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Stress, Buckling, and Vibration of Prismatic Shells 
DAVID BUSHNELL* 

Lockheed Missiles & Space Company, Palo Alto, Calif. 

A computer code for the general treatment of complex shells of revolution is applied to the 
analysis of prismatic shells such as oval cylinders, corrugated sheets, and longitudinally stiff- 
ened cylinders with stringer discreteness retained in the model. Cylinders of circular and 
noncircular cross section are treated as portions of very slender toroids. Corrugated and 
beaded panels are treated as portions of cylinders with very large radii. Longitudinally stiff- 
ened cylinders are treated as portions of very slender toroids with discrete ring stiffeners. 
The technique also permits analysis of buckling of cylinders with nonsymmetric pressure or 
thermal loading. The analysis is based on the finite-difference method which is used in con- 
junction with energy minimization. Included are 
convergence studies proving the validity of the technique and buckling calculations for non- 
uniformly loaded cylinders, externally pressurized and axially compressed elliptic cylinders, 
and axially compressed corrugated and beaded panels. Vibration modes and frequencies are 
calculated for an eccentrically stiffened cylinder in which the stringers are treated as discrete. 

Several numerical examples are given. 

Nomenclature 
a = radius of cylinder 
A = length of semimajor axis of elliptic cylinder 
B = length of semiminor axis of elliptic cylinder 
b = large radius of torus 
E = Young’s modulus 
A L  = length of pressure band on cylinder 
L = length of prismatic shell 
N , M  = stress resultant, moment resultant 
n = circumferential wave number 
p = external pressure 
s = arclength 
t = wall thickness 
u = meridional displacement 
v = circumferential displacement 
w = normal displacement 
xo = prebuckling rotation 
0 = circumferential coordinate 
Y = Poisson’s ratio 

Introduction 

H E  motivation behind much of the research activity in T shell analysis is to reduce computer time and core storage 
required to solve complex problems. It is advantageous 
whenever possible to reduce the number of degrees of freedom 
required by separation of variables and to optimize computer 
efficiency by setting up stiffness matrices with as narrow bands 
as possible. Currently, problems in complex shell analysis 
can be classified into two groups: that which involves two- 
dimensional discretization and that which involves one-dimen- 
sional discretization. The two-dimensional numerical analy- 
sis generally requires one to several orders of magnitude more 
computer time to solve than does the one-dimensional prob- 
lem. The computer time increases quadratically with the 
bandwidth of the stiffness matrix and linearly with the num- 
ber of degrees of freedom. Matrix bandwidths for two- 
dimensional problems are much wider than those for one- 
dimensional problems and the number of degrees of freedom 
required for convergence to a given accuracy is greater. 
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This research was motivated by the need for economical 
computer solutions to problems traditionally associated with 
two-dimensional numerical analyses but amenable by means 
of an exchange of independent variables to solution by separa- 
tion of variables with consequent reduction to one-dimen- 
sional numerical treatment. In  this class are included stress, 
buckling and vibration problems for simply-supported pris- 
matic shells. Stress analysis can be performed for prismatic 
shells with loads that vary in the two coordinate directions. 
Buckling and vibration analyses are restricted to systems in 
which both the loads and the geometry are prismatic-con- 
stant in the axial direction. 

Figure 1 gives examples of prismatic shells: l a  is an oval 
cylinder which may be subjected to combinations of pressure 
and axial loading; l b  is a cylinder with a pressure or thermal 
load which varies in the circumferential direction; IC  and Id  
represent typical advanced structural panels being considered 
for hypersonic cruise vehicles, lightweight space systems 
shrouds, and space shuttles; and l e  shows a general prismatic 
shell with stringers which can be treated as discrete elastic 
structures. The oval cylinder under axial compression has 
been investigated by Kempner and Chen,l Hutchinson,2 and 
Almroth, Brogan, and M a r l ~ w e . ~  Elliptic cylinders under 
external pressure have been treated by Yao and J e n k i n ~ . ~  
Liaw5 gives a survey of papers published before April 1969 on 
the stability of cylindrical and conical shells of noncircular 
cross section. Buckling allowables for nonuniformly loaded 
cylinders have been calculated by Almrothe who investigated 
band-loaded cylinders in which the external pressure varies 
as p ,  + p l  cos0 in the circumferential direction. Ross7 de- 
termined experimentally critical temperatures of cylinders 
heated along an axial strip. Local buckling and crippling 
loads for axially compressed corrugated and beaded sheets 
have been determined theoretically and experimentally by 
Plank, Sakata, Davis, and Richie.8 Buckling loads were de- 
termined experimentally by Shang, Marulic, and Sturms for 
axially compressed longitudinally stiffened cylinders. The 
geometry of the specimens of Ref. 9 was such that the cir- 
cumferential buckling half wave-length and stringer spacing 
were approximately equal, indicating the need for analytical 
treatment of the stringers as discrete. Egle and Sewalllo and 
McDonald1’ have calculated vibration frequencies for cylin- 
ders with stringers included as discrete structures. 

The structures shown in Fig. 1 and analyzed in Refs. 1-11 
are all prismatic. If they are simply supported a t  the genera- 
tor ends they can be analyzed as portions of shells of revolu- 
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Nonuniform Loads 

(d) Beaded Panel 

( c )  Corrugated Panel 

Discretely Stiffened General Sections 
With Variable Thickness 

Fig. 1 Some typical prismatic shell structures. 

tion in which the length of the prismatic shell is given by 

L = rb/n (1) 
where b is the radius from an axis of revolution to some refer- 
ence surface and n is the number of complete circumferential 
waves. The results presented here were thus obtained by 
means of the analysis and computer program described in 
Refs. 12-14. 

Analysis 

Buckling of oval cylinders or nonsymmetrically loaded 
cylinders can be treated by a modeling of the cylinder as a 
portion of a torus with a very large radius b. Figure 2 illus- 
trates the model. A cylinder of length L,  small diameter d 
and thickness t is modeled as a small portion 01 a torus with 
radius b. As b - m and L = constant the short curved 
cylinder approaches a straight cylinder. The cross section 
need not be circular, nor the thickness constant. The pres- 
sure can vary along the length as well as over the circumfer- 
ence. A limitation of the model is that the cylindcr must be 
simply-supported a t  the ends 8.b = 0 and 8.b = L. 

Since%he torus is a shell of revolution, the BOSOR3 code14 
can be used to analyze it without any special alteration. 
What haw been done here in effect is to exchange the inde- 
pendent variables in the analysis of a cylinder: the axial 
variable s for the cylinder becomes the circumferential vari- 
able 8.b for the torus and visa versa. The circumferential 
displacement distribution of the cylinder, conventionally ex- 
pressed in terms of sirln8 or cosn8 with n the input circum- 
ferential wave number, becomes the meridional displacement 
distribution of the torus, now expressed in terms of the dis- 
placement values a t  discrete mesh points in the finite differ- 
ence analysis. Similarly, the meridional displacement distri- 
butions of the cylinder, conventionally expressed as discrete 
mesh point variables are now expressed in terms of sinno or 
cosnB with n the number of waves around the large-diameter 
torus. Given the radius 6, the length of the cylinder is deter- 
mined by the wave number n, which in the limit of very large 

Fig. 2 Noncircular cylinder treated as portion 
with large radius b and length L = e.  b. 

2005 

of torus 

b is a very large number (like 10,000, for example). The 
boundary conditions a t  8.h = 0 and 8.b  = L are simple sup- 
port: Ne = M e  = u = w = 0. The user has no choice of 
boundary conditions a t  0 .  b = 0 and 0 .  b = L,  since the simple- 
support condition arises from the underlying assumption that 
the dependent variables and their derivatives vary in this 
direction as sinno and cosn8. 

The loading on the cylinder in Fig. 2 is expressed as a 
Fourier expansion over the interval -L 5 0.b  5 L. For 
example, the pressure loading in Fig. 2 (uniform for 0 5 8.6 
- < L and variable around the circumference, s)  is expressed as 
a Fourier sine series, thus: 

P(S,8) = f(s).s(8) (2)  

in which 
4 NMAX 

g(8) = ; C sin(mrO.b)/L (3) 
m = 1 , 3 , 5 . .  . 

The integer m is the number of half-waves in the interval 0 5 
8.b 5 L. Therefore, the corresponding wave number n for 
the complete torus is n = mrrb/L. Thc question arises, why 

ARC LENGTH (inches) 

Fig. 3 
portion of torus with radius b. 
increasing b. 

5.236 in. 

Analysis of simply supported circular cylinder as 
Convergence study with 

Pcr = pc,a/Et, L la  = 0.6, a / t  = 100, a = 
One quarter of circumference covered. 
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Fig. 4 Analysis of circular cylinder as torus. Mesh point 
convergence study. 

not expand the load in a cosine series in the interval -L 5 
8.6 _< L? This is not possible because the m = 0 term cor- 
responds to an infinite cylinder ( L  = 2ab). The longest half 
wavelength in the Fourier expansion of the load must be equal 
to L or an integer fraction of L. 

Thus, the finite-length, simply-supported, oval cylinder 
under external pressure is analyzed as a toroidal shell with 
very large radius b and submitted to loads which vary rapidly 
around the circumference. I n  the section "Numerical Re- 
sults" the behavior of a simply-supported externally pres- 
surized elliptical cylinder is discussed. 

There are additional advantages of being able to analyze 
cylinders in this manner. Note in Fig. 1 that the wall proper- 
ties (thickness, modulus) in the s-direction need not be con- 
stant. Also, note that longitudinal stringers can be included 
in the analysis as discrete elastic structures. With the cylin- 
der analyzed as a portion of a torus, the cylinder stringers are 
rings in this application of the BOSOR3 code. Also, cylin- 
drical or flat panels with corrugations, beads, or other geo- 
metrical peculiarities and with arbitrary boundary conditions 
along generators can be treated, since the generators are now 
meridional stations. Some of these cases are discussed in the 
following sections. 

P 

1 E = l O ' ~ s i  
Y '0.3 

a n  w 

0 45 90 135 180 
CIRCUMFERENTIAL ANGLE, + (degs.) 

k o  
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0 20 40 60 80 
ARC LENGTH, s (inches) 

Fig. 5 
supported circular cylinder. 

Buckling mode of nonuniformly loaded, simply 
Critical load = 1.8 times the 

load distribution shown. 

Table 1 Convergence of critical lateral pressure parametera 
P c r  = Pcta/Et 

L/a  = 0.6 
a = 5.236 in. 

L/a  = 6.0 
a = 0.5236 in. 

6,  
in. Pcr(lO)b Pc,(Wb P C , ( 4 ) b  P#b 

0.26141 0.38559 10 
25 1.8467 1.9949 0.19387 0.33774 

1.7790 1.9090 0.17486 0.33036 50 
1.7415 1.8815 0.16668 0.32789 . l o o  

500 1.7129 1.8664 0.16085 0.32648 
1,000 1.7095 1.8649 0.16017 0.32634 

I 5,000 1.7068 1.8638 0.15964 0.32623 
10 , 000 1.7065 1.8637 0.15957 0.32620 

m 1.7024 + (Flugge) 0.15943 -+ (Flugge) 

a With increasing toroidal radius b for shells with a/t  = 100, E = 106 psi, 

Superscripts in parentheses represent the total number of waves around 
Y = 0.3. 

the circumference of the cylinder. 

Convergence Studies 

The application of BOSOR3 to the stability analysis of 
cylinders of noncircular cross section and nonsymmetrical 
loads was validated by convergence studies for uniformly 
loaded circular cylinders analyzed as portions of toroidal 
shells with various radii b and various numbers of meridional 
mesh points. Membrane prebuckling analysis was used in 
the convergence studies. For given values of b, the cylinder 
lengths were established as described above by selection of 
appropriate circumferential wave numbers, n. This pro- 
cedure is valid for simply-supported cylinders the buckling 
modes of which have an integral number of half-sine waves 
along the length. 

Tables 1-3 and Figs. 3 and 4 give the results for hydro- 
statically compressed circular cylinders. In  Table 1 con- 
vergence with increasing toroidal radius 6 is given for cylinders 
with L/a = 0.6 and L / a  = 6.0. The values of pa/Et  for b 
= infinity are calculated from Eqs. (11) and (la), pp. 424-425 
of Flugge.I5 The lowest two eigenvalues are obtained in each 
case. I n  the limit of very large b these eigenvalues corre- 
spond to two wave numbers, n = 10 and n = 12. Figure 3 
shows the normalized buckling displacement w for the second 
eigenvalue for increasing values of toroidal radius 6. With 
large b the distribution over 2 of the circumference of the 
cylinder approaches a cosine wave with three full waves. 
This mode corresponds to n = 12 for the complete cylinder. 
Symmetry conditions are imposed a t  the ends of the toroidal 
meridian. All calculations were performed in double pre- 
cision on the Univac 1108. The data points in Fig. 3 indicate 
finite difference mesh points. 

Table 2 and Fig. 4 represent the results of a convergence 
study in which the number of mesh points is varied for a 

Table 2 Mesh point convergence study for 
simply-supported circular cylinder" 

Number of L/a  = 0.6 L/a  = 6.0 
mesh points a = 5.236 in. a = 0.5236 in. 

per half-wave Pc,('O) Pd4)  

0.21976 2 2.0467 
4 1.7886 0.17209 

0.16491 6 1.7409 
0.16250 8 1.7242 

10 1.7164 0.16141 
14 I. 7097 0.16046 
19 1.7065 0.16002 
25 . . .  0.15979 
35 . . .  0.15964 
48 . . .  0.15957 
m 1.7024 0.15943 _- 

a Analyzed as portion of torus with radius b = 10,000, a/ t  = 100, E = 10' 
psi, Y = 0.3. Critical lateral pressure parameter P,? = p,,a/Et. 
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Table 3 Mesh point convergence study for 
simply-supported circular cylinder analyzed as a cylindera 

Number of axial mesh points Critical lateral pressure, P,, 
5 1.7146 

10 1.7063 
20 1.7035 
30 1.7029 
50 1.7025 
80 1.7024 
97 1.7024 

a P,? = p,,a/Et, a / t  100, E = lO5psi, Y = 0.3, L/a  = 0.6, a = 5.236in. 

given (very large) value of b. The buckling modes plotted 
in Fig. 4 correspond to n = 10 waves around the circumfer- 
ence of the cylinder with L/a = 0.6. Table 3 gives the con- 
vergence of buckling loads with increasing mesh points for the 
cylinder with L/a = 0.6 analyzed as a cylinder, not as a por- 
tion of a large-radius torus. These convergence studies indi- 
cate the degree of accuracy obtained with the BOSOR3 code 
and provide a guide to the user of STAGS3 or other large- 
scale two-dimensional computer codes as to the number of 
mesh points required for adequate accuracy. 

Numerical Results 

In this section numerical results are presented for nonuni- 
formly loaded circular cylinders, externally pressurized and 
axially compressed noncircular cylinders, axially compressed 
corrugated and beaded panels and circular cylinders with 
stringers treated as discrete clastic structures. 

Nonuniformly Loaded Cylinders 

Figure 5 shows a short cylinder submitted to axial compres- 
sion and external pressure which vary around the circumfer- 
ence. The cylinder is simply-supported a t  both ends. Pres- 
sure and axial load vary as shown in the figure. In the sta- 
bility analysis the peak axial load and pressure have a con- 
stant ratio, so that the eigenvalue X represents a factor to be 
multiplied by the load distributions given in Fig. 5.- The 
short cylinder is analyzed as a toroidal segment with radius 
b = 35,369 and n = 10,000 circumferential waves. Mem- 
brane prebuckling theory is used. An eigenvalue X = 1.8 
is found from 13OSOR3. The buckling modal displacement 

0 ~ 1 0  
I = O  0025 
L = Z H  

~ 

E = 4 0 ~ 1 0 ~ p s 1  
v . 0 3  

I 
Simple 
SUppOrI 

*I 

0 

-I 
0 05 IO 15 2 0  2 5  3.0 

ARC LENGTH, s (inches) 

Fig. 6 Buckling mode for nonsymmetrically loaded cylin- 
der with p,,a/Et X 1Oj = 2.292, AL/L = 1.0. 

$ -0.5 ~~ - IO-Term Fourier 

0 z 

Sine Series Expansion B 

- 1.0 

-L 
I 

+L 

Fig. 7 Pressure distribution on cylinder for ALIL = 0.4. 
Cylinder modeled in BOSOR3 as portion of torus (see Fig. 

2). 

is also shown in Fig. 5 .  Symmetry conditions were imposed 
a t  s /a  = 0' and s/a = 180'. 

An analysis was made of a simply-supported cylinder sub- 
mitted to a band pressure load which varies around the cir- 
cumference as shown in Fig. 6. The cylinder was analyzed 
as a portion of a torus with b = 20,000 in. and n = 10,000. 
Comparisons were made with the theory of AlmrothG for a 
cylinder with a = 1 .O in., t = 0.0025 in., L = 2~ in. and AL/L 
= 1.0 and 0.4. For the case AL/L = 1.0, Almroth obtains 
pc~a/(Et) X lo5 = 2.253. The BOSOR3 program yields a 
value 2.292 for this parameter. The buckling modal dis- 
placement w is shown a t  the bottom of Fig. 6. 

Figure 7 shows the normal pressure loading a t  s = 0 on the 
cylinder with L = 27r, a/t = 400 and AL/L = 0.4. The load 
is expanded in a 10-term Fourier sine series in the interval 
-L _< 8 . b  _< +L (see Fig. 2). Figure 8 gives the axial dis- 
tributions of stress resultants corresponding to the 10-term 
Fourier sine series expansion of the banded pressure load 
shown in Fig. 7.  Figure 9 shows the circumferential distri- 
bution of stress resultants a t  the cylinder midlength 0 . b  = 
T .  These values are used in the stability analysis, in which 
the assumption is made that they are constant around the cir- 
cumference of the equivalent torus (along the axis of the 
cylinder). Therefore, the buckling loads calculated in 
BOSOR3 are independent of the bandwidth of the pressure 
for bandwidths that are long compared to a boundary layer 
length, (at)lIz .  Thus, pcRa/(Et) X lo5 = 2.292 compared to 
the value of 3.0913 obtained with Almroth's more exact 
analysis.6 

Fig. 8 Axial distribution of stress resultants for cylinder 
under band pressure load (AL/L = 0.4). 
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Fig. 9 Circumferential distributions of stress resultants 
at cylinder midlength 8 .  b = K. 

Stress and Buckling of Elliptic Cylinders 

Figure 10 shows an elliptic cylinder and gives various di- 
mensions and material properties. The cylinders are sub- 
mitted to uniform external pressure on the curved surface 
only. Yao and Jenkins4 obtained buckling pressures from 
tests on simply-supported polyvinyl chloride shells. They 
compared the test results with a theory in which the pre- 
buckled state is calculated from linear membrane theory. 
Buckling pressures are obtained from an eigenvalue problem 
based on the Galerkin method. Prebuckling rotations are 
neglected in the theory of Ref. 4. 

The BOSOR3 computer program was used to  calculate 
stresses and buckling pressures for elliptic cylinders of the 
geometries shown in Fig. 10. The oval cylinders were 
analyzed as toroidal shells with very large b and n as de- 
scribed above. The uniform external pressure was expanded 
in a 20-term Fourier sine series according to Eqs. (2) and (3). 
Figure 11 shows the axial distributions of normal displace- 
ment and in-plane stress resultants a t  s = 0 (end of minor axis 
B)  for an external pressure of 1 psi on an elliptic cylinder with 
A/B  = 2, t = 0.019, and various values of L. The quantity 
0. b/L is the normalized distance along the circumference of 
the torus of radius b (see Fig. 2). Figure 12 shows the circum- 
ferential distributions a t  midlength of rotation about a 
generator and in-plane stress resultants. Plots cover 4 of the 
circumference. The stress distributions are very similar to 
those predicted by membrane theory. Results were obtained 
by Fourier sine series expansion of the uniform axial pressure 
distribution [see Eq. (3)] with twenty terms included in the 
series. Three hundred degrees of freedom were used, and 1 
min, 56 sec of UNIVAC 1108 time were required for the 
double-precision calculations. The prestress state was 
checked by a run with the linear version of the two-dimen- 
sional finite-difference program, STAGS.3 Excellent agree- 
ment was obtained. 

Note that as the length L of the shell increases the hoop 
stress resultant at L / 2  seems to approach the membrane value 

L 
E 

P 
Y 

- 2,4,6.8.10 In 
* 470.000 pt i  
= 0.37 . Uniform leleral 

prasura 

A / B = 2 0  A/B = I 5  

A - 4  m A. 5333 in 
8 .2  I" 

t * 0019.0029, 
E = 3 5777 In 
I - 0 019, 0 029, 

Simply supported elliptic cylinder configurations. 
0051.0091 Inches 0049.0090 Inch.. 

Fig. 10 

- O . O 4 I  w 1 
-0.06 

-16 

- 5  

-10 
0 0.2 0.4 0.6 0.8 1.0 

AXIAL DISTANCE, @b/L 

Fig. 11 Displacement w and stress resultants at s = 0 for 
1 psi; external pressure on elliptic cylinder with A / B  = 2, 

t = 0.019. 

pa  = -8.0 lb/in. a t  the end of the minor axis (s = 0) and 
pa  = -1.0 lb/in. a t  the end of the major axis. However, 
from simple static equilibrium conditions it is known that as 
L + co the hoop stress resultant approaches -2 lb/in. a t  s = 
0 and - 4 Ib/in. at s = send for uniform external pressure of 
1 psi. Clearly, the elliptical cylinders of length 4-10 in. with 
cross sections as shown in Fig. 10, while long compared to 
bending boundary-layer lengths, are short compared to 
lengths required for the effect of end cross section fixity to die 
out. 

Buckling pressures were calculated for several cases with 
A / B  = 2.0 and A / B  = 1.5. The results, compared with Yao 
and Jenkins4 tests and theory, are presented in Figs. 13-17 
and Tables 4-6. Predicted buckling pressures are always 
higher than the test values and are rather inaccurate for the 
thicker shells. The thicker shells apparently buckle by col- 
lapsing gradually rather than failing by a sudden change 
(bifurcation) in the mode of deformation (see Fig. 4 of Ref. 
4). It is probable, therefore, that the present theory is not 
valid for the shells with nominal thickness 0.050 and 0.090 in. 

Fig. 12 Rotation and stress resultant distributions at 
midlength of elliptic cylinder with A / B  = 2, t c- 0.019- 
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100- with Yao & Yao & 
Thickness Length BOSOR3 xo  = 0 Jenkins Jenkins 

Table 4 
with A / B  = 2 and various lengths and thicknessesa 

Buckling pressures of elliptical cylinders 

1 1 1 1 I - BOSOR3 

Buckling pressures, psi 

Test/ 
Theory Test BOSOR3 

BOSOR3 
with Yaoand Yaoand 

Thickness Length BOSOR3 x o  = 0 Jenkins Jenkins 
t ,  in. L, in. pCv1  P C 9  P J  PWT P , J / P , , '  

0.019 2 0.730 0.797 0.714 0.613 0.84 
4 0.368 0.381 0.331 0.324 0.88 
6 0,246 0,259 0 ,217.  0,239 0.97 
8 0.189 0.203 0.166 0.189 1.00 

10 0,150 0.170 0.133 0.140 0.93 

0.029 2 2.16 2.47 2.23 1.88 
4 1.11 1.16 1.00 0.877 
6 0 739 0.788 0.661 0.665 s 0.567 0.621 0.499 0.533 

10 0.437 0,502 0.390 0.411 

0.051 2 10.0  11 .5  10.12 . . .  
4 4.71 5.13 4.33 3.10 
6 3.20 3.53 2.82 2.21 
8 2.26 2.64 2.03 1.54 

10 1.63 2.15 1.63 1.14 

0,091 2 57.2 57.6 50.5 . . .  
4 20.5 24 .4  20.1 . . .  
6 13.4 15.9 12.5 7.77 
8 9.23 12.2 9.42 5.81 

10 5.87 10.6 8.23 4.46 

E = 470,00Opsi, Y = 0.37, A = 4.0in., B = 2.0in. 

0.87 
0.79 
0.90 
0.94 
0.94 

0.66 
0.69 
0.68 
0.70 

. . .  

. . .  

0.58 
0.63 
0.76 

A nonlinear, two-dimensional collapse analysis such as that of 
Ref. 3 is required for these cases. This analysis has been per- 
formed by Marlowe and is reported in Ref. 16. 

Figures 15-17 show the buckling modes for externally pres- 
surized elliptical cylinders with A / B  = 2, lengths L = 2, 4, 6, 
10 in. and thickness t = 0.019, 0.029 and 0.091 in. Note that 
the plot corresponding to L = 10 in Fig. 15 covers 0 _< cp 5 
180" of arc length, whereas all other plots in Figs. 15-17 cover 
0 _< cp _< 90". With the exception of the case A / B  = 2, L = 
10, t = 0.019, the buckling loads given in Figs. 13-14 corre- 
spond to modes symmetrical about the ends of both the minor 
and major axes. The lowest buckling pressure for the excep- 
tional case corresponds to displacements symmetrical about 
cp = 0" and antisymmetrical about cp = 90'. For all cases 
modes antisymmetrical and symmetrical about cp = 90" cor- 
respond to pressures within a few percent of each other. 

Table 5 Buckling pressures of elliptical cylinders 
with A / B  = 1.5 and various lengths and thicknessesa 

Buckling pressures, psi 

Theory 
Test/ 

Test BOSOR3 

Fig. 13 Buckling 
loads for elliptic 
cylinders with 

AIB = 2. 

TEST (Yao 0 Jenkins) 50 

Simple Support 
A/B - 2 
E - 470,OW psi 
Y - 0.37 i 

I .  

0.21 
b j 0.019 I 

0.1 1 I I I 
0 2 4 6 8 1 0  

CYLINDER LENGTH, L (inches) 

Tables 4 and 5 give buckling pressures in psi for the simply 
supported elliptical cylinders with A / B  = 2 and 1.5, respec- 
tively. Theoretical values are compared with Yao and 
Jenkins' test  result^.^ Three theoretical values, pcR1,  pcn2, 
and ~ c R ~ ,  are given for each geometry. The pcR1 corresponds 
to BOSOR3 results with both prebuckling in-plane stress re- 
sultants and prebuckling rotations xo about the generators 
included in the stability analysis. The p c R 2  are calculated 
neglecting the cross section shape change (effect of xo) in the 
stability analysis. Note that the xo effect becomes larger as 
L and t increase. The p c R 3  are the analytical results from 
Ref. 4. 

Table 6 gives convergence properties of buckling pressures 
for the elliptical cylinders A / B  = 2, L = 10 in., and various 
values of t .  The number of terms in the Fourier sine series 
representation of the axial load distribution is varied. In 
this study the value of the pressure a t  the midlength of the 
cylinder is maintained a t  unity, independent of the number of 
terms taken in the series. 

Cylinders of Noncircular Cross Section under 
Axial Compression 

Buckling loads and post-buckling behavior have been de- 
termined for axially compressed cylinders of oval cross section 
by Kempner and Chen' and Hutchinson.2 Almroth, Brogan 
and Marlowe3 have studied the nonlinear behavior of axially 
compressed oval cylinders through use of a two-dimensional 
finite difference analysis. The 110SOR3 program can be used 
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Fig. 15 Buckling modes of elliptic cylinders with A / B  = 2, 
t = 0.019 in. and L = 2,4,6,  and 10 in. 

to determine bifurcation buckling loads from linear theory 
for axially compressed, simply supported elliptic cylinders. 
Membrane prebuckling theory is used in the analysis. The 
cylinder is treated as a portion of a large-radius torus. Figure 
18 shows the buckling displacements in the circumferential 
direction for 0 5 cp 5 180'. The axial distribution is a half- 
sine wave. The lowest two eigenvalues are very close to 
each other, and the modes are symmetric and antisymmetric 
about cp = 90". 

Figure 19 shows buckling modes for an axially compressed 
simply supported cylinder with a pear-shaped cross section. 
Membrane theory was used in the prebuckling analysis. The 
lowest two eigenvalues, N , ,  = 24.02 lb/in. and 34.74 lb/in. 
correspond to uniform loading over the entire perimeter of the 
cross section, and the highest eigenvalue, N , ,  = 586 lb/in., 
corresponds to loading over the curved portions only. Sym- 
metry conditions were imposed a t  points A and B. The 
axial displocdment variation is a half-sine wave. The lowest 
two eigenvalues correspond to the plates buckling. For 
axial loads higher than 35 lb/in. the plates are considered to 
be buckled and carrying no load. The third buckling mode 
in Fig. 19 therefore corresponds to a model in which only the 
curved portions of the pear-shaped cylinder are loaded. The 
buckling mode is similar to the displacement distribution cor- 
responding to collapse obtained with the two-dimensional 
STAGS programs.'' However, a much lower collapse load 
is obtained with STAGS, presumably because the prebuckling 
deformations in the flat plate segments propagate into the 
curved segments with increasing load, introducing imperfec- 
tions into an imperfection-sensitive structure. The axial 

Table 6 Convergence of elliptical cylinder buckling 

t 1 term 3 terms 5 terms 9 terms 

pressures (psi>" 

0.019 0.152 0.151 0.150 0.150 
0.029 0.449 0.442 0.438 0.437 
0.051 1.73 1.65 1.63 1.63 
0.091 6.97 6.32 6.05 5.87 

a With increasing numbers of terms in the Fourier sine series expansion of 
uniform pressure: A / B  = 2, L = 10 in. 

load a t  collapse integrated over half of the cross section 
perimeter is 1186 lbs according to STAGS and 1840 lb ac- 
cording to BOSOR3. The critical load for half of a perfect 
cylinder is 1880 lb. 

The reduction in predicted buckling load from 1880-1840 
lbs is due to the fact that the curved portion is joined to a flat 
portion, rather than being a complete cylinder. The much 
larger reduction from 1840-1186 lb is due to the inclusion in 
the STAGS analysis of the prebuckling deformation which 
propagates from the flat portions into the curved portions, 
rendering imperfect these imperfection-sensitive parts of the 
shell. The BOSOR3 analysis is performed by treatment of 
the cylinder as a shell of four segments, indicated in Fig. 19. 
Finite difference mesh points are indicated by small circles. 

Buckling of Axially Compressed Corrugated 
and Beaded Panels 

Figures IC and d show typical advanced structural panel 
designs proposed for hypersonic vehicles and the space shuttle. 
Reference 8 presents test and theoretical results for several 
panel configurations subjected to axial compression and shear 
a t  room temperature and elevated temperature. Panels were 
tested for general (panel) buckling and local crippling loads. 
In  Ref. 8 buckling predictions are based on wide-column 
theory and simply-supported orthotropic plate theory. Local 
crippling predictions are based on simple buckling formulas 
derived for constant-thickness plate and cylindrical elements 
representative of individual components of the complex 
panels. 

Two configurations are analyzed for critical axial loads in 
this paper: a trapezoidal corrugation and a beaded corruga- 
tion. The geometry is shown in Fig. 20. The thickness dis- 
tributions and dimensions are taken from Ref. 8. The thick- 
ness of the beaded panel (Fig. 20a) is assumed in the present 
analysis to vary linearly between stations where it  is called 
out. That of the trapezoidal corrugations is assumed con- 
stant in each of the flat elements. The panels are treated in 
BOSOR3 as segmented shells of revolution with very large 
radii b:  for the beaded panel b = lo5 in. and for the trape- 
zoidal-corrugated panel b = l o 4  in. Figure 20 shows the 
division of the panels into segments with symmetry planes a t  
which either antisymmetry conditions or symmetry condi- 
tions are imposed in the stability analysis. 

Figure 21 shows critical axial load/length N C R  for the 
beaded panel of Fig. 20 as a function of wave number n or 

Table 7 Stiffened cylinder vibration frequencies (cps) 

Cylinder analyzed as portion of torus Cylinder analyzed as cylinder 
Circumferential wave number .-, 1 2 3 1 2 3 

No rings or stringers 1889 778.3 627.1 777.19 625.57 
No rings, stringers smeared 1758 805.8 641.2 
Rings smeared, no stringers 1695 977.2 2159 1694 976.0 

Rings discrete, no stringers 1671 853.0 1394 
Rings discrete, stringers smeared 1611 898.5 1504 
No rings, stringers discrete 802.6 630.3 
Rings smeared, stringers discrete 1618 960.7 
Rings and stringers discrete 

Rings and stringers smeared 1623 958.9 1903 1623 957.9 
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Fig. 16 Buckling modes of elliptic cylinders with A / B  = 2, 
t = 0.029 in. and L = 2,4,  6, and 10 in. 

length L = nb/n. The semilog plot covers lengths from 50- 
0.3 in. Three types of buckling occur in this range of L, and 
their corresponding mode shapes are shown in Figure 21. 
The lowest critical load is associated with a long-axial-wave 
length panel buckling from bead-crest to bead-crest. The 
intermediate wavelength load corresponds to buckling of the 
beads as axially compressed perfect cylinders, and the calcu- 
lated NcZ from n = 150,000-400,000 is very close to the clas- 
sical value 0.6Et2/R. The shortest length crippling load cor- 
responds to buckling of the flat regions 0.556 in. wide between 
beads. The dotted curves represent critical axial loads for 
simply supported and clamped plates calculated from the 
appropriate formulas in Ref. 18. Two cases were run on 
BOSOR3, one with the angle a = 0 (Fig. 20) and one with 
a = 12", which represents the test configuration.. In  the 
tests the long panel mode was first observed a t  a line load of 
about 412 lb/in. and a crippling mode involving both flats and 
beads was observed a t  1250 lb/in. 

The BOSOR3 code is conservative in the prediction of the 
long panel mode, probably because the 30-in.-long test panel 
was not in fact simply supported a t  the ends and because it 

0 I 2 3 4 5 
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Fig. 17 Buckling modes of elliptic cylinders with A / B  = 2, 
t = 0.091 in. and L = 2,4,6, and 10 in. 
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Fig. 18 Buckling modes for elliptic cylinder under axial 
compression. 

was stable in this mode in the initial post-buckling range. 
The BOSOR3 code is very unconservative in the prediction 
of crippling because this mode of failure is sensitive to imper- 
fections and occurs a t  average stresses approaching the pro- 
portional limit of the material. 

Figure 20b shows the trapezoidal corrugated panel, 
analyzed as a shell with seven segments. This many seg- 
ments were taken to permit general instability across the three 
flat segments labeled 3, 4, and 5. Such a mode would be 
analogous to the long panel mode of the beaded sheet. In  
the BOSOR3 analysis this mode did not appear, however. 
Nor was this type of buckling observed in the tests reported 
in Ref. 8. 

Symmetry conditions imposed as shown in Fig. 20b permit 
the wide-column mode for long panels (low n). In this case 
the wide-column mode corresponds to the lowest eigenvalue 
for given wave number n if n < 4000 or L > about 7.5 in. 
The wide-column mode corresponds to the critical load if L > 
about 15 in. and the panel is free a t  the unloaded edges. 

- I  I I ,  I 1  I 
0 I 2 3 4 5 

ARC LENGTH, s (inches) 

Fig. 19 Buckling modes for axially compressed pear 
shaped cylinder. 
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Fig. 20 Variable thickness beaded 
and corrugated panel configurations. 

Fig. 21 Buckling loads vs length of 
beaded panel. 

Figure 22 shows the critical axial load versus length L or 
wave number n. The dotted curves represent calculatioiis 
based on formulas in Ref. 18. Test values reported in Ref. 8 
correspond to a line load of about 1120 Ib/in. The good 
agreement might be expected since the critical loads for con- 
figurations consisting of flat plates are not sensitive to initial 
imperfections, and the average stress a t  failure is somewhat 
below the proportional limit of the material. 

Vibration of Stiffened Cylinders 

The stringer-stiffened shell shown in Fig. l e  is a prismatic 
structure. Thus, BOSOR3 can be used as described above to 
obtain vibration frequencies with the stringers treated as dis- 
crete, provided the shell is simply supported a t  the generator 
ends. I n  this section vibration frequencies are given for the 
ring- and stringer-stiffened circular cylinder shown in Fig. 23. 
The rings and stringers are considered to be attached to the 
shell at single points on the reference surface or to be smeared 
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out in the usual way. Frequencies are calculated for several 
mathematical models and the results are given in Table 7. 
The geometry is similar to  that analyzed and tested by 
Scruggs, Pierce, and Reese.lg The result listed for rings dis- 
crete, no stringers for two circumferential waves agrees with 
that  obtained by Forsberg.zo Agreement between compara- 
ble cases run as both cylinder and torus indicates that enough 
mesh points were used in the analysis for adequate conver- 
gence. The results for rings smeared and no stringers, 
stringers smeared, and stringers discrete indicate that the 
stringers have little effect on the frequencies for this particular 
geometry. The increase in shell stiffness is countered by the 
increase in mass. Similar results have been found by  others 
and are reported in Refs. 14 and 21, for example. 
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