Dr. John A. “Kim” Bailie (1929–2008)

Ph.D. from Stanford University

Formerly with:
Northrup Grumman Corporation, El Segundo, California
Lockheed Missiles & Space Co., Sunnyvale, California

From Kim Bailie’s Obituary (written by Georgina Bailie):
Kim Bailie died at his home in Palo Alto on August 29, 2008, aged 79. He was a well-known authority on the structural dynamics of submarine-launched ballistic missiles. His outstanding achievements in this difficult field, after his emigration to the United States in the 1950s, included the structural design of the Polaris and Trident strategic nuclear weapons.

The technical challenge confronting Lockheed, the prime contractor, and the U.S. Navy was particularly daunting in the area of structural dynamics. No precedents existed for calculating the stresses, distortions and drag imposed on a big missile launched from under the sea, which then had to emerge into the atmosphere, sustain rocket ignition, and eventually hit a target several thousand miles away with pin-point accuracy.
While working at Lockheed Missiles and Space Company, Kim completed his Ph.D. degree at Stanford University in structural dynamics, and thus was a natural for taking on the extremely difficult task in parallel of solving the required analysis for the Polaris program. Having done an outstanding job in this area, he then turned his attention to the Trident series of missiles, which had the additional complication of being made predominantly of composite materials, a very new field in those days.

Kim became an expert in this area and edited the *Design Guide for Fleet Ballistic Missile Composites* (1978-81), writing several of the chapters, a seminal work in this field. He also lectured at Santa Clara University, California, on the theory of elasticity and composite structures and at the University of California, Berkeley, on these and allied subjects.

John Alexander Hope Bailie, always known as Kim, was born in Johannesburg on February 2, 1929. His parents, Sydney and Marjorie, were born in South Africa, and forbears included John Bailie, one of the leaders of the 1820 English settlers’ group, and Alexander Bailie, who worked as a surveyor for Cecil Rhodes.

Kim grew up in Bathurst, Eastern Cape, and was educated at St. Andrew’s College School, Grahamstown. In 1947 he left for England to join the de Havilland Aeronautical Technical School at Hatfield, Hertfordshire, for a four-year apprenticeship in aeronautical engineering. He met his future wife, Georgina Gardner, when they were working in the aircraft design office of Vickers Armstrong. They were married in 1956 and emigrated to the United States to join the Lockheed Aircraft Company in Burbank. Uniquely, they were the first husband-and-wife engineering team to join that company. The couple moved to Palo Alto in 1958 to join the newly formed Lockheed Missiles and Space Company, later becoming American citizens.

Later in his career, he worked on composite structures back at the Lockheed Aircraft Company and at Northrop-Grumman in Los Angeles. In addition to his Ph.D., about which he was extremely modest, he held masters’ degrees from Cranfield University in England and Stanford University, and was elected an Associate Fellow of the American Institute of Aeronautics and Astronautics and a Member of the Royal Aeronautical Society in the United Kingdom.

In retirement he helped to restore vintage aircraft at the Hiller Aviation Museum in San Carlos and built houses for Habitat for Humanity. He also joined the team of volunteers that built a full-size replica of the Wright brothers’ famous airplane, known as the *Wright Flyer*.

Selected Publications:

W.C. Mace, C.L. Snape and J.A. Bailie, “Fabrication of reinforced PMR 15 graphite cloth cylinder assembly”, 23rd National SAMPE Symposium, Convina, California, 2-4 May 1978, pp 208-217

ABSTRACT and OBJECTIVES: The purpose of this study is to review many of the available design guidelines for unidirectional tape, laminated aerospace composite panels. Guidelines for bonded and bolted joints, cutouts, and durability and damage tolerance are also presented, as they strongly influence designs for production aircraft. These guidelines are accompanied by explanations of why each one was generated and the influence each one has on the structural performance of various aircraft components. Most of these guidelines were
developed during actual construction of relatively simple aircraft components in the late 1960s and early 1970s. Unfortunately, generally available literature detailing the derivation of these guidelines is scarce; hence, it was made necessary to obtain information directly from various aerospace engineering organizations and notes presented in lectures. The scarcity of formal documentation may also be due, in part, to the fact that many lessons were learned when unpredicted failures occurred during early development programs that are only now being declassified.

The present review is focused on composite laminates made of graphite fibers embedded in a polymer matrix since use of such laminates is increasing in highly loaded aerospace primary structures. Simple analyses and data are presented to illustrate the basis for many of the guidelines.

The objective of this review is to (1) gather the design guidelines currently used for structural design and analysis of unidirectional tape laminates, (2) review their derivation, and (3) explain their ranges of application. Many of these guidelines have served the aerospace industry for close to three decades as they were developed for fighter/attack aircraft structural components being designed in the late 1960s. Attention was directed towards production aircraft that were to be certified for operating lives on the order of 6,000 flight hours.

By gathering together these guidelines and critically evaluating their derivation, it is feasible to assess situations under which they can be safely relaxed or even ignored. Such an assessment is performed for a spar cap composed entirely of unidirectional plies proposed for unmanned air vehicles under development for NASA’s ERAST program.