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SUMMARY 

A strategy for solving problems involving simultaneously occurring large deflections, elastic-plastic 
material behaviour, and primary creep is described. The incremental procedure involves a double iteration 
loop at each load level or time. In the inner loop the material properties are held constant and the 
non-linear equilibrium equations are solved by the Newton-Raphson method. These equations are 
formulated in terms of the tangent stiffness. In the outer loop the plastic and creep strains are determined 
and the tangent stiffness properties are updated with use of a subincremental algorithm. The magnitude of 
each time subincrement is determined such that the change in effective stress is less than a preset 
percentage of the effective stress. The strategy is implemented in a computer pogram, BOSOR 5, for the 
analysis of shells of revolution. Examples are given of elastic-plastic deformations of a centrally loaded flat 
plate and elastic-plastic-creep deformations of a beam in bending. The major benefits of the subincremen- 
tal technique are the increased reliability with which problems involving non-linear plastic and time- 
dependent material behaviour can be solved and the greatly relaxed requirement on the number of load or 
time increments needed for satisfactory results. 

INTRODUCTION 

The high speed digital computer has enabled analysts to construct elaborate models of 
structures, including large deflection effects and material non-linearity. There are several recent 
excellent surveys of the various approaches: Tillerson et al.’ review numerical methods used to 
solve non-linear equations; Armen* describes several analytical models of multi-axial plasticity; 
Nickel13 gives a survey of techniques for treatment of creep and reviews many widely used 
computer programs in which creep is included; Hunsaker ef d4 present comparisons between 
test and theory for currently used models of elastic-plastic material behaviour. Therefore a 
review of methods will not be included here. 

The purpose of this paper is to explain in detail a ‘subincremental’ numerical strategy for the 
solution of problems in which large deflections, plasticity and primary creep are simultaneously 
present. This strategy is an extension of a procedure described in Reference 5. It includes 
modifications for the solution of problems involving primary creep without the occurrence of 
numerical instability. The method has been incorporated into the BOSOR 5 computer program 
for analysis of shells of revolution6, and it can be used for more general configurations. 
Huffington’ was the first to point out the advantage of using a subincremental method. Nayak 
and Zienkiewicz* and Stricklin et d9 have incorporated versions of it into their computer 
programs. 

t Staff Scientist. 

Received 13 June 1975 
Revised 24 February 1976 

@ 1977 by John Wiley & Sons, Ltd. 

683 



684 DAVID BUSHNELL 

The subincremental method 

Before a detailed description of the analysis is presented a brief explanation will be given of 
what the ‘subincremental’ technique is and why it is needed. 

In practically all non-linear analyses the load is applied incrementally and the response is 
determined for each value of the load. Each load level involves the solution of a system of 
simultaneous algebraic equations, the rank of this sytem being equal to the number of degrees- 
of-freedom in the discretized mathematical model. Let us henceforth refer to this system of 
simultaneous equations as ‘System A’. In most analyses in which material non-linearity is 
included, the iteration loop for the solution of System A contains calculations for determination 
of the plastic strain components. Usually these quantities are obtained in a one-step process in 
which the total increments of strain accumulated from one load level to the next are allocated 
among elastic, plastic, and possibly creep components. The relative magnitudes of the various 
components are known, at least as the load step begins, because the analysis contains a flow 
theory and the position of each material point in stress space is known from the converged 
results associated with the previous load level. The direction of plastic flow for each material 
point is generally considered to be constant for the entire load increment. For example, it may be 
assumed that this direction is parallel to the normal to the yield surface at a location in stress 
space determined by the converged result at the previous load level. Determination of the plastic 
strain components requires in the general three-dimensional case solution of a set of six 
simultaneous equations at each material point and in the case of axisymmetric deformations of 
thin shells the solution of two simultaneous equations at each material point. We shall 
henceforth refer to this small system of simultaneous equations as ‘System B’. 

The analysis presented here differs from most other analyses in two respects. The calculation 
of the plastic and creep strain components is removed from the iteration loop in which System A 
is solved, and a subincremental approach is used for calculation of the plastic and creep strain 
components so that the direction of flow is permitted to change continuously within a single load 
interval. 

The removal of the calculations involving plastic flow from the iteration loop for the solution 
of System A removes an objection pointed out by Tillerson et al.’ to the use of the Newton- 
Raphson method for problems involving elastic-plastic material. They found that the ‘Newton- 
Raphson’ procedure failed to converge if they used the tangent stiffness approach because of 
indications of alternative loading and unloading from iteration to iteration. Since the coefficients 
of their System A changed in a discontinuous manner in successive iterations, their strategy 
could not really be called a Newton method. In the present analysis the Newton-Raphson 
method is used with success. 

In the subincremental process the total increments of strain accumulated from one load level 
to the next are divided into subincrements of a certain magnitude. For each subincrement the 
direction of plastic flow is considered to be constant, given by the normal to the yield surface at a 
location in stress space determined by the result at a previous subincrement. For each strain 
subincrement the stress subincrements are determined from the flow law and the given 
relationship between effective stress subincrement and effective plastic strain subincrement (the 
uniaxial stress-strain curve). Thus, the equation System B is solved for each subincrement and 
each material point. 

The need for the subincremental method 

reference to the equations which form the simultaneous System B (creep neglected): 
Why is the subincremental method needed? This question can perhaps be best answered with 
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In equations (la)-(lc) the left-hand side { A E }  is the known vector of strain component 
increments; {ACT} is the unknown vector of stress component increments; AEp is the unknown 
effective plastic strain increment, which in Eq. ( lb)  is expressed in terms of the effective stress 
increment ACr and in Eq. (lc) in terms of the effective stress component increments through the 
non-linear function f ( A a i j ) .  The vector {a(+//au}, represents the components of a unit normal to 
the yield surface at a point in stress space fixed by the stress components {ao} calculated at the 
previous load level at which a converged solution has been obtained. The non-linear System B 
can in principle be solved for the stress component increments { A a } .  However, it often happens, 
especially at stress concentrations where {AE} is relatively large, that System B does not have a 
solution. Figure 1 demonstrates what happens. A sequence of values of AEp can be tried in Eq. 
(la) to generate the solid curve in Figure (la). The dashed curve is the stress-strain curve. 
Ideally, the value of AEp which satisfies all of the conditions is computed as one of the 
intersections of the two curves. Indeed, solutions can be obtained in this manner as long as the 
effective strain increment is less than about 0.1 per cent. For larger strain increments, however, 
the result shown in Figure l(b) is common. The 'subincrement' method prevents this anomaly. 

/ I 
I 

EFFECTIVE STRAIN 

Figure 1. Schematic representation of the solution of equations (1) without use of the subincremental method 

Another problem in calculating {Aa} from Eqs. (1) arises from the fact that the tangent 
modulus ET is a non-linear function of Ep or Cr. In the analysis to be described later, the actual 
stress-strain curve is replaced by a series of straight line segments. As the load is increased from 
one level to the next, ET changes in a discontinuous way that is not possible to express in a simple 
functional form. It is necessary to divide the increment such that at every material point ET is 
constant within any subincrement. 

Paths in strain space and stress space 

The subincremental method is especially advantageous when applied to  problems in which 
the paths followed by material points have less curvature in strain space than in stress space, 
which is usually the case for thin shells stressed beyond the proportional limit. Figures 2 and 3 
illustrate this behaviour. Figure 2 shows the paths in strain and stress space followed by the point 
for which the effective strain is maximum in an internally pressurized mild steel torispherical 
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Figure 2. Paths followed in stress space and strain space by a material point in an internally pressurized torispherical 
vessel head of mild steel 

pressure vessel head. Whereas the straining of the material is nearly proportional throughout 
the range of pressure, the loading of the material is approximately proportional only until the 
effective stress reaches the yield stress, after which the path in stress space follows the yield 
surface in a counterclock-wise direction. A similar phenomenon occurs for a centrally loaded 
flat plate, results for which are shown in Figure 3. Here the path is strain space is more curved 
because of the direction of loading and certain pecularities of the geometrically non-linear 
behaviour. Still the curvature of this path is not as great as that of the path in stress space. The 
subincremental method is especially suitable for problems such as these because of the 
non-proportional loading of the material. If the subincremental method had not been used, 
many more load steps would have been required to avoid the aforementioned difficulties 
associated with the solution of Eqs. (1). 

Fewer load steps needed 
A basic advantage of the subincremental method, then, is that it allows the use of much larger 

load increments than would otherwise be possible. The magnitude of the subincrement can be 
fixed such that in Eqs. (la)-(lc)ET is constant within a subincrement and the non-linear function 
f (Aai j ) ,  now f(daij), where 'd' indicates 'subincrement', can be linearized. Furthermore, if the 
material creeps the magnitude of each subincrement can be established such that the change in 
effective stress during a subincrement is less than a certain preset percentage of the current 
effective stress. This criterion is important because the creep law used here is derived from tests 
in which the stress is held constant. 
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Figure 3. Paths followed in stress space and strain space by a material point in a circular flat plate with a concentrated 
load, P 

Trade-off in computer time 

There is a trade-off in the use of the subincremental method. Fewer load steps need to be 
taken to cover a given load range, which generally means that the often large simultaneous 
equation System A must be solved fewer times than would otherwise be the case. On the other 
hand, incremental stress components and plastic and creep strain components must be calcu- 
lated for each subincrement. Therefore, relatively more computer time must be used for 
determination of the behaviour of the material. A great advantage of the subincremental 
method is that it makes the elastic-plastic analysis more reliable. The maximum size of a 
subincrement is preset. Therefore, more subincrements will automatically be used for material 
points corresponding to stress concentrations. In this way the errors incurred by linearization of 
Eqs. (la)-(lc) and by changes in the direction of plastic flow within an increment are made less 
severe. 

Creep 

Nickel13 gives a survey of computer programs in which primary and secondary creep 
are accounted for. Basically there are two approaches to the creep problem, the ‘equation-of- 
state’ approach and the ‘hereditary’ approach. In the former model the effective creep strain rate 
gc derived for conditions of changing stress is considered to be of either of the forms 

i‘ = f(a, T, t )  or 2 = g(8 ,  T, E‘) (2) 
in which the first is known as the ‘time hardening’ model and the second is known as the ‘strain 
hardening’ model. Greenstreet et a/.’’ present modifications to the strain hardening model in 



688 DAVID BUSHNELL 

order to eliminate certain numerical anomalies that occur under reversed loading. In the 
hereditary approach, initially formulated by Rabotnovll and favoured by Rashid'*, the effective 
creep strain is expressed as a convolution integral over time. 

Tests on specimens subjected to a program of stepped uniaxial loads indicate that the strain 
hardening model should be used. In particular, Russel and K ~ b a y a s h i ' ~  found that for 6AL4V 
titanium specimens between 1,000" and 1,200' the strain hardening model was in better 
agreement with the test results than either the time hardening model, which led to under- 
estimation of the creep strain, or the hereditary model, which led to over-estimation. Figure 4 
shows schematically how the creep strain is computed with use of the strain hardening model. 
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Figure 4. Accumulated creep strain predicted with use of the strain hardeningmodel 

The creep strain components in multi-axial applications are determined from a flow rule 
usually associated with a yield locus. Most computer programs handle creep strains as initial 
strains rather than modify the stiffness matrix as is done more often for plastic flow. The 
NEPSAP program written by Sharifi14 is an exception. Also, most of the codes have some sort of 
automatic control of the time increment based on change in effective stress or effective creep 
strain per elastic strain. None of these codes, with the possible exception of that derived by 
Zienkiewicz ef ~ 1 . ' ~  includes creep in connection with a subincremental method. The analysis of 
Reference 15 is based on steady creep. 

In the present analysis creep is handled in the following way: 
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1. The equation of state is a power law of the form 

(3) 

in which te is an effective time determined as described later. Crussard16, in a study of many 
different materials, found that Eq. (3) could generally be used to fit the experimental data for 
specimens subjected to constant stress. 

2. The method is, for all practical purposes, based on a strain-hardening model, although an 
element of the time-hardening model creeps into the picture, as shall be seen later. 

3. The flow rule is the same as that used for the plastic strains associated with the J2 invariant. 
The creep strains cause no change in volume. 

4. The creep strains are handled as initial strains, the stiffness matrix being unaffected by 
them. 

ac = A$'"''," 

ANALYSIS 

Basic equations 

The BOSOR 5 prebuckling analysis6 is based on the principle of virtual work, which can be 
written 

SU= [ E  - E" - E' - [D]{~E} d V =  S W (4) 
Volume 

where U represents the shell strain energy, and W the work done by external forces. If Eq. (4) is 
applied to axisymmetric deformations of shells of revolution, 

1.1 or {E} represents the total meridional and circumferential strain components E2J 

LE"] represents the total plastic strain components LET, $1 
[E']  represents the total creep strain components LE~, E;] 

L E ~ J  represents the thermal strain components LET, E:] 

E 1 v  
[ D l 4  1 - v  v 1 ] 

Integration is performed through the shell thickness, around the circumference, and along the 
meridian. The variation is taken with respect to the dependent variables qi, i = 1,2, .  . . , N, 
where qi is a node1 degree-of-freedom or a Lagrange multiplier and N is the total number of 
degrees-of-freedom. If 

then the principle of virtual work states that for equilibrium, 
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Equations (6) are non-linear algebraic equations to be solved by the Newton-Raphson 
method. For each Newton-Raphson iteration 

N a*. c 2Aqj=-Qi i = 1 , 2 ,  ..., N 
j = 1  aqj (7) 

must be solved for the correction terms Aq. Iterations proceed until Aqj/qj < e, where e is an 
error control parameter (e = 0.001 in BOSOR 5 ) .  The quantity a!Pi/a4i is the (i,  11th coefficient 
of an N x N matrix of known coefficients which change with each iteration. The coefficient 
aqi/aqj in Eq. (7) can be calculated from Eq. (5): 

Strategy for handling the material non -linearity 

nodal point displacements qi. Two methods for solving incremental plasticity problems are: 
In Eq. (8) the creep strain E “  and the thermal strain E~ are assumed to be independent of the 

(a) the ‘initial strain’ method 
(b) the ‘tangent modulus’ method 
In the ‘initial strain’ method the plastic strains are treated as ‘effective thermal strains’. In Eq. 

(8) the term E’ is assumed to be independent of the nodal point displacements qi. Thus, Eq. (8) 
becomes 

where all quantities are known and independent of qi and qj except E and W. 

strain components are expressed in terms of the rates of change of the total strain components. 
In the ‘tangent stiffness’ method, which is used in BOSOR 5, the rates of change of the plastic 

{dEP}= [C]{~E -dE”-dET) (10) 

or, if [C], E “  and eT are regarded as independent of qj 

The 2 X 2 matrix [C] is derived in a following section. If one inserts the right-hand side of Eq. 
(1 1) into Eq. (8), one obtains (recalling that [D] is independent of qj )  

(12) 
a* w 

[ I  - CIT[D] { ”1) d V - - [ ”.) = j ( LE - E - E “ - E [D] { &) + 
aqj v aqi aqj - 8% aqi aqj 

‘tangent stiffness’ 
matrix 

The two element vector eP which appears in the first term on the right-hand side of Eqs. (5) 
and (1 2) is given by 

{ E  ’} = { E  + AE ”} = { E  + [ C](E - ~ g ) }  (13) 
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in which the subscript ( )o denotes 'value obtained when the material properties were last 
updated'. With use of Eq. (13), one can write Eq. (12) in the form 

where [DT] is the tangent stiffness matrix, 

[DT] = [ I -  CIT[D] 

The governing equations of the 'tangent stiffness' method for each Newton-Raphson iteration 
are obtained by insertion of Eqs. (5) and (14) into Eq. (7). 

In Eq. (1 1) the rates of change of the plastic strain components are related to the total strain 
components by means of the 2 X 2 matrix [C]. The derivation of this 2 x 2 matrix follows [Eqs. 
(16)-(24)1. 

The stress components are given by 

{a} = [D]{E - EP- EC-  E T )  (16) 
and the stress increments by 

{ACT}= [D]{AE -A&'- AE"-AET) 

From the condition that the resultant plastic strain increment vector must be normal to the Von 
Mises yield surface, the following relationships arise: 

where A&;, i = 1,2  are the incremental plastic strain components; AEp is the effective plastic 
strain increment; a;., i = 1,2  are given by Eq. (16); and 6 is the effective stress, 

(19) 2 2  1/2 6=(a1+a2-a1a2) 

Premultiplying both sides of Eq. (17) by the row La6/aa] and substituting the right-hand side of 
Eq. (18) for {AE~}, one obtains 

Eq. (20) can be solved for AEp: 

The two elements of the row or column {aC/ao} are given in Eq. (18). H' is the slope of the 
effective stress us effective plastic strain curve, which locally is given by 

H' = EET/(E - ET) (22) 
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where ET is the tangent modulus. From Eq. (18) comes the final expression 

where 

The above formulation follows Stricklin et aL9 Marcal17 employs a similar procedure. 

Solution strategy-a double-iteration loop 

The prebuckling iteration strategy is as follows. At each load level or time step there are two 
nested iteration loops. In the inner loop the set of simultaneous non-linear algebraic equations 
(7) with given fixed material properties and plastic and creep strains is solved. This is the 
'Newton-Raphson loop'. In the outer loop the strain-dependent material properties, the matrix 
[C], the plastic strain components E:, E; ,  and the creep strain components E ; ,  E ;  are calculated. 
Double iterations at a given load level continue until the displacements no longer change. In this 
way the f avourable convergence property of the Newton-Raphson procedure is preserved, 
equilibrium is satisfied within the degree of approximation inherent in a discrete model, and the 
flow law of the material is satisfied at every point in the structure. This strategy is illustrated in 
the flow chart shown in Figure 5.  

COMPUTATIONAL PROCEDURE FOR OBTAINING PLASTIC AND CREEP 
STRAINS 

A subincremental method for the solution of problems involving large deflections, plasticity, 
and creep is used in BOSOR 5. As described in the Introduction, this method permits the use of 
large 'major' load or time increments. (A 'major' increment is one for which the governing 
equations, called 'System A' in the Introduction, are repeatedly solved by the Newton-Raphson 
method until convergence is achieved.) If creep is neglected, the 'major' time increment, call it 
At, is subdivided into equal subincrements, dt, such that each effective strain subincrement, dE, is 
less than 0.0002. It is assumed that the total effective strain increment AE is subdivided into 
A~/O.0002 equal subincrements, dE. This strategy is also suitable for some cases in which 
secondary creep occurs. However, the strategy does not work well for primary creep or for cases 
in which the creep law has a high power on stress. For example, it is not possible to determine the 
creep-buckling pressure of a titanium shell with a moderate amount of computer time since the 
'major' increments have to be excessively small for early times. The strategy fails for early times 
because there is a relatively large amount of creep which for reasonable time subincrements 
leads to prediction of substantial changes in stress. Unless extremely small time increments are 
used, the change in state of the material as a function of time cannot be predicted with requisite 
accuracy. 

If primary creep is present, the strategy which has been implemented in the BOSOR 5 
computer program involves determination of the ith subincrement dt") such that the maximum 
change in effective stress daci, during each dt") is less than a certain fixed percentage of the 
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Load (time) is  increased because 
"double iteration" converged: 
equilibrium is satisfied "exactly" 
and the plastic strain, creep 
strain, and [Cl matrix settled -~ 
down to converged values. 
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Figure 5. Flow chart of the double iteration loop used in BOSOR 5 for problems in which both material and geometrical 

nonlinearities exist 

effective stress, 6(i-l). In BOSOR 5 the criterion is 

dC(i)/e(i-I) S 0.01 

This strategy leads to subincrements of varying duration within the 'major' increment At, 

Steps in the computational procedure 

Suppose that the computer has just completed the calculations for a certain load state (0) and 
the load has just been increased. For the next load step the Newton-Raphson loop is entered 
without any change in the plastic or creep strains or [q-matrix. This is the first trial, or k = 0 (see 
Figure 5). The Newton-Raphson iterations will presumably converge, and calculations of new 
plastic and creep strain increments will then begin with k = k + 1 = 1. The subsequent computa- 
tional steps follow. 
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Step 1. Given the new displacement vector 4, calculate the total strain components E ~ ,  e2. 

Step 2. Assume that the elastic strain components are given by 

(26) 
T 

E ~ = E ~ - E & - E & - E ~  ( i=1 ,2)  

Step 3. Calculate the stress components, effective stress 

E E 
1 - V  1 - V  

(TI = 7 ( E ;  + V E ; ) ;  ~2 = ~ ( E Z  + w;); a = (&+ C; - ~ 1 ~ 2 ) ~ ' ~  (27) 

The quantity a is shown in Figure 6. 

5 effective s t ress  i f  a l l  new strain due to 
current load step is elastic d/ 

hypothetical point corresponding to 
final converged state after current 
load step applied 

= yield point before current load step applied 
U,, 

BOSOR5 approximation of s t ress-s t ra in  curve 

6 = converged value from previous load s tep 

EFFECTIVE STRAIN 

Figure 6. Actual stress-strain curve and BOSOR 5 model showing significant stresses used in the analysis 

Step 4. If the effective stress is less than the yield stress eY (see Figure 6), compute the creep 

Step 5. Calculate the elastic strain components corresponding to the last converged load step. 

strain increment, set [C] = 0, and then go to Step # 11. 

Calculate the corresponding stress components and effective stress: 

(28) 
E 

a01 = ___ ( E ; ~ +  V E ; ~ ) ,  etc. a. = f ( ~ 1 0 , 4  (1 - 2) 
(see Cro in Figure 5.) 

Step 6. Is the effective stress on the yield surface at the beginning of the load step? If so, go to 
Step # 8. If material creeps, go to Step # 8 regardless of the position of C0. 

Step 7. If the effective stress is inside the yield surface at the beginning of the load step and if 
the material does not creep but does yield we must 'move out' to the yield surface before 
proceeding with the calculation of plastic strain increments. There exists a positive number p 
between zero and unity such that 

U l y  = (+lo + I I b 1 -  a1o); g z y  = azo+ P(U2 - %o) (29) 
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In Eq. (29) uly, uZy are the stress components corresponding to the point in Figure 5 labelled 
‘6,-yield point before current load step is applied’. The components ul0, uz0 correspond to the 
point (To, and ul ,  u2 correspond to the point 6. The formula for p is 

where 

- 
(du)’ E (du1)’+ (du2)’ - (dul)(duz) 

Sfep8. The elasticstrains corresponding to a state of stress on the yield surface are given by 

1 1 
E E E;y=-(uly- m y ) ;  Ee2y=-(u2y-Vuly) 

The elastic strains corresponding to the last converged load step are 

Define &;b = E:,, or E : ~ ,  where the ‘b’ signifies ‘beginning elastic strain component’. 

If the wall material is loaded into the plastic zone during the current load increment, the total 
strains E 1, s2 are composed of the elastic strains at the beginning of the load step or elastic strains 
required to bring a point to the yield surface, plus the accumulated, known plastic and creep 
strains E&, E&,  (i = 1,2) at the beginning of the load step, plus the thermal strains ET, plus the 
new elastic strains due to the current load step, [(l/E)(Aul - v haz), etc.], plus the new plastic 
and creep strain increments, AEp{aa/au} and AEc{a6/au} due to the current load step. 

The total strains are thus 

1 aa 
E au1 

E~ = &;b + E &  + E &  + &T+- (AUl - Y A u ~ )  + (ASP+ A E 3  - 

(34) 

or, written in another way 

1 aa 
= - (Aul- Y AuJ + (AEp + AEC) - 

E au1 

1 aa A E ~  = - (ha;! - Y Aul) + (AEp+ AEC) - 
E aa2 

(35) 

Equations (35) contain 3 unknowns: Aul, Au2, and AEp. (AEC is a known function of 6 and 
time, and 6 is a known function of uiy+Aai,  in which uiy is known.) The third ‘equation’ 
needed for the solution is the given stress-strain curve in which an effective stress increment is 
related to an effective plastic strain increment. These simultaneous equations, called ‘System B’ 
in the Introduction, are non-linear and in fact are not entirely explicitly defined, since the 
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stress-strain curve is given as a sequence of straight lines and not as a continuous function. It is 
pointed out in the Introduction that unless a subincremental method is used these simultaneous 
non-linear equations may not have any solution. 

Step 9. Establish the number of ‘subincrements’ to be used for evaluating the plastic and 
creep strain increments. If there is no creep: 

A&. I = ~ e - ~ e  I rb ( i =  2, 

2 
AE =a ( A E : + A E ~ + A E ~  A E ~ ) ~ ” ;  M=AE/0-0002 (36) 

M is the number of subincrements required at the current location in the shell wall, the current 
trial, and the current load step. If creep is present, establish the time subincrement such that the 
change in effective stress is less than one per cent of the current estimate of the effective stress. 
There is an additional requirement described in reference 5 that in cases of near-neutral loading 
the number of subincrements must be increased if the change in direction of the plastic strain 
increment vector is excessive during a subincrement. The number 0.0002 was chosen as a result 
of numerical experimentation. 

Step 10. It is assumed that for each subincrement the subincremental resultant plastic strain is 
normal to the ‘temporary’ yield surface existing at the beginning of the subincrement 

dei = A E J M  (i = 1, 2 )  (37) 
For each subincrement the following equations must be solved: 

1 
dE ‘ - E  -- (duy)- v da‘; ‘ ’ )+(dE~)+dE~i))B(I- ’)  (38) 

in which 

where i refers to the ith subincrement. 
The actual stress-strain curve is replaced with a sequence of straight line segments as shown in 

Figure 6. it is assumed that within any effective strain subincrement the stress-strain curve either 
has no corners or has only one corner. If a corner occurs within the subincrement, this 
subincrement is divided at the corner into two (in general unequal) subincrements. Hence, it 
always holds that within a subincrement 

where ET, the local tangent modulus, is constant. Because of the small size of the subincrement, 
the expression a(;) - a(i-l) can be linearized: 

dug) (41) 

(42) 

c(;)-c(;-1) - B(i-1) day)+B$-’) 
1 

- 

The creep law used in BOSOR 5 is of the form 
EC = Aarnt: 
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in which t, is derived as shown in Figure 7. The stress within a subincrement dt") is assumed to be 
constant and equal to the average of the stresses (ai-] + ai)/2 at the beginning and end of that 
subincrement. The effective creep strain accumulated during the subincrement (E ;  - is 
calculated with the assumption that the material point follows the creep curve corresponding to 
the average stress starting at the effective time f 2 - l )  at the beginning of the subincrement (curve 
'2' in Figure 7). The new effective time tt' at the end of the subincrement is determined from the 
new effective strain E;, as shown in Figure 7. 

Figure 7. Creep strain accumulated during subincrements 

This method is a sort of combination of the time hardening and strain hardening approaches. 
The time hardening element enters the picture because of the assumption that we are following 
the curve '2' in Figure 7 rather than a curve beginning at the earlier time at which the creep curve 
for (Liii-] +Lii)/2 yields the effective creep strain E;-l. In most practical problems for which creep 
is significant most of the creep occurs at fairly constant stress levels. This situation is illustrated in 
Figure 8. The creep curve (a) is the same as that shown in Figure 4 4 e r i v e d  from a strain 
hardening model corresponding to the stepped variation (a) in stress shown at the top of the 
figure. The creep curve (b) corresponds to the variation in stress indicated by the solid line (b) in 
the top frame. The strategy indicated in Figure 7 would yield lower creep strains than the strain 
hardening model only in the relatively brief intervals tl  < t < t2 and t3 < t < t4 when the stress 
level is being increased. Even this small effect would be somewhat counteracted by the fact that 
the effective times corresponding to the beginnings of the long intervals tz < t < t3 and t4 < t < t5 
would thus be earlier, leading to slightly greater creep strain increments accumulated during 
these long periods. From Eq. (42) and Figure 7 it can be seen that for each subincrement the 
effective creep strain subincrement is given by 

in which the effective time at the beginning of the subincrement is 
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Figure 8. Accumulated creep strain for two similar loading programs 

The effective creep strain subincrement can be expressed in terms of a known quantity plus a 
quantity dependent on the effective stress subincrement da(i) through the expansion 

The effective creep strain subincrement thus becomes 

With the effective stress subincrement dc?(i) given by 

da$' (47) d&(i, = BY-1) daf)+B$-l) 

and with use of Eqs. (40)-(46) in Eqs. (38), we obtain two equations for the unknowns day' and 
dug), the subincremental stress components: 
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in which 

1 1  A - -+- (B$-l))z 
2 2 - E  E** 

1 1 Aom +- 
E** E *  2c?(i-1) 
-- -- 

A. = A~~-'_,,[(tt-')+dt('))" -(t;-')y 

E* = (E - ET)/(EET) if stress is increasing 

if stress is decreasing 
1 -=o 

E *  

1 

tt-') given by Eq. (44). 
It is assumed that the strain subincrements dsl  and dsz are the known strain increments A s 1  

and A s z  times the ratio dt/At, where dt is the time subincrement and At is the total 'major' time 
increment: 

All  d ~ y ) + A l z  du$)=AE1 dt(')/At-A B('-') 

A12 duy)+Azz du$'=A&z dt(')/At-AA,B','-'' 
(50) 

0 1  

From Eqs. (50) we must first determine the time subincrement dt") such that the change in 
effective stress [Eq. (47)] is less than one per cent of the effective stress. This is done by iteration: 
A starting value of dt") is 

dt,,,,, = At(0'0002/AE) (51) 

where 

Corresponding to this known value of dt('), the stress subincrements day), dug) are determined 
from Eq. (50), and Eq. (47) is used to check whether or not the requirement ldc?/c?l- <Om01 is 
satisfied. If not, a smaller dt") is chosen and day), du',') are again calculated. This iterative 
process is continued until Idc?/c?l SO-01. In Eq. (51), if (0*0002/AE) > 1, then dt,,,, = At. A tally 
is kept of the time Ck=ldt(k) accumulated during the increment At, and subincremental 
iterations are terminated when Ck=l dt(k) = At. 

To summarize, the procedure under Step # 10 is to: 

(a) Calculate ~ f - ' ) ,  B$-'). 
(b) Find ETfrom the known value of EE-l)+c?('-l)/E and the piecewise linear stress-strain 

(c) Solve Eqs. (48) for day), du!'. 
(d) Calculate the effective stress subincrement from Eq. (47), the effective plastic strain 

curve. 

subincrement from Eq. (40), and the effective creep strain subincrement from Eq. (46). 
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(e) Add all increments to the base values to obtain the updated values my), m!), etc. 
(f) If a counter is less than M or if 1 dt < At, go back to (a). 

Step 11. With values established for stress components and plastic and creep strain compo- 
nents, the 2 x 2 matrix [C] can now be calculated through the use of Eq. (24). The symmetric 
2 x  2 tangent stiffness matrix [DT] (Eq. (15)) is then calculated. Everything is now determined 
for this particular thickness station, meridional point, load step, and trial. 

Step 12. Carry out Steps 1-1 1 for the next thickness station at the same meridional point. 

Step 13. If Steps 1-1 1 have been completed for all thickness stations in the current shell wall 
layer, perform the integrations indicated in Eqs. (5) and (14). The volume element is 

dV=r(l+z/Rl)(1+z/R2)dz ds d8 (53) 
where r is the radius of a latitude through the reference surface, z is the normal outward distance 
from the reference surface to a material point, R1 and R2 are the meridional and normal 
circumferential radii of curvature, ds is the elemental meridional arcof reference surface, and d8 
is the elemental circumferential angle. The meridional and circumferential strains E~ are 
expressed in terms of reference surface strains ei and changes in curvature Ki by the following: 

ci = (ei -zKi)/(l +z /Ri ) ;  i = 1 , 2  (54) 

E ~ =  ai AT;  i = 1,2 (55)  

With Eqs. (53) and (54) and the known thermal strain 

in which AT is the known temperature rise above the zero-stress condition, and with [&I, [C], 
E &  and E :  known at all thickness stations in the layer, the z-integrations of Eqs. (5) and (14) can 
be performed. Simpson’s rule is used for this integration. Integration over s amounts to 
multiplication by the length of a finite difference element (see reference 6) and integration over 8 
amounts to multiplication by 27r. 

Step 14. Perform above steps for all shell layers (different materials) at the current meridional 
station. 

Step 15. Perform above steps for all meridional points in the current shell segment. 

Step 16. Perform above steps for all shell segments. 

EXAMPLES 

Flat circular plate under concentrated load 

Flat aluminium plates were tested by Levine et a1.18 This is a good configuration with which to 
verify the analysis and the strategy because both geometrical and material non-linearities are 
significant. Figure 9 shows the experimental and theoretical load-deflection curves. Levine et al. 
also performed an analysis and also obtained good agreement with the test results. They used 
about 100 load steps, however. 

Figure 3, discussed in the Introduction, shows the paths in stress and strain space followed by a 
material point as the load is increased from 0 to 1,000 Ib. The final prediction of the state of 
stress and strain at P = 1,000 lb converges rapidly with increasing number of load steps. This 
rapid convergence can be attributed to the fact that at every load level utmost care has been 
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Figure 9. Load-deflection curves from test and BOSOR 5 for centrally loaded flat circular plate 

taken, through Newton-Raphson iterations and the subincremental process, to assure con- 
vergence with respect to both geometrical and material non-linear behaviour. 

Figure 10 shows the convergence of the displacement with ‘trial’ number. (A ‘trial’ is defined 
in Figure 5. One ‘trial’ represents a solution of the non-linear equation System A.) In this case a 
very large load increment, AP = 500 lb, is used. Even so, the converged displacement is very 
close to the experimental result, as seen from the location of the ‘X’ corresponding to P = 500 lb 
in Figure 9. Nine trials were required in order to achieve convergence of the displacement 
distribution within a tolerance of 0.1 per cent. The first Newton-Raphson iteration on the first 
trial yields the linear elastic solution. This BOSOR 5 solution (wmax = 0.08718 in) agrees with 
the formula tabulated in Roark” (wmm = 0.08703 in). Throughout the first trial the material is 
treated as elastic, since this is the first load step and thus no previous history of plastic flow exists. 
Four Newton-Raphson iterations are required in this first trial for convergence to the non-linear 
elastic solution. The solution vector thus obtained is used as input for the determination of how 
much plastic flow occurs, and a new solution is obtained after five Newton-Raphson iterations in 
Trial #2. Two Newton-Raphson iterations are required for convergence in each of trials 
four-eight, and a ninth trial is required to ensure that the change in material properties between 
Trial # 8 and Trial #9 is so slight that it affects the displacement vector by less than 0-01 per 
cent. The predicted maximum normal displacement is 0.17532 in. 

Figure 11 demonstrates the subincremental method. This figure applies to one particular 
point in the circular plate. The point is located on the upper surface at a distance 0.4374 in from 
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CREEP LAW: 98.18 0.5782 
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Figure 13. Extreme fibre stress and creep strain in the titanium beam as functions of time predicted with use of various 
time increments 

is applied at time t = 0 and held constant. Thus, as time increases, the stress near the extreme 
fibres of the beam relaxes and the stress near the neutral axis increases such that equilibrium is 
maintained. Note that most of the change in stress from the instantaneous elastic-plastic 
distribution occurs within the first 0.2 h after application of the load. This phenomenon raises 
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Figure 11. Paths in stress space followed by a material point in the plate during the subincremental process for 
successive trials 
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Figure 12. Stress distribution in a titanium beam under constant bending moment 
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Figure 13. Extreme fibre stress and creep strain in the titanium beam as functions of time predicted with use of various 
time increments 

is applied at time t = 0 and held constant. Thus, as time increases, the stress near the extreme 
fibres of the beam relaxes and the stress near the neutral axis increases such that equilibrium is 
maintained. Note that most of the change in stress from the instantaneous elastic-plastic 
distribution occurs within the first 0.2 h after application of the load. This phenomenon raises 
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the question of just how much of the early time creep should be regarded as instantaneous plastic 
flow, a question that will not be dealt with here. The purpose of this example is to illustrate the 
subincremental strategy and the effect of changes of the major time increment on the predicted 
creep strain and extreme fibre stress. 

Figure 13 shows the predicted extreme fibre stress and creep strain as functions of time for 
various time increments At. For At = 1.0, 5-0, and 20.0 h, the values for each subincrement dt 
are also plotted. For At = 0.2 h, subincremental values are shown only in the top frame and only 
for time less than 0.2 h. In two of the cases, those labelled At = 0.2 and At = 1-0, the time 
increment is increased after about 5 h of elapsed time. 

Notice that in order that the criterion IAC?/al< 0.01 be satisfied many subincrements are 
required for very early times and fewer for later times. This is particularly evident in the curves 
corresponding to At equal to 20 h. Also, notice that during the first time increment the 
subincremental process leads to an erroneous prediction that the stress decreases from about 
130 ksi initially to a minimum value that depends on At and then increases somewhat. The 
reason for this ‘undershoot’ is not known. 

If the stresses predicted with use of the smallest time increment Ar = 0.2 are regarded as 
the converged values, it is seen that use of At = 1-0,5-0, and 20.0 leads to overestimation of the 
stress at time = 1.0,5.0,20.0 h, respectively. The too high stress leads to overestimation of the 
creep rate during the ensuring time increment. This trend continues to a diminishing degree in 
successive time increments until the predicted stresses and creep strains for all major time 
increments are reasonably close to one another. Thus, the error incurred in the early time 
increments due to the use of a large time increment is ‘washed out’ as time progresses. The 
results in Figure 13 indicate that if the analyst wants to know the state of stress and strain at time 
t, he should use a time increment of about t / 5 .  For example, the results at t = 20 h are accurately 
predicted with use of A t = 5  h; the results at t = 5  h are accurately predicted with use of 
At = 1.0 h. 

CONCLUSIONS 

The principal advantages of the subincremental technique are the increased reliability with 
which problems involving non-linear plastic and time-dependent material behaviour can be 
solved and the greatly relaxed requirement on the number of load or time increments needed for 
satisfactory results. The advantage of the double iteration loop at each load level or time, that is, 
the removal of the calculation of tangent stiffness from the Newton-Raphson iterations, is that 
the numerical instability associated with erroneous prediction of alternative loading and 
unloading disappears. 

The strategy described here is particulary well suited to the solution of problems involving 
discretization of one independent spacial variable, since such cases are associated with stiffness 
matrices with small bandwidths. Thus, the time required to perform the Newton-Raphson 
iterations at each trial and at each load level or time step is not excessive. One can afford to 
impose rigorous conditions on convergence. For problems involving discretization in two or 
three dimensions, some modifications of the strategy would be beneficial. It should be possible 
to vary the convergence criteria dydamically such that less computer time is spent during early 
trials at a given load level than during later trials. For example, one would not need cenvergence 
of the Newton-Raphson iterations to within 0.1 per cent in the first trial if subsequent changes in 
the tangent stiffness matrix were to affect the deformation at that load level or time step by many 
times that amount. A similar argument holds for the number of subincrements used for the 
determination of the plastic and creep strain increments. Fewer subincrements would suffice for 
earlier trials. The maximum number of trials allowed at each load level or time could also be 
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programmed in advance to vary during a case. Allowing for these and other modifications of a 
similar nature, it should be possible to apply the strategy described here to other more general 
problems. 
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APPENDIX 

Nomenclature 

B 
[CI 

[Dl 

[&I 

ET 

E 

E 

M 
N 
4i 
t 
te 
A t  
d t  
T 
U 
V 
W 
V 

*i 
U 

See Eq. (39) 
2 x 2 matrix given by Eq. (24) 

2 x 2 matrix: [ D ]  = 

Tangent stiffness matrix, Eq. (15) 
Strain anywhere in the shell wall 
Young’s modulus 
Tangent modulus 
Number of subincrements within an increment 
Number of degrees-of-freedom in problem 
ith nodal point degree-of-freedom 
Real time 
Effective time, Eq. (44) 
Time increment 
Time subincrement 
Temperature 
Strain energy 
Volume 
Work done by external forces 
Poisson’s ratio 
Gradient of energy with respect to qi 
Stress 

Subscripts 

1 , 2  Meridional, circumferential directions 
(i) ith subincrement 
0 
Y Yield 
b 

Converged value at previous time or load 

Value at the beginning of the subincremental process 



PROBLEMS INVOLVING LARGE DEFLECTIONS, PLASTICITY AND CREEP 707 

superscripts 

Creep 
Elastic 
Plastic 
Thermal or transpose, depending on context 
‘Effective’ (e.g., 6 = effective stress) 
ith subincrement 
Power on stress in the creep law 
Power on time in the creep law 

Symbols 

1 1 Row vector 
{ } Columnvector 
[ ] Matrix 
A( ) Increment 
d( ) Subincrement 
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