
 
From: AIAA 48th Structures, Structural Dynamics, and Materials Conference, Paper no. AIAA-2007-2216, 
2007 
 
OPTIMIZATION OF AN AXIALLY COMPRESSED RING AND STRINGER 
STIFFENED CYLINDRICAL SHELL WITH A GENERAL BUCKLING MODAL 
IMPERFECTION  
 
David Bushnell, Fellow, AIAA, Retired, 775 Northampton Drive, Palo Alto, CA 94303 
 
(This is an abridged version. See the full-length paper for more: panda2.papers/2007.axialcomp.pdf ) 
 
 
7.0 TWO MAJOR EFFECTS OF A GENERAL BUCKLING MODAL IMPERFECTION 
 
Much of the following appears in Section 11.1 on p. 19 of [1K]. It is repeated here because this section is 
especially important. It briefly describes the behavior of a stiffened cylindrical shell with a general buckling 
modal imperfection shape. This behavior plays a major role in the evolution of the design during optimization 
cycles in PANDA2. Here it is assumed that the shortest wavelength of the general buckling modal imperfection 
is greater than the greatest stiffener spacing, as holds in Figs. 1 and 2, for example (disregarding the component 
of stringer bending-torsional deformation displayed in the expanded insert in Fig. 1a). 
 
A general buckling modal imperfection in a stiffened shell has two major effects: 
 
1. The imperfect stiffened panel or shell bends as soon as any loading is applied. This prebuckling bending 
causes significant redistribution of stresses between the panel skin and the various stiffener parts, thus 
affecting significantly many local and inter-ring buckling and stress constraints (margins). 
 
2. The "effective" circumferential curvature of an imperfect cylindrical panel or shell depends on the 
amplitude of the initial imperfection, on the circumferential wavelength of the critical buckling mode of the 
perfect and of the imperfect shell, and on the amount that the initial imperfection grows as the loading increases 
from zero to the design load. The "effective" circumferential radius of curvature of the imperfect and 
loaded cylindrical shell is larger than its nominal radius of curvature because the larger "effective" radius 
corresponds to the maximum local radius of the cylindrical shell with a typical inward circumferential lobe of 
the initial and subsequently load- amplified buckling modal imperfection. In PANDA2 this larger local 
"effective" radius of curvature is assumed to be the governing UNIFORM radius in the buckling equations 
pertaining to the imperfect shell. For the purpose of computing the general buckling load, the imperfect shell is 
replaced by a new perfect cylindrical shell with the larger “effective” circumferential radius. By means of this 
device a complicated nonlinear collapse analysis is converted into a simple approximate bifurcation buckling 
problem - a linear eigenvalue problem. For each type of buckling modal imperfection (general, inter-ring, local 
[1E]) PANDA2 computes a "knockdown" factor based on the ratio: 
 
(buckling load factor: panel with its "effective" circumferential radius)/ (7.1) (buckling load factor: 
panel with its nominal circumferential radius) 
 
Figures 1a,b,c show a STAGS model of a typical general buckling modal imperfection shape (amplitude 
exaggerated) for an optimized “compound” model [1K] of an axially compressed cylindrical shell with external 
stringers and internal rings (Case 4 in Table 4 in this paper). In this compound model a 45-degree sector has 
both external stringers and internal rings modeled as branched shell units. A 315-degree sector, the remainder of 
the cylindrical shell, has smeared stringers and internal rings modeled as branched shell units. Figure 2 shows 
the deformed state of the imperfect compound model as loaded by the design load, Nx = -3000 lb/in axial 



compression (STAGS load factor PA is close to 1.0). One observes three characteristics: 
 
1. The stresses in the imperfect axially compressed shell have been redistributed as the globally imperfect shell 
bends under the applied axial compression. The maximum effective (von Mises) stress in this case, sbar(max) = 
66.87 ksi, occurs in the outstanding stringer flanges where the prebuckling deformation pattern of the imperfect 
shell has a maximum inward lobe. 
 
2. The typical maximum “effective” circumferential radius also occurs where the deformation pattern has a 
maximum inward lobe. This larger-than-nominal circumferential radius is highlighted most clearly by the in-
plane circumferential deformation of the interior ring located one ring spacing in from the right-hand curved 
edge of the STAGS model shown in Fig. 2. See the right-most expanded insert in Fig. 2. 
 
3. There is an important phenomenon that occurs when imperfect cylindrical shells are optimized. This 
phenomenon has been described in previous papers [1K]. It occurs in the case of a stiffened cylindrical shell 
with an imperfection in the form of the critical general buckling mode of the perfect shell. The optimum 
design of an imperfect stiffened cylindrical shell has a general buckling load factor that is usually 
considerably higher than load factors that correspond to various kinds of local and “semi-local” 
buckling, such as local buckling of the panel skin and stiffener segments, rolling of the stiffeners, and 
inter-ring buckling. The general buckling margin of such a shell is usually not critical (near zero). In contrast, 
when a perfect stiffened cylindrical shell is optimized the general buckling load factor is usually very close to 
at least one local buckling load factor and is usually lower than many other local and “semi-local” buckling load 
factors. The general buckling margin of an optimized perfect shell is usually critical (near zero). 
 
The cases explored in this paper exhibit this characteristic. Take, for example, the optimum designs called Case 
1 and Case 2 in Table 4. In Case 1 a perfect shell is optimized. The margins for the Case 1 optimum design are 
listed in Table 10. Several of the margins for local and “semi-local” buckling are essentially equal to or greater 
than that for general buckling, and the general buckling margin is near zero (critical). In Case 2 a shell with a 
general buckling modal imperfection is optimized. The margins for the imperfect optimized shell are listed in 
Table 6 and those for the same optimum configuration but with the amplitude of the general buckling modal 
imperfection set equal to zero are listed in Table 7. In both Tables 6 and 7 the margin for general buckling is 
considerably higher than many of the margins corresponding to local and “semi-local” buckling. The general 
buckling margin of the optimized imperfect shell is well above zero (not critical). 
 
Why does this happen? The general buckling margin of optimized IMPERFECT stiffened shells is forced 
higher during optimization cycles because PREBUCKLING BENDING OF THE IMPERFECT SHELL 
increases with applied load approximately hyperbolically as the applied load approaches the general 
buckling load of the imperfect shell [1E]. If the general buckling load of the optimized imperfect shell 
were close to the design load, that is, if the general buckling margin were near zero (almost critical), there 
would be so much prebuckling bending near the design load that LOCAL STRESS AND BUCKLING 
MARGINS FOR THE STIFFENER PARTS AND FOR THE PANEL SKIN WOULD BECOME 
NEGATIVE BECAUSE THESE PARTS OF THE STRUCTURE WOULD BECOME HIGHLY 
STRESSED. 
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Table 1 Geometry, material properties, and loading of the stiffened cylindrical shell. (PANDA2 names for 
dimensions such as H(STR), B(STR), etc., are defined in Table 2). (From: AIAA 48th Structures, 
Structural Dynamics, and Materials Conference, Paper no. AIAA-2007-2216, 2007) 
 
Geometry (cylindrical shell): 

Length = 75 inches 
Radius = 25 inches 
External T-shaped major stringers 
Internal T-shaped major rings 

 
Material properties (aluminum): 

Young's modulus = 10 msi 
Poisson ratio   = 0.3 
Maximum allowable effective (von Mises) stress = sbar(allowable) = 60 ksi; Stress constraints are active. 
The material remains elastic in all the models explored in this paper. The effect of elastic-plastic material behavior is also 
determined for four of the STAGS models. (See the stress-strain curve is given in Fig. 81.) 

 
Loading used for all cases except one: 

-3000.0$ Axial Resultant (lb/in), Nx(1)  Load Set A    (The axial resultant Nx =-6000 lb/in in Case 6) 
-0.1 $ Hoop  Resultant (lb/in), Ny(1)  Load Set A 
 0.0 $ In-plane shear  (lb/in), Nxy(1) Load Set A 
-0.004 $ Uniform pressure, (psi),   p(1) Load Set A 
 Zero loading in Load Set B 

 
Boundary conditions: 

Simple support, but free to expand radially in the prebuckling phase. 
 
Imperfection: 
General buckling modal imperfection amplitude, Wimp = +0.25 inch and –0.25 inch. 
Imperfect shells have two load cases: 

Load Set 1: Wimp= +0.25 inch 
Load Set 2: Wimp=  -0.25 inch 

User-specified axial halfwavelength of the initial general buckling modal imperfection equals 75 inches. 
In several of the cases PANDA2 is permitted to change the imperfection amplitude, Wimp, as described in the text. 
 
NOTE: 
In PANDA2 the complete cylindrical shell is modeled as a panel that spans 180 degrees. In the absence of in-plane shear loading 
(torque, Nxy) and anisotropy the behavior of the 180-degree panel simply supported along its two straight edges is identical to that of 
a complete cylindrical shell. The optimum weights listed in Table 4 are the weights of half (180 degrees) of the cylindrical shells. 
 
Margins corresponding to inequality constraints (see next table for definitions of variables, V(i), i =1,13): 
1. -V(3)^1 +20.V(6)^1 -1. (stringer web height, H(STR), is less than 20 x stringer web thickness, T(2)(STR)) 
1. -V(4)^1 +20.V(7)^1 -1. (stringer flange width, W(STR), is less than 20 x stringer flange thickness, T(3)(STR) 
1. -V(10)^1 +20.V(12)^1 -1. (ring web height, H(RNG), is less than 20 x ring web thickness, T(4)(RNG)) 
1. -V(11)^1 +20.V(13)^1 -1. (ring flange width, W(RNG), is less than 20 x ring flange thickness, T(5)(RNG))  
1. +V(8)^1 -V(11)^1 -1. (ring flange width, V(11) = W(RNG), is less than ring spacing, V(8) = B(RNG)) 
1. -V(1)^1 +5.V(8)^1 -1. (stringer spacing, V(1) = B(STR), is less than 5 x ring spacing, V(8) = B(RNG)) 
 
Linking constraint: 
There is one linking constraint: the stringer base width, B2(STR), must equal 0.1 x (stringer spacing B(STR)). In this paper the 
stringer base has the same thickness and properties as the skin between stringers; there are no faying flanges in any of the cases 
explored here. 
 



 
Table 2 Definitions of variables used in the PANDA2 examples 
Variable 
Number 

Variable 
Name 

Definition Structural Part 

1 B(STR)  stiffener spacing, b: STR  stringer 
2 B2(STR) width of stringer base, b2 (must be > 0) stringer 
3 H(STR) height of stiffener (type H for sketch), h stringer 
4 W(STR) width of outstanding flange of stiffener, w stringer 
5 T(1)(SKN) thickness for layer index no.(1): SKN seg=1 panel skin 
6 T(2)(STR) thickness for layer index no.(2): STR seg=3 stringer web 
7 T(3)(STR) thickness for layer index no.(3): STR seg=4 stringer flange 
8 B(RNG) stiffener spacing, b: RNG  ring 
9 B2(RNG) width of ring base, b2 (zero is allowed) ring 
10 H(RNG) height of stiffener (type H for sketch), h ring 
11 W(RNG) width of outstanding flange of stiffener, w ring 
12 T(4)(RNG) thickness for layer index no.(4):RNG seg=3 ring web 
13 T(5)(RNG) thickness for layer index no.(5):RNG seg=4 ring flange 

 
 
 
 
 
Table 4 Optimum designs from PANDA2 suitable for analysis by STAGS (dimensions in inches) 

 
. Case 1 

Perfect,  
no Koiter, 
ICONSV=1  

Case 2 
Imperfect, 
no Koiter, 
yes change 
imperfection 
amplitude, 
ICONSV=-1 

Case 3 
Imperfect, 
no Koiter, 
yes change 
imperfection 
amplitude, 
ICONSV=0 

Case 4 
Imperfect, 
no Koiter, 
yes change 
imperfection 
amplitude, 
ICONSV=1 

Case 5 
Imperfect, 
yes Koiter, 
yes change 
imperfection 
amplitude, 
ICONSV=1  

Case 6 
As if 
perfect, 
no Koiter, 
Nx=-6000, 
sbar=120 ksi 
ICONSV=1 

Case 7 
Imperfect, 
no Koiter, 
no change in 
imperfection 
amplitude, 
ICONSV=1 

Variable 
Name 

Optimum 
Design 

Optimum 
Design 

Optimum 
Design  

Optimum 
Design 

Optimum 
Design 

Optimum 
Design 

Optimum 
Design 

B(STR) 0.75519 0.93500 0.93500 0.98170 0.93500 0.93500 1.5708 
B2(STR) 0.075519 0.093500 0.093500 0.0981710 0.093500 0.093500 0.15708 
H(STR) 0.39795 0.57079 0.58395 0.63651 0.55261 0.55330 0.92254 
W(STR) 0.35593 0.38639 0.36056 0.39946 0.29593 0.36761 0.64833 
T(1)(SKN) 0.030240 0.033988 0.033795 0.034878 0.039964 0.044110 0.048160 
T(2)(STR) 0.019897 0.028540 0.029197 0.031826 0.027631 0.033536 0.046127 
T(3)(STR) 0.022209 0.026779 0.029411 0.022835 0.032576 0.024673 0.033702 
B(RNG) 6.25 9.3750 8.3333 8.3333 9.3750 8.3333 15.000 
B2(RNG) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
H(RNG) 0.52160 0.79425 0.75877 0.79978 0.77659 0.92137 0.86341 
W(RNG) 0.17891 0.10000 0.12313 0.24075 0.31922 0.35255 1.0804 
T(4)(RNG) 0.026080 0.039713 0.037939 0.040078 0.038830 0.046069 0.043170 
T(5)(RNG) 0.021847 0.097842 0.086763 0.029339 0.037873 0.017627 0.054020 
WEIGHT 31.81 lb 39.40 lb 40.12 lb 40.94 lb 41.89 lb 46.83 lb 56.28 lb 



Critical 
margins 
from 
PANDA2, 
Table 5 

1, 6a,b, 
23a,b, 26, 
44, 55, 56, 
57, see 
Table 10 

1, 3, 6a,c,e, 
10, 23a, 26, 
47, 55, 56, 
57, see 
Table 6. 

1, 3, 6a,c,e, 
10, 23a, 26, 
47, 55, 56, 
57 

1, 3, 6a,c,e, 
10, 23a,e, 
25, 26, 44, 
47, 55, 56, 
57 

1, 3, 6a,d, 10, 
11, 23a, 44, 
47, 55, 56, 57 

1, 3, 6a,c,e, 
10, 11, 23a, 
25, 26, 44, 
47, 55, 56, 
57, 58 

1, 3, 6a,c,e, 
10, 11, 23e, 
25, 26, 44, 
46, 55, 56, 
57, 58 

Almost 
critical 
margins 
from 
STAGS 
and mode 
of elastic 
collapse 

1, 6a, 44, 
Collapse 
was not 
computed 

1, 6a, 47, 
Stringer 
sidesway 
and first 
bay collapse 
at PA=1.04 

1, 6a, 47, 
Stringer 
sidesway 
and first 
bay collapse 
at PA= 1.05 

1, 6a, 47, 
Stringer 
sidesway 
and first 
bay collapse 
at PA=1.08 

1, 6a, 47, 
Stringer 
sidesway and 
first bay 
collapse at 
PA=1.13 

1, 6a, 11, 
44, 47, 
Axisym-
metric edge 
collapse at 
PA=0.970; 
rv(edge)=0 
on 2 curved 
edges. 

1, 6a, 11, 
47, Stringer 
sidesway, 
first,middle 
and last bay 
collapse at 
PA= 1.22(–) 
PA= 1.15(+) 

Tables & 
Figures 
pertaining 
to the case 

     Table 10, 
Figs. 3, 33-
41 

Figs. 8–32  Figs. 1a-c, 
2, 4-7, 42-65 

Table11, 
Figs. 66-71 

Figs. 72-74 Figs. 75-80 

Comments This shell is 
not practi-
cal because 
no one can 
fabricate a 
perfect 
structure. 

With this 
option you 
MUST 
check the 
results via a 
general-
purpose 
code such 
as STAGS. 

With this 
option you 
are strongly 
URGED to 
check result 
with use of 
a general-
purpose 
program. 

This option 
may lead to 
shells with 
local skin & 
stringer 
bending & 
therefore 
possibly 
excessive 
stresses. 

This is the 
best option if 
you do not 
plan to check 
PANDA2 
designs. 
Even so, you 
SHOULD 
check them. 

This widely 
used option 
generates a 
heavy shell. 
PANDA2 
cannot 
predict axi-
symmetric 
collapse. 

This option 
is too con-
servative, in 
my opinion. 
The imperf-
ection can 
probably be 
detected 
easily. 

 



 
 
 
 
 

Case 4, Table 4: no Koiter, yes change imperfection, ICONSV=1; also see Figs. 61-63. 
Nonlinear equilibrium state from STAGS at the load factor, PA=1.00516. The 
imperfect shell has two initial buckling modal imperfection shapes: Fig. 1a with 
amplitude, Wimp1=+0.0625 and Fig. 61 with amplitude, Wimp2= -0.0005 inch. 
Prebuckling bending of the imperfect shell causes redistribution of stresses among the 
shell skin and the stiffener segments. Also, prebuckling bending gives rise to 
“flattened” regions with an “effective” circumferential radius of curvature that causes 
early general buckling. (See the right-most expanded insert). 
FIG. 2 Outer fiber effective stress (psi) at axial load, Nx= -3000 x 1.00516 lb/in. 



 
 
 
 
 
 
 

FIG. 3 PANDA2 results for Case 1 in Table 4: Design iterations during an execution of 
SUPEROPT, a PANDA2 processor the purpose of which is to seek a “global” optimum 
design. Each “spike” in the plot corresponds to a new starting design, which (as explained in 
[1D, 1K]) is generated randomly in a manner consistent with all linking and inequality 
constraints. See Table 3 for a typical PANDA2 runstream that includes several executions of 
SUPEROPT. 



 
 

 
 
Case 2, Table 4 no Koiter, yes change imperfection, ICONSV= -1. Compare with Fig. 17. STAGS Mode no. 1, 
load factor, pcr=1.9189; PANDA2 predicts 1.890. The linear buckling mode agrees with that from PANDA2: 
(m,n)=(4,6) halfwaves over 180 deg. See Part 1, Run 1 of Table 9. 
FIG. 16 Linear general buckling mode from the STAGS model with all stiffeners smeared. 
 
 



 
 
FIG. 17 Linear general buckling mode from the STAGS model. Only the stringers are smeared. The 
rings are modeled as shell units, 2 shell units per ring: Shell unit (a) for the ring web and Shell unit (b) 
for the ring outstanding flange. Case 2, Table 4: no Koiter, yes change imperfection, ICONSV = -1; Compare 
with Fig. 16. STAGS Mode no. 1, load factor, pcr=1.9017; PANDA2 predicts 1.890. The linear buckling mode 
agrees with that from PANDA2: (m,n)=(4,6) halfwaves over 180 deg. See Part 1, Run 2 in Table 9. This 
STAGS model and the model in the previous figure are used to obtain good approximations of the general 
buckling mode shape and load factor (eigenvalue) for two reasons: 1. Determine what circumferential sector to 
use for more refined models (60 degrees is good in this case), and 2. obtain a good estimate of the initial 
eigenvalue “shift” to use in the more refined models. 
 



 
 

 
 
Fig. 18 The same buckling mode from STAGS as that displayed in the previous figure, viewed end-on. One can 
see that there are 12 half-waves around the circumference, that is, 6 full circumferential waves. (From: AIAA 
48th Structures, Structural Dynamics, and Materials Conference, Paper no. AIAA-2007-2216, 2007) 
 
 



 
 
Fig. 42 PANDA2 design sensitivity study: Design Parameter, B(STR) (inches). 
B(STR) is the stringer spacing. (From: AIAA 48th Structures, Structural Dynamics, and Materials Conference, 
Paper no. AIAA-2007-2216, 2007) 
 
 


