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INTRODUCTION

The central goal of the shell research being carried out at the Aerospace
Engineering Faculty of the TU-Delft is the development of an 'Improved Shell
Design Criteria', which incorporates all the theoretical knowledge accumulated
in the last, say, 25 years thru intensive research in the Aerospace, the
Nuclear and the Offshore fields and which makes efficient use of the currently
available interactive and (super) computing facilities.

To demonstrate the improvements that can be achieved the case of axially
compressed isotropic, orthotropic and/or anisotropic shells has been studied

in a combined experimental, analytical and numerical approach.

CURRENT DESIGN APPROACH

The dilemma of the stability analysis of axially compressed cylindrical
shells is well known. Trying to explain the discrepancy between the theoreti-
cal predictions based on the linearized small deflection theory and the ex-
perimental results has occupied some of the most eminent scientists of this
century.

Though certain in-plane boundary conditions can effect the buckling load
considerably and for thicker shells (R/t < 200, say) inelastic effects must be
included in the analysis, initial geometric imperfections have been accepted
as the main cause of the wide experimental scatter. Despite this recognition
the incorporation of the idea of imperfection sensitivity into engineering
practice has not been accomplished. All the current design manuals, including
the ECCS Recommendations [1], adhere to the so-called 'Lower Bound Design
Philosophy' that has already been in use 50 years ago. That is, they recommend

the use of an empirical knockdown factor, which is so chosen that when it is




multiplied with the classical buckling load a 'Lower Bound' to all available

experimental data is obtained. In the form of a formula

Y
Pa < F.S. PcQ (1)
where
Pa = allowable applied load
Pc = classical buckling load (perfect shell)
2
= _2n Et? - for isotropic shells
J3(1-v?)
Y = knockdown factor
_1 R
16 Yt X .
=1-0.902 (1 -e ) - for isotropic shells
F.S. = factor of safety

For isotropic shells the knockdown factor is shown in Fig. 1.
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Fig. 1. Test data for isotropic cylinders under axial compression.

Much effort has been spent in the past 30 years in trying to find the

cause (or the causes) for the wide experimental scatter shown in Fig. 1.




Thanks to the contributions of many scientists the concensus reached is that
the experimental buckling loads are mainly affected by 3 factors, namely

1. Boundary conditions,

2. Initial Geometric Imperfections,

3. Inelastic Effects.

THE EFFECTS OF BOUNDARY CONDITIONS AND NONLINEAR PREBUCKLING DEFORMATIONS

The effect of experimental boundary conditions has been studied
extensively in the past by Hoff and Soongz, Almroth3, Weller at al.u, Arbocz
5,6

and Sechler and others. The effect can be separated into two major items
that will be discussed separately. These are the effect of end fixity on the
buckling deformation (eigenfunction) and its associated buckling load
(eigenvalue) and the effect of nonlinear prebuckling deformation caused by the
end constraint of the shell.

As can be seen from the results shown in Table 1 for the stringer
stiffened shell AS-2 (see Table 2 for its geometric and material properties)
the buckling load with membrane prebuckling depends strongly on the boundary
conditions specified. Stiffening the boundary conditions raises the buckling
load by about 12% for C-3, by about 34% for SS-4 and by about 39% for the C-4
boundary condition. On the other hand, the inclusion of the nonlinear prebuck-
ling deformations (with the shell loaded through the shell midsurface) has an
insignificant effect. The integers in the parenthesis indicate the number of

full waves of the buckling pattern in the circumferential direction.

TABLE 1

Buckling loads of the perfect stringer stiffened shell AS-2[7]

SS-3 SS-4 C-3 c-4

Membrane prebuckling 229.8(10) 300.7(14) 256.9(10) 320.8(14)
(N/cm)

Nonlinear prebuckling 224.0(10) 280.0(14) 256.0(14) 316.8(14)
(N/cm)




It must further be mentioned that in most practical applications the
shell edges are supported elastically by rings. Cohen8 has shown in a 1966
paper that there is a critical size of the end-ring below which the ring
strain energy controls the buckling. In this case the large deformation of the
end rings leads to an inextensional buckling mode with 2 full-waves in the
circumferential direction at a relatively low buckling load. With the SRA
computer code one can compute the critical buckling loads for the stringer
stiffened shell AS-2 with elastic end-rings of varying sizes. As can be seen
from Fig. 2 also for shell AS-2 there is a critical size of the end rings
which separates the region where edge buckling prevails from the region where
general overall buckling is critical. The computations were carried out for
symmetrically placed end rings of square cross-section where Ai = Ct2. If one

introduces the following rigidity ratio

(EI) RING
T 2)
D_
2 SHELL
where for stringer stiffened shells
2

Et> E(Tyq+A8 )

D = 5o+ 3 = Cyy (3)
12(1-v7) 1

then the transition point corresponds approximately to a critical rigidity

ratio of 100, the same that was found by Cohen8 for isotropic shells.
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Figure 2. Critical loads for shell AS-2 with elastic end rings.




TABLE 2

Geometric and material properties of shell AS-2

2

t = 1.96596 x 10 < cm
L = 13.97 cm
R = 10.16 cm
a, = 8.03402 x 107! cm
e, = 3.36804 x 10_2 cm
A, = 7.98708 x 1073 cn®
I, = 1.50384 x 107 ca
I, = 4.94483 x 10°® cn®
E = 6.89472 x 10"® N/cn?

<
]
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THE IMPERFECTION SENSITIVITY THEORY

Mainly due to the pioneering work of Koiterlo and Budiansky and
Hutchinsonll, for thin shells that buckle elastically, initial geometric
imperfections have been accepted as the main cause of the wide scatter of
experimental results seen in Fig. 1. Because of the complexity of the problem
in the early investigations the initial imperfection representations were
restricted to the simplest possible form. For an axially compressed isotropic
shell Koiter12 in 1963 assumed an initial imperfection in the form of the

classical axisymmetric buckling mode

- onx
W = t§, cos 1oL (4)
where
. _L J2c
e 7 \Rt (5)

and calculated the critical load at which bifurcation from the axisymmetric

prebuckling state into an asymmetric buckling mode




W=C  sin knx g &Y (6)

will occur. He found that the minimum buckling load occurs when k = % icQ and
that the value of €, the number of full waves in the circumferential direction
depends on the shell geometry and the amplitude of the initial imperfection
E,-

It is often stated that for a given imperfection amplitude from all the
possible imperfection shapes the one affine to the critical buckling mode
produces the lowest buckling load. Since for the stringer stiffened shell AS-2

the critical buckling mode is asymmetric, therefore an initial imperfection

shape
= .z nx 10y
W= t€2 sin L cos (7)

must be very damaging.
If the amplitude of the initial imperfection EZ is known, then from

Koiter's formulalo
o 3/2 _3 - £
(1-p )% = 2 -3b [E, |0, (8)

one can calculate the collapse load Py = AS/Ac of the shell AS-2. If (say)
ke
£, = 0.4 then Py = 0.74.

As soon as measured initial imperfection surveys were published (see Fig.
3 for shell AS-2) it became doubtful whether the effect of the initial
imperfections occurring in practice could indeed be represented by a single

13

trigonometric function. Thus in 1974 Arbocz and Babcock presented the so-
called Multimode Analysis, where the measured initial imperfections were
represented by the following double Fourier series

- .n—x
W=t} Wio cos i~

in k ™ (@ &, @ i ¥
+ t II sin k - (W, cos g + W ' sin %) (9)

With the code MIUTAM[13] extensive correlation studies have been carried
out at Caltech{lul and at Technion[lsl. It was found that in most cases the




theoretical predictions based on the measured initial imperfections were

within about 10% of the experimental collapse loads.
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Figure 3. Measured initial shape of the stringer-stiffened shell AS-
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Figure 4. Imperfection sensitivity for different models (shell AS-2)




Figure 4 summarizes for shell AS-2 the buckling load predictions based on
the different imperfection models. Looking at this figure it becomes clear
that for reliable prediction one must know both the shape and the size of the
initial imperfections. This brings up the critical question every shell
designer must face, once it has been established that the buckling load of the
proposed structure is imperfection sensitive:

'Is it cheaper to use a large knockdown factor and a large

factor of safety to account for the uncertainties involved,

or should one apply the Imperfection Sensitivity Theory in

order to arrive at an optimal design?'

INITIAL IMPERFECTION DATA BANKS

It is true that for many cases, especially in applications where the
total weight of the structure is of no major concern, the Lower Bound Design
Method provides safe and reliable buckling load prediction. However, it
penalizes innovative shell design because of the poor experimental results
obtained with shells produced and tested under completely different cir-
cumstances, sometimes half-a-century ago.

If, however, the total weight is of critical importance, then a more
sophisticated design approach is called for. That is, the designer must
estimate how much the expected imperfections will decrease the buckling load
of the chosen configuration. It is obvious, that the main difficulty in using
the Imperfection Sensitivity Theory in practical design problems with weight
sensitive applications is related to the fact, that it requires some advanced
knowledge of the geometric imperfections that will be present once the
structure under consideration has been built, an information that is rarely
available.

The fact that any further improvements in our buckling load prediction
capability is dependent on the availability of imperfection data has been
recognized and has lead to the estabilshment of an International Imperfection
Data Bank with the first two branches in Delft [17] and at the Technion [18]
in Haifa.

It is encouraging to see that practically all the current experimental

programs include initial imperfection surveys on buckling sensitive structures
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[19]. The initial analysis of the imperfection data assembled so far has shown
clearly that is is possible to associate characteristic initial imperfection
distributions with the different manufacturing processes [20]. This fact makes
it possible to combine the available imperfection data with a statistical
analysis of both the imperfections and corresponding critical loads into a
(say) Statistical Imperfection Sensitivity Analysis.

IMPROVED (STOCHASTIC) SHELL DESIGN PROCEDURE

The improvements in the currently recommended shell design procedures are
primarily sought in a more selective approach by the definition of the
'knockdown' factor Y. Thus, for instance, if a company takes great care in
producing its shells very accurately and if it can show experimentally that
the boundary conditions are defined in such a way that no additional imperfec-
tions (especially at the shell edges) are introduced, then the use of an
improved (higher) 'knockdown' factor A derived by a stochastic approach should
be allowed. The proposed new Improved Shell Design Procedure can be presented
by the following formula:

Aa
PaLF.s. Pc
where
Pa = allowable buckling load
Pc = buckling load of 'perfect' structure computed via shell codes
Ay = reliability based improved (higher) 'knockdown' factor
F.S. = factor of safety

The steps involved in the definition of such a reliability based improved

(higher) 'knockdown' factor Aa can be summarized as follows:

1. Compute the Fourier coefficients of the initial imperfection surveys of a
relativily small sample (say 4) nominally identical shells.
2. Calculate the mean vector and the variance-covariance matrix of the Fourier

coefficients of the experimental sample.
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3. Compute the reliability function R(A) by a first Order Second Moment
Analysis [21) of the buckling of shells with the random imperfections of
steps 1 and 2.

4, Determine the improved (higher) 'knockdown' factor Aa for a given reliabi-
lity from the plot R(A) vs A (see Fig. 5).

R(N =Pr{Az\)
[

1.0

First Ordeﬁzn Monte Carlo Methoé22]

Second Moment Method
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Fig. 5. Reliability function R(A) for a given R/t ratio.

Notice that by replacing the Monte Carlo Method [22] by the First Order
Second Moment Analysis the number of deterministic buckling load calculations
needed to derive the reliability function R(A) is greatly reduced (from, say,
1098 to 15).

Also, as can be seen from Fig. 5, the reliability function R(A) obtained
by the First Order Second Moment Analysis is somewhat conservative in the
region of high reliability when compared to the results obtained via the Monte
Carlo Method.

If the R/t values of the shells in the small experimental sample vary
slightly (see Caltech shells[23] in Fig. 1) then it is sufficient to derive
just a single reliability function R(A) for a group of shells produced by the

same fabrication process. One uses then the mean values for the geometric

parameters involved like radius R, wall-thickness t, length L, Young's modulus
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E and Poisson's ratio v. However, if the geometric parameters of the shells in
question vary widely it is necessary to calculate several reliability
functions for a given fabrication process in order to obtain an Improved Lower

Bound (see Fig. 6).
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Fig. 6. Definitions of the Improved Lower Bound Design Curve.

Using the First Order Second Moment Analysis to derive reliability
functions one is combining the Lower Bound Design Philosophy with the notion
of Goodness Classes. Thus shells manufactured by a process, which produces
inherently a less damaging initial imperfection distribution, will not be
penalized because of the low experimental results obtained with shells
produced by another process, which generates a more damaging characteristic

initial imperfection distribution.
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INTERACTIVE SHELL DESIGN CODE 'DISDECO'

The key to the success of any Stochastic Stability Analysis lies in the
reliability and accuracy of the underlying deterministic buckling analysis

24

used. As has been pointed out by Arbocz and Babcock the success of the
deterministic buckling load analysis depends very heavily on the appropriate
choice of the nonlinear model used, which in turn requires considerable
knowledge by the user as to the physical behaviour of imperfect shell
structures. This knowledge can be acquired by first using the series of
imperfection sensitivity analysis of increasing complexity that have been
described in the literature [24’25].

In order to facilitate the introduction of the proposed Improved Shell
Design Procedure the development of DISDECO[7], the Delft Interactive Shell
Design Code has been initiated. The purpose of this project is to make the
accumulated theoretical, numerical and practical knowledge of the last 25
years readily accessible to users interested in the design of buckling
sensitive thin-walled shell structures. With this open-ended, hierarchical,
modular, interactive computer code the user can access from his workstation
successively programs of different complexity. Also, at every step of his
analysis the user can call upon extensive HELP files containing useful
information about the potential design solutions.

The steps involved in calculation the reliability based improved (higher)
knockdown factor Aa are done with the module called STOCH. This program needs
as input besides the geometric properties of the shell under consideration
also the Fourier coefficients of the measured initial imperfections of a
relatively small sample (say 4) of nominally identical shells and information
about the nonlinear model to be used for the deterministic buckling load

calculations.

CONCLUSIONS

For a successful implementation of the proposed Improved Shell Design
Procedure the companies involved must be prepared to do the initial
investments in carrying out complete imperfection surveys on a (small) sample

of shells that are representative of their production-line. With the modern
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measuring and data acquisition systems one can carry out a complete surface
map of very large shells at a negligible small fraction of their production
cost. What is more expensive is the data reduction and the analysis that must
be carried out in order to get reliability functions. The help and encourage-
ment of Supervising Governmental Agencies and the Engineering Societies would
be very beneficial for this endeavor.

The Solid Mechanics Group of the Aerospace Engineering Faculty of the
Delft University of Technology is prepared to set up cooperative programs with
interested companies in order to advise them how they can carry out the
necessary imperfection surveys in an optimal manner, and to perform the
necessary data reduction and the analysis involved in getting the reliability
functions at minimal costs.

It is the author's opinion that, as the amount of data characteristic
initial imperfection distributions classified according to fabrication
processes increases, we shall succeed with the help of the increased
computational speed of the next generation of computers to make the Improved
Shell Design Procedure available to more and more shell designers. This,
hopefully, will result in the desired dissemination of the vast amount of
theoretical knowledge accumulated over the past 75 years about shell buckling
behaviour. Thus finally, the academic world will be able to point to the

successful solution of one of the most perplexing problems in Mechanics.
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