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Abstract—The PANDA?2 computer program for minimum-weight design of stiffened composite panels
is expanded to handle optimization of ring and stringer stiffened cylindrical panels and shells with
three types of initial imperfections in the form of buckling modes, any combination of which may be
present: local (buckling between adjacent stringers and rings), inter-ring (buckling between rings with
stringers bending with the panel skin), and general (buckling in which both stringers and rings bend
with the panel skin). Stresses and buckling load factors of the imperfect panels are computed with use
of the assumption that the amplitudes of the buckling modal imperfections grow hyperbolically with
increasing load factor according to the formula AMP(i) = EIG()/(EIG(i) — 1), in which AMP(i) is a
factor to be multiplied by the initial buckling modal imperfection and EIG(i) represents the critical
load factor for the ith type of buckling mode (i =1 =local buckling, i =2 = inter-ring buckling,
i =3 = general buckling). Buckling load factors corresponding to local, inter-ring, and general buck-
ling of the imperfect panel are computed with use of the maximum radius of curvature that develops
in whatever portion of the panel (between stiffeners, inter-ring, overall) is being considered in the
calculations and including redistribution of stress resultants over panel skin and stiffener cross-sections
caused by prebuckling bending. Stress constraints in the optimization problem are computed including
local, inter-ring, and general bending stresses generated by the growth of the initial local, inter-
ring, and general imperfections. These bending stresses are added to the stresses from other sources
(thermal, in-plane loading, normal pressure, curing, redistribution of membrane stresses from overall
prebuckling bending of the imperfect panel). Minimum-weight designs for various imperfect
unstiffened and stiffened cylindrical shells derived by PANDA2 are evaluated with use of the
STAGS general-purpose finite element code. The agreement of results from PANDA2 and STAGS

appears to qualify PANDA?2 for the preliminary design of imperfect, stiffened, composite cylindrical

shells.

INTRODUCTION

Previous work done

There is extensive literature on the buckling and
postbuckling behavior of stiffened plates and shells.
This literature covers metallic panels and panels
fabricated from laminated composite materials. A
brief survey of previous work in this field is given by
Bushnell and Bushnell [1]. That survey will not be
repeated here.

There have recently appeared many new papers
on the buckling and postbuckling behavior of
panels and on optimization of composite panels.
New methods for the optimization of laminated
composite panels have been explored by Haftka
and his colleagues [2-5). Preliminary feasibility and
design studies of hypersonic aerospace planes
have stimulated research on thermal buckling and
postbuckling [6-11]. The relatively large effect of
transverse shear deformation on the buckling and

postbuckling behavior of laminated composite and
sandwich panels is studied in several new
papers [12-18]. Other new papers on the buckling
and postbuckling of laminated composite panels and
shells include Refs [19-29]. Of particular interest is
a paper by Arbocz and Hol [30] on the development
and linking of a suite of programs of increasing
complexity operated on workstations at the Delft
University of Technology.

Bushnell and Bushnell [1, 31] present the results of
optimization of metallic and laminated composite Tee-
stiffened and Hat-stiffened panels by the PANDA?2
program [1, 32-37] and verification of the optimum
design by the STAGS program {39-41, 48-50].

Purpose of this paper

The purpose of this paper is to describe extensions
to the PANDA?2 program that permit the optimum
design of imperfect, stiffened cylindrical panels and
shells as summarized in the abstract and to present
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examples. The unique and most significant aspects
of the work are felt to be:

(1) the generation of a reasonably user-friendly
and practical computer program for the quick pre-
liminary design of stiffened composite panels that
may be imperfect, subject to multiple combinations
of loads, and in which the panel skin may be in its
locally postbuckled state, and

(2) the verification of this program through
evaluation of optimum designs generated by it with
use of the widely used general purpose code for
nonlinear shell analysis, STAGS.

Scope of PANDA2

PANDA? finds minimum weight designs of lami-
nated composite flat or curved cylindrical panels or
cylindrical shells with stiffeners in one or two or-
thogonal directions. Stiffeners can be blades, tees,
angles, or hats. Truss-core sandwich panels and
isogrid panels can also be handled. The panels or
shells can be loaded by as many as five combi-
nations of in-plane loads, edge moments, normal
pressure, and temperature. Transverse shear defor-
mation effects are included. The material properties
can be temperature-dependent. Panels can be opti-
mized for service in their locally postbuckled states.
The presence of an overall imperfection, an inter-
ring imperfection, and a local imperfection in the
form of the general, inter-ring, and local buckling
modes are included. Constraints on the design in-
clude stiffener crippling, local and general buckling,
torsion-bending buckling of stringers and panel
skin, stiffener “popoff”’, maximum displacement
under pressure, maximum tensile or compressive
stress along the fibers and normal to the fibers in
each lamina, and maximum in-plane shear stress in
each lamina. In calculating local buckling and post-
buckling behavior, PANDA2 uses a single panel
module which consists of one stringer plus the
stringer base and panel skin on either side of it
that represents the stringer spacing b. The cross-sec-
tion of the panel module is discretized, and vari-
ation of behavior in the axial direction (parallel
to the stringers) is represented by trigonometric
functions. Optimization is performed with use of the
ADS program developed by Vanderplaats and
Sugimoto [42]. Further details about PANDA?2 are
provided in Refs [1, 31-37].

INTRODUCTION OF BUCKLING MODAL
IMPERFECTIONS

Overview

Previously in PANDA2, global and local initial
geometric imperfections affected buckling load fac-
tors and post-local-buckling behavior only in the
following rather indirect ways:

(a) a global imperfection, or panel bowing,
affected the distribution of resultants over the
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various segments of a panel module only for a
flat panel or for a cylindrical panel without
rings;

(b) a local imperfection affected the local post-
buckling behavior and influenced the optimum de-
sign only for discretized models used in certain
analysis branches. Local imperfections could not be
used with panels or shells stiffened by rings only.

These influences of initial imperfections are still
included, of course. However, they do not account
in a strong enough way for the effect of initial
geometric imperfections on the general, inter-ring,
and local buckling load factors of stiffened cylindri-
cal (in contrast to flat) panels, nor on the effect on
maximum stress of imperfect cylindrical panels ana-
lyzed via the simple PANDA [34] type of analysis,
nor on all of the effects on local buckling of
stiffener parts caused by redistribution of stress re-
sultants over these parts generated from the pre-
buckling bending that arises from the presence of
inter-ring and general initial imperfections.

In the case of cylindrical panels (in contrast to
flat panels), two new imperfection types, ovalization
and inter-ring, have been introduced in PANDA2.
There now exist in PANDA?2 four types of imper-
fections: (1) local buckling modal, (2) inter-ring
buckling modal; (3) general buckling modal; plus
(4) overall uniform ovalization. The three buckling
modal imperfections are assumed to have the forms
of the critical local, inter-ring, and general buckling
modes predicted from the closed form PANDA type
of analysis [34). For discretized models the local
buckling mode is that predicted from the discretized
single skin-stringer panel module, as described in
previous papers on PANDA2. There does not yet
exist in PANDAZ2 any discretized single skin-RING
panel module model.

If the panel is flat the overall imperfection is
assumed to be in the form of axial bowing.

Table 1 is a list of the section of the PANDA2
input data prompting file (called PROMPT.DAT)
that is associated with input from the user pertain-
ing to the various types of imperfections now per-
mitted in the PANDA?2 model. In order to obtain
optimum designs of imperfect panels and shells, the
user must be prepared to supply amplitudes for the
various types of imperfections that reflect reason-
ably well the quality of the panel he or she eventu-
ally plans to fabricate.

If the panel is cylindrical the four types of imper-
fections affect buckling load factors calculated via
PANDA-type (closed form, Bushnell [34]) models in
a direct way: through modification of the effective
radius of the entire panel or panel segment. In
addition, the imperfections affect the buckling load
factors in the somewhat indirect ways (a) and
(b) listed at the beginning of this section. New
knockdown factors are calculated in PANDA2 for
general instability (skin, stringers, and rings all
buckle together), inter-ring buckling (skin and
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stringers buckle between rings), and local buckling
(skin buckles between adjacent stringers and rings).
These new knockdown factors are calculated by
means of PANDA-type buckling analyses [34] con-
ducted for both perfect and imperfect cylindrical
panels in which the effect of each imperfection type
(local, inter-ring, general, and ovalization) is to re-
duce the curvature of that portion of the panel
included in the models for local, inter-ring, and
general buckling, thereby reducing the buckling
load factor governing that portion of the panel.
The influence of amplification of each initial imper-
fection component during loading on the effective
curvature of the imperfect panel is accounted for,
both for stress and buckling analyses. In compu-
tations of the effective radius of curvature for local
buckling, the combined influences of the general,
inter-ring, and local imperfection components are
accounted for.
The knockdown factors are the ratios,

Knockdown factors, K(i) = EIG(imperfect, i)/
EIG(perfect, i) (1)

in which EIG(*, i) are the critical buckling load
factors computed from the closed form PANDA-
type of analysis for i =1 (local), i =2 (inter-ring),
and i = 3 (general) buckling for the imperfect (with
initial imperfection suitably amplified by the ap-
plied loads) and the perfect configurations.

The imperfections also give rise to additional
bending and twisting stresses when the imperfect
panel is loaded. These additional stresses are now
accounted for in the calculation of the stress con-
straints.

The effect of redistribution of stress resultants
over the various stiffener parts during prebuckling
bending of the imperfect cylindrical panel is also
accounted for. Buckling load factors for the webs
of stringers and rings are computed including the
effect of linear variation of compression over the
ring and stringer web cross-sections from the panel
skin to the outstanding flanges.

Form of each of the buckling modal imperfections

This section holds for each type of buckling mo-
dal imperfection (local, inter-ring, general).

If the panel or section of the panel being con-
sidered in the current general, inter-ring or local
buckling analysis is “long” in the x-direction
(x = axial coord., see Fig. 9 of Ref. [34]), the shape
of the buckling modal imperfection is assumed to
have the form

wimp(x, y) = wox sin(ny)* sinfm(x — cy)]. (2)

If the panel or section of panel is “long” in the
y-direction (y = circumferential coordinate), the

shape of the buckling modal imperfection is as-
sumed to have the form

wimp(x, y) = wo= sin[n(y — dx)]*sin(mx). (3)
The variables n and m are given by
n=N=*pi/B m= M=pilA, @

where M and N are the number of halfwaves over
the lengths 4 and B, respectively, and 4 and B are
the circumferential and axial lengths of whatever
portion of the entire panel is being considered: for
local buckling the portion between adjacent
stringers and rings; for inter-ring buckling the por-
tion between adjacent rings; and for general buck-
ling the entire panel.

These modes are shown in Fig. 9 of Ref. [34].
The variables n and m are defined in eqn (52) of
Ref. [34], and ¢ and d are the slopes of nodal lines
of the buckling modes shown in Fig. 9 of Ref. [34].
Either ¢ or d is always zero.

Equations (2) and (3) lead to the following cur-
vature changes in twist:

For panels or sections of panel that are “long”
in the x-direction (d = 0; ¢ not equal 0):

w, xx(imp) = wo xm**2x sin (ny )* sin[m(x — cy)]
w, yy(imp) = wo*{(n*+2 + mxx24c*x2)*

sin(ny )* sin[m(x — cy)]

+ 2xn+*mxcx* cos(ny)x cosm(x — cy)}
w, xy(imp) = wo *{m*n= cos(ny)* cos[m(x — cy)]

+ ma*2xc* sin(ny)» sin[m(x — cy)]}.
&)

For panels or sections of panel that are “long” in
the y-direction (¢ = 0; d not equal 0):

w, xx(imp) = wox{(m**2 + nxx2edxx2)x
sin(mx )* sin[n(y — dx)]
+ 2«mxnxdx cos(mx)»
cos[r(y —dx)J}
w, yy(imp) = wo »n »*2x sin(mx ) sin[n(y — dx)]
w, xy(imp) = wo*{m*n=* cos(mx)* cos[n(y — dx)]

+ nxx2xd= sin(mx )= sin[n(y — dx]}.
6
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Table 1. The part of the PANDA2 PROMPT.DAT file concerned with initial imperfections

343.0

Your panel is FLAT (not CYLINDRICAL). Therefore you will next
be asked to provide amplitudes for the following modes of
initial geometric imperfections (Wimpg, Wloc):

3440

345.1
345.2

(a) initial overall bowing imperfection amplitude, Wimpg

NOTE: If the panel is stiffened, the sign of the

initial overall bowing imperfection Wimpg is important
because it affects how the panel skin and stiffener
cross-sections of the initially bent panel become

loaded under the applied loads. Type H(elp) for a
discussion of this when you are prompted for Wimpg.

(b) local buckling modal imperfection amplitude, Wloc

The sign of Wloc is NOT significant. The local
imperfection is assumed to have the same shape as the local
buckling mode of the panel.

Your panel is CYLINDRICAL (not FLAT). Therefore you will next

be asked to provide amplitudes for the following modes of
initial geometric imperfection (Wimpgl, Wimpg2, Wpan, Wloc):

(a) overall out-of-roundness amplitude, Wimpgl, where
Wimpgl = (Max. diameter—Min. diameter)/4.

NOTE: Whatever circumferential angle the panel spans,
pretend for the purpose of this input datum that it
represents part of a complete (360°) cylindrical
shell that has an out-of-roundness with amplitude Wimpgl.
If Wimpg?2 (see next paragraph) is zero, the sign of
Wimpgl is significant. Otherwise, Wimpgl will have the
same sign as Wimpg?2 in the calculations in PANDAZ2.

(b) overall buckling modal imperfection amplitude, Wimpg2.
NOTE: If the panel is stiffened, the sign of the
overall buckling modal imperfection Wimpg?2 is important
because it affects how the panel skin and stiffener
cross sections of the imperfect panel become loaded
under the applied loads. Type H(elp) for a discussion
of this when you are prompted for Wimpg?2.

(c) if there are rings, inter-ring buckling modal imperfection
amplitude, Wpan. NOTE: The sign of Wpan is important for
the same reason given in Paragraph (b).

(d) local buckling modal imperfection amplitude, Wioc.
The sign of Wloc is NOT significant.

Initial bowing imperfection ampltiude (type H for sign), Wimpg

Positive Wimpg is downward in Fig. 9 of the long 1987 PANDA2
paper. The imperfection varies as sin (pi*x/L) in the axial
coordinate direction. A positive Wimpg causes the bottom skin
surface to be convex. (The bottom surface is the surface of

the skin opposite to that to which the stringers are attached).
There is no prestress, either membrane or bending, associated
with this bowing imperfection. It is hard to make a general
statement whether positive or negative Wimpg will lead to earlier
failure: Positive Wimpg combined with axial compression tends to
cause greater compressive loads in the stringer web and flange
and therefore tends to cause earlier buckling and rolling of

these parts of the structure; Negative Wimpg combined with axial
compression tends to cause greater compression in the panel

skin and therefore earlier local buckling and higher local

bending stresses in the postbuckling regime. It may be a good
idea to set up two load cases, both with the same mechanical
loads, the first with a positive Wimpg and the second with

a negative Wimpg. Then the optimized design will be good no
matter what the sign of the bowing imperfection Wimpg is.

If in doubt, use a NEGATIVE bowing imperfection (panel skin
compressed more than stringer tips).

Continued opposite
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Table 1—continued

346.1
346.2

347.1
347.2

348.1
348.2

349.1

349.2

350.1
350.2

3511
351.2

Do you want to change WIMPG to a negative value?

If this set of applied loads is associated with only one value
of bowing imperfection WIMPG, then it is generally best to use
a negative value.

Initial local imperfection amplitude (must be positive), Wioc

In PANDA?2 the local imperfection is assumed to have the same
shape as the local buckling mode. Use a positive number for the
amplitude, Wloc.

If you set Wloc = 0.0, PANDA2 will automatically reset Wloc
to a value equal to ten percent of the thickness of the panel
skin midway between stringers. This is a rather large initial
imperfection. If you want to analyze a perfect panel, please
provide a very small, but nonzero and positive, Wloc.

Out-of-roundness, Wimpgl = (Max. diameter-Min. diam)/4, Wimpgl

The initial overall out-of-roundness amplitude is given by:
Wimpgl = (Max. diameter—Min. diameter)/4.

NOTE: Whatever circumferential angle the panel spans,
pretend for the purpose of this input datum that the
panel represents part of a complete (360°) cylindrical
shell that has an out-of-roundness with amplitude
Wimpgl = (Max. diameter-Min. diameter)/4.

Initial buckling modal general imperfection amplitude, Wimpg2

In PANDA2 the general imperfection is assumed to have the same
shape as the general buckling mode obtained from a PANDA-type
(closed form) analysis of the cylindrical panel.

IMPORTANT NOTE:

If the panel has axial stiffeners (stringers) and no rings and

if the analysis mode IQUICK =0, then:
You should consider optimizing with both negative and positive
Wimpg2. Under axial loading, negative Wimpg2 gives rise to
more compression in the skin than in the tips of the stringers.
The opposite is true for positive Wimpg2. You can optimize for
both positive and negative Wimpg2 by introduction of two

load cases in MAINSETUP with everything the same in each except the

sign of Wimpg2.
With IQUICK = 1, optimization with both positive and negative
Wimpg?2 is automatically performed within a single load case.

Initial buckling modal inter-ring imperfection amplitude, Wpan
This imperfection is used only if the panel is curved and

there are both stringers and rings in the PANDA2 model.
(See ITEM 124. in PANDA2.NEWS). In PANDA2 the inter-ring

imperfection is assumed to have the same shape as the inter-ring buckling mode.

IMPORTANT NOTE: If IQUICK =0, then:
You should consider optimizing with both negative and
positive Wpan. Under axial loading, negative Wpan gives rise to
more compression in the skin than in the tips of the stringers.
The opposite is true for positive Wpan. You can optimize for
both positive and negative Wpan by introduction of two load
cases in MAINSETUP with everything and same in each except
the sign of Wpan.

With IQUICK = 1, optimization with both positive and negative

Whpan is automatically performed within a single load case.

Initial local imperfection amplitude (must be positive), Wloc

In PANDAZ2 the local imperfection is assumed to have the same
shape as the local buckling mode. Use a positive number for the
amplitude, Wloc.

If you set Wiloc = 0.0, PANDA?2 will automatically reset Wloc
to a value equal to ten percent of the thickness of the panel
skin midway between stringers. This is a rather large initial
imperfection. If you want to analyze a perfect panel, please
provide a very small, but nonzero and positive, Wloc.
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Bending, twisting strains and amplification of the
imperfection

Equations (5) and (6) are used to calculate bending
and twisting stresses in cylindrical panels. If it
is assumed that the initial imperfection grows
hyperbolically, the additional bending and twisting
strains at the applied load are given by:

additional bending strains =
(+ or —)(z*w, xx(imp)
or z*w, yy(imp))*[1/(lambda — 1)] ©)
additional twisting strains =
(+ or —)(2z*w, xy(imp))+{1/(lambda — 1)] (8)

in which the quantity z is the distance from a
reference surface measured normal to that surface,
and lambda, a buckling load factor, is obtained by
iteration.

The additional bending and twisting strains are
computed corresponding to local, inter-ring, and
general buckling modal imperfections. They are
added to the strains from other sources to compute
the total strains and stresses throughout the panel
and stiffener parts.

Nonhyperbolic growth of local imperfection

In many cases the assumption of hyperbolic growth
of the LOCAL imperfection amplitude with load
[growth proportional to the factor 1/(lambda — 1)
shown in egns (7),(8)] is too conservative. For
example, in an axially compressed stringer-stiffened
panel, the amplitude of the local imperfection grows
more slowly than with 1/(lambda — 1) for loads near
and above the critical local buckling load because the
stringers absorb a larger and larger percentage of the
total applied load as the panel skin bends between
adjacent stringers.

An algorithm has been introduced into PANDA2
that is entered only if there is at least one set of
stiffeners and if there is only one halfwave in the local
buckling mode in at least one of the coordinate
directions. The algorithm is based on the assumption
that the panel skin is inextensional. Therefore, all
of the applied membrane strain (for example, end
shortening in the case of an axially compressed
axially stiffened cylindrical panel) is assumed to
be “absorbed” in the panel skin by out-of-plane
rotation, dw/dx and dw/dy (w,x;w,y). Whereas
the extensional strain-displacement relations of the
locally imperfect panel are given by:

ex =u, x + w, x(0)2w, x + 0.5%(w, x)**2

ey=0,y +wir +w,y0)w, y + 0.5¢(w, y)rs2

exy=0v,x +u,y +w, x(0)2w,y
+w, y(0)xw, x +w, x*w, y )

it is assumed [ONLY for the purpose of calculating
the alternative amplification factor which is less
conservative than 1/(lambda — 1)!] that

ex =w, x(0)*w, x + 0.5x(w, x )*x2
ey =w,y(0)*w, y +0.5%(w, y)*x2

exy=w, x(0)xw, y +w, y(0)rw, x + w, x*w, y.
(10)

Furthermore, the local strain components,
ex, ey, exy, are identified with (set equal to) the
average applied in-plane strain components
ETOTI, ETOT2, ETOT12, respectively, and the
out-of-plane rotation components of the panel skin,
w, x and w, y, are assumed to be given by ksw, x(0)
and k#*w, y(0), where w, x(0) and w,y(0) are the
rotation components corresponding to the initial
local imperfection. These assumptions and substi-
tutions into eqn (10) lead to three alternative values
for k, as follows:

from eqn (10a): k(1) = —1 + SQRT[! + 2x
ABS(ETOT1)/w, x(0)+*2]

from eqn (10b): £(2) = —1 + SQRT[1 + 2«
ABS(ETOT2)/w, y (0)%*2]

from eqn (10c): k(3)= —1 + SQRT[I +
ABS(ETOT12)/

(w, x(0)xw, y(0))].
(1

The largest of the three k(i) is chosen. It is
called k(crit). The alternative local imperfection
amplification factor WYYMP2 for nonhyperbolic
amplification is given by

WYYMP2 =1 + k(crit). (12)
The final amplification factor, WYYAMP, is chosen

as the minimum of that given by Eq. (12) and the
original “hyperbolic” value given by

WYYAMP = 1 + 1/(lambda — 1) (13)
in which lambda is the load factor for local bifur-

cation buckling of the skin of the generally and
locally imperfect panel.
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INTRODUCTION OF PREBUCKLING AXISYMMETRIC
BENDING INTO PANDA2

The “hungry horse™ prebuckling deformation of ring
stiffened cylindrical panels

Figure 1 shows axisymmetric prebuckling defor-
mations obtained from a rather elaborate STAGS
finite element model of a hydrostatically compressed,
perfect, T-ring stiffened cylindrical shell. Three
models of the shell/ring construction are used over
the length of the shell, one in which the rings are
“smeared”, one in which the rings are modeled as
discrete beams, and one in which the ring webs and
flanges are modeled as flexible plates and shells.
Notice in the two portions of the model where the
rings are not “smeared” out that there is an axisym-
metric waviness in the deformation pattern. This
pattern is sometimes called “hungry horse” defor-
mation because the locations of the ribs are apparent.
In optimum designs the local axial bending stresses in
the panel skin at the junctions with the webs of the
ribs and midway between the ribs may become
significant. Also, the hoop compression midway
between the ribs may be significantly greater than
that at the ribs, which affects local buckling load
factors of the skin and of the rib web and outstanding
flange. Until 1992 the “hungry horse” deformation
was ignored in PANDA2.

Many changes were made to PANDA? in order to
obtain better results for the prebuckling states of
cylindrical panels either unstiffened or with any
combination of stringers and rings in which one
of the loading components is normal pressure.
Previously, PANDA?2 produced a variety of results
(some of them incorrect) depending on the
circumferential angle spanned by the panel and the
boundary conditions at the axially loaded ends of
the panel.

Two important design problems motivated the
changes in PANDAZ2: design of pressurized aircraft
fuselages and design of submarine pressure hulls.
With aircraft fuselages the pressure is internal, so

Rings are discrete
Rings are beams

*smeared"®
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that rather than a “hungry horse” prebuckling
deformation there is a “caterpillar” deformation —
the shell wall bulges outward more between rings
than at rings.

There are three significant aspects of the modifi-
cations to PANDAZ2:

(1) The prebuckling static response of a cylindrical
panel is now predicted from a theory similar to that
given by Almroth[43] and by Jones and Hen-
nemann [44]. This theory is outlined on p. 547, eqns
(4)«(19) of Ref. [34]. It is included in the PANDA
program, but until 1992 had not been included in
the PANDA2 code. The theory is implemented
differently in PANDA?2 than in PANDA because
conditions are needed at the ring stations (Subcase 2)
as well as midway between rings (Subcase 1). In
PANDA the conditions were determined only at the
midbay locations, not at the ring stations. Therefore,
the implementation in PANDA2 represents an
improvement.

(2) When the panel is curved and there are rings
present and there is pressure loading present, the two
subcases per load set now correspond to conditions
at midbay (halfway between adjacent rings, Subcase
1) and conditions at a typical ring location (Subcase
2). It is assumed that the two axially loaded ends (the
two curved edges of the cylindrical panel) are free to
approach or move away from each other. If the panel
is stiffened by rings, prebuckling conditions at the
ends of the panel are ignored. Previously the two
subcases corresponded to conditions at the midlength
and ends of the cylindrical panel and the user could
choose whether or not the axially loaded (curved)
edges are allowed to approach each other. In the
modified code the user can still make this choice, but
PANDA?2 ignores the choice and allows the two
curved edges to approach, or move away from each
other as the pressure is applied. Textual output has
been modified in PANDA2 to reflect these changes.

(3) In the MAINSETUP input the user is now
forced to provide consistent values of the hoop
loading (Ny or Ny0) and the pressure loading

Rings are branched
plates and shells

Fig. 1. STAGS finite element model of a perfect externally pressurized ring stiffened cylindrical shell.
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whenever the panel is curved. Previously, under
certain circumstances, the user was urged to represent
the normal pressure loading with appropriate values
for Nx or Nx0 and Ny or Nyo only, setting the
pressure p equal to zero. This is no longer the case.
If there is a nonzero hoop load in a curved panel, the
user MUST now provide a consistent value for the
normal pressure (so that free-body equilibrium is
satisfied!). If consistent values of pressure and hoop
loading (Ny or Nyo) are not provided the run aborts
with the following warning:

D. Bushnell and W. D. Bushnell

in terms of F1:

F2= —ARAT+F],
(15)

where ARAT is given in SUBROUTINE SKIN.
Now the two unknowns are F1 and F3. These are
determined from minimization of the total potential
energy.

The total potential energy consists of the strain
energy of the shell, the strain energy of the ring, the

w,x =0atx = A40/2 yields

wxrrkkkessk RUN ABORT: BAD LOADS ##xssssxxxx

THE PANEL IS CURVED. BAD LOAD DATA FOR LOAD SET NO. I:
SEE FIG. 8 ON P. 490 OF THE LONG 1987 PAPER ON PANDAZ2 [34].
(1) If any hoop resultant (Ny or Ny0) is nonzero the

pressure p must be nonzero and must satisfy condition (2)

or (3) as follows;

(2) If the pressure is in Load Set A, then p*R must be
equal to the hoop resultant in Load Set A, Ny.

(3) If the pressure is in Load Set B, then p+R must be
equal to the hoop resultant in Load Set B, Nyo.
Radius of cylinder (positive as shown in Fig. 8),
NORMAL PRESSURE (positive acting upward),
Hoop load that must be applied for equilibrium,

Pressure is in Load Set A

CURRENTLY APPLIED HOOP LOADS, Ny(load set A) = —1.5000 x 10°

R =1.0000 x 10?
p = —2.0000 x 10'
p*R = —2.0000 x 10°

Nyo(load set B) = 0.0000 x 10°

The Almroth [43] and Jones and Hennemann [44]
theory is implemented in SUBROUTINE SKIN, a
new subroutine which is now contained in the
STRUCT. NEW library and which is called from
SUBROUTINE STRUCT if PANDA2 perceives
that the panel is curved and normal pressure is
present. There are differences in the way the theory
is implemented in PANDA2 and the way in which it
was originally implemented in PANDA.

The normal displacement distribution is not
the same as that given in eqn (10) of Ref. [34].
The normal displacement distribution now has the
form

w = wpO0x[F 1 sin(a 1xx)* sinh(a2xx)
+ F2x cos(a l*x)* cosh(a2+x) + F3] (14)

in which Fl, F2, and F3 are undetermined
coefficients, wpo is given by eqn (9) in Ref. {34}, and
al and a2 are given by eqn (11) in Ref. [34].
The domain of x is from the midbay (halfway
between rings), where x =0, to the ring station,
where x = (ring spacing)/2. Equation (14) satisfies
the condition that the meridional slope w,x =0
midway between rings (at x =0). We know that
at the ring station (at x = 40/2, where 40 =ring
spacing), w,x =0 also. This condition yields F2

work done by the normal pressure, and the work
done by the axial load, Nx + Nx0.

The strain energy of the shell is assumed to consist
of membrane strain energy and bending strain
energy. Because the static prebuckling response of
the cylinder is assumed to be axisymmetric (there
is no change in the curvature in the hoop direction
and there is no in-plane shearing or twist), one can
decouple the membrane and bending parts of the
strain energy. The membrane part is independent
of the location of the reference surface and the
bending part is written with use of a reference surface
located in the neutral plane for axial bending

C(4, 4)(neutral surface) = C44N
=C(4,4)— C(1,4)*+2/C(1,1). (16)
The membrane part of the strain energy is given by
U(shell membrane) =
2xpixr+0.5«integral{C11xe [ xx2
+2C12ve lxe2 + C22xe2#x2} dx
0 to 40/2. (7

It is assumed in this analysis that the shell is free
to expand or contract in the x-direction. Therefore,
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the axial strain el can be expressed in terms of the
axial resultant Nx and the hoop strain as follows:

(18)

Note that there is no C14 (bending-stretching
coupling) term involved because we are using as a
reference surface the natural plane for axial bending.
For this reference surface the C14 term is zero. When
eqn (18) is used to eliminate the axial strain el from
eqn (17), and terms that do not depend on the
unknowns F1 and F3 are dropped, the following
simpler expression results for the membrane strain
energy in the shell:

el = (Nx — C12#¢2)/C11.

U(shell membrane) =
2xpi*r»0.5xintegral{C22
—C12+22/C11)%e2%x2} dx
0 to 40/2. 19

The hoop strain e2 is given by w/r, where w is given
by eqn (14).
The bending strain energy in the shell is given by

U(shell bending) =
2+pisr+0.5xintegral{ C44N »(w, xx)x*2} dx
0 to 40/2. (20)
The strain energy in the ring is given by
U(ring) = 2«pi*r+0.5%(EA [2) (w(x = A0/2)/r)*x2
@n

in which EA is the ring hoop stiffness and r is the
radius of the cylindrical shell. In eqn (21) (EA4/2) is
used rather than E4 because the ring lies at a plane
symmetry. Therefore, only half of its hoop stiffness
should be included in the strain energy.

The work done by normal pressure is given by

Work(pressure) = 2#pi*r xp*integral{w } dx
0to 40/2. (22)

The work done by the axial load Nx is given by

Work (axial load) = 2#pisr*Nx sintegral{e1} dx
0to A0/2 (23)

in which el is given by eqn (18). When the constant
term is dropped, we obtain

Work (axial load) =
2xpinr *Nx»(— C12/C11)*(1/r)+integral{w} dx
0 to 402 24

When all these elements of the total potential are
combined and the total potential (U — W) is
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integrated and then minimized with respect to the
unknowns F1 and F3, we obtain two linear simul-
taneous equations to be solved for F1 and F3. From
eqns (14) and (15) we can then evaluate the normal
displacements and the meridional changes
in curvature (KAPPAl1 =w, xx) midway between
rings (at x =0) and at the rings (x = 40/2). This is
the information that is needed by the rest of
PANDA?2,

If during optimization the rings become very weak
so that there is very little “hungry horse” bending in
the prebuckling phase of the calculations, then
PANDAZ2 performs the analysis only for the station
midway between rings. Conditions at the rings are
assumed to be so like those midway between rings
that they are not calculated, and no margins are
generated for Subcase 2. Essentially the number of
subcases is reduced from 2 to 1.

If there are no rings, and if the user has indicated
in the BEGIN processor that the panel is clamped
along the curved edges for prebuckling calculations
(IBPRE = 1), PANDA? generates a very stiff ring at
the panel end in SUBROUTINE SKIN only.

If there are no rings, and if the user has indicated
in the BEGIN processor that the panel is “infinite”
(infinitely along in the x-direction: IBPRE =2),
PANDA2 calculates the prebuckling solution ignor-
ing the boundary conditions. That is, the panel
deforms uniformly as if it were infinitely long. The
prebuckling resultants are those calculated from stati-
cally determinate membrane theory. The number of
subcases NCASES is set equal to one.

If the user has indicated in the BEGIN processor
that the panel is simply supported at the axially
loaded edges (the two curved edges in the cylindrical
shell) and if there are no rings, the unknown F2 is
determined in terms of F1 from the condition that
w,xx =0 at x = A0/2.

The “hungry horse™ prebuckling deformation of the
outstanding flange of the ring

In addition the “hungry horse” prebuckling
axisymmetric deformations of the skin of the cylindri-
cal shell, there is also a very local “hungry horse”
axisymmetric deformation of the outstanding flange
of each ring. Test runs with BOSOR4 on ring
stiffened cylindrical shells optimized via PANDA2
demonstrate that this very local “hungry horse”
deformation in the ring flange may be significant.
Therefore, calculations have been introduced into
SUBROUTINE SKIN in order to determine the
meridional change in curvature WXXFLN in the ring
flange at the intersection of ring web and outstanding
ring flange. These calculations are performed if
ICASE =2 (PANDA2 is calculating conditions at the
ring stations), ISTIF(2)=1 (the rings have TEE-
shaped cross-sections), and the length AXIAL of the
cylinder is greater than 1.2 times the ring spacing 40.
The following discussion provides an outline of the
theory.
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The outstanding ring flange is treated as a short
cylindrical shell with an imposed radial displacement
WRING at its midlength. This imposed radial dis-
placement causes a local meridional change in curva-
ture w, xx of the ring flange. The bending stresses
from this can be significant, especially for composite
materials.

The method is similar to that just completed for the
panel skin: the axisymmetric normal displacement in
the oustanding ring flange is written in the form

w = F1* sin(a 1xx)* sinh(a2+x)
+ F2x cos(a 1*x)* cosh(a2xx)
+ F3= sin(a 1 *x)* cosh(a2+x)
+ F4x cos(a lxx)« sinh(a2»x) + FS (25)

in which x is the coordinate measured along the
generator of the short cylinder that is the ring flange.
The quantity x is the coordinate direction normal to
the ring web, with x = 0 at the intersection of the ring
web and the ring flange, and x = WIDTH/2 at the
curved edge of the ring flange (WIDTH = width of
the outstanding ring flange).

At x =0, w = WRING and the slope w, x is zero.
At x = WIDTH]/2, the curvature change w, xx is zero
and the transverse shear Qx (w, xxx in this case) is
zero. These four edge conditions are used to express
F2, F3, F4 and FS in terms of F1. Then F1 is
determined by minimization of the strain energy in
the flange which has an imposed normal displacement
w = WRING at x = 0. The strain energy in the ring
flange, which is treated now as a very short cylindrical
shell of radius r = R + HRING if the rings are
external and r = R — HRING if the rings are
internal (HRING = height of the ring web), can be
written in the form

U = 2«pixr»0.5xintegral{(C 22star/r xx2)xw»*2
+ C44sw, xx*+2} dx 0 to WIDTH. (26)

There is no work done by external forces. The
undetermined coefficient F1 is calculated from
the equilibrium condition dU/dF1 = 0, which leads
to a single nonhomogeneous linear algebraic
equation after the integration over x has been per-
formed.

The analysis proceeds in a manner analogous to
that for the panel skin. We are simply analyzing a
different cylindrical shell with different boundary
conditions and material properties.

In SUBCASE 1 PANDA2? uses the conditions at
the midbay (halfway between two rings) to calculate
buckling and stress, and in SUBCASE 2 PANDA2
uses the conditions at the rings. The meridional
bending stress at these two stations is accounted for
during optimization. If there are no rings, SUBCASE
1 corresponds to conditions at the midlength of the
panel and SUBCASE 2 corresponds to conditions at
the end of the panel.
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The new prebuckling theory incorporated into
PANDA2 has been verified via several runs with
BOSOR4. A detailed example appears in the file
PANDA2. NEWS [35].

If the panel is flat SUBROUTINE SKIN is not
called.

ON SOME “TRICKS” CONCERNING IMPLEMENTATION
INTO PANDA2

(1) During loading the amplitudes of the initial
local, inter-ring, and general buckling modal imper-
fections grow in a manner that depends on both
the buckling load of the perfect panel and the lo-
cal, inter-ring and general collapse loads of the
imperfect panel. An iterative method has been
introduced into PANDA2 with quadratic extrapol-
ation in order to predict the amplification factors,
called WYYAMP(i), i =1, 2, 3, for local, inter-ring,
general imperfections. In order to prevent large
oscillations of buckling load factors and stress
from design iteration to iteration, any values of
WYYAMP(i) larger than 4.0 are set equal to
4.0. Gradients of WYYAMP(i) with respect to
perturbations in the decision variables are determined
by

WYYAMP(perturbed, i)

= WYYAMP(unperturbed, i)
*«EIG(unperturbed, i)/

EIG(perturbed, i) @7

in which EIG represents the buckling load factor for
the perfect panel.

(2) The load-carrying capacity of the imperfect
panel is strongly dependent on the maximum radii of
curvature of the imperfect panel in its loaded state.
For example, the general instability load factor for an
imperfect, axially compressed, cylindrical panel is
strongly dependent on the local maximum circumfer-
ential radius of curvature. This local maximum cir-
cumferential radius of curvatures is a function of the
amplitude of the general instability modal imperfec-
tion (in the panel as loaded, that is the initial
amplitude plus its growth during loading) and the
number of circumferential waves in the buckling
mode. Test cases have shown that the use of only
integral numbers of circumferential waves
(2,3,4,...) for the prediction of the local maximum
hoop radius of curvature may lead to very jumpy
predictions during design iterations. The predictions
from design iteration to iteration are considerably
smoothed through the use of non-integral numbers of
circumferential waves in the derivation of the local
maximum circumferential radius of curvature of the
imperfect panel. The non-integral number of waves is
determined by quadratic interpolation of the buck-
ling load factors predicted for three adjacent integral
numbers of circumferential waves that includes the
critical (minimum) buckling load factor. The non-
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integral wave numbers are also used in the deter-
mination of curvature changes and twist.

(3) In the case of buckling of hydrostatically com-
pressed ring stiffened cylindrical shells, there are two
kinds of general buckling modes for a given number
of circumferential waves, one mode with a single
halfwave over the length of the cylinder (called
“Mode 1) and another with many halfwaves over
the length of the cylinder (called “Mode 27). It often
happens that optimum designs correspond to a
configuration in which the load factors for these two
very different mode shapes almost coincide. Since
local buckling load factors and stresses depend very
strongly on the general instability mode shape, these
quantities may oscillate wildly from design iteration
to iteration as Mode 1 and Mode 2 alternate as the
critical general buckling mode. In order to avoid this
difficulty, a new constraint condition has been intro-
duced into PANDAZ2 that allows the user to force the
mode with many axial halfwaves to be associated
with a buckling load factor that is at least 5% higher
than that corresponding to the mode with one axial
halfwave. In the interactive MAINSETUP session
the user is now asked,

Want to suppress general buckling mode
with many axial waves?

A “Y” response causes introduction of the new
constraint condition.

(4) In most comparisons with results from STAGS
for imperfect, hydrostatically compressed T-ring
stiffened cylindrical shells, it has been found that
collapse of the imperfect shell according to STAGS
is caused by “ring tripping”’. In the neighbourhood of
the circumferential location where occurs the maxi-
mum hoop compression in the outstanding flange of
the ring (due to precollapse overall circumferential
bending of the shell as the general imperfection is
amplified under increasing load), the ring fails by
“sidesway”. The load at which ring tripping occurs
can be significantly increased by forcing the outstand-
ing flange of the ring to be wider than is its natural
inclination during optimization. Making this flange
wider can usually be achieved without significant gain
in weight of the shell because material is reallocated
throughout the structure as optimization cycles pro-
ceed. In PANDAZ2 better designs are now achieved
because the factor of safety for ring tripping has been
increased from 1.2 to 1.6.

(5) In order to compute knockdown factors corre-
sponding to local, inter-ring, and general buckling,
load factors for perfect and imperfect panels must be
computed from the PANDA-type (closed form [34])
theory. The critical numbers of circumferential
halfwaves for buckling of the perfect and imperfect
panels can be very different. The question arises,
which circumferential halfwavenumbers should be
used in the determination of bending and twisting,
w,xx, w,yy, w,xy, those for the perfect panel or
those for the imperfect panel? The quantities,

CAS 59/3—H
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w,xx, w,yy, w,xy affect both buckling and stress.
(For example w,yy for the general buckling mode
affects the effective radius of curvature to be used for
the analysis of local buckling of the imperfect panel.)
As a result of comparisons with results from STAGS,
it was found best to use the maximum numbers of
circumferential halfwaves,

n(crit) = max[n(perfect), n(imperfect)]  (28)

in which n(perfect) represents the number of circum-
ferential halfwaves in the critical buckling mode for
the perfect panel and n(imperfect) represents that for
the imperfect panel for whatever type of buckling
(local, inter-ring, general) is being considered.

EXAMPLE 1: OPTIMUM DESIGN OF IMPERFECT
MONOCOQUE CYLINDRICAL SHELLS

Figures 2-7 pertain to this section.

Figure 2-5 contain PANDA?2 predictions for an
aluminum cylindrical shell of length 100in and
radius 50in. In the PANDA2 model the shell is
represented as a panel that spans 180°. All four edges
are simply supported. Each of the four figures 2-5
shows the evolution of thickness with design iteration
for imperfect panels with several different amplitudes
of general buckling modal imperfection Wo. In
each figure the largest amplitude of imperfection
corresponds to the thickest optimum design—a result
to be expected. Several optimum designs are
represented in each figure, one for each amplitude Wo
(indicated by blackened points in Fig. 2, for
example). Inserted into each of the four figures is a
plot that gives the knockdown factors derived by
PANDA2 at the optimum designs (called lambdal)
as a function of normalized buckling modal imperfec-
tion amplitude, Wo/1.

Figure 2 shows results for uniform axial com-
pression (Nx = —10001bin~"'). There is reasonably
good agreement of PANDAZ2 results with those from
Koiter’s special theory [45].

Figure 3 shows results for uniform axial com-
pression (Nx = —10001bin~") in the presence of
internal lateral pressure. The internal pressure is
assumed to exert no load on the end closures of the
cylindrical shell (p generates no Nx). Four sets of
results appear in the inserted plot: 1. Koiter’s special
theory (no internal pressure), 2. PANDA?2 for the
case with no internal pressure, 3. PANDA2 for the
case with internal pressure in Load Set B, and 4.
PANDA2 for the case with internal pressure in Load
Set A. By “Load Set B is meant a load set for which
the loading is NOT to be multiplied by the eigenvalue
(bucking load factor). In contrast, if the pressure is in
“Load Set A” it is multiplied by the eigenvalue, that
is, the pressure p varies in proportion to the axial load
Nx. Note that, according to PANDA2, the load-
carrying capacity of axially compressed internally
pressurized cylindrical shells is considerably less
sensitive to initial imperfections than unpressurized
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Fig. 2. Optimum designs of monocoque, aluminum, simply
supported, axially compressed, imperfect cylindrical shells:
Nx =10001bin~".

shells, if the amplitude of the buckling modal imper-
fection is less than about 2/3 of the thickness. The
optimum designs of the imperfect pressurized shells
are therefore thinner than those for the unpressurized
shells. It should be emphasized that for the perfect
shells the internal pressure has no influence on the
optimum design provided that the stresses in the shell
wall do not become critical during the optimization
iterations.

o1 T(1){SKN):thickness for layer index no.(1):
STR seg=1, layer=1

Axial compression with internal pressure p(B)

x10”!

2.0
=
g’,‘ w,=0.05

w,/t=

2 0402 ]
x s
5 1,20.501 {3 sle
£ 1.5¢ Yo s n
- . -
[72] Koiter special § T
x 0e theory (1963) s |
- A * [ ] o 2
UEJ 04 *
<« Panda 2"
€ 1.0 - 22" ©No internal pressure
< X @Piniernat = 20 psl
a o~ @ P'ls in load st A Ny = ::oosl: I::
P X P s in load set B L’1 )
o TR N R E oot
® 0 02 04 06 08 1.0 Zon pe
w n=w/ ve=o
05 | ! | | L 4 | J

o] 5 10 15 20 25 30 35 40
DESIGN ITERATIONS

Fig. 3. Optimum designs of monocoque, aluminum, simply
supported, axially compressed, imperfect cylindrical shells
with internal pressure, p = 20 psi.

o 1 T(1)(SKN):thickness for layer index no.(1):
STR seg=1, layer=1

x10-! External lateral pressure
5.0

e W, =0.028

8 w,=0.05 w =

o wot= 085
£ 0.126 |3 _osse| o
© %=0.821 ;,
f‘: 45¢ N

©

%)) -
o i
w 3
u "
W S
= :o
< ':,
@ 4.0
<
Z \9-9-4
Z 0.2}~ I
o 212 Lateral pressure Ny = '(:Zonw)
@ Oppalcmoregsin |~ | Rlson)e
[a]

Lx100in
0 02 04 06 08 1.0
3.5 | w=wi ) | E=107psi,v=03 |

0 5 10 1§ 20 25

DESIGN ITERATIONS

Fig. 4. Optimum designs of monocoque, aluminum,

simply supported imperfect cylindrical shells subjected to

external lateral pressure, p = 20 psi (no pressure on cylinder
ends).

Figures 4 and S give analogous results for the
monocoque cylindrical shell loaded by uniform
external lateral pressure (again, p generates no axial
resultant Nx) and uniform torsion, respectively. For
the torsion case some convergence difficulties with
design iteration are encountered for the largest two
imperfections, Wo =0.2 in, and Wo =0.10in. The
oscillation from design iteration to iteration, evident
during iterations with Wo = 0.2in, arises from wide
swings in the imperfection amplification factor
WYYAMP [eqn (13)] from iteration to iteration. The
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Fig. 5. Optimum designs of monocoque, aluminum, simply
supported imperfect cylindrical shells subjected to torsion,
Nxy =10001bin~".
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Fig. 6. Deformed state of optimized monocoque, aluminum, simply supported imperfect cylindrical shell
subjected to external lateral pressure, p =20psi. Initial buckling modal imperfection amplitude,
Wo =0.25 in.

knockdown factors from PANDA? for pure torsion
indicate somewhat more imperfection sensitivity
than does classical asymptotic theory, probably be-
cause of the assumption in the PANDA?2 theory that
the effective radius of curvature of the imperfect shell
is everywhere equal to the minimum curvature.
Figures 6 and 7 show results from STAGS and a
comparison between predictions by PANDA2 and
STAGS for the optimized cylindrical shell (thickness,

load faclor PA vs. Total syy(811,0.T.F 1)
ioad facior PA vs. Total syy(811,0,T.F,2)
foad factor PA vs. Total syy(811.0,7,F,3)
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Fig. 7. Comparison of STAGS and PANDA2? predictions
for optimized imperfect monocoque aluminum cylindrical
shell.

t = 0.4318) with uniform external lateral pressure and
an initial buckling modal imperfection of amplitude
Wo =0.25in. The STAGS results were generated
from a model that includes 180° and half of the length
of the cylindrical shell. The STAGS results shown
in Figs 6 and 7 were obtained by first using
STAGS to find the critical buckling mode from
linear theory (INDIC = 1), including that mode as
an initial imperfection with amplitude 0.25in, and
then running a STAGS nonlinear collapse analysis
(INDIC = 3) of the imperfect shell. The agreement
between PANDA2 and STAGS is reasonably good,
with PANDA? erring on the conservative side.

EXAMPLE 2: OPTIMUM DESIGN OF AN IMPERFECT
HYDROSTATICALLY COMPRESSED T-RING
STIFFENED STEEL CYLINDRICAL SHELL

Figures 8-35 pertain to this section. The cylindrical
shell is 70in long and has a radius R =50in. It is
made of steel with properties listed at the top of Fig. 8.
The maximum allowable effective stress is 130 ksi. The
internally ring stiffened shell is designed to withstand
an ultimate external pressure of 150 psi. The design
variables are the ring spacing b, web height A, out-
standing flange width w, skin thickness ¢(1), web
thickness #(2), and outstanding flange thickness ¢(3).
The initial imperfection in the form of the general
buckling mode has an amplitude Wimp (global) =
0.25in and the initial imperfection in the form of the
local buckling mode has an amplitude Wimp
(local) = 0.075 in. In PANDAZ the ring-stiffened cylin-
drical shell is modeled as a panel that spans 180°.
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Fig. 8. Objective function (weight) of T-ring stiffened 70-in-
long steel cylindrical shell under uniform external hydro-
static pressure, p = 150 psi.

PANDAZ2 model and optimization

Figures 8-12 show the evolution of the objective,
of the design, and of the design margins with design
iterations. For the first 20 iterations the ring spacing
b was included as one of the decision variables.
Thereafter, as seen in Fig. 9, b was held constant at
various levels while all the other design variables
were permitted to vary. It is often a good idea
to perform several sets of optimization iterations
with b held constant during each set because opti-
mum weights for a rather wide range of b are
usually very, very close to one another. PANDA2
therefore has an easier time finding optimum designs
with b held constant during the design iterations.
It is easy for the designer to use the PANDA2
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Fig. 9. Evolution of cross-section dimensions of T-ring

stiffened 70-in-long steel cylindrical shell under uniform

external hydrostatic pressure, p = 150 psi.
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Fig. 10. Evolution of thicknesses of T-ring stiffened 70-in-
long steel cylindrical shell under uniform external hydro-
static pressure, p = 150 psi.

processor called CHANGE in order to change b and
explore several optima, each for a different fixed
value of &.

In this case, even with the ring spacing & held
constant within each of several design iteration loops,
PANDA? has a difficult time settling on optimum
designs for each value of b. Figure 8 shows the
objective function (weight) of the 180° panel vs
iteration number from the start of the case. Note that
the minimum - weight that PANDA2 seems to be
seeking is at about 800 Ibs. However, every time this
weight is approached, further iterations increase it
temporarily, sometimes to a value exceeding 900 1bs.
Figure 11 shows what is happening to the most
critical design margins (all margins less than unity)

1.1 offect. stesa: matl=1 SKN.Sag=1 aMnodes.layer=1 : MID
SimMp-support fo cnlm MIDLENGTH

instablity
rolling with ot boch MIDLENGTH
buckiing: simp-support general buck: MIDLENGTH
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Q

Fig. 11. Margins for the T-ring stiffened 70-in-long hydro-
statically compressed steel cylindrical shell corresponding to
conditions midway between adjacent rings.
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Fig. 12. Margins for the T-ring stiffened 70-in-long hydro-
statically compressed steel cylindrical shell corresponding to
conditions at a typical ring.

A
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corresponding to conditions midway between rings.
For example, note the large jump in the effective
stress margin from iteration number 61 to iteration
number 62. (There are similar large jumps in this
margin between iterations 25 and 35, at iteration
number 83, at iteration number 91, and at iteration
108-110.) These large jumps are caused by a sudden
change in the critical mode of general instability from
Mode 1 to Mode 2, as described in paragraph no. 3

35 in.
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Fig. 13. Buckling mode shapes predicted by BOSOR4 and

factors predicted by PANDA2, BOSOR4, and STAGS for

the optimized, perfect 70-in-long hydrostatically compressed

steel cylindrical shell: (a) general buckling mode; (b) local
skin buckling mode.

“in the section entitled “On Scme Tricks...”. The
mode with many axial halfwaves (Mode 2) leads to
much higher bending stresses than that with only a

Symmetry

Fig. 14. Local skin buckling mode of the T-ring stiffened hydrostatically compressed 70-in-long steel
cylindrical shell as predicted by STAGS.
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Fig. 15. Another view of the local buckling mode shown in the previous figure.

single axial halfwave (Mode 1). The margins for
bucking of a web of a T-ring (“buckling of ring seg.
3”) and for rolling of rings, displayed in Fig. 12,
which corresponds to conditions at the rings, exhibit
similar jumpy behavior because the prebuckling
membrane stresses in the rings depend strongly on the
general instability buckling mode shape, and these
pre-local-buckling resultants govern local buckling
and rolling of the rings.

The final optimum design chosen for analysis with
BOSOR4 [46] and STAGS [39] is that corresponding
to the highest iteration number. The dimensions of
the optimum design appear at the bottom of Fig. 8.

BOSO R4 model of the panel optimized with PANDA?2

Figure 13 shows the critical general and local
buckling modes of the perfect shell predicted by
BOSOR4 and the load factors predicted by
PANDA2, BOSOR4 and STAGS. In the BOSOR4
model only half of the length of the shell is included,
with symmetry conditions imposed at the symmetry
plane of the shell. The critical general mode has five
full waves around the entire (360°) circumference of
the shell and the critical local mode has 20 full waves
over 360°. Notice that the critical general mode is
Mode 1, which has a single half wave over the full
70-in length of the cylindrical shell. There is good
agreement of general and local buckling load factors
predicted by all three computer programs.

STAGS model of the panel optimized with PANDA2

Figures 14-16 display the local and general buck-
ling modes of the optimized perfect shell as predicted
by STAGS. In the STAGS model half of the length
and only 36° of circumference are included, with
symmetry imposed along the three edges adjacent to
the remainder of the shell and simple support

imposed along the remaining curved edge. Only 36°
of circumference are included because this sector
permits general buckling with five circumferential
halfwaves over 180° and also permits local buckling
with 20 circumferential halfwaves over 180°. Com-
puter times required for a 180° STAGS model would
be excessive because a refined finite element mesh is
required in order to capture the maximum local
bending stresses in the panel skin with sufficient
accuracy to qualify the STAGS model as a standard
to be used to determine the suitability of the
PANDAZ2 code as a tool for preliminary design.
Figures 14 and 15 show two views of the same
local buckling mode and Fig. 16 shows the general
buckling mode predicted by STAGS. These two
modes are used as initial imperfections in a STAGS
nonlinear collapse run. The amplitudes of the initial
buckling modal imperfections are taken as Wimp
(global) = 0.25 in and Wimp(local) = 0.075 in.
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Fig. 16. General buckling mode of the T-ring stiffened
hydrostatically compressed 70-in-long steel cylin-
drical shell as predicted by STAGS.
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¢

Node 1984

Fig. 17. Deformation of the imperfect steel shell at the design load, P4 = 1.0, that is, at pressure
p =150 psi.

Figures 17-26 present results from the STAGS
nonlinear collapse run, which required about 10 h on
a STARDENT computer. Figure 17 is an end-on
view of the deformed panel as loaded by the load
factor PA = 1.0, which corresponds to the design
load (external hydrostatic pressure p =150 psi) in
this and all further cases described in this paper. One
can see that the overall deformation has two major

Simple
support

Node 1737 7

components: overall bending with one half circumfer-
ential wave over the 36° sector (inward maximum
displacement at one straight edge and outward
maximum displacement at the other straight edge),
and local bending with four half circumferential
waves over the 36° sector. The amplitude of the local
component of deformation is greatest where the
skin is under the most circumferential compression
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Fig. 18. Another view of the deformation of the imperfect steel shell, showing fringes of effective stress
at the inner surfaces.
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Fig. 19. Yet another view of the deformation of the imperfect steel shell, showing fringes of effective stress
at the outer surfaces.

(right-hand side of the figure), as the entire shell
bends circumferentially under the external pressure
with both the general and local buckling modal
components of the initial imperfection being there-
fore amplified. The overall inward displacement is
greater than the overall outward displacement partly
because there is a small overall average axisymmetric
inward displacement component, since the cylindrical

70-in T-ring steel cyl: Wo(gen) = 0.25,
Wo(loc) = 0.075, reduced skin, yes tsd

o Load factor PA vs. disp.(1737,w,L)
O Load factor PA vs. disp.(1954,w,L)
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Fig. 20. Comparison of STAGS and PANDA? predictions
of normal displacement for the steel shell.

shell is subjected to uniform external pressure, and
partly because the skin, being locally bent more where
it is the most circumferentially compressed, has less
effective hoop stiffness there than in the region
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Fig. 21. Comparison of STAGS and PANDA2 predictions
of hoop compression Ny in the ring flange of the steel shell
where the flange is compressed more than the skin.



Ring and stringer stiffened cylindrical panels and shells

foad tacter PA vs. sigefi(1710,0,B,F 1)
load factor PA vs. sigeX(1710,0,B.F 2)
Toad factor PA vs, sigeK(1710,0.B,F.3)
load factor PA vs. sigeX(1710,0.B.F 4)
load lactor PA vs. sigefi(1740,0 B,F 1)
load lactor PA vs. sigeft{1740.0.8,F 2)
foad lactor PA vs. sigefi(1740.0,8,F.3)
Toad factor PA vs. sigeft(1740.0.8 F 4}

PUEEREPSXEAOX+000

1600.0,8F.3)
foad factor PA vs. sigefi(1800,0,BF.4)
x 057l}-in T-ring steel cyl: Wo(gen)=0.25, Wo(loc)=0.075 in, reduced skin, yes tsd
w
o

Z .
=3t DIeS|gn
s oa ®
[}
2
K-
2o}
g-
]
% Panda 27
£
n b
i ®
@«
k-3
% S
%l Stags
k] ®
< A A A A i A '
.0 0.2 04 0.6 o8 10 12 t4 16
Load factor PA

Fig. 22. Comparison of STAGS and PANDA2 predictions
of effective stress in the ring flange of the steel shell where
the flange is compressed more than the skin.

near the opposite straight edge where the skin is
compressed less than the outstanding flanges of the
rings.

Figures 18 and 19 are PATRAN [47] fringe plots of
the inner and outer surface effective stress in the panel
as loaded by the design load, p = 150 psi. These
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Fig. 23. Comparison of STAGS and PANDA2 predictions

of effective stress in the panel skin of the steel shell where

the skin is compressed more than the outstanding flange of
the ring.

figures show the overall displacement pattern. The
actual displacement field is magnified in the plots by
a scale factor of 20. The upper right-hand portion
of the model has the maximum overall inward
displacement. It is obvious from Fig. 18 that the
initial local buckling modal imperfection is most
amplified in the region with the maximum overall
inward bending. The maximum inner fiber effective
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114229,
106194.
98159,
90124.
82088.
74053.
66018.
57983.
49948,
41913.
33878.
25843.

17808.

9773.

1738.

G (outer)

Fig. 24. Deformed shape and fringes of outer surface effective stress in the steel shell from a model in
which the sign of the local buckling modal imperfection component has been changed.
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Fig. 25. Ring tripping in the imperfect steel shell.

stress occurs in the outstanding flange of the ring
nearest node 1984. The maximum outer fiber effective
stress occurs in the panel skin at both of the inward
directed local “bumps” most clearly displayed in
Fig. 19.

Comparisons of results from PANDAZ2 and STAGS

Figures 20-23 give comparisons between results
from PANDA2 and STAGS. In Fig. 20 are plotted
the normal displacement w at the four nodal points
1737, 1954, 1984, and 2667 (locations shown in Figs.
18 and 19). Nodes 1954 and 1984 are at the junction
of web and skin of the ring nearest the midlength
symmetry plane of the cylindrical shell at the points
of maximum inward and outward displacement,
respectively. Nodes 1737 and 2667 are at midbay in

the panel skin at the points of maximum local inward
and outward displacement, respectively. The straight
line labelled “‘perfect shell” represents the average
overall inward axisymmetric displacement caused by
the uniform external hydrostatic compression.

In the PANDA?2 model a reduced effective skin
stiffness is used (indicated as “reduced skin” in the
title over the plot), and the effects of transverse shear
deformation are included (indicated as “yes tsd” in
the plot title). In the “reduced skin” PANDA2
model the membrane components of the integrated
constitutive 6 x 6 matrix (called C(1,1), C(2,2),
and C(3, 3) in the PANDA? literature and termed
All, A22, A33 in most of the literature on composite
materials) for the panel skin are set equal to half of
the values corresponding to the perfect skin. The
PANDAZ2 user can choose whether or not to use the
“reduced skin” and *‘yes tsd” options for deriving
optimum designs. It is advisable to do so in order to
derive conservative designs. The effective overall
membrane stiffness of the skin is reduced because of
the presence of the local imperfection. Later, results
from PANDAZ2 with and without the “reduced skin”
and “tsd” options are explored for ring stiffened
cylindrical shells made of laminated composite
material.

Figures 21-23 give comparisons between PANDA?2
and STAGS predictions for the maximum hoop
compression in the outstanding ring flange and
maximum effective stress in the ring flange and panel
skin. The agreement between results from PANDA2
and STAGS is very good. In each of Figs 21 and 22
there is only one curve corresponding to the
PANDA2 model, whereas there are many
corresponding to the STAGS model. Unlike the
STAGS model, in the PANDA2 model there is no
twisting of the ring as the local buckling modal

Node 2015

Fig. 26. Deformed shape in the post-collapse regime.
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Fig. 27. Early ring tripping in steel shell optimized as if it
were perfect to a design pressure, p = 150/0.7 = 214.28 psi.
The width of the flange is too small.

imperfection is amplified. In the PANDAZ2 model it
is as if the rings were hinged along their lines of
intersection with the panel skin. Therefore, the rings
do not twist as the local buckles deepen with
increasing external pressure. It is the twisting of the
rings that gives rise to the variation of hoop stress
across the width of the outstanding flange. The ring
twisting would be included if there were a discretized
skin-ring single module model in PANDA2
analogous to the skin-stringer single module model

shown in Fig. 98a of [32], for example.
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In Fig. 23 it is indicated whether the amplification
of the initial local buckling modal imperfection is
governed by the hyperbolic law, eqn (13), or the
nonhyperbolic law, eqn (12), in the PANDA2
analysis. The transition between hyperbolic and
nonhyperbolic amplification depends on the ampli-
tude of the initial local imperfection and its circum-
ferential wavelength, as well as on the properties of
the panel skin and whether or not the stress in the
skin and/or the local buckling load factor for the
imperfect shell are critical or nearly so. For
small applied loading the amplification of the local
buckling modal initial imperfection is always
hyperbolic and above the local buckling load of the
imperfect shell it is always nonhyperbolic.

Figure 24 shows the outer surface effective stress
from a STAGS model in which the sign of the local
initial imperfection has been reversed and all other
properties of the STAGS model maintained as
before. This figure should be compared with Fig. 19.
Note that the maximum effective stress predicted
from the second model is only slightly greater than
that from the first.

Figures 25 and 26 demonstrate that collapse of the
shell is caused, according to STAGS, by sidesway of
the T-ring in the region where the outstanding ring
flange is subjected to maximum hoop compression.
This is called “ring tripping”. It is the ultimate cause
of failure of the structure in all of the cases explored
here except two.

Various optimum designs obtained for the same T-ring
stiffened cylindrical shell with no initial imperfections

In earlier literature on the optimum design of
stiffened panels and shells [32, 34] it is recommended
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Fig. 28. Deformed shape in the post-collapse regime of the steel shell optimized as if it were perfect to
a design pressure, p = 150/0.7 psi.
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Fig. 29. Early ring cross-section buckling and crippling in

steel shell optimized as if it were perfect to a design pressure,

p=150/0.7psi. A lower bound on the width of the

outstanding ring flange of 1.5in was imposed during

optimization, but the thicknesses of web and flange are too
small.

to account for initial imperfections by designing
the perfect shell to a higher load than the ultimate
load. It is recommended, for example, that the perfect
shell be designed to withstand the applied load
given by

(Design load of perfect shell)

= (ultimate load)/(knockdown factor) (29)

D. Bushnell and W. D. Bushnell

in which the knockdown factor supposedly compen-
sates for initial imperfections. The following results
demonstrate that this philosophy is unsafe. Figures
27-35 pertain to this section. In each case the struc-
ture is assumed to be perfect and it is designed to
withstand an external hydrostatic pressure equal to
(150)/(0.7) = 214.28 psi. The knockdown factor of 0.7
is typical for use with cylindrical shells under external
pressure.

Figures 27 and 28 give results from STAGS for the
optimum design obtained with PANDA2 for the
perfect shell designed to withstand the higher
external pressure, p = 214.28 psi. The STAGS results
correspond to an imperfect shell with the same
general and local imperfection amplitudes as before,
Wimp (global) = 0.25 in and Wimp(local) = 0.075 in.
As before, the load factor P4 = 1.0 corresponds in
the STAGS model to an external pressure
p = 150 psi, not the higher pressure, p = 214.28 psi,
used in the PANDA? analysis to obtain the optimum
design of the perfect shell.

Figure 27 lists the dimensions and weight of the
optimum design obtained by PANDA2 and demon-
strates sidesway (“ring tripping”) of the T-ring that
begins at a load of less than half of the design
load of 150 psi. The mode of collapse of the structure
is depicted in Fig. 28. (In this case the STAGS
model spans 30° of the circumference because
PANDA2? predicts general buckling with six circum-
ferential halfwaves over 180° rather than the five
halfwaves that is critical for the optimum design
discussed in the previous section.) The optimum
design produced for the perfect shell designed to
the higher pressure, p = (design load)/0.7, is in-
adequate because the flange is too narrow to resist
the ring tripping that is predicted by STAGS to

Node 2387

Node 2232

Fig. 30. Deformed shape in the post-collapse regime of the steel shell optimized as if it were perfect to
a design pressure, p = 150/0.7 psi.
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Fig. 31. Early stress failure caused by excessive overall

bending in steel optimized as if it were perfect to a design

pressure, p = 150/0.7 psi. Lower bounds on the width of the

outstanding ring flange and thicknesses of web and flange

were imposed during optimization, but the height of the web
is too small.

occur when imperfections of reasonable amplitude
are included explicitly in the STAGS model.
(PANDA? predictions for this optimum design
agree with those of STAGS when the same initial
imperfections are included explicitly in the PANDA2
model).

A new warning is generated in the PANDA2
output file, x. OPM, if a cylindrical shell or panel with
rings is being optimized without any out-of-round-
ness or general buckling modal initial imperfection.
The warning is as follows:

In view of the results shown in Figs 27 and 28, it
is reasonable to perform the PANDA?2 optimization
for the perfect shell again, this time enforcing a lower
bound on the width of the outstanding flange of 1.5 in
in order to forestall ring tripping. The results from
PANDAZ2 and STAGS appear in Figs 29 and 30. This
time failure of the structure is caused by local
buckling and crippling of the cross-sections of the
T-rings rather than by ring tripping. Local buckling
of the T-rings initiates at a load factor of about 0.4,
again, less than half the design pressure, p = 150 psi.

In view of the results shown in Figs 27-30, it is
reasonable to perform the PANDA2 optimization for
the perfect shell yet again, this time enforcing a lower
bound on the width of the outstanding flange of 1.5 in
and lower bounds on the thicknesses of the ring web
and flange of 0.06 in. The results appear in Figs 31
and 32. This time failure occurs because of overall
collapse, as shown in Fig. 32. The effective stress in
the outstanding flange of the T-ring exceeds the
allowable value of 130 ksi at only 60% of the design
pressure p = 150 psi.

In view of the results shown in Figs 27-32, it is
reasonable to perform the PANDAZ2 optimization for
the perfect shell yet again, this time enforcing a lower
bound on the height of the T-ring of 2.0 in and the
same lower bounds on width of outstanding flange
and thicknesses of ring web and flange as listed in the
previous paragraph. The results appear in Figs 33-35.
Figure 33 lists the optimum design and weight deter-
mined by PANDA2. Results from a STAGS model
of the panel optimized with PANDA2 are shown in
Figs 33-35. This panel collapses at a load above
the design load, but the maximum effective stress at
the design load, P4 =1.0, that is, at the design
pressure of 150 psi, exceeds the allowable by about
30%. Figures 34 and 35 are PATRAN fringe plots of
the effective stress at the locations where the out-
standing flanges of the rings are compressed the most
(Fig. 34) and where the panel skin undergoes the most
bending (Fig. 35). The shell is only about 7% lighter
than the acceptable design, results for which

sxkkxkkk WARNING sxxxxurx WARNING sxsxsnsx WARNING sereser sk

THE PANEL IS CURVED, HAS RINGS, YET HAS NO OVERALL IMPERFECTION.
OVERALL IMPERFECTIONS (OUT-OF-ROUNDNESS AND/OR BUCKLING

MODAL IMPERFECTION) GIVE RISE TO CONSIDERABLE ADDITIONAL HOOP
COMPRESSION IN THE RING WEBS AND OUTSTANDING FLANGES, AS WELL

AS IN THE PANEL SKIN. PLEASE NOTE THAT, EVEN THOUGH YOU MAY

HAVE SET THE APPLIED LOAD TO A VALUE HIGHER THAN THE DESIGN
ULTIMATE LOAD BY A FACTOR EQUAL TO THE INVERSE OF A TYPICAL
KNOCKDOWN FACTOR, OR YOU MAY HAVE SET A RATHER HIGH FACTOR OF
SAFETY FOR GENERAL INSTABILITY, YOUR DESIGN MAY BE UNCONSERVATIVE.
PLEASE REDESIGN WITH USE OF REASONABLE AMPLITUDE(S)

FOR OUT-OF-ROUNDNESS AND/OR GENERAL BUCKLING MODAL IMPERFECTION.
YOU MAY COMPENSATE BY REDUCING THE FACTOR OF SAFETY

AND/OR THE APPLIED LOAD (AS LONG AS THE APPLIED LOAD REMAINS

AT LEAST AS LARGE AS THE ULTIMATE LOAD).

*akdkrk END WARNING ##xEND WARNING ###%x END WARNING #xskknnn
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Fig. 32. Deformed shape in the post-collapse regime of the steel shell optimized as if it were perfect to
a design pressure, p = 150/0.7 psi.

appear in Figs 14-26. It is easy to imagine that
7% might have to be added to the weight in order to
bring the maximum effective stresses below the allow-
able value of 130ksi at the design pressure,
p = 150 psi.

1 toad factor PA vs. SigeX(1710.0.8.F,1)
load factor PA vs. sigof(1710.0,8.F 2)
load factor PA vs. 5igefi(1710.0,8.F.3)
foad tactor PA vs. sigeft(1710,0.8.F 4}

toad factor PA vs. sefl(1770,0.B.F 2)
Joad tacior PA va. sigefi(1770,0 B F 3)

BAMO®XEIOX+>00]
3
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§
3
s
°
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B load fackor PA vs. sige{1800,0.8F 3)
® load tactor PA vs. sigeft(1800,0,8.F 4)

105 70-in T-ring steel cyl: p=(designioad 0.7, wide flange, tall web, thick segs.
w

b=8.75in. Weight = 748 Ibs
h=2.00in.
w=1.50 n. Panda 2
qF t1=02030n. [ optimum
t2 = 0.06 in.
t3 = 0.06 in. Allowable

1.5
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| ewie
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=

Max. effective stress in outstanding flange of ring {psi)

Design
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3
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Fig. 33. Early stress failure caused by excessive overall
bending in steel shell optimized as if it were perfect to a
bending pressure, p = 150/0.7 psi. Lower bounds on the
width of the outstanding ring flange, thicknesses of the web
and flange, and a lower bound of 2.0 in on the height of the
web were imposed during optimization, but the maximum
allowable stress of 130 ksi is still exceeded at the design load.

EXAMPLE 3: OPTIMUM DESIGN OF AN IMPERFECT
HYDROSTATICALLY COMPRESSED T-RING-STIFFENED
COMPOSITE CYLINDRICAL SHELL 70 INCHES LONG

Figures 36-56 pertain to this section. As with the
steel T-ring stiffened shell, the cylindrical shell is 70 in
long and has a radius R =350in. It is made of
laminated composite material with properties listed in
Figs 36 and 37. As before, the ring stiffened shell
is designed to withstand an ultimate external
hydrostatic pessure of 150 psi. The design variables
are the ring spacing b, web height A, outstanding
flange width w, the lamina thicknesses ¢(1), #(2), 1(3),
t(5), t(6), 1(8) and z(13). The thickness 7(4) is linked
to #(3), since these are the plus and minus 45° layers
in Laminate 1, which forms the panel skin. The
thickness #(7) is linked to 1(6), since these are the plus
and minus 45° layers in Laminate 2. The thickness
t(14) is held at the value of a single ply,
0.005 in, because it represents each of the 90° layers
in Laminate 3, which forms the core of the ring
outstanding flange. As before, the initial imperfection
in the form of the general buckling mode has an
amplitude Wimp(global) =0.25in and the initial
imperfection in the form of the local buckling
mode has an amplitude Wimp(local) =0.075in. In
PANDAZ? the ring-stiffened cylindrical shell is again
modeled as a panel that spans 180°. In contrast to the
ring-stiffened steel shell discussed in the previous
section, the composite ring-stiffened shell has rings
with faying flanges. The width of the faying flange is
kept constant at 1.5in, as shown in Fig. 36.

PANDA2 model of the
optimization

composite panel and

Figures 37-41 are analogous to Figs 8-12. They
show the evolution of the design and of the design
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Fig. 34. PATRAN fringe plot of the inner surface effective stress in the region where the outstanding
flanges of the rings are compressed the most.

margins with design iterations. For the first 55
iterations the ring spacing b was included as one of
the decision variables. Thereafter, as seen in Fig. 38,
b was held constant at various levels while all
the other design variables were permitted to vary.
The optimum design weighs only 38% as much

as the optimized steel shell (compare Figs 8 and
37).

During most design iterations the thicknesses
t(1), 1(2), 1(3), (5), 1(6), ¢(8), t(13), are permitted to
vary in an arbitrary way. However, in the final
optimum design each layup angle must consist of an

140339, .

131162,
121986.
112810.
103633,
94457,
85280.
76104,
66927,
57751,
48575,

39398,

o (outer)
(psi)

Fig. 35. PATRAN fringe plot of the outer surface effective stress in the region where the skin undergoes
the most bending.
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Fig. 36. Layup scheme for all of the laminated composite T-ring stiffened cylindrical shells treated in this
paper. Optimum ply distribution for the 70-in-long cylindrical shell optimized with “reduced skin” and
*“tsd” switches turned on during optimization with PANDA2,

integral number of plies. Therefore, as a minimum
weight is approached, as is the case, for example, at
about iteration 55 and again at iteration 122 (see
Fig. 37), all lamina are fixed at thickness equal to an
integral number of plies and only the web height and
outstanding flange width are allowed to vary from
design interaction to iteration. Some judgment is

- —1O— — —
External

pressure, p = 150psi

| g E

| — ]

~-——— | /2 = 356"-
Composite mat'l properties
modulus in the fiber direction, E1(1l )
modulus transverse to fibers, E2(1 )

S00E+07
in-plane shear modulus,

-800E+06
- 800E+05
676E-02
-800E+0S
+.00CE+05
. 000E+00Q
Q00E+00
000E+00
000E-02
000E~03

G(1)
small Poisson’'s ratio, NO(1 )
out-of-plane shear modulus, Gl3(1 )
out-of-plane shear modulus, G23(1 )
thermal expansion along fibers, Al(l )
transverse thermal expansion, a2 )
residual stress temperaturs (positive)
weight denaity (greater than 0!) of material
Thickness of a single lamina of matl type(l )

MAOOCOMIHIRN

700E+05
360E+05
000E+04

mazimun tensile stress along fibers
maz compressive stress along fibers
maz tensile stress normal to fibers
SO00E+04 maz compreas stress normal to fibers
180E+04 maximum shear stress in material

Wimp (global) = 0.25; Wimp (local) = 0.075 in.

OBJECTIVE ( weight - Ibs)
e

An earlier optimum| Final optimum|

0 20 40 60 80 100 120 140
DESIGN ITERATIONS

Cylcom4. SEE FILES cylcomd.OPM AND cylcomd.OPP

Fig. 37. Objective function (weight) of T-ring stiffened
70-in-long composite cylindrical shell under uniform exter-
nal hydrostatic pressure, p = 150 psi.

required to decide whether to increase or decrease the
arbitrary thicknesses to the appropriate integral ply
values. Of course, the integral ply design will be
feasible if the user increases the thicknesses of all
laminae to values corresponding to the next integer,
but the resulting panel may be unnecessarily heavy.
Therefore, it is best to usé some judgment and reduce
the thicknesses of some laminae while increasing
those of others.

During optimization of the composite ring-
stiffened cylindrical shell, two optima were found
both of which satisfy the integral ply criterion. These
two optimum designs are indicated in Figs 37 and 39.
The second optimum, labelled “final optimum” in
Figs 37 and 3941 was selected as the configuration
for further study with BOSOR4 and STAGS. The
optimum design called out in Fig. 36 corresponds to
the “final optimum”,

In the PANDA?2 model the “reduced skin” switch
and the “yes tsd” switch were turned on.

BOSOR4 model of the composite panel optimized with
PANDA2

Figure 42 is analogous to Fig. 13. However, there
are significant differences: the local skin buckling load
factor determined by PANDAZ2 is considerably lower
than that predicted for BOSOR4 and STAGS (3.052
vs about 3.9). About half of the difference is caused
by the effect of transverse shear deformation (tsd),
included in the PANDA2 model, but not in the
BOSOR4 or STAGS models. The other half of the
difference is caused by the presence of the faying
flange, which is ignored in this particular PANDA2
model — an “IQUICK = 1" model (see Ref. [32]) —
but included in the BOSOR4 and STAGS models. In



Ring and stringer stiffened cylindrical panels and shells 515
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Fig. 38. Evolution of cross-section dimensions of T-ring
stiffened 70-in-long composite cylindrical shell under uni-
form external hydrostatic pressure, p = 150 psi.

the composite case BOSOR4 and STAGS predicted
general buckling at a slightly higher load factor than
PANDAZ2, whereas the reverse is true for the opti-
mized steel shell. The critical skin buckling mode for
the composite shell corresponds in the PANDA2
model to n = 16 circumferential halfwaves over the
180° “panel”, whereas the critical skin buckling mode
for the steel shell corresponds to n = 20 halfwaves,
even though the ring spacing is the same, b = 8.75, in
both cases. Finally, according to the BOSOR4 model
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Fig. 39. Evolution of laminae thickness of T-ring stiffened
70-in-long composite cylindrical shell under uniform exter-
nal hydrostatic pressure, p = 150 psi.
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Fig. 40. Margins for the T-ring stiffened 70-in-long hydro-
statically compressed composite cylindrical shell corre-
sponding to conditions midway between adjacent rings.
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ol GEN Buckling load Factors from BOSOR4 model

[ApANDA 2 = 3.800
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AsTags = 4.031
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Fig. 42. Buckling mode shapes predicted by BOSOR4 and

load factors predicted by PANDA2, BOSOR4, and STAGS

for the optimized, perfect 70-in-long hydrostatically com-

pressed composite cylindrical shell.

35.0

of the composite shell, there is no clear minimum
in the relationship between local skin buckling load
factor vs number of -circumferential waves
(Fig. 42). Instead, there is a flat region in the curve
of (buckling load factor) vs n from about n = 12 to
n = 16. There is a true minimum at n =5, but for
this relatively low value of n the main character-
istic of the buckling mode is ring tripping, as seen
from the middle insert in Fig. 42. The curve be-
tween n =5 and n =16 in Fig. 42 represents a
gradual transition from a mode in which ring trip-
ping predominates to a mode in which skin buck-
ling predominates.

35 in. /‘1

Symmetry

AsTaGs = 3.49

Symmaetry

Fig. 43. Ring tripping buckling mode of the T-ring stiffened
hydrostatically compressed 70-in-long composite cylindrical
shell as predicted by STAGS.

D. Bushnell and W. D. Bushnell

Symmetry

Fig. 44. Local skin buckling mode of the T-ring stiffened
hydrostatically compressed 70-in-long composite cylindrical
shell as predicted by STAGS.

STAGS model of the composite panel optimized with
PANDA2

Figures 43-45 display three buckling modes de-
termined with STAGS. Except for detailed dimen-
sions and material properties, the STAGS model is
analogous to that used for the steel shell (see
Fig. 14). Again, only 36° of the circumference is
included in the STAGS model because the critical
general instability buckling mode again has five cir-
cumferential waves. Figures 44 and 45, representing
the local skin buckling mode and the general insta-
bility mode, are analogous to Figs 14 and 16 for
the steel shell. Figure 43, the critical buckling mode
of the perfect shell in this case, corresponds to ring
tripping. It is essentially the same buckling mode
as that predicted by BOSOR4 and displayed in the
middle insert in Fig. 42. The buckling modes de-
picted in Figs 44 and 45 are used, with amplitudes
set to 0.25in and 0.075in, respectively, as imper-
fection components in the STAGS nonlinear col-
lapse run.

Simple
support
-

23 2aAARPELE
e

PR EAMRREE K,

v
_.'.‘.'ﬁ'v‘lnu::auu-nr.t.i

)'stags =4.03

Symmetry

Fig. 45. General buckling mode of the T-ring stiffened
hydrostatically compressed 70-in-long composite cylindrical
shell as predicted by STAGS.
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Node 2233
Node 2481
nl 4Node 3070

Symmetry §
e

Fig. 46. Deformation of the imperfect composite shell at the
design load, P4 = 1.0, that is, at pressure p = 150 psi.

Results from the STAGS nonlinear collapse run
are displayed in Figs 46-51. Figure 46 is analogous
to Fig. 17 for the steel shell, and Figs 47-50 are
analogous to Figs 20-23 for the steel shell. Compari-
son of Fig. 46 with Fig. 18 reveals that for the
composite shell there is much less local skin defor-
mation at the design load, P4 = 1.0, than is the case
for the steel shell. This is partly because of the neglect
of the transverse shear deformation (tsd) effect in the
STAGS model, partly because of the neglect of the
faying flange in the local buckling analysis section of
the PANDAZ? calculations, and partly due to the use
of “reduced skin” in the PANDA2 model. All three
differences in the models cause there to be more local
skin bending in the PANDA2 model than in the
STAGS model: the tsd effect causes the load factor
for skin buckling to be lower, which results in more

70-in T-ring composite cyl: Wo(gen) = 0.25,
Wo(loc) = 0.075, red.skin, yes tsd

0 Load factor PA vs. disp.(3070,w,L)
© Load factor PA vs. disp.(2481,w,L)
A Load factor PA vs. disp.(2233.w,L) +
+ Load factor PA vs. disp.(2511,w,L) +
x10~"
1.0

skin/web junctions (in)
&
o

-5.0 Node 3070~ ) Node
Design 0 2481
-6.0 load ]

Normal dispacement of skin midbay and at

ol 1 1 I
0 0204 06 08 10 1.2 1.4

Load factor PA

Fig. 47. Comparison of STAGS and PANDA?2 predictions
of normal displacement for the composite shell.

16 1.8 2.0

517

1oad factkor PA vs. inlegrated Stress Ny(1890.1)
load tacior PA vs. Inkegraked Stress Ny(1890.2)

BHeXTLOoX DO
£
:
i
1
i
g

i
1
i
i
z
i

@ joad factor PA vs_ imegrated Stress Ny(1960.4)

c1pd 10-in T-ring composite cyl: Wo(gen)=0.25, Woiloc)=0.075, red.skin, yes tsd

&
£
a el —~ Stags
= D)
£ ~
fo O
o .7'>
D
o ®
E !
= 0
j= .
£ Panda 2 ®
=
s
2 o
R
£ O]
c
92
3 Design
g o load
a
] ®
=
% W
o of
=
o |
2 . " N " i N N A
‘0.0 02 04 0.6 08 10 1.2 14 16 1.8 20

Load factor PA

Fig. 48. Comparison of STAGS and PANDA?2 predictions
of hoop compression Ny in the ring flange of the composite
shell where the flange is compressed more than the skin.

amplification of the local buckling modal imperfec-
tion at the design load in the PANDA?2 model than
in the STAGS model; neglect of the faying flange in
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Fig. 49. Comparison of STAGS and PANDA2 predictions
of fiber stress in the innermost layer of the ring flange of the

composite shell where the flange is compressed more than
the skin.
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Fig. 50. Comparison of STAGS and PANDA?2 predictions

of fiber stress in the panel skin of the composite shell where

the skin is compressed more than the outstanding flange of

the ring. Layers | and 12 are the inner and outer layers in
Laminate no. 1 (See Fig. 36).

the PANDA2 model further lowers the local buck-
ling load factor, resulting in further amplification
of the local modal imperfection; use of “reduced
skin” in the PANDA2 model of general buckling
of the imperfect shell leads to more overall bending
in the PANDA?2 model than in the STAGS model,
which causes the skin to be locally compressed
more in regions where the overall bending is
inward. Therefore, in the PANDA2 model the ex-
treme surfaces of the skin are stressed more highly

3 load factos PA vs. Disp(2542.w.L)

70-in T-ring composite cyl: Wo(gen)=0.25, Wotloc)=0.075. red.skin, yes tsd
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Fig. 51. Ring tripping in the imperfect composite shell
designed by PANDA?2 with the “reduced skin” and “tsd”
switches turned on.
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by local bending than is the case in the STAGS
model.

Comparison of results from PANDA2 and STAGS

Figures 47-50 pertain to this section. The
PANDA?2 model displays more overall bending and
more local skin bending than the STAGS model (for
the reasons listed in the previous paragraph). The
PANDA2 model exhibits far more outward displace-
ment than does the STAGS model (“plus” markers
in Fig. 47) because of the simplified nature of the
PANDA? analysis: emphasis in the PANDA2 model
is put on the most critical behavior, not on accuracy
in all details. As in the case of the steel shell, in each
of Figs 48 and 49 there is only one curve corre-
sponding to the PANDA2 model, whereas there
are many corresponding to the STAGS model. The
PANDA2 predictions err on the conservative side.

Figure 50 shows a rather dramatic difference be-
tween the predictions of STAGS and PANDA?2 for
bending stress in the panel skin at finite element
no. 2131 (see Fig. 46 for location). The significant
difference is caused by there being more amplifica-
tion of the local buckling mode in the PANDA2
model than in the STAGS model for the reasons
given above.

Figure 51 is analogous to Fig. 25 for the steel
shell. Ultimate collapse is again caused by ring
tripping. In the case of the composite shell ultimate
collapse occurs at a significantly higher load factor
(PA =195) than is the case for the steel shell
(P4 =139 in Fig. 25).

70-in T—ring composite cyl: Wo(gen) =
Wo(loc) = 0.075, tull skin, no tsd
disp.(3070,w,L)
disp.(2481,w,L)
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0.25,
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+ Load factor PA vs.

1.0 — e
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h = 1.5056 in; w = 1.5 in,
05t =4 plfes; t,=3 plles:l Lam. 1
t3=7 plies = t, Stags
04 Perfect shell

ls=ls=t7=te = 2 plies
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skin/web junctions (in)
&
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T
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2.0 1 I | | | |
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Fig. 52. The optimum design obtained from PANDA?2 with

the “reduced skin” and “‘tsd” switches turned off. Compari-

son of STAGS and PANDA?2? predictions of normal dis-
placement for the optimized composite shell.
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Fig. 53. Comparison of STAGS and PANDA?2 predictions

of hoop compression Ny in the ring flange of the composite

shell where the flange is compressed more than the skin in

the design derived by PANDA?2 with the “reduced skin” and
*“tsd” switches turned off.
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Fig. 54. Comparison of STAGS and PANDA?2 predictions

of fiber stress in the innermost layer of the ring flange of the

composite shell where the flange is compressed more than

the skin. Shell designed with ‘“reduced skin” and “tsd”
switches turned off.
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A less conservative PANDA2 model: “reduced skin”
and “tsd” turned off during PANDAZ2 optimization

Figures 52-56, which are analogous to
Figs 47-51, give comparisons between PANDA?2
and STAGS predictions for a panel optimized with
the “reduced skin” and “tsd” switches turned off.
The dimensions and weight of the re-optimized
panel appear in Fig. 52. Whereas the weight of the
optimized composite panel with the “reduced skin’
and “tsd” switches on is 3021lbs, the new panel
weighs less: 2751bs. In this case it appears to
be safe to turn off the “reduced skin” switch be-
cause the PANDA2 predictions of maximum
stress at the design load, P4 = 1.0, are either con-
servative with respect to the STAGS predictions
(Fig. 55) or very close to the STAGS predictions
(Fig. 54) at the design load factor, P4 =1.0. By
comparing Figs 50 and 55, notice that the
STAGS model shows more bending in the panel
skin in the latter case. There is still less local skin
bending in the STAGS model than in the
PANDA2 model because of the different treatment
of the faying flanges of the rings in the two
models.

Note that one cannot conclude from the results
just given that it is safe to ignore the transverse
shear deformation (tsd) effect. In all of the STAGS
models presented here tsd is ignored. In that
respect the PANDA?2 results with the “tsd” switch

turned on are more reliable than those of
STAGS.
O loadfactor PA vs Total sxx(2131,0.BM.1)
\) toad factor PA vs Tolal sxx(2131.0.BM.2)
. load tactor PA vs Tolal sxx(2131,0.B.M.3)
- load factor PA vs Total sxx(2131.0.BM 4) .

< loadteclor PA vs Total sxx(2131.0.TM.1)
= load tactor PA vs Total sxx{2131.0,TM.2)
“  load tactor PA vs. Total sxx(2131.0.T.M.3)
@ load actor PA vs. Total sxx(2131.0.T.M.4) .
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Fig. 55. Comparison of STAGS and PANDAZ2 predictions

of fiber stress in the panel skin of the composite shell where

the skin is compressed more than the outstanding flange of

the ring. Shell designed with “reduced skin” and “‘tsd”
switches turned off.
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Fig. 56. Ring tripping in the imperfect composite shell
designed by PANDA? with the “reduced skin” and “tsd”
switches turned off.

EXAMPLE 4: OPTIMUM DESIGN OF AN IMPERFECT
HYDROSTATICALLY COMPRESSED T-RING-STIFFENED
COMPOSITE CYLINDRICAL SHELL 200 INCHES LONG

Figures 57-70 pertain to this section.

The results presented in this section are analogous
to those presented for the 70-in-long composite ring-
stiffened cylindrical shell. The radius of the shell is the
same, R =50in, and the design pressure is still
p =150 psi. The overall arrangement of the layers
and material properties are the same as depicted in
Figs 36 and 37, although the optimum design is
different, of course. The same imperfection ampli-
tudes are used here, Wimp(global) =0.25 in and

D. Bushnell and W. D. Bushnell

Wimp(local) = 0.075 in. Again, the PANDA2 model
is a panel which spans 180° of the circumference.

According to PANDA2, the optimized panel, if
perfect, buckles in the general instability mode at a
load factor of 2.59 with three halfwaves over the 180°
of the circumference, and in the local skin buckling
mode at a load factor of 2.34 with 16 halfwaves over
the 180°. A BOSOR4 model yields a ciritical general
instability load factor of 2.70 and a local buckling
load factor of about 2.98, although, as is the case for
the 70-in-long composite cylinder, there is no clear
minimum skin buckling load factor as a function of
number of circumferential waves: the behavior is
similar to that displayed in Fig. 42 for the 70-in-long
composite shell.

It is more difficult to compare with STAGS in this
case because a much larger piece of structure must be
discretized in the STAGS model, since the shell is
longer while the ring spacing is about the same.
Because the shell is longer, the critical general
buckling mode has fewer circumferential waves than
is the case for the 70-in-long composite panel. There-
fore, a larger circumferential sector of the shell must
be included in the STAGS model.

The optimum design obtained by PANDAZ2 is listed
in Fig. 61. The general instability mode has three
circumferential halfwaves over the 180° circumference
of the shell. Therefore, the STAGS model must include
at least 60° of the circumference. In order to make the
STAGS analysis more tractable, a compound model
was set up in which the rings were “smeared” over the
largest portion of the structure, as indicated in Fig. 57.

Figures 57-59 are analogous to Figs 14-16 for the
ring-stiffened steel cylindrical shell. Figures 57 and 58
display two views of the local buckling mode

/-'\
', Smmetry
\ |ﬂ i v

“— Symmetry
Astags = 3.09

Fig. 57. Local skin buckling mode of the T-ring stiffened hydrostatically compressed 200-in-long
composite cylindrical shell as predicted by STAGS.
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Fig. 58. Another view of local buckling mode shown in the previous figure.

predicted with STAGS. Note from Fig. 58 that,
unlike the example of the steel shell (Fig. 15), the
amplitude of the local mode is nonuniform in
the circumferential direction. This nonuniformity
probably represents the superposition of two eigen-
vectors from very closely spaced eigenvalues. It does
not present a serious problem, however. The signs
of the amplitudes of the two buckling modal
imperfections, general and local, must be chosen with
care so that the maximum amplitude of the local
imperfection occurs where the general modal
imperfection causes the shell to bend inward and
compress the skin the most. Figure 59 shows the
general buckling mode predicted with the STAGS
model.

Figures 60—65 contain the results from the STAGS
nonlinear collapse analysis. Figure 60 shows the
deformed shell at the design load, PA = 1.0, that is,
at the external pressure, p = 150 psi. As is the case
with the 70-in-long composite cylinder, there is much
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less local bending at the design load in this example
than there is for the optimized steel ring-stiffened
shell (Fig. 18).

There is a source of possible nonconservativeness
in the STAGS model: only two rings are represented
as flexible branched structures, while the rings are
smeared out over the remainder of the shell. A
better model would have three or four of the rings
represented as flexible segments rather than just two.

Figures 6165 are analogous to Figs 47-51 for the
70-in-long composite cylindrical shell. Although the
PANDA2 model exhibits more overall and local
bending than the STAGS model, as is evident from
Fig. 61, the maximum hoop stress in the outstanding
flange of the ring at the design load, P4 =10
(Fig. 63), is slightly more in the STAGS model than
in the PANDA?2 model. The difference is caused by
the twisting of the ring in the STAGS model, which
is not accounted for in the PANDA2 (IQUICK = 1)
model, as has already been mentioned. This twisting
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Fig. 59. General buckling mode of the T-ring stiffened hydrostatically compressed 200-in-long composite
cylindrical shell as predicted by STAGS.
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Node 2016\

Finite Element 2100

Node 2046
Node 2635

p = 150 psi.

causes the hoop stresses to be nonuniform over the
width of the outstanding flange in the STAGS model.
Figure 65 demonstrates that ultimate collapse of the
shell is caused by ring tripping, as has been the case
for most of these examples.

“Reduced skin” and “tsd” switches turned off in
PANDA2

Figures 66-70 are analogous to Figs 52-56 for
the 70-in-long composite shell. The 200-in-long

Long model, 200~in T-ring composite cyl:
ring spacing = 8.3333 in.

O toad factor PA vs. disp.{2635,w,L)
O Load factor PA vs. disp.(2046,w,L)
A Load factor PA vs. disp.(1798,w,L)
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Fig. 61. Optimum design obtained by PANDA2 with the

“reduced skin” and “tsd” switches turned on. Comparison

of STAGS and PANDA? predictions of normal displace-
ment for the composite shell.
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o

composite shell is re-optimized with the “reduced
skin” and “tsd” switches turned off in the PANDA2
analysis, and comparisons are made with results from
a STAGS model of the re-optimized shell. The weight
of the panel is reduced from 801 Ibs to 769 lbs. There
is generally better agreement between PANDA2 and
STAGS for this case than for the case with the
“reduced skin” and ‘“tsd” switches on in the
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Fig. 62. Comparison of STAGS and PANDA?2 predictions

of hoop compression Ny in the ring flange of the composite

shell where the flange is compressed more than the skin.
“Reduced skin” and “tsd™ switches turned on.



Ring and stringer stiffened cylindrical panels and shells

0 toad lactor PA va. [ otal 3xx(1801,0.BM.1)
O joad tactor PA vs. Total 31(1801.0,B,M,2)
load factor PA vs. Total sxx{1801,0.8,M,3)
toad tacior PA vs. Totad sxx(1801,0.B.M.4}
Ioad factor PA vs. Totel sxx(1831.0.BM,1}
load tacior PA vs. Totsl sxx(1831,0,.8.M.2)

load factor PA ve. Total xx(1861,0,8,M.3)
lod factor PA vs. Total 5xx(1861,0,B.M.4)
foad tactor PA vs. Total axx(1891.0,BM.1)
toud lactor PA ve. Total 3xx(1891,0,B,M.2)
ioad tactor PA vs. Totsl sxx{1891,0,B.M.3)
koad factor PA vs. Total sxx{1891.0,B,M.4)

IREUCEXZTOX + D>

Long model, 200-in T-ring composite cyl: ring spacing=8.3333 in.

Y
S
2

[eX

E
o
g Stags
§ ® 9
= q‘
2 5
2
8
g ®
- J
§, " ® = Panda 2
=
s
3
g ot
3 ®
c
£
S
£ © -
o Design
H load
o .,,}
£
g«
8
g
2 A r A A 'y
0.0 0.2 Ofl 06 08 1.0 12 14 16
Load factor PA

Fig. 63. Comparison of STAGS and PANDA? predictions
of fiber stress in the innermost layer of the ring flange of the
composite shell where the flange is compressed more than
the skin. “Reduced skin” and “tsd” swtiches turned on.

PANDAZ2 analysis. However, for some unknown
reason, the new STAGS model displays even less
local bending (compare Fig. 69 with Fig. 64). The
ultimate collapse load of the shell is reduced from a
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Fig. 64. Comparison of STAGS and PANDA? predictions
of fiber stress in the panel skin of the composite shell where

the skin is compressed more than the outstanding flange of
the ring. “Reduced skin” and “tsd” switches turned on.
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Long model, 200-in T-ring composite cyl: ring spacing=8.3333 in.

2.0

Node 2047

|
L

T
e
T

T
A
L
sttty

Sidesway of ring webs at max. compression{1210,2047) and tension(1240)
0.0
T

A
‘0.0 02 04 06 038 1.0 12 14 16 1.8
Load factor PA

Fig. 65. Ring tripping in the imperfect composite shell
designed by PANDA?2 with the “reduced skin” and “tsd”
switches turned on.

load factor of 1.6 (Fig. 65) to a load factor of 1.43
(Fig. 70).

Again, note that the transverse shear deformation
(tsd) effect is neglected in both the STAGS and
PANDA2 models used to generate the data in
Figs 66-70. Therefore, although the results from
PANDAZ2 (with “reduced skin” and “tsd”’ turned off)
and STAGS agree reasonably well, and although
the maximum compressive stress along the fibers
predicted by STAGS is below the allowable value of

Long model, 200—in T~ring composite cyl:
ring spacing = 8.3333, full skin, no tsd
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Fig. 66. The optimum design obtained from PANDA2 with

the “reduced skin” and “tsd” switches turned off. Compari-

son of STAGS and PANDA?2 predictions of normal dis-
placement for the optimized composite shell.
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Fig. 67. Comparison of STAGS and PANDA?2 predictions

of hoop compression Ny in the ring flange of the composite

shell where the flange is compressed more than the skin in

the design derived by PANDA2 with the “reduced skin™ and
“tsd” switches turned off.
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Fig. 68. Comparison of STAGS and PANDA2 predictions

of fiber stress in the innermost layer of the ring flange of the

composite shell where the flange is compressed more than

the skin. Shell designed with “reduced skin” and “tsd”
switches turned off.
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of fiber stress in the panel skin of the composite shell where
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Fig. 70. Ring tripping in the imperfect composite shell
designed by PANDA2 with the “reduced skin’ and *‘tsd”
switches turned off.

136 ksi (see the list of allowable stresses in Fig. 37),
the optimum design generated by PANDA2 with
“reduced skin” and “tsd” turned off may be unsafe.
It is recommended that users always generate
optimum designs with the “reduced skin” and *“tsd”
switches on.

CONCLUSIONS

In designing shell structures subjected to destabiliz-
ing loads, one is constantly faced with the question,
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“What knockdown factors should I use?”” One of the
main objectives of the work summarized in this paper
has been to produce a design tool for which this
question is unnecessary. The PANDA2 user must
still provide appropriate amplitudes of local, inter-
ring, and general buckling modal imperfections.
However, approximate values of these amplitudes
can be more easily supplied because, unlike knock-
down factors, they are physically related to the
tolerances to which a panel is to be fabricated.

The results given here appear to qualify PANDA2
for the preliminary design of stiffened cylindrical
panels with both overall and local buckling modal
initial imperfections. Of course, only a limited num-
ber of cases are given in which PANDA2 and
STAGS results are compared. All of these cases
involve hydrostatically compressed cylindrical shells
with internal T-shaped rings (the submarine pressure
hull design problem). In previous papers, PANDA2
and STAGS predictions for axially stiffened
curved [37] and flat [31, 37] panels under combined
loads are discussed. A much wider spectrum of prob-
lems should be explored with both PANDA2 and
STAGS, including stiffened cylindrical panels with
combined axial compression, in-plane shear, and in-
ternal pressure (the aircraft fuselage design problem).

The following overall conclusions might be drawn
from the results presented here:

(1) PANDA2 predictions generally (but not
always!) err on the conservative side. The optimum
designs produced by PANDA2 do not appear to be
overly conservative.

(2) A frequently used ‘‘classical” method for
accounting for initial imperfections in the design of
stiffened panels is unsafe. It is NOT recommended
that the applied load be “knocked up” by a generally
accepted knockdown factor as follows

(applied load) =
(ultimate load)/(knockdown factor)

and optimum designs be obtained for perfect panels
subjected to the higher applied load, since the result-
ing optimum design may well display early failure in
tests or in numerical experiments in which imperfec-
tions of reasonable amplitude are explicitly included
in the formulation.

(3) In all of the T-ring stiffened cylindrical shells
designed by PANDA2 with the local and general
buckling modal imperfections included explicitly
in the model, ultimate collapse of the imperfect
optimized shell, according to STAGS, is by ring
tripping. Although this ultimate collapse occurs at a
load factor well above P4 = 1.0 (the design load) in
every case, it may yet be a good idea further to
modify the PANDA2 code by increasing the factor of
safety for ring tripping (presently set internally at 1.6)
to a value of 1.8 or even 2.0. In this way the optimum
designs will have outstanding flanges of greater
width. It is likely that the optimum weight will not
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increase a significant amount as a result of this
modification.

(4) It may be necessary to use the “reduced
skin stiffness” option in PANDA2 when generating
optimum designs. This question should be addressed
through additional cases.

(5) Comparisons between STAGS and PANDA2
with the use of STAGS models in which the effect of
transverse shear deformation (tsd) is included should
be obtained. In all of the STAGS models presented
here, tsd effects were neglected.

(6) The PANDA2 models for the ring-stiffened
cylindrical shells without stringers are all of
the closed form “PANDA-type” (Bushnell[34]
IQUICK =1). At present there is no IQUICK =0
capability, that is, no capability of modeling via
PANDAZ2 the skin-ring module as a discretized entity
in a manner analogous to the discretized skin
stringer module described in previous papers on
PANDAZ2 [32]. Local buckling of the skin between
rings is predicted based on the assumption that the
rings offer no elastic support nor do they “encour-
age” the skin to buckle via torsion-bending buckling.
Local buckling is predicted as if the skin were simply
supported along the line of intersection between ring
web and panel skin. Ring rolling and skin buckling
are treated as separate phenomena, not coupled as is
the case with the IQUICK =0 (discretized) skin-
stringer module model. Consequently, the effect of
ring faying flanges is ignored in the PANDA?2 model.
This may on occasion lead to overly conservative
optimum designs.

(7) The destabilizing effect of axisymmetric bands
of hoop compression induced by axial waviness in
an imperfection pattern that is amplified by axial
compression (this effect is dominant in Koiter’s special
theory {45]) was NOT included in the 1994 PANDA?2
formulation used here. The effect of reduced circum-
ferential curvature in the inward circumferential
lobes of the imperfection pattern was included,
however. In PANDAZ2, buckling load factors of
imperfect panels are computed as if the minimum
local circumferential curvature exists everywhere in
the panel. This is a conservative assumption, and
seems to compensate for the lack of conservatism
inherent in the neglect of the induced local hoop
compression. See Ref. [35] for recent updates.
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