential
wave, which seems to be the most harmful imperfection shape for optimized externally pressurized
ellipsoidal shells. For the optimized unstiffened shell it is found that a residual dent that locally resembles
the n=1 linear buckling modal imperfection shape is just as harmful as the entire n=1 linear buckling
modal imperfection shape.

5.0 “TRUE” ELLIPSOIDAL SHELL versus “EQUIVALENT” ELLIPSOIDAL SHELL
5.1 “True” ellipsoidal shell

Figure 1 shows predictions of elastic collapse of an optimized true unstiffened 2:1 titanium ellipsoidal shell
under uniform external pressure. The ellipsoidal shell has a semi-major axis length of 24.75 inches and semi-
minor axis length of 12.375 inches. The inner surface is the reference surface, which has the ellipsoindal profile.
The design external pressure is 460 psi and the minimum allowable pressure at which the shell collapses
axisymmetrically is 550 psi. The unstiffened ellipsoidal shell has thickness that varies along the meridian. The
decision variables of the optimization problem are the values of wall thickness at 13 stations on the meridian
including that at the pole and that at the equator. The shell is optimized in the presence of any one of four
possible initial buckling modal imperfections, each with amplitude, Wimp = 0.2 inch. The four imperfections
are all in the shape of linear axisymmetric bifurcation buckling modes as follows:

Imperfection no. 1: positive first axisymmetric eigenmode, called “4+mode 17
Imperfection no. 2: positive second axisymmetric eigenmode, called “+mode 2”
Imperfection no. 3: negative first axisymmetric eigenmode, called “—mode 1”
Imperfection no. 4: negative second axisymmetric eigenmode, called “—mode 2”

The optimization is conducted in such a way that, according to predictions by BIGBOSORA4, the final optimum
design will survive (not exhibit any significantly negative margins) in the presence of any one of the four
imperfection shapes just listed. The four curves in Fig. 1 with labels, “GENOPT results...”, correspond to the
predictions by BIGBOSOR4 of nonlinear axisymmetric collapse of the optimized true ellipsoidal pressure
vessel head in the presence of each of the 4 axisymmetric linear bifurcation buckling modal imperfection
shapes, +mode 1, —mode 1, +mode 2, —mode?2, taken one at a time corresponding to each curve.



The overall dimensions of the shell, the external uniform design pressure loading, the allowable maximum
external pressure for collapse, and the four axisymmetric linear bifurcation buckling modal imperfection shapes
taken one at a time also govern the behavior and optimization of the “equivalent” ellipsoidal shells that are the
subject of most of this paper.

Figure 1 also shows the prediction from STAGS [20-23] for the optimized true unstiffened ellipsoidal shell
with Imperfection No. 3: “~mode 1”. There is a huge difference between the BIGBOSOR4 (GENOPT) and
STAGS predictions for the pressure-carrying capability of this optimized axisymmetrically imperfect
unstiffened shell. The predictions from BIGBOSOR4 are unacceptably unconservative. This result is caused by
finite element “lockup” in the BIGBOSOR4 model. BOSOR4 [10-12] and BIGBOSOR4 [7] should be
applied only to shells for which the meridional radius of curvature is constant within each perfect shell
segment of a multi-segment model of a shell of revolution. For a true perfect ellipsoidal shell the meridional
radius of curvature of the reference surface decreases monotonically from the pole to the equator.

5.2 “Equivalent” ellipsoidal shell

The BIGBOSORA4 finite element “lockup” problem is essentially solved by representation of the “true”
ellipsoidal shell as an “equivalent” ellipsoidal shell consisting of a shallow spherical cap plus multiple toroidal
segments connected in series, each segment of which has constant meridional radius of curvature and each
segment of which closely approximates the local meridional shape of the “true” ellipsoidal shell at the location
of that segment. In the present analysis the “equivalent” ellipsoidal shell consists of 12 shell segments: a
spherical cap (Segment 1) and 11 toroidal segments (Segments 2 — 12) the radial (x-coordinate) end points of
which are located as listed in Table 28. The input data required by BIGBOSOR4 for each shell segment are the
(x,y) coordinates of the two end points of that segment, (x,,y,) and (X,,y,), and the (X,y) coordinates of the
center of meridional curvature, (X5,y;), of that segment. The coordinates, (x,,y,) and (X,,y,), lie on the profile of
the true ellipsoid.

Table 29 lists how the location, (x5,y5), of the center of meridional curvature of the “equivalent” toroidal
segment is derived for a typical toroidal segment. Figure 2 shows the meridional profile of the 12-segment
“equivalent” ellipsoidal shell. The (x,y) coordinates of the end points of each toroidal shell segment, (x,,y,) and
(X,,y,), lie on the meridional profile of the true ellipsoidal shell, of course.

Table A15 lists the file, bosdec.equivellipse, by means of which BIGBOSOR4 input data are generated for an
equivalent ellipsoidal shell consisting of 12 toroidal shell segments, as displayed in Fig. 2.



GENOPT results from ellipsespac ALLEN, -mode 1 imperiection shape
GENOPT results from ellpsespac ALLEP, +mode 1 imperkection shapa
GENOPT results from ellpsespac ALLTN, -mode 2 imperkection shapa
GENOPT results from allpsespac ALLYP, +smode 2 imperkection shapa
STAG S elastic resuits from the case with a -mode 1 impariaction shapa.

Optimized unstiffened ellipsoidal head, NOT the "equivalent" ellipsoid
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Fig. 1 Load-apex-deflection curves for an optimized, unstiffened, axisymmetrically imperfect, TRUE
ellipsoidal shell under uniform external pressure. The “mode 1” and “mode 2” imperfection shapes are the first
and second axisymmetric buckling modes of the perfect shell. The curves labeled “GENOPT” are obtained from
BIGBOSORA4. The STAGS prediction is from a finite element model similar to that displayed in Fig. 6. The
“GENOPT” predictions of maximum load-bearing capability are much higher than that from STAGS because of
“finite element lockup” in the BIGBOSOR4 model. “Lockup” is avoided by representation of the TRUE
ellipsoidal profile by an EQUIVALENT ellipsoidal profile such as that shown in the next figure, in which the
meridional radius of curvature is constant within any one shell segment.



BIGBOSOR4 model

Equivalent ellipsoidal shell is divided into 12 toroidal segments
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Fig. 2 This is a BIGBOSOR4 model of the EQUIVALENT ellipsoidal shell. The equivalent ellipsoidal shell
consists of 12 shell segments: one spherical cap (Segment 1) and 11 toroidal shell segments with end points that
fall on the profile of the TRUE ellipsoidal shell and that match as closely as possible the local profile of the
TRUE ellipsoidal shell. Finite element “lockup” is avoided because the meridional radius of curvature within
each segment of the perfect EQUIVALENT ellipsoidal shell is constant. The (r,z) = (x,y) = (X;,y;) = (radius,
axial station) location of the center of meridional curvature of each toroidal shell segment is computed as set
forth in Table 29. Maximum local shell skin extreme fiber effective stress and minimum local skin buckling
load factor and maximum local meridional isogrid member extreme fiber stress and minimum local meridional
isogrid member buckling load factor are computed for each of the two regions: Region 1 and Region 2. The
corresponding design margins are listed in Tables 31 and 32, for example. The 360-degree STAGS finite
element model shown in Fig. al of the appendix is analogous to this BIGBOSOR4 model. The 360-degree
STAGS finite element model has fewer nodal points along the meridian than the BIGBOSOR4 model shown
here.



Table 28 Radial coordinates of shell segment meridional ends (Fig. 2)
for the generation of an "equivalent" ellipsoidal shell and for the
specification of shell skin thicknesses and isogrid stiffener heights
for a BIGBOSOR4 model of the shell.

n $ Do you want a tutorial session and tutorial output?

13 $ number of x-coordinates: npoint

13 $ Number Ixinpu of rows in the array xinput: Ixinpu
0.000000 $ x-coordinates for ends of segments: xinput( 1)
2.554500 $ x-coordinates for ends of segments: xinput( 2)
5.666450 $ x-coordinates for ends of segments: xinput( 3)
8.753630 $ x-coordinates for ends of segments: xinput( 4)
11.79770 $ x-coordinates for ends of segments: xinput( 5)
14.77232 $ x-coordinates for ends of segments: xinput( 6)
17.63477 $ x-coordinates for ends of segments: xinput( 7)
19.63631 $ x-coordinates for ends of segments: xinput( 8)
21.26065 $ x-coordinates for ends of segments: xinput( 9)
22.70426 $ x-coordinates for ends of segments: xinput(10)
23.86535 $ x-coordinates for ends of segments: xinput(1l1l)
24.54286 $ x-coordinates for ends of segments: xinput(12)
24.75000 $ x-coordinates for ends of segments: xinput(13)
24.75000 $ length of semi-major axis: ainput
12.37500 $ length of semi-minor axis of ellipse: binput

11 $ number of nodal points per segment: nodes
17.63477 $ max. x-coordinate for x-coordinate callouts: xlimit

NOTE: The variable in the last line, xlimit, serves also as the x-coordinate of the
junction between meridional Region 1 and Region 2, the two regions where local shell skin
stress and local stiffener buckling are computed. (See Fig. 2).
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Table 29 Generation of an "equivalent" ellipsoidal meridional shape
for a BIGBOSOR4 model of this multi-segment shell of revolution (Fig.2).
These computations are carried out in SUBROUTINE x3y3, which is

included with the bosdec library listed in Table al5 (appended below).

This version of SUBROUTINE BOSDEC is for an "equivalent" ellipsoidal
head. The "equivalent" ellipsoidal head is constructed because BOSOR4
(bigbosor4) finite elements tend to "lock up" for shells of revolution
in which the meridional curvature varies significantly within a single
shell segment.

The "equivalent" ellipsoidal head consists of a user-defined number of
toroidal segments that match as well as possible the contour of the
ellipsoidal head. The meridional curvature of each toroidal segment

is constant in that segment. Therefore, there is no problem of finite
element "lock up" in a segmented model of this type.

For each toroidal segment, bigbosor4 needs three points for input:
(x1,y1l), (x2,y2), and (x3,y3). (x1,yl) and (x2,y2) lie on the
ellipsoidal contour and are the (x,y) coordinates at the two ends of
the toroidal segment. (x3,y3) is the center of meridional curvature
of the toroidal segment. The trick is to obtain (x3,y3) so that the
toroidal segment best fits the ellipsoidal contour in that segment.
We use the following procedure to get (x3,y3):
1. The equation of the ellipse is
x"2/a"2 + y*2/b*2 = 1.0 (1)
2. The equation for the normal to the ellipse at (xl,yl) is:
y - yl = (yl/x1l)(a”2/b"2)(x - x1) (2)
3. The equation for the normal to the ellipse at (x2,y2) is:
y - y2 = (y2/x2)(a”2/b"2)(x - x2) (3)
4. These two straight lines in (x,y) space intersect at (x03,y03),
with (x03,y03) are given by:
x03 = (b2 - bl)/(al - a2); y03 = (a2*bl - al*b2)/(a2 - al) (4)

in which al, bl and a2, b2 are:

al
az2

(yl/x1)(a”2/b"2); bl -al*x1l + yl (5)
(y2/x2)(a”2/b"2); b2 = -a2*x2 + y2 (6)

5. For an ellipse the distance from the point (x03,y03) to (x1,yl) is
different than the distance from the point (x03,y03) to (x2,y2)
because the meridional curvature varies along the contour of the
ellipse. We wish to find a new point (x3,y3) in the neighborhood
of (x03,y03) for which the distance from (x3,y3) to (x1,yl) equals
the distance from (x3,y3) to (x2,y2). For such a point the
"equivalent" segment will be a toroidal segment in which the
meridional curvature is constant along the segment arc.

6. The square of the distances from (x03,y03) to (x1,yl) and to (x2,y2)

are:
dlsqg = (x1 - x03)**2 + (yl - y03)**2 (7)
d2sq = (x2 - x03)**2 + (y2 - y03)**2 (8)

and the difference of these is:



delsq = dlsqg - d2sg (9)

. We determine the location of the center of meridional curvature of

the "equivalent" torioidal segment by allocating half of delsq to
each (distance)**2, dlsq and d2sq. We then have two (distance)”2
that are equal:

(x1 - x03)**2 + (yl - y03)**2 - delsq/2 (10)
(x2 - x03)**2 + (y2 - y03)**2 + delsq/2 (11)

Suppose we let
x3 = x03 + dx ; y3 = y03 + dy (12)

Then we have two nonlinear equations for the unknowns (dx,dy):

[x1 - (x03+dx)]**2 + [yl - (y03+dy)]**2
(x1 - x03)**2 +(yl - y03)**2 -delsqg/2 (13)

[¥2 - (x03+dx)]**2 + [y2 - (y03+dy)]**2
(x2 - x03)**2 +(y2 - y03)**2 +delsqg/2 (14)

These two equations say that the square of the distance from
(x3,y3) to (x1,yl) Eq.(13) is equal to that from (x3,y3) to (x2,y2)
Eq.(14).

. We use Newton's method to solve the two simultaneous nonlinear
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equations for (dx,dy):

For the ith Newton iteration, let

dx (i) dx(i-1) + u (15)
dy(i) = dy(i-1) + v (16)

Then we develop two linear equations for u and v for the ith
Newton iteration:

u*2.*(x03-x1+dx(i-1)) +v*2.*(y03-yl +dy(i-1))
u*2.*(x03-x2+dx(i-1)) +v*2.*(y03-y2 +dy(i-1))

flpp (17)
f2pp (18)

in which the right-hand sides, flpp and f2pp, are rather long
expressions given in SUBROUTINE x3y3, where the Newton iterations
occur.




Table Al5 (taken from the appendix of the paper, “A SHORTENED VERSION OF THE REPORT ON

MINIMUM WEIGHT DESIGN OF IMPERFECT ISOGRID-STIFFENED ELLIPSOIDAL SHELLS UNDER UNIFORM

EXTERNAL PRESSURE”, ATAA Paper No. 2009-2702, 50™ AIAA SDM meeting, Palm Springs, CA, May 4-7, 2009.
List of the file, bosdec.equivellipse.

This is a GENOPT-user-written file that must exist if the
GENOPT user's generic class of cases to be optimized makes

use of the BIGBOSOR4 software. See Table a29 for a list of

the file, “howto.bosdec”, which gives guidelines on how to
write a valid bosdec.src file. SUBROUTINE BOSDEC produces a
valid input file for BIGBOSOR4 (or for BOSOR4). This particular
version of SUBROUTINE BOSDEC produces a valid BIGBOSOR4 input
file called “equivellipse.ALL” corresponding to the GENOPT
user’s generic case called “equivellipse”.

=DECK BOSDEC
PURPOSE IS TO SET UP BOSOR4 INPUT FILE FOR "equivellipse"

C
C
Cc
Cc
C This program was used in some (uncompleted) research I did in

C 2005 to automate the optimization of ellipsoidal tank heads

C with thickness that varies along the meridian. An ellipsoidal head
C is modelled as a number of shell segments each of which has a

C constant meridional radius of curvature. This is done in order to
C avoid element "locking" that can occur in BOSOR4 shell segments

C which have a meridional curvature that varies within a given

C shell segment.

Cc

C

Cc

Cc

Cc

This technology was used to generate a BIGBOSOR4 input file for
the ellipsoidal head under uniform internal pressure, studied
in November, 2006.

SUBROUTINE BOSDEC(INDX,ILOADX,INDIC,IMPERF,IFIL14,IFILE,
npoint,ainput,binput, LENCYL,nodes,WIMP,
WMODEX , xinput,xlimit, EMATL, NUMATL, DNMATL,
THKSKN, HIGHST, SPACNG, THSTIF, THKCYL,
PRESS, PMAX,NOBX, NMINBX , NMAXBX , INCRBX)

e

C
C23456789012345678901234567890123456789012345678901234567890123456789012
C

C Meaning of INDX:

C INDX = 1 means linear buckling of perfect shell (INDIC=1).

C Purpose is to obtain the axisymmetric buckling modal

C imperfection shape, which is present in all other analyses.
C

C INDX = 2 means axisymmetric collapse of imperfect shell (INDIC=0).

C (Behavior no. 1: BEHX1)

C INDX = 3 means non-axisymmetric nonlinear bifurcation buckling

C

of imperfect shell (INDIC=1). (Behavior no. 2: BEHX2)
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INDX = 4 means axisymmetric stress analysis at design load (INDIC=0).

This branch yields the following behaviors:

a. local buckling load factor of shell skin (BUCSKN). (BEHX3)
b. local buckling load factor of stiffener (BUCSTF). (BEHX4)
c. maximum effective stress in the shell skin (STRMAX). (BEHX5)
d. maximum effective stress in stiffener (STRSTF). (BEHX6)
e. normal displacement at shell apex (ENDUV). (BEHX7)

definitions of other variables in the argument list...
ILOADX = load case number
INDIC = bigbosor4 analysis type (0 or 1 used here)
IMPERF = 0 no imperfection; 1 yes imperfection
IFIL14 = file where bigbosor4 input "deck" is stored
IFILE = file were list output is accumulated
npoint = number of x-coordinates (including x=0 and x at equator)
where a segment end is provided by the user: xinput
ainput = semi-major axis of ellipse (ainput = xinput(npoint)

binput = semi-minor axis of ellipse, x"2/a”"2 + y"2/b"2 = 1.0

LENCYL = length of the cylindrical segment, if any

nodes = number of nodal points in each segment

WIMP = amplitude of initial buckling modal imperfection shape,
WMODEX

WMODEX = axisymmetric buckling modal imperfection shape
(obtained from bigbosor4)
xinput = x-coordinates corresponding to segment ends

xlimit = for x < xlimit use x-coordinate for callouts
for x > xlimit use y-coordinate for callouts
EMATL = elastic modulus of isotropic material

NUMATL = Poisson ratio of isotropic material

DNMATL = mass density of isotropic material

THKSKN = skin thickness corresponding to xinput

HIGHST = stiffener height corresponding to xinput
SPACNG isogrid spacing

THSTIF = isogrid member thickness

THKCYL = thickness of cylindrical segment, if any
PRESS(ILOADX) = applied pressure for load case ILOADX
PMAX = maximum pressure to be applied

NOBX = starting circ. wavenumber for buckling analysis
NMINBX = minimum circ. wavenumber for buckling analysis
NMAXBX = maximum circ. wavenumber for buckling analysis
INCRBX = increment in circ. wavenumber for buckling analysis

COMMON/NUMPR2/ILAR, ICAR, IOAR,NFLAT, NCASES, NPRINT

real LENCYL,NUMATL

double precision x,y,phi,r,rknuck,al,a2,bl,b2,x03,y03

double precision x1,yl,x2,y2,x3,y3,a,b,rl,r2

dimension x(21),y(21),x1(20),y1(20),x2(20),y2(20),x3(20),y3(20)
dimension r1(20),r2(20)



C
c

dimension THKSKN(21),HIGHST(21)
dimension PRESS(*),WMODEX(*),xinput(21),NMESH(20)

REWIND IFIL14

IF (NPRINT.GE.2) WRITE(IFILE,3)
3 FORMAT(//' *kkkkkhkhkkhkkkkkk*k BOSDEC *******************'/
1' The purpose of BOSDEC is to set up an input file, NAME.ALL,'/
1' for equivalent ellipsoidal shell. NAME is your name for'/
1' the case. The file NAME.ALL is a BOSOR4 input "deck" used'/

1' by SUBROUTINE B4READ. '/
1' ***********************************************'/)

This version of SUBROUTINE BOSDEC is for an "equivalent" ellipsoidal

head.

C

The "equivalent" ellipsoidal head is constructed because BOSOR4

(bigbosor4)

C

oo aoaaQaa

finite elements tend to "lock up" for shells of revolution in which the
meridional curvature varies significantly within a single shell segment.

The "equivalent" ellipsoidal head consists of a user-defined number of
toroidal segments that match as well as possible the contour of the
ellipsoidal head. The meridional curvature of each toroidal segment

is constant in that segment. Therefore, there is no problem of finite
element "lock up" in a segmented model of this type.

For each toroidal segment, bigbosor4 needs three points for input:
(x1,y1l), (x2,y2), and (x3,y3). (x1l,yl) and (x2,y2) lie on the

ellipsoidal
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contour and are the (x,y) coordinates at the two ends of the toroidal
segment. (x3,y3) is the center of meridional curvature of the toroidal
segment. The trick is to obtain (x3,y3) so that to toroidal segment best
fits the ellipsoidal contour in that segment.
We use the following procedure to get (x3,y3):
1. The equation of the ellipse is

x"2/a”2 + y*2/b"2 = 1.0 (1)
2. The equation for the normal to the ellipse at (x1l,yl) is:

y -yl = (yl/x1)(a”2/b"2)(x - x1) (2)

3. The equation for the normal to the ellipse at (x2,y2) is:

y - y2 = (y2/x2)(a”2/b"2)(x - x2) (3)
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These two straight lines in (x,y) space intersect at (x03,y03),
with (x03,y03) are given by:

x03 = (b2 - bl)/(al - a2); y03 = (a2*bl - al*b2)/(a2 - al) (4)
in which al, bl and a2, b2 are:

al = (yl/xl)(a"2/b"2); bl
a2 (y2/x2)(a”2/b"2); b2

—al*xl + yl (5)
—a2+*x2 + y2 (6)

For an ellipse the distance from the point (x03,y03) to (x1l,yl) is
different than the distance from the point (x03,y03) to (x2,y2)
because the meridional curvature varies along the contour of the
ellipse. We wish to find a new point (x3,y3) in the neighborhood
of (x03,y03) for which the distance from (x3,y3) to (x1l,yl) equals
the distance from (x3,y3) to (x2,y2). For such a point the
"equivalent" segment will be a toroidal segment in which the
meridional curvature is constant along the segment arc.

The square of the distances from (x03,y03) to (x1l,yl) and to (x2,y2)
are:

dlsqg = (x1 - x03)**2 + (yl - y03)**2 (7)
d2sq (x2 - x03)**2 + (y2 - y03)**2 (8)

and the difference of these is:

delsqg = dlsqg - d2sq (9)
We determine the location of the center of meridional curvature of
the "equivalent" torioidal segment by allocating half of delsqg to
each (distance)**2, dlsqg and d2sqg. We then have two (distance)”2

that are equal:

(x1 - x03)**2 + (yl - y03)**2 - delsq/2 (10)
(x2 - x03)**2 + (y2 - y03)**2 + delsq/2 (11)

Suppose we let
x3 = x03 + dx ; y3 = y03 + dy (12)

Then we have two nonlinear equations for the unknowns (dx,dy):

[x1 - (x03+dx)]**2 + [yl
(x1

(y03+dy) 1**2 =
x03)**2 +(yl

y03)**2 -delsq/2 (13)

[x2 - (x03+dx)]**2 + [y2
(x2

(y03+dy) 1**2
x03)**2 +(y2

y03)**2 +delsq/2 (14)

These two equations say that the square of the distance from
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9.

(x3,y3) to (x1,yl) Eq.(1l3) is equal to that from (x3,y3) to (x2,y2)

Eqg.(14).

We use Newton's method to solve the two simultaneous nonlinear
equations for (dx,dy):

For the ith Newton iteration, let

dx(i) = dx(i-1) + u (15)
dy (i) dy(i-1) + v (16)

Then we develop two linear equations for u and v for the ith
Newton iteration:

u*2.*(x03-x1+dx(i-1)) +v*2.*(y03-yl +dy(i-1)) = flpp (17)
u*2.*(x03-x2+dx(i-1)) +v*2.*(y03-y2 +dy(i-1)) = f2pp (18)

in which the right-hand sides, flpp and f2pp, are rather long

expressions given in SUBROUTINE x3y3, where the Newton iterations

occur.

Now find (x3,y3)...

Get
of

fir

the y are obtained from the equation for an ellipse: x"2/a"2 + y"2/b"2

10

the

end points (x1,yl), (x2,y2), and center of curvature (x3,y3)
each shell segment in the model...

st, given x, get y...

b = binput
do 10 i = 1,npoint
x(1) = xinput(i)
Y(i) = —b*dsqrt(1.—x(i)**2/a**2)
continue
endpoints of the first segment (bottom of "ellipse") are
r = a**2/b
x1(1) = 0.
yl(l) = -b

x2(1) = x(2)
phi = dasin(x(2)/r)

y2(l) = r*(1l - dcos(phi)) - b
x3(1) = 0.
yv3(l) = r - b



c the endpoints of the last segment (nearest the equator) are
c

nseg = npoint - 1

rknuck = b**2/a

x1l(nseg) = x(npoint-1)

phi = dacos((x(npoint-1) - a + rknuck)/rknuck)

yl(nseg) = -rknuck*dsin(phi)
X2 (nseg) = a

yv2(nseg) = 0.

x3(nseg) = a -rknuck
y3(nseg) = 0.

next, establish the endpoints and centers of curvature of
shell segments 2 - (nseg-1)

NAQaQaaQ

23456789012345678901234567890123456789012345678901234567890123456789012
if (NPRINT.GE.2) write(ifile,'(/,A,A,I3,A,/,A,A)")
1' End points (x1l,yl), (x2,y2) and center of curvature, (x3,y3)',
1' for',nseqg,' toroidal segments',

1' Seg. x1 yl x2 y2 x3',
1’ y3 rl r2'
iseg =1
c
rl(iseg) = dsqrt((xl(iseg) - x3(iseg))**2
1 t(yl(iseg) - y3(iseg))**2)
r2(iseg) = dsqrt((x2(iseg) - x3(iseg))**2
1 t(y2(iseg) - y3(iseg))**2)
c
if (NPRINT.GE.2) write(ifile,'(I3,1P,8El12.4)"')
1l iseg,x1l(iseqg),yl(iseg),x2(iseqg),y2(iseqg),x3(iseqg),y3(iseq),
1 rl(iseg),r2(isegq)
do 1000 iseg = 2,nseg
isegl = iseg -1
x1(iseg) = x2(isegl)
yl(iseg) = y2(isegl)
ipoint = iseg + 1
x2(iseg) = x(ipoint)
y2(iseg) = y(ipoint)
c find point, (x03,y03), where the normals to the ellipse at
c (x1,yl) and (x2,y2) intersect.
al = yl(iseg)*a**2/(x1l(iseg)*b**2)
a2 = y2(iseg)*a**2/(x2(iseg)*b**2)
bl = -al*x1l(iseg) + yl(isegq)
b2 = -a2*x2(iseg) + y2(isegq)
x03 = (b2 - bl)/(al - a2)
y03 = (a2*bl - al*b2)/(a2 - al)
c

c we wish to replace the ellipse with an "equivalent" ellipse.



c the "equivalent" ellipse consists of a number of torispherical
c segments with end points (xl,yl) and (x2,y2) and center of
c curvature (x3,y3). The purpose of subroutine x3y3 is to
¢ determine (x3,y3) given (x1,yl), (x2,y2), and (x03,y03).
c
call x3y3(ifile,iseg,x1l(iseqg),yl(iseqg),x2(iseqg),y2(iseq),
1 x03,y03, x3(iseqg),y3(iseq))
c
rl(iseg) = dsqrt((xl(iseg) - x3(iseg))**2
1 t(yl(iseg) - y3(iseg))**2)
r2(iseg) = dsqrt((x2(iseg) - x3(iseg))**2
1 t(y2(iseg) - y3(iseg))**2)
c
if (NPRINT.GE.2) write(ifile,'(I3,1P,8El12.4)")
1 iseg,x1l(iseqg),yl(iseqg),x2(iseqg),y2(iseqg),x3(iseqg),y3(iseq),
1 rl(iseg),r2(isegq)
c

1000 continue
C23456789012345678901234567890123456789012345678901234567890123456789012
c

IF (INDIC.EQ.O0.AND.INDX.EQ.4) WRITE(IFIL14,'(A)")
1' Nonlinear axisymmetric stress analysis (INDIC=0)'
IF (INDIC.EQ.0.AND.INDX.EQ.2) WRITE(IFIL14,'(A)")
1' Nonlinear axisymmetric collapse analysis (INDIC=0)'
IF (INDIC.EQ.1) WRITE(IFIL14,'(A)")
1' Bifurcation buckling analysis (INDIC=1)'
C BEG MAR 2008
IF (INDIC.EQ.-2) WRITE(IFIL14,'(A)"')
1' Bifurcation buckling analysis (INDIC=-2)'
C END MAR 2008
IF (INDIC.EQ.2) WRITE(IFIL14,'(A)")
1' Modal vibration of prestressed shell'
WRITE(IFIL14,'(I3,A)') INDIC, ' $ INDIC'
WRITE(IFIL14,'(A)')' 1 $ NPRT'
ISTRES = 0
IF (INDIC.EQ.0) ISTRES = 1
WRITE(IFIL14,'(I3,A)') ISTRES, ' $ ISTRES'
IF (LENCYL.GT.0.001)
1 WRITE(IFIL14,'(I4,A)"') nseg+l,' $ nseg'
IF (LENCYL.LE.0.001)
1 WRITE(IFIL14,'(I4,A)') nseg,' $ nseg'
Cc
C Begin loop over Segment data
Cc
C23456789012345678901234567890123456789012345678901234567890123456789012
IALL = 0
Do 2000 iseg

= 1,nseg
NMESH (iseg) =

nodes



WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,

'(I4,A)') NMESH(iseg),'
$ NTYPEH'
$ NSHAPE'

I(A)I)I 3
I(A)I)I 2

$ NMESH'

WRITE(IFIL14,'(1P,E14.6,A)') x1l(iseg), ' $ RI1'
WRITE(IFIL14,'(1P,E14.6,A)') yl(iseg), ' $ zl1'
WRITE(IFIL14,'(1P,E14.6,A)') x2(iseg), ' $ R2'
WRITE(IFIL14,'(1P,E14.6,A)') y2(iseg), ' $ z2'
WRITE(IFIL14,'(1P,E14.6,A)') x3(iseg), ' $ RC'
WRITE(IFIL14,'(1P,E14.6,A)') y3(iseg), ' $ zC'
WRITE(IFIL14,'(A)')' -1. $ SROT'
WRITE(IFIL14,'(I4,A)') IMPERF,' $ IMP'
IF (IMPERF.EQ.1) THEN

WRITE(IFIL14,'(A)')' 4 $ ITYPE'

WRITE(IFIL14,'(1P,E14.6,A)') WIMP, ' $ WIMP'

WRITE(IFIL14,'(A)')' 1 $ ISTART'

NUMB = NMESH(iseg) + 2

WRITE(IFIL14,'(I4,A)') NUMB, ' $ NUMB'

DO 5 I = 1,NUMB

J =1 + IALL

WRITE(IFIL14,'(1P,E14.6,A)') WMODEX(J), ' $ WSHAPE'

CONTINUE

WRITE(IFIL14,"'(A)')"' N $ any more modes?'
ENDIF
WRITE (IFIL14,'(A)')' 3 $ NTYPEZ'
WRITE (IFIL14,'(A)')' O. $ ZVAL'
WRITE(IFIL14,"'(A)')"' Y $ print r(s)...?'
WRITE (IFIL14,'(A)')' O $ NRINGS'
WRITE (IFIL14,'(A)')' 0 $ K'
WRITE (IFIL14,'(A)')' O $ LINTYP'
WRITE (IFIL14,'(A)')' 1 $ IDISAB'
WRITE(IFIL14,'(A)')' 1 $ NLTYPE'
WRITE(IFIL14,'(A)')' 2 $ NPSTAT'
WRITE (IFIL14,'(A)')' O $ NLOAD(1)'
WRITE (IFIL14,'(A)')' O $ NLOAD(2)'
WRITE (IFIL14,'(A)')' 1 $ NLOAD(3)'
WRITE(IFIL14,'(A)')' -1. $ PN(1)'
WRITE(IFIL14,'(A)')' -1. $ PN(2)'
IF (x1l(iseg).le.xlimit) then

ntype = 3

calll = x1l(iseq)

call2 = x2(iseq)
else

ntype = 2

calll = yl(iseq)

call2 = y2(iseq)
endif
WRITE(IFIL14,'(I4,A)') ntype,' $ ntype'
WRITE(IFIL14,'(1P,E14.6,A)') calll, ' $ calloutl'



WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
IRADTH = 2

WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
ipoint =
WRITE (IFIL14,
WRITE (IFIL14,

'(1P,E14.6,A)"') call2,
'(A)')' 10 $
I(A)I)I 2 $

'(1P,E14.6,A)"') EMATL,
'(1P,E14.6,A)') NUMATL,
'(1P,E14.6,A)') DNMATL,

'(A)')' 0. $
(a1 S
(p)') " -1 $
(a1 S

'(I4,A)') IRADTH,'
'(I4,R7)") ntype,’
'(1P,E14.6,A)"') calll,’
'(1P,E14.6,A)"') call2,’

iseg + 1
'(1P,E14.6,A) ') THKSKN(iseg),'
'(1P,E14.6,A) ') THKSKN(ipoint),'

' $ callout2'
NWALL'

NWALL2'

1 $ EI

1 $ UI

1 $ SMI
ALPHA'

NRS'

NSUR'

NTYPET'

S NTVALU'
$ ntype'
$ calloutl'
$ callout2'

$ THKSKN(isegqg)'
$ THKSKN(ipoint)'

C23456789012345678901234567890123456789012345678901234567890123456789012

WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,

(A)')' Y $ print refsurf...?'
(A)')' Y $ are there stringers or isogrid...?'
"(A)')' 0 $ K1 (0 means internal)'

WRITE(IFIL14,'(1P,E14.6,A)') EMATL, ' $ E'
WRITE(IFIL14,'(1P,E14.6,A)') NUMATL, ' $ U'
WRITE(IFIL14,'(1P,E14.6,A)') DNMATL, ' $ SM'
WRITE(IFIL14,'(1P,E14.6,A)') SPACNG, ' $ isogrid spacing'

WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,

'(A)')' N

'(I4,A)') IRADTH,'
'(I4,A)") ntype,’
'(1P,E14.6,A)"') calll,’
'(1P,E14.6,A)"') call2,’
'(1P,E14.6,A)"') THSTIF,'
'(1P,E14.6,A)"') THSTIF,'
'(1P,E14.6,A)"') HIGHST(isegqg),
'(1P,E14.6,A)') HIGHST(ipoint),

S constant cross section?'
$ number of callouts'
$ ntype'

$ calloutl'
$ callout2'

S THSTIF'

S THSTIF'
$ HIGHST(isegq)'
$ HIGHST(ipoint)'

WRITE(IFIL14,"'(A)')"' N $ are there smeared rings?'
WRITE(IFIL14,'(A)')' N $ print Cij?'
WRITE(IFIL14,"'(A)')"' N $ print loads?'

C

C end of Segment iseg input data
IALL = IALL + NMESH(iseg) + 2

2000 continue

C

C Begin Segment nseg+l data (cylindrical segment)

C

C23456789012345678901234567890123456789012345678901234567890123456789012
IF (LENCYL.GT.0.001) THEN
NMESH(nseg+1) = 51



WRITE (IFIL14,'(I4,A)') NMESH(nseg+l
WRITE (IFIL14,'(A)')' 1
WRITE (IFIL14,'(A)')' 4
WRITE (IFIL14,'(A)')' 1 IHVALU'
WRITE (IFIL14,'(A)')' 25 IHVALU'

), $ NMESH seg.nseg+1l'
$
$
$
$
WRITE(IFIL14,'(A)"')' 26 $ IHVALU'
$
$
$
$
$

NTYPEH'
NHVALU'

WRITE (IFIL14,'(A)')"' 50 IHVALU'

WRITE (IFIL14,'(A)"')" HVALU'

WRITE (IFIL14,'(A)"')" HVALU'

WRITE (IFIL14,'(A)"')" HVALU'

WRITE (IFIL14,'(A)')' 1. HVALU'

WRITE (IFIL14,'(A)')' 1 $ NSHAPE'

WRITE (IFIL14,'(1P,E14.6,A)') x2(nseg), ' $ R1'

WRITE (IFIL14,'(1P,E14.6,A)') y2(nseg), ' $ Z1'

WRITE (IFIL14,'(1P,E14.6,A)') x2(nseg), ' $ R2'

WRITE (IFIL14,'(1P,E14.6,A)') y2(nseg)+LENCYL, ' $ 2Z2'

== OO0
O oODNdDN

WRITE (IFIL14,'(I4,A)') IMPERF,' $ IMP'
IF (IMPERF.EQ.1) THEN
WRITE (IFIL14,'(A)')' 4 $ ITYPE'
WRITE (IFIL14,'(1P,E14.6,A)') WIMP, ' $ WIMP'
WRITE (IFIL14,'(A)')' 1 $ ISTART'
NUMB = NMESH(nseg+1l) + 2
WRITE(IFIL14,'(I4,A)') NUMB,' $ NUMB'

DO 70 I = 1,NUMB
J = I + IALL
WRITE(IFIL14,'(1P,E14.6,A)') WMODEX(J), ' $ WSHAPE'

CONTINUE

WRITE(IFIL14,"'(A)')"' N $ any more modes?'
ENDIF
WRITE (IFIL14,'(A)')' 3 $ NTYPEZ'
WRITE (IFIL14,'(A)')' O. $ ZVAL'
WRITE(IFIL14,"'(A)')"' N $ print r(s)...?'
WRITE (IFIL14,'(A)')' O $ NRINGS'
WRITE (IFIL14,'(A)')' O $ K'
WRITE (IFIL14,'(A)')' O $ LINTYP'
WRITE (IFIL14,'(A)')' 1 $ IDISAB'
WRITE(IFIL14,'(A)')' 1 $ NLTYPE'
WRITE(IFIL14,'(A)')' 2 $ NPSTAT'
WRITE (IFIL14,'(A)')' O $ NLOAD(1)'
WRITE (IFIL14,'(A)')' O $ NLOAD(2)'
WRITE (IFIL14,'(A)')' 1 $ NLOAD(3)'
WRITE(IFIL14,'(A)')' 1. $ PN(1)'
WRITE(IFIL14,'(A)')' 1. $ PN(2)'
WRITE(IFIL14,'(A)')' 2 $ NTYPE'
WRITE(IFIL14,'(1P,E14.6,A)') y2(nseg), ' $ zl'
WRITE(IFIL14,'(1P,E14.6,A)') y2(nseg)+LENCYL, ' $ Z2'
WRITE(IFIL14,'(A)')' 2 $ NWALL'

WRITE (IFIL14,'(1P,E14.6,A)') EMATL, ''$ E'



WRITE(IFIL14,
WRITE(IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE(IFIL14,
WRITE(IFIL14,
WRITE(IFIL14,
WRITE(IFIL14,
WRITE(IFIL14,

ENDIF

0.
0.

0
1
3
6,A
N
N
N

'(1P,E14.6,A)') NUMATL, '
(A)")!
(A)")!
(A)")!
(A)")!
(A)")]
'(1P,El4.
(A)")!

(A)")!

WRITE(IFIL14,'(A)')"

)') THKCYL

»rnns v -n

SM'
ALPHA'
NRS'
NSUR'
NTYPET'

$ U

$ TVAL'

print ref. surf?’
print Cij?'
print loads?'

C23456789012345678901234567890123456789012345678901234567890123456789012

C End of (LENCYL.GT.0.001)
C
C
C
C Start GLOBAL data..
C
WRITE(IFIL14,'(A)')' 1
WRITE(IFIL14,'(A)')' N
C

End of input for Segment nseg+l (cylindrical segment)

$ NLAST'
$ expanded plots?'

C Following for linear buckling of perfect shell...
IF (INDX.EQ.1l) THEN

WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
WRITE (IFIL14,
ENDIF
C

"(A)') ]
(A)') ]
"(A)')°
"(A)')°
(A)') "1
"(A)") ]
'(1p,E1l4.
(A)') ]
"(A)')°
"(A)')°
(A

wvr v

wvr - -n

0
0
0
1
0
0.
6,A)') PRESS(ILOADX)/1000.0, '
0.
0.
0.
0.

NOB'
NMINB'
NMAXB'
INCRB'
NVEC'

P '

$ DP'
TEMP'
DTEMP'
OMEGA'
DOMEGA'

C23456789012345678901234567890123456789012345678901234567890123456789012
C Following is for nonlinear axisymmetric collapse...
IF (INDX.EQ.2) THEN

WRITE(IFIL14,'(1P,E14.6,A)') PMAX/10.0, '
WRITE(IFIL14,'(1P,E14.6,A)') PMAX/10.0, '

WRITE (IFIL14,

WRITE (IFIL14,

WRITE(IFIL14,

WRITE (IFIL14,

WRITE (IFIL14,
ENDIF

"(A)')°
"(A)')°
"(A)') ]
(A)')°
(A

0.
0.
20
0.
0.

wvr -

$ P
$ DP'
TEMP'
DTEMP'
NSTEPS'
OMEGA'
DOMEGA'



Following is for nonlinear non-axisymmetric bifurcation buckling

of imperfect shell...
IF (INDX.EQ.3) THEN

WRITE(IFIL14,'(I4,A)') NOBX, ' $ NOB'
WRITE(IFIL14,'(I4,A)') NMINBX,' $ NMINB'
WRITE(IFIL14,'(I4,A)') NMAXBX,' $ NMAXB'
WRITE(IFIL14,'(I4,A)') INCRBX,' $ INCRB'
WRITE (IFIL14,'(A)')' 1 $ NVEC'
WRITE (IFIL14,'(1P,E14.6,A)') PMAX , ' $p
BEG MAR 2008
IF (INDIC.NE.-2)
1 WRITE(IFIL14,'(1P,E14.6,A)') PMAX/1000.0, ' $ DP'
IF (INDIC.EQ.-2)
1 WRITE(IFIL14,'(1P,E14.6,A)') PMAX/100.0, ' $ DP'
END MAR 2000
WRITE (IFIL14,'(A)')' O. $ TEMP'
WRITE(IFIL14,'(A)')' O. $ DTEMP'
BEG MAR 2008
IF (INDIC.EQ.-2)
1 WRITE(IFIL14,"'(A)')"'" 50 $ Number of steps'
END MAR 2008
WRITE(IFIL14,'(A)')' O. $ OMEGA'
WRITE (IFIL14,'(A)')' O. $ DOMEGA'

ENDIF

Following is for nonlinear axisymmetric stress analysis...

IF (INDX.EQ.4) THEN

WRITE(IFIL14,'(1P,E14.6,A)') PMAX/10.0, '
WRITE(IFIL14,'(1P,E14.6,A)') PMAX/10.0, '
WRITE (IFIL14,'(A)"')"
WRITE (IFIL14,'(A)"')"
WRITE (IFIL14,'(A)')"
WRITE (IFIL14,'(A)"')"
WRITE (IFIL14,'(A)"')"

ENDIF
Start CONSTRAINTS...

IF (LENCYL.GT.0.001)

1 WRITE(IFIL14,'(I4,A)') nseg+l,'

IF (LENCYL.LE.0.001)

1 WRITE(IFIL14,'(I4,A)') nseg,'

Do 3000 iseg =

if (iseg.eq.l) then

1,nseg

1

0.

0.
0

0.
0.

$ P
$ DP'
TEMP'
DTEMP'
NSTEPS'
OMEGA'
DOMEGA'

wvrnnn-n

$ nsegqg'

$ nsegqg'

Segment 1 constraint pole condition...
WRITE (IFIL14,'(A)')"

1 $ number of

poles'



WRITE(IFIL14,'(A)')" 1 $ nodal point at pole'

WRITE(IFIL14,'(A)')" O $ grounded how many stations?'
WRITE(IFIL14,"'(A)')"' N $ joined to lower segs?'
endif

C23456789012345678901234567890123456789012345678901234567890123456789012
if (iseg.eqg.nseg) then
C Segment nseg constraint conditions...

WRITE(IFIL14,"'(A)')" O $ number of poles'
IF (LENCYL.GT.0.001)
1 WRITE(IFIL14,"'(A)')" O $ grounded how many stations?'

IF (LENCYL.LE.0.001) THEN
WRITE(IFIL14,'(A)')" 1 $ grounded how many stations?'
WRITE(IFIL14,'(I4,A)') NMESH(nsegq),' $ INODE = node'
WRITE(IFIL14,'(A)')' 1 $ IUSTAR constrained'
WRITE(IFIL14,'(A)')" 1 $ IVSTAR constrained'
WRITE(IFIL14,'(A)')" O $ IWSTAR constrained'
WRITE (IFIL14,'(A)')' 1 $ ICHI  constrained'
WRITE(IFIL14,"'(A)')" O. $ Dl=radial eccentricity'
WRITE(IFIL14,"'(A)')" O. $ D2=axial eccentricity'
WRITE(IFIL14,"'(A)')"'" N $ bc same prebuck & buck.?'
WRITE (IFIL14,'(A)')' 1 $ IUSTARB constrained'
WRITE(IFIL14,'(A)')" 1 $ IVSTARB constrained'
WRITE(IFIL14,"'(A)')" O $ IWSTARB constrained'
WRITE(IFIL14,'(A)')" 1 $ ICHIB constrained’

ENDIF

C End of (LENCYL.LE.0.001) condition
endif
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if (iseg.gt.l) then
if (iseg.lt.nseg) then

WRITE(IFIL14,'(A)')" O $ number of poles'
WRITE(IFIL14,"'(A)')" O $ grounded how many stations?'
endif
WRITE(IFIL14,"'(A)')" Y $ joined to lower segs?'
WRITE(IFIL14,"'(A)')" 1 $ at how many stations joined?'
WRITE(IFIL14,"'(A)')" 1 $ INODE= node of current seg.'
WRITE(IFIL14,'(I4,A)') iseg-1,' $ JSEG=previous segment'

WRITE(IFIL14,'(I4,A)') NMESH(iseg-1
WRITE(IFIL14,'(A)"')"
WRITE(IFIL14,'(A)"')"
WRITE(IFIL14,'(A)"')"
WRITE(IFIL14,'(A)"')"
WRITE(IFIL14,'(A)"')"
WRITE(IFIL14,'(A)')"
WRITE(IFIL14,'(A)"')"
endif

), $ JINODE prev.seg.'

$ IUSTAR constrained'

$ IVSTAR constrained’

$ IWSTAR constrained'

$ ICHI constrained'

$ Dl=radial eccentricity'

. $ D2=axial eccentricity'
$ bc same for prebuck & buck.?'
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c
3000 continue



c
C2345678901234567890123456789012345678901234567890
Cc

IF (LENCYL.GT.0.001) THEN
C Segment nseg+l constraint conditions...

WRITE(IFIL14,"'(A)')" O $ number
WRITE(IFIL14,"'(A)')" 2 $ grounded
WRITE(IFIL14,'(A)')' 1 $ INODE=
WRITE(IFIL14,'(A)')' 1 $ IUSTAR
WRITE(IFIL14,'(A)')' O $ IVSTAR
WRITE(IFIL14,'(A)')' O $ IWSTAR
WRITE(IFIL14,'(A)')' O $ ICHI
WRITE(IFIL14,'(A)')' O. $ Dl=radi
WRITE(IFIL14,'(A)')' O. $ D2=axia
WRITE(IFIL14,"'(A)')"' N $ bc same
WRITE(IFIL14,'(A)')' O $ IUSTARB
WRITE(IFIL14,'(A)')' 0 $ IVSTARB
WRITE(IFIL14,'(A)')' O $ IWSTARB
WRITE(IFIL14,'(A)')' O $ ICHIB

WRITE (IFIL14,'(I4,A)') NMESH(nseg+l),' $

WRITE (IFIL14,'(A)"')" $ IUSTAR
WRITE (IFIL14,'(A)"')" $ IVSTAR
WRITE (IFIL14,'(A)"')" $ IWSTAR
WRITE (IFIL14,'(A)"')" $ ICHI

WRITE (IFIL14,'(A)"')" . $ Dl=radi

WRITE (IFIL14,'(A)')"
WRITE (IFIL14,'(A)')"

$ D2=axia
S bc same

WRITE (IFIL14,'(A)"')" $ IUSTARB
WRITE (IFIL14,'(A)"')" $ IVSTARB
WRITE (IFIL14,'(A)"')" $ IWSTARB
WRITE (IFIL14,'(A)"')" $ ICHIB

WRITE (IFIL14,'(A)"')" $ joined

WRITE (IFIL14,'(A)"')"
WRITE (IFIL14,'(A)"')" $ INODE=
WRITE (IFIL14,'(A)"')" $ JSEG =
WRITE(IFIL14,'(I4,A)') NMESH(nseg),' $

NRRPRKRPRPRRPRRPRPREZOORROR R

WRITE(IFIL14,'(A)')' 1 $ IUSTAR
WRITE(IFIL14,'(A)')' 1 $ IVSTAR
WRITE(IFIL14,'(A)')' 1 $ IWSTAR
WRITE(IFIL14,'(A)')' 1 $ ICHI

WRITE(IFIL14,'(A)')' O. $ Dl=radi
WRITE(IFIL14,'(A)')' O. $ D2=axia
WRITE(IFIL14,'(A)')"' Y $ bc same

ENDIF
C End of (LENCYL.GT.0.001) condition
C
WRITE(IFIL14,'(A)')' N $ rigid b
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1234567890123456789012

of poles'
at how many stations?'
node of current seg.'
constrained'’
constrained'’
constrained'
constrained'’
al eccentricity’

1 eccentricity'

for prebuck & buck.?'
constrained'
constrained'
constrained'
constrained'

INODE= node of constr'
constrained'
constrained'’
constrained'
constrained'
al eccentricity'

1 eccentricity'

for prebuck & buck.?'
constrained'’
constrained'
constrained'
constrained'’
to lower segs?'

$ at how many stations joined?'

node of current seg.'
previous segment'
JNODE=node prev. seg.'
constrained'
constrained'
constrained'
constrained'
al eccentricity’

1 eccentricity'

for prebuck & buck.?'

ody possible?'’
1234567890123456789012



IF (INDX.EQ.4) THEN
do 3010 iseg = 1,nseg

WRITE(IFIL14,"'(A)')" Y $ output for seg. i?'
3010 continue
IF (LENCYL.GT.0.001)
1 WRITE(IFIL14,"'(A)')"' N $ output for seg. nseg+l?'
WRITE(IFIL14,"'(A)')"' Y $ output for rings?'
ELSE
do 3020 iseg = 1,nseg
WRITE(IFIL14,"'(A)')" Y $ output for seg. i?'
3020 continue
IF (LENCYL.GT.0.001)
1 WRITE(IFIL14,"'(A)')"' Y $ output for seg. nseg+l?'
WRITE(IFIL14,"'(A)')"' Y $ output for rings?'
ENDIF
C
RETURN
END
c
c
c
C=DECK x3y3
SUBROUTINE x3y3(ifile,isegqg,x1,yl,x2,y2,x03,y03,x3,y3)
c input:
c (x1,yl), (x2,y2) = end points that lie on the original ellipse
c (x03,y03) = point where normals to the ellipse at (x1l,yl) and
c (x2,y2) intersect
c output:
c (x3,y3) center of curvature of the "equivalent" toroidal segment.
c
c (x3,y3) are determined by Newton's method from two nonlinear
c equations in dx,dy, in which dx,dy are the distances between
c x03,y03 and x3,vy3.
c
double precision x1,yl,x2,y2,x3,y3,x03,y03
double precision dlsq,d2sq,delsq,al,a2,bl,b2
double precision f1,flp,flpp, £f2,f2p,f2pp
double precision dx,dy,u,v
c
c For a toroidal segment, the two distances from (x3,y3) to the two
c segment end points (x1l,yl) and (x2,y2) must be equal. In other
c words the meridional radius of curvature of the torioidal segment
c must be constant in that segment.
c
c However, in the ellipse these two distances are different. The
c square of the difference is given by delta**2 (delsq):
c

dlsqg = (x1 - x03)**2 + (yl - y03)**2
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d2sqg = (x2 - x03)**2 + (y2 - y03)**2
delsq = dlsqg - d2sq

Here we determine the location of the center of meridional
curvature of the "equivalent" torioidal segment by allocating
half of delsqg to each (distance)**2, dlsq and d2sg. We have two
(distances)**2 that are equal:

(x1 - x03)**2 + (yl - y03)**2 - delsq/2
(x2 - x03)**2 + (y2 - y03)**2 + delsq/2

We must solve the following two nonlinear equations for (dx,dy):

[x1 - (x03+dx)]**2 + [yl
(x1

(y03+dy) ]**2 =
x03)**2 +(yl - y03)**2 -delsq/2 (1)

[x2 - (x03+dx)]**2 + [y2
(x2

(y03+dy) 1**2 =
x03)**2 +(y2 - y03)**2 +delsq/2 (2)

We use Newton's method:
For the ith Newton iteration, let

dx(i) = dx(i-1) + u
dy (i) dy(i-1) + v

Then we develop two linear equations for u and v for the ith iteration:

u* (x03-x1+dx(i-1)) +v*(y03-yl +dy(i-1)) = flpp
u* (x03-x2+dx(i-1)) +v*(y03-y2 +dy(i-1)) = f2pp

solve them, add u and v to dx(i-1) and dy(i-1), respectively, and
iterate. We keep iterating until convergence is achieved.

iter 0
dx =
dy

o o |l

10 continue
iter = iter + 1

al = 2.*%(x03 - x1 + dx)
a2 = 2.*(x03 - x2 + dx)
bl = 2.%(y03 - yl1 + dy)
b2 = 2.%(y03 - y2 + dy)

fl1 = (x1 - x03)**2 + (yl - y03)**2 - delsq/2.
f2 = (x2 - x03)**2 + (y2 - y03)**2 + delsq/2.



flp = £f1 - x1**2 + 2.%*x1*x03 - x03**2
1 -yl**2 + 2.*%*yl*y03 - y03**2
f2p = £2 - x2**2 + 2.%x2*x03 - x03**2
1 —y2**2 + 2.%y2*y03 - y03**2

flpp = flp - dx*2.#*(x03-x1) -dy*2.*(y03-yl) -dx**2 -dy**2
f2pp = f2p - dx*2.#%(x03-x2) -dy*2.*(y03-y2) -dx**2 -dy**2

c
u = (b2*flpp - bl*f2pp)/(b2*al - bl*a2)
v = (a2*flpp - al*f2pp)/(a2*bl - al*b2)
dx = dx + u
dy = dy + v
c
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c if (iter.eq.l) write(ifile,'(/,A,i3,/,A,A)")
c 1' **x****x*x* Results from Newton iterations for segment no.',iseg,
c 1' iter x03 dx y03 dy u',
c 1’ v'
c write(ifile, ' (i3,1p,6el2.4)")
c 1l iter, x03, dx, y03, dy, u, v
c

if (iter.gt.100) then
write(ifile,'(A)')' No convergence.'
call exit

endif
c
if (iter.lt.3) go to 10
if (abs(u).gt.0.00l1*abs(dx)) go to 10
if (abs(v).gt.0.001*abs(dy)) go to 10
c
c Convergence has been achieved
c
x3 = x03 + dx
y3 = y03 + dy
c
return

end



