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1. Introduction

Purpose

N order to produce efficient, reliable designs and to avoid

unexpected catastrophic failure of structures of which thin
shells are important components, the engineer must un-
derstand the physics of shell buckling. The objective of this
survey is to convey to the reader a ‘‘feel’’ for shell buckling,
whether it be due to nonlinear collapse, bifurcation buckling,
or a combination of these modes. This intuitive understanding
of instability is communicated by a large number of examples
involving practical shell structures which may be stiffened,
segmented, or branched and which have complex wall con-
structions. With such intuitive knowledge the engineer will
have an improved ability to foresee situations in which
buckling might occur and to modify a design to avoid it. He
will be able to set up more appropriate models for tests and
analytical predictions. The emphasis here is not on the
development of equations for the prediction of instability.
For such material the reader is referred to the book by Brush
and Almroth. !!

Emphasis is given here to nonlinear behavior caused by a
combination of large deflections and plasticity. Also
illustrated are stress redistribution effects, stiffener and load-
path eccentricity effects, local vs general instability, im-
perfection sensitivity, and modal interaction in optimized
structures. Scattered throughout the text are tips on modeling
for computerized analysis. The survey is divided into nine
major sections describing: 1) several examples of catastrophic
failure of expensive shell structures; 2) the basics of buckling
behavior; 3) ‘‘classical’’ buckling and imperfection sen-
sitivity; 4) nonlinear collapse and the appropriateness of
linear bifurcation buckling analyses for general shells;
5) bifurcation buckling with significant nonlinear prebuckling
behavior; 6) effects of boundary conditions, load eccentricity,
transverse shear deformation, and stable postbuckling
behavior; 7) optimization of buckling-critical structures with
consequent modal interaction; 8) a suggested design method
for axially compressed cylinders with stiffeners, internal
pressure, or other special characteristics; and 9) two examples
in which sophisticated buckling analyses are required in order

to derive improved designs. The paper focuses on static-
buckling problems.

Some Catastrophic Failures

To the layman buckling is a mysterious, perhaps even awe-
inspiring, phenomenon that transforms objects originally
imbued with symmetrical beauty into junk (Fig. 1.1). Oc-
casionally unaware of the possibility of buckling, engineers
have designed structures with inadequate safety margins (Fig.
1.2). The large cylindrical tower on the left in Fig. 1.3 failed in
19561 because of buckling under internal hydrostatic pressure
of a torispherical end closure at its lower end. A 38 m tall steel
water tower, the tank portion of which is sketched in Fig. 1.4,
collapsed in 197223 when it was being filled for the first time.
The collapse of the entire tower was triggered by local in-
stability in the conical portion of the tank at the deepest water
level in a mode similar to that displayed for the Mylar
laboratory model photographed in Fig. 1.5.4 According to
the prediction given in Fig. 1.6,% nonsymmetric bifurcation
buckling occurs at a load factor p,, =0.943, slightly below
that corresponding to axisymmmetric collapse,.
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Fig. 1.2 Structures have been built with...

Fig. 1.3a Failure of a lérge (15 m diam) vesse! due to buckling of the
bottom torispherical end under internal pressure.

Fig. 1.3b Fragments of the bottom torispherical end (from
Harding, A. G. and Ehmke, E. F., Proceedings of the American
Petroleum Institute, Vol. 42, Sec. 3, 1962, p. 107).

by o
S

...insufficient margins of safety.
(Drawing by Richter, © 1974 by The New
Yorker Magazine, Inc.).
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3317
Fig. 1.4 Geometry of large steel water tank that failed in Belgium in
1972 (from Vandepitte3).

a)
Nep = 14
Pep = 1.12 (BOSOR4)
Wy, = wb(s) cos 148
b) )

Fig. 1.5 Elastic buckling of conical water tank: a) specimen before
buckling; b) tank geometry and water level; c) postbuckled specimen;
and d) predicted bifurcation buckling load factor and mode from
linear theory (photographs courtesy of Dr. G. Lagae, University of
Ghent, Belgium).
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Fig. 1.6 Load-maximum-nermal-deflection curve for conical water
tank, with bifurcation points Py, from linear and P,, from nonlinear

prebuckling theory and axisymmetric collapse load factor, P .0 -

Peollapse =0-993. A factor of unity corresponds to the water
level at which the Mylar specimen failed in the test, a con-
dition depicted in the sketch in Fig. 1.6.

On Jan. 24, 1980, over 100 stainless-steel wine storage
tanks at the Wente Brothers winery in Livermore, Calif.
buckled during an earthquake, a shown in Fig. 1.7. The tanks
that failed were completely filled, so that fluid sloshing is not
part of this problem. Buckling is due to the horizontal
component of the ground motion. The inertial reaction of the
wine creates a moment at the base of the tank which must be
reacted to by a cosf axial membrane resultant. As the ground
oscillates through several cycles in all directions, all locations
around the circumference of the cylindrical shell at the base
become axially compressed at some time during an ear-
thquake. Thus, postbuckling damage is usually visible along
the entire circumference. The problem is similar to that of the
conical water tank shown in Figs. 1.5 and 1.6: buckling occurs
under axial compression combined with circumferential
tension, creating buckles that are circumferentially elongated.
In many cases the wine tanks are perfectly axisymmetrically
buckled at the base, as seen in Fig. 1.7a. The proximity of the
nonsymmetric bifurcation failure and axisymmetric collapse
demonstrated in Fig. 1.6 for the conical water tank is
suggested in this case as well by the modes of failure of the

wine tanks. Shih and Babcock® and Clough and Niwa’ have:

studied this problem and the related problem of buckling
during earthquakes of large water and oil storage tanks in
which sloshing is important. The Nuclear Regulatory
Commission is interested in the development of methods for
the calculation of buckling loads of large steel reactor con-
tainment vessels under various dynamic loads, including those
from an earthquake.® Figure 1.8 illustrates the predicted
behavior of one such shell in which body forces from 1 g

BUCKLING OF SHELLS—PITFALL FOR DESIGNERS 1185

Fig. 1.7 Stainless-steel wine tanks buckled at the Wente Brothers
Winery in the Livermore, Calif., earthquake of Jan. 24, 1980; buckled
tanks were all completely filied (photographs courtesy of J. Skogh). a)
Nonsymmetric (left, background) and axisymmeiric (right,
foreground) buckling; b) nonsymmetrically buckled tanks; ¢) detail of
local lifting at foundation.

vertical and 1 g horizontal ground acceleration components
are applied to the structure as if they were static, and a
buckling load factor A\, is computed from the BOSOR4
computer program?® as if the membrane stress distribution
along the “‘worst’” (most axially compressed) meridian were
axisymmetric.
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In Fig. 1.9 is illustrated a local buckling failure of a large,
expensive, semisandwich, corrugated ring-stiffened payload
shroud (a and b) which was subjected to axial compression
and bending. The shroud failed unexpectedly during proof
testing because of local buckling near a field joint (c and d). 10
In short regions on either side of the field joint, where the
external corrugations are cut away as shown in Fig. 1.9d, the
axial load path is deflected inward from the neutral axis of the
cross section of the combined corrugations and skin to the
middle surface of the skin and doubler. This local inward
deflection of the axial load path creates under axial com-
pression the localized hoop compression that causes non-
symmetric bifurcation buckling in a mode shown in Fig. 1.9c.
Because of the short axial length of the circumferentially
compressed region, the critical mode has a rather large
number of circumferential waves.
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Fig. 1.8 Buckling of nuclear reactor steel containment vessel due to
earthquake: 1) BOSOR4 discretized model; b) prebuckling defor-
mations due to 1 g vertical and 1 g horizontal ground acceleration
components; c) buckling mode and load factor A ,.
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Fig. 1.9 Local failure of a large payload shroud under axial com-
pression and bending. Buckling is caused by the narrow band of
circumferential compression arising from the inward excursion of the
axial load path near the field joint at station 468 (from Bushnell10),
a) Typical ring-stiffened rocket payload shroud configuration;
b) corrugated wall; ¢) interior view of portion of complete shroud
buckled locally next to field joint at station 468 (see Fig. 1.9a), three
waves are visible; d) field joint geometry and buckle configuration.

d)
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2. Some Buckling Basics

Why Do Shells Buckle?

The property of thinness of a shell wall has a consequence
that is pointed out in Ref. 14: The membrane stiffness is in
general several orders of magnitude greater than the bending
stiffness. A thin shell can absorb a great deal of membrane
strain energy without deforming too much. It must deform
much more in order to absorb an equivalent amount of
bending strain energy. If the shell is loaded in such a way that
most of its strain energy is in the form of membrane com-
pression, and if there is a way that this stored-up membrane
energy can be converted into bending energy, the shell may
fail rather dramatically in a process called ‘‘buckling” as it
exchanges its membrane energy for bending energy. Very
large deflections are generally required to convert a given
amount of membrane energy into bending energy. The way in
which buckling occurs depends on how the shell is loaded and
on its geometrical and material properties. The prebuckling
process is often nonlinear if there is a reasonably large per-
centage of bending energy being stored in the shell throughout
the loading history.

What is Buckling?

To most laymen the word “‘buckling”’ evokes an image of
failure of a structure which has been compressed in some way.
Pictures and perhaps sounds come to mind of sudden,
catastrophic collapse involving very large deformations.
From a scientific and engineering point of view, however, the
interesting phases of buckling phenomena generally occur
before the deformations are very large when, to the unaided
eye, the structure appears to be undeformed or only slightly
deformed.

In the static analysis of perfect structures, the two
phenomena loosely termed ‘‘buckling’’ are: 1) collapse at the
maximum point in a load vs deflection curve, and 2) bifur-
cation buckling.

These two types of instability failure are illustrated in Figs.
2.1 and 2.2. The rather thick axially compressed cylinder
shown in Fig. 2.1 deforms approximately axisymmetrically
along the equilibrium path OA until a maximum or collapse
load A, is reached at point A. If the axial load A is not suf-
ficiently relieved by the reduction in axial stiffness, the perfect
cylinder will fail at this collapse load, following either path
ABC along which it continues to deform axisymmetrically or
some other path ABD along which it first deforms axisym-
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Fig. 2.1 Load/end-shortening curve with collapse load A, bifur-
cation point B, and postbifurcation equilibrium path BD
(photographs courtesy of Sobel and Newman?$7),
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metrically from A to B and then nonaxisymmetrically from B
to D. Nonlinear buckling or ‘‘snap-through”’ occurs at point
A and bifurcation buckling at point B. The equilibrium path
0ABC, corresponding to the symmetric mode of deformation
is called the fundamental or primary or prebuckling path and
the postbifurcation equilibrium path BD, corresponding to
the nonaxisymmetric mode of deformation, is called the
secondary or postbuckling path. Buckling of either the
collapse or bifurcation type may occur at loads for which
some or all of the structural material has been stressed beyond
its proportional limit. The example in Fig. 2.1 is somewhat
unusual in that the bifurcation point B is shown to occur after
the collapse point has been reached. In this particular case,
therefore, bifurcation buckling is of less engineering
significance than axisymmetric collapse.

A perhaps more commonly occurring situation is illustrated
in Fig. 2.2a. The bifurcation point B is between 0 and A. If
the fundamental path OAC corresponds to axisymmetric
deformation and BD to nonaxisymmetric deformation, the
initial failure of the structure would generally be characterized
by rapidly growing nonaxisymmetric deformations. In this
case the collapse load of the perfect structure A, is of less
engineering significance than the bifurcation point Ac.

In the case of real structures which contain unavoidable
imperfections, there is no such thing as true bifurcation
buckling. The actual structure will follow a fundamental path
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OEF, with the failure corresponding to the ‘‘snap-through’’ at
point E at the collapse load Ag. If point B in Fig. 2.2a
corresponds to bifurcation into a nonsymmetric buckling
mode, the collapse at E will involve significant nonsymmetric
displacement components. Although true bifurcation
buckling is fictitious, the bifurcation buckling analytical
model is valid in that it is computationally convenient and
economical and often leads to a good approximation of the
actual failure load and mode.

Various Types of Bifurcation Buckling

In Fig. 2.2b the load is plotted as a function of amplitude of
the bifurcation buckling mode. Since the bifurcation buckling
mode is orthogonal to the prebuckling displacement pattern
of the perfect shell, its amplitude remains zero until the
bifurcation point B is reached. The curve BD in Fig. 2.2b
implies that the postbuckling state is unstable: the load-
carrying capability A decreases with increasing amplitude of
the bifurcation buckling mode.

All real structures are imperfect. The imperfection shape is,
in general, not orthogonal to the bifurcation buckling mode.
If one expressed the deformation of the imperfect structure as
a sum of two components, the fundamental prebuckling
equilibrium state of the perfect structure plus the bifurcation
buckling mode of the perfect structure (presumed here to be
unique), then one would obtain the curve OEF in Fig. 2.2b if
one plotted the amplitude of the bifurcation modal com-
ponent vs the load for the imperfect structure. The amplitude
of the bifurcation modal component would increase at an
increasing rate wuntil instability via nonlinear ‘‘snap-
through”’or collapse would occur at the reduced load Ag. The
difference between the critical bifurcation load A, of the
perfect structure and the collapse load Ag of the imperfect
structure depends on the amplitude of the initial imperfection
Wyo. A chart of Ag/A. vs w,, would characterize the sen-
sitivity of the maximum load Ag to initial geometrical im-
perfections. According to the jargon that has become ac-
cepted over the years, the structure to which the curves in Fig.
2.2b correspond is called ‘‘imperfection sensitive’” because
imperfections reduce its maximum load-carrying capability.
(Of course, it is not the structure that is sensitive to im-
perfections, but the maximum /oad it can safely support!)

Not all structures nor mathematical models of them behave
as shown in Fig. 2.2b. Figure 2.3 shows various types of
postbuckling behavior. A linearized model of elastic stability,
that is, an eigenvalue formulation of the buckling problem,
implies a load-deflection behavior shown in Fig. 2.3a: The
amplitude of the eigenvector, the bifurcation buckling mode,
is indeterminate, which implies that the load A remains
constant A=A, with increasing modal deflections w,. The
equilibrium path for the slightly imperfect structure follows
the rectangular hyperbolic path,

Wy =Wp/ (Ac/N=1) 4))]
shown as a dotted line in Fig. 2.3a.

If nonlinear postbuckling effects are accounted for,
equilibrium paths for most structures have the forms shown in
Figs. 2.3b-d. The asymmetric nature of the curves in Fig. 2.3b
indicates that the structure continues to carry loads above the
bifurcation load A, if it is forced to buckle one way, but
collapses if allowed to buckle the other. An example of this
type of behavior is a structure with parts that move relative to
each other as buckling proceeds in such a way that these parts
come in contact and support each other for positive deflec-
tions but move away from each other and form gaps for
similar negative deflections. Specifically, a built-up panel
consisting of a flat sheet riveted to a corrugated sheet is such a
structure. Roorda!® has demonstrated this asymmetric
postbuckling behavior for perfect and imperfect frames with
eccentric loads. His results are summarized in Ref. 11. The
symmetric stable postbuckling behavior displayed in Fig. 2.3¢
is typical of axially compressed columns and isotropic flat
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a) NEUTRAL POSTBUCKLING b) UNSYMMETKIC FUSTBUCKLING

A
h

¢) STABLE POSTBUCKLING d) UNSTABLE POSTBUCKLING

PERFECT STRUCTURE

IMPERFECT STRUCTURE

Fig. 2.3 - Different types of load-displacement relations (X is the load,
w; the buckling modal displacement).

plates. The perfect column or plate loaded precisely in its
neutral axis or surface buckles either way with equal ease and
the postbuckled equilibrium state is stable. The symmetric
unstable postbuckling behavior shown in Fig. 2.3d is typical
of the early postbifurcation regimes of axially compressed
thin cylindrical shells and externally pressurized thin spherical
shells.

Capsule of Recent Progress in Buckling Analysis

Recent progress in our capability to predict buckling failure
can be categorized into three main areas:

1) Development of asymptotic postbuckling theories and
applications of these theories to specific classes of structures,
such as simple plates, shells, and panels. 1618

2) Development of general-purpose computer programs
for calculation of static and dynamic behavior of structures,
including large deflections, large strains, and nonlinear
material effects. 1921

3) Development of special-purpose computer programs for
limit-point axisymmetric buckling and nonaxisymmetric
bifurcation buckling of axisymmetric structures. 9-22-24
Asymptotic Analysis

The asymptotic analyses surveyed in Refs. 16-18 rest on
theoretical foundations established by Koiter,2 whose
general elastic postbifurcation theory leads to an expansion
for the load parameter N in terms of the buckling modal
amplitude w, which is valid in the neighborhood of the
critical bifurcation point in (\,w,) space. The primary aims
of the asymptotic analyses are to calculate the maximum loads
for perfect and imperfect structures. These analyses have
contributed vital physical insights into the buckling process
and the effect of structural or loading imperfections on this
process.

General Nonlinear Analysis

The general-purpose computer programs in widespread use
since the early 1970s and presently being written are based on
principles of continuum mechanics established for the most
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part by the late 1950s and set forth in several texts.263! The
structural continuum is discretized into finite elements as
described in the texts 3?35 and various strategies are employed
to solve the resulting nonlinear problem. ! The nonlinearity is
due to moderately large or very large deflections and
nonlinear material behavior. Various plasticity models are
described in texts, conference proceedings, and survey articles
identified in Ref. 19. The primary aim of this vast body of
work, most of which was done in the 1970s, has been to
produce reliable analysis methods and computer programs for
use by engineers and designers. Thus, the emphasis in the
literature just cited is not primarily on the acquisition of new
physical insight into buckling and postbifurcation
phenomena, but on the creation of tools that can be used to
determine the equilibrium path OEF in Fig. 2.2a for an ar-
bitrary structure and on proof that these tools work by use of
demonstration problems, the solution of which is known. In
most cases, no formal distinction is made between
prebifurcation and postbifurcation regimes; in fact, simple
structures are modeled with imperfections so that potential
bifurcation points (such as B in Fig. 2.2a) are converted into
maximum load points such as E. The buckling problem loses
its special qualities as illuminated so skillfully in the asymp-
totic treatments and becomes just another nonlinear analysis,
requiring perhaps special physical insight on the part of the
computer program user because of potential numerical traps
such as ‘spurious or real bifurcation points and ill-
conditioning due to maximum load points.

Figures 2.2a and 2.2b illustrate the two very different
approaches to the buckling problem described in the last two
paragraphs. In the general nonlinear approach, the com-
putations involve essentially a ‘‘prebuckling’’ analysis or a
determination of the unique equilibrium states along the
fundamental path OEF in Fig. 2.2a. In the asymptotic ap-
proach (Fig. 2.2b), the prebuckling state is often known a
priori. The secondary path BD of the perfect structure and (in
the elastic case) the maximum load point E on the fun-
damental path of the imperfect structure are determined by
expansion of the solution in a power series of the bifurcation
mode amplitude or amplitudes which is asymptotically exact
at the bifurcation point B.

Axisymmetric Structures

The third approach to the buckling problem, development
of special-purpose programs for the analysis of axisymmetric
structures, forms a sort of middle ground between the
asymptotic analysis and the general-purpose nonlinear
analysis. The approach is similar to the asymptotic treatment
because in applications it is restricted in practice to a special
class of structures and the distinction between prebuckling
equilibrium and bifurcation buckling is retained. It is similar
to the general nonlinear approach in that the continuum is
discretized and the nonlinear prebuckling equilibrium
problem is solved by ‘‘brute force.”” The emphasis is on the
calculation of the prebuckling fundamental path, 0B or 0A in
Fig. 2.2a and determination of the bifurcation point B and its
associated buckling mode, not on calculation of post-
bifurcation behavior BD or of the load-deflection path OEF of
the imperfect structure. The goals of this third approach are
to create an analysis tool for use by engineers and designers
and to use this tool in extensive comparisons with tests, both
to verify it and to obtain physical insight into the buckling
process.

3. “‘Classical’’ Buckling of Cylindrical and
Spherical Shells and Asymptotic
Imperfection Sensitivity Analysis

Cylindrical Shells

Monocoque Cylinders under Axial Compression

The problem of buckling of thin cylindrical shells under
axial compression has received far more attention than most
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problems in structural mechanics because of the extraordinary
discrepancy between test and theory which remained unex-
plained for so many years. Hoff 3¢ gives a meticulous and very
readable survey of work done up to 1966. Brush and Almroth
devote a major portion of a chapter of their book! to the
subject.

The postbuckled state of an axially compressed cylinder is
illustrated in Fig. 3.1. During a test of even a very carefully
made cylinder an isolated buckle initially appears at an
average stress considerably below the predicted bifurcation
value of

04=[3(1-»?)}~%Eh/a=0.6Eh/a 2

This buckle is generally followed by a cluster of buckles in the
same neighborhood which very rapidly deepen, change shape,

Fig. 3.1 Cylinder with completely developed elastic buckle pattern
(from Horton et al. %),
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Fig. 3.2 Distribution of test data for cylinders subjected to axial
compression. (From Buckling of Bars, Plates and Shells by D. O.
Brush and B. O. Almroth.'! Copyright © 1975 by McGraw-Hill, Inc.
Used with permission of McGraw-Hill Book Co.)
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Fig. 3.3 Imperfection sensitivity as a function of parameter b for
unique buckling mode and comparison with imperfection sensitivity
of spherical shell under external pressure and cylindrical shell under
axial compression; & is the amplitude of the buckling mode and § is the
amplitude of the imperfection (from Budiansky and Hutchinson53).

and spread over a considerable portion of the surface. The
postbuckled pattern shown in Fig. 3.1 was obtained by axial
compression of the cylinder with a close-fitting mandrel inside
to prevent excessive growth of the buckles and consequent
formation of plastic hinges at their boundaries. Thus the
buckle pattern spread over the entire surface. Figure 3.2
demonstrates the dramatic discrepancy between test and
theory over a wide range of radius-to-thickness ratios.

The most significant trend of these data is the increasing
discrepancy between test and theory with increasing radius-to-
thickness ratio a/h. It is this trend which provides the clue
that the discrepancy arises from the extreme sensitivity of the
critical load to initial imperfections: A reasonable measure of
geometrical quality is the ratio of initial deviation w, (x,6)
from the perfect cylindrical shape to thickness 4. It is clear
that for a given fabrication method, this ratio will increase
with increasing radius-to-thickness ratio.

One of the first studies of the sensitivity of the critical load
to initial geometric imperfections was carried out by Donnell
and Wan.¥ They demonstrated qualitatively that the
discrepancy between test and theory is caused by initial
geometric imperfections. The Koiter theory,?* which provides
asymptotically exact formulas for . the maximum load-
carrying capability Pg of an imperfect structure, provides
rigorous proof of the extreme sensitivity of the critical axial
load of monocoque cylindrical shells to initial geometric
imperfections (Fig. 3.3).

For many years several researchers attempted to obtain safe
design loads for thin axially compressed cylinders by using
numerical methods to calculate the postbuckling load
deflection curve from nonlinear theory. It was thought that
the minimum postbuckling load would provide a lower bound
to the load-carrying capability of the shell. Those attempts are
very carefully documented by Hoff.3¢ Postbuckling load-
deflection curves were calculated on the digital computer with
the use of various trigonometric series expansions to express
the postbuckling deflection pattern. A converged solution for
the problem was never found. This approach was dropped
because the extensive experimental evidence in Fig. 3.2 shows
that the predicted postbuckling minimum load is
unrealistically low to be useful as a guide to designers for all
but the very thinnest shells. Hence, the current approach is to
use the Koiter theory combined with empirical results to
provide a confidence index, as will be described more fully
later.

There was also an attempt to explain the discrepancy
between test and theory by consideration of various boundary
conditions. These studies are surveyed by Hoff.36 The lowest
critical load obtained for any set of edge conditions reported
in Ref. 36 is 0,,./0,=0.38. This load requires the tangential
displacement v to be free at the boundaries. Several sets of
edge conditions yield o, /0,=0.5. However, they all require
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Fig. 3.4 Typical postbuckling pattern ly compressed, stif-
fened cylindrical shell (from Singer and Abramovich 40y,

that either the normal deflection w or tangential displacement
v be free at the edge. In view of measurements of deflections
actually occurring during tests, it appears that sufficient
friction is present to prevent significant displacements of v
and w at the edges. The critical mode for the cases in which v
is free corresponds to two circumferential waves, which does
not resemble observed buckling modes.

The monocoque cylinder under axial compression is very
sensitive to small initial imperfections because the critical
buckling load corresponds to a mode the axial and cir-
cumferential wavelengths of which are quite small compared
to the radius. Also the critical load is insensitive to
wavelength. Note that the classical formula, originally
derived for axisymmetric buckling by Lorenz in 19083% and
for nonsymmetric buckling by Timoshenko in 1914,3° does
not contain any reference to n or m, the number of waves in
the buckling pattern in the circumferential or axial directions,
respectively. Thus, a great variety of small initial im-
perfections occurring anywhere on the entire shell surface
would contain significant components of critical or almost
critical bifurcation buckling mode shapes, modes of defor-
mation that would grow as the load is increased, eventually
causing snap-through at a load far below that predicted for
bifurcation buckling of the perfect shell, as shown in Fig. 3.2.

A Caution for Novice Users of Computer Programs for Buckling

It is worth emphasizing that the problem of the axially
compressed cylinder, which appears superficially to be an
excellent, simple test case for a person learning to use a
computer program that he has acquired elsewhere, is really
quite demanding. The simplicity of the geometry tempts one
to use a discretization with fewer degrees of freedom than are
needed to obtain a converged solution corresponding to a
buckling pattern with short axial waves. The result obtained
from the computer program will probably be compared with
the Timoshenko formula [Eq. (2)], which is based on the
assumption of a uniform membrane prebuckling state.
Depending on the edge conditions, the nonuniformity and
nonlinearity of the prebuckling state near the edges lowers the
predicted critical load by 8-20%. If nonlinear prebuckling
analysis is used, the problem is further complicated by the fact

- that the nonsymmetric bifurcation buckling load is fairly close

to the axisymmetric collapse load, a situation demonstrated in
Fig. 1.6. A final difficulty is that several eigenvalues for the
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bifurcation loads are clustered near the critical load,
especially in models for which the edge effects in the
prebuckling phase are not present or are ignored by the
computer program. These difficulties are discussed in an
example of an axially compressed monocoque cylinder
presented in Ref. 9. The reader is urged to study that material
before dismissing a computer program because it ‘‘can’t even
predict the classical buckling load for an axially compressed
monocogque cylindrical shell.”

Stiffened Cylinders under Axial Compression

The postbuckling state of an axially stiffened cylinder is
shown in Fig. 3.4. Notice that the buckling mode has much
longer characteristic wavelengths than does that for the
monocoque cylinder pictured in Fig. 3.1. This is due to the
increased axial bending stiffness and results in milder sen-
sitivity of the buckling load to initial imperfections.

Cylinders under Uniform External Pressure or Torsion
Figures 3.5-3.8 show postbuckling states of cylinders

Fig. 3.5 Typical postbuckled pattern for medium-length cylindrical
shell under external hydrostatic pressure (from Harris et al. 42y,

1000 £
&
o
a joN] f
W o look
mlo~N C
¥k -
2% ~ T
1]

a o o
S| { 0 X
22
3
g 10— , - —
g ‘o g 3
o - o® °
2 / o

!

i

1L L 1ol | e nd
1 10 100 1000 10,000
2
L 2,172
z =z -9

Fig. 3.6 Comparison of theoretical and experimental buckling
pressures for cylinders subjected to external hydrostatic pressure
(D = flexural rigidity). (From Buckling of Bars, Plates, and Shells by
D. O. Brush and D. O. Almroth.'! Copyright © 1975 by McGraw-
Hill, Inc. Used with permission of McGraw-Hill Book Co.)
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subjected to hydrostatic pressure or torsion and comparisons
between test and theory. As with the stringer-stiffened axially
compressed cylinders, the buckling modes are characterized
by long axial wavelengths and relatively few circumferential
waves, which results in a milder sensitivity of buckling loads
to initial geometric imperfections. The most sensitive systems
are short cylinders (10=<Z=100) under hydrostatic com-
pression, cases for which the bifurcation buckling
phenomenon resembles that for cylinders under axial com-
pression (Fig. 3.6).

Spherical Shells under Uniform External Pressure

Kaplan® gives a thorough survey of buckling of spherical
shells subjected to uniform external pressure. Early tests
revealed that buckling initiates at some spot at which a small
dimple forms. To the writer’s knowledge the formation of
multiple buckles in a complete spherical shell, as observed in
axially compressed cylindrical shells, has not been observed
for shells without an interior mandrel. Figure 3.9 shows a

Fig. 3.7 Typical postbuckled pattern for unpressurized cylinder in
torsion (from Harris et al. *2).
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Fig. 3.8 Comparison of theoretical and experimental buckling loads
for cylinders subjected to torsion. (From Buckling of Bars, Plates,
and Shells by D. O. Brush and B. O. Almroth.1 Copyright © 1975
by McGraw-Hill, Inc. Used with permission of McGraw-Hill Book
Co.)
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Fig. 3.9 Postbuckled state of a thin-walled spherical shell under
uniform external pressure; buckling motion is restrained by an interior
mandrel (from Carlson et al. 45 ).
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Fig. 3.10 Load-deflection curves and bifurcation buckling of
spherical caps with various values of the shallowness parameter
A=2[30-»)]1% H/P".

postbuckled state in a shell with a closely fitting interior
mandrel. Each buckle subtends a small solid angle, just as in
the case of an axially compressed monocoque cylinder in
which each buckle covers a very small fraction of the surface.
As might be expected from this behavior, the critical load of a
spherical shell subjected to uniform external hydrostatic
pressure is highly sensitive to initial geometric imperfections.

AIAA JOURNAL

Spherical Caps

The fact that an initial buckle subtends a small solid angle
stimulated those initially interested in complete spherical
shells to model the problem of buckling of a complete
spherical shell with use of a shallow spherical cap clamped at
its edge. Over the years the shallow cap configuration evolved
into a ‘‘classical’”’ problem in its own right, studied with
almost- the same intensity and frequency as the  axially
compressed cylinder. However, as demonstrated in Fig. 3.10,
the shallow cap problem has certain characteristics not
present in the case of a complete spherical shell. These arise
from the presence of the edge.

In Fig. 3.10 load-deflection curves are shown correspond-
ing to linear and nonlinear theories for prebuckling
axisymmetric deformations of caps clamped at the boundary.
The open circles on the linear load-deflection lines indicate
bifurcation buckling at the ‘‘classical’”’ pressure for the
complete spherical shell with the same radius-to-thickness
ratio as the spherical cap. The quantity A is a cap shallowness
parameter given by )

N=2[3(1—»2)]% (H/h)* 3)

where H is the rise of the cap above the plane in which the
edge lies and 4 the shell thickness.

For X less than about 7 or 8 the behavior of the shallow cap
little resembles that of the complete spherical shell. With A=0
(flat circular plate) there is no similarity at all: The load-
deflection curve exhibits a stiffening characteristic which
results from the buildup of in-plane tension as the plate
deforms (Fig. 3.10a). With X less than about 3.5 the load-
deflection curve has no horizontal tangent and no bifurcation
point so that there is no loss of stability on the primary
equilibrium path (Fig. 3.10b). For A less than about 6 there is
axisymmetric snap-through, but no bifurcation buckling (Fig.
3.10c). For A\>6 bifurcation buckling into a nonsymmetric
mode occurs at a lower load than either axisymmetric snap-
through of the cap or classical buckling of a complete
spherical shell (Figs. 3.10d-f). Notice that as \ increases above
7 the prebuckling behavior becomes more and more linear.
Figure 3.10f corresponds to a configuration in which the cap
is no longer ‘‘shallow,’” if that word may be used as a means
of classifying shell behavior: The nonuniformity of
prebuckling behavior occurs in a relatively narrow band or
“‘boundary layer’’ near the edge. Any further increase in A\
results in no further alteration in the curves or locations of the

-bifurcation points presented in Fig. 3.10f. No matter how

high N\ is, the behavior of the incomplete spherical shell
clamped at its boundary will never be the same as that of the
complete spherical shell because the presence of the boundary
gives rise to edge buckling at a pressure 80-90% of the
classical value p,.

For actual spherical shells and shallow caps, random im-
perfections play a major role in the loss of stability under
uniform external pressure. Figure 3.11 demonstrates that the
effect of initial imperfections is just as severe as in the case of
cylindrical shells subjected to axial compression.

Asymptotic Postbuckling Theory

Koiter 2546 was the first to develop a theory which provides
the most rational explanation of the large discrepancy be-
tween test and theory for the buckling of axially compressed
cylindrical shells and externally pressurized spherical shells:
The early collapse is due to small, unavoidable geometrical
imperfections. Excellent reviews of Koiter’s theory and of the
many applications of it to buckling of monocoque and
stiffened elastic and elastic-plastic shells are given by Hut-
chinson and Koiter,'® Tvergaard,!” and Budiansky and
Hutchinson. 4’ The theory itself is reiterated in some detail by
Budiansky, ¢ Seide,*® and Masur?® and extended to dynamic
buckling by Budiansky and Hutchinsons! and Budiansky.*?
Many of the numerous applications of the theory to static
buckling of shells of revolution reviewed in Refs. 16 and 53
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refer to the presentation of a simplified form of the Koiter
theory for static analysis given in Refs. 51 and 52. Summaries
of the main features of Koiter’s theory appear in Refs. 11 and
17.

Essentially, the purposes of Koiter’s theory are to:

1) Determine the stability of the equilibrium at the lowest
bifurcation point on the equilibrium path.

2) Ascertain the sensitivity of the maximum load-carrying
capacity of the structure to initial geometric imperfections.

A classical bifurcation buckling analysis represents a search
for the load at which the equilibrium of a structure ceases to
be stable and becomes neutral; it does not reveal information
about the stability of the structure. Suppose that a structure is
in equilibrium at some load smaller than the lowest bifur-
cation load (and furthermore suppose that we are concerned
here with only bifurcation buckling, not nonlinear collapse).
Any small additional displacement field which satisfies the
requirements of continuity (compatibility) and geometric
boundary conditions (kinematically admissible displacement
field) will cause the energy of the system (structure plus
potential energy of loads) to increase. Thus, the structure is in
a state of stable equilibrium analogous to a ball at the lowest
point on a wavy surface. At a higher load corresponding to
the bifurcation point, the additional energy of the system due
to the small disturbance does not change—the structure is in a
state of neutral equilibrium analogous to the ball on a flat
surface; the equilibrium state is not unique in a small
neighborhood of the prebuckling state. At loads above the

lowest bifurcation point, equilibrium on the fundamental

(prebifurcation) load-deflection path is unstable, analogous
to the ball on a peak.

In order to learn whether or not the structure is stable a¢ the
bifurcation point, it is necessary to determine the charac-
teristics of the postbifurcation path in load-generalized-dis-
placement space or in load-postbuckling-modal-deflection
space in the neighborhood of the bifurcation point. Typical
paths are displayed in Fig. 2.3. The stability of equilibrium et
the bifurcation point is governed by third- and fourth-order
terms in the energy function expressed as a series expansion of
the incremental displacement represented by the difference of
the displacement field corresponding to the fundamental state
at the bifurcation point and that corresponding to a state on
the postbifurcation equilibrium path close by. The first-order
terms of the energy thus expressed cancel because the fun-
damental state at the bifurcation point is an equilibrium state;
the second-order terms likewise cancel because the bifurcation
point represents a state of neutral equilibrium. The shape of

SHALLOWNESS PARAMETER,
A= 20301-0v9H1Y % mm /2

the postbifurcation load-deflection curve in the neighborhood
of the bifurcation point is therefore governed by the third-
order terms (Fig. 2.3b) or, if these vanish, by the fourth-order
terms (Figs. 2.3¢ and 2.3d) in the expression for incremental
energy.

Elastic Post-Bifurcation Analysis

At a bifurcation load A. where the buckling mode is
unique, Koiter’s general elastic postbuckling theory leads to
an asymptotically exact expansion for the load parameter N in
terms of the normalized bifurcation buckling modal am-
plitude, w,:

Mie=1+aw, +bwi+... ]

Four types of elastic initial postbuckling behavior are
shown in Fig. 2.3. Solid curves show the behavior of perfect
structures and dotted curves the behavior of imperfect
structures with imperfections in the form of the unique
critical bifurcation buckling mode. The ultimate load-
carrying capabilities of the structures represented by Figs.
2.3b and 2.3d are sensitive to initial imperfections while those
represented by Figs. 2.3a and 2.3c are not. For the case of Fig.
2.3b which is nonsymmetric with respect to the sign of the
buckling modal amplitude w, (a#0), a negative normalized
imperfection amplitude w;,, converts bifurcation buckling
into limit-point or ‘‘snap’’ buckling at a reduced load A given
by Koiter’s general theory as

Ns/Ae=1-=2(—paw;, )" &)
in which p is a constant that depends on the imperfection
shape. For the symmetric case (Fig. 2.3d), @ in Eq. (4) is zero,
b<0, and the limit load of the imperfect structure is ap-
proximately

)\S/)\C=I—3("‘b/4) 173 (pwimp)2/3 (6)

Many applications of Eq. (5), and especially Eq. (6), appear
in the literature. Figure 3.3 illustrates the relationship of the
coefficient & in Eqs. (4) and (6) to the imperfection sensitivity
for a system such as a shell of revolution, for which the lowest
bifurcation buckling mode is unique and the initial post-
buckling behavior is symmetric with respect to the sign of the
postbuckling displacement field and unstable. The initial
postbuckling load P of the perfect structure follows the solid
curve shown in Fig. 3.3a. The quantity § is the amplitude of
the postbuckling displacement field, which is assumed to be in
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Fig. 3.12 Classical  buckling and imperfection
sensitivity of simply supported stiffened cylinders
under axial compression (from Budiansky and
Hutchinson33),
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the form of the unique buckling mode. The quantity ¢ is the
shell thickness. The dashed curve pertains to an imperfect
shell. The value of b depends on details of the geometry and
loading. Buckling loads are sensitive to imperfections if b is
negative and insensitive to imperfections if b is positive. As
shown in Fig. 3.3b, more negative values of b are associated
with greater sensitivity of the critical load Pg to initial
geometric imperfections §. Curves for the spherical shell
under uniform external pressure and the cylindrical shell
under uniform axial compression are shown in order to
emphasize the extreme nature of imperfection sensitivity in
these two cases. The curves are dashed because they are not
derived from Eq. (6) as explained next.

There are important examples in which the lowest bifur-
cation point is associated with several buckling modes or in
which there exists a cluster of bifurcation loads just above the
critical load. The cylindrical shell under axial compression is
an example of the former and the spherical shell under ex-
ternal pressure is an example of the latter. Structures op-
timized such that local and general instability occur at the
same load provide another practical example. For cases in
which there exist several simultaneous buckling modes, Eq.
(4) is replaced by N asymptotic equations for the load
parameter A in terms of the buckling modal parameters w,,,
Wy, Wy Of the form

[OMAG) — 1wy = Ay Wy Wiy + B Wy Wy Wy + ... )

in which the summation convention (from one to N) is im-
plied for repeated indices. Koiter’s general theory yields
asymptotic estimates of the imperfection sensitivity Ag/A¢ in
the case of elastic buckling. Due to modal interaction the
effect of initial geometric imperfections is usually severe, as
will be demonstrated for built-up axially compressed columns
and as is demonstrated by the dashed curves in Fig. 3.3b.

If the bifurcation buckling modes are nearly coincident, as
they are for uniformly externally pressurized spherical shells,
the imperfection sensitivity is also characterized by modal
interaction, even though the initial postbuckling behavior of
the perfect structure in the immediate neighborhood of the
bifurcation point is governed by Eq. (4) for the single-mode
case.**

The ultimate aim of all imperfection sensitivity analyses is
to determine the maximum load-carrying capability (Ag in
Fig. 2.2, P in Fig. 3.3a). The search for Ag or Pg has been
accomplished in the following ways:

1) A general imperfection shape containing both
axisymmetric and nonsymmetric components has been
assumed and the nonlinear compatibility and equilibrium

equations of the von Kdrman-Donnell theory® have been
used to trace the load-deflection curve up to and perhaps past
its maximum. This is the approach taken, for example, by
Donnell and Wan, ¥ Hutchinson, % Arbocz and Babcock, 5’
and Arbocz and Schler. %

2) An axisymmetric imperfection shape has been assumed
and A identified as the lowest load at which either axisym-
metric collapse of nonsymmetric bifurcation occurs from the
axisymmetrically deformed prebuckled state. This is the
approach taken by Koiter in his classic paper published in
1963, by Almroth et al.!? in their extension of Koiter’s
‘“‘special theory’’® for derivation of a design method for
stiffened and internally pressurized cylindrical shells, and by
Tennyson and Muggeridge® who investigated the effect of
local axisymmetric imperfections.

3) Koiter’s ‘‘general theory”’ is usad to obtain the factor b
in Eq. (4) (@ is zero for shells of revolution because of the
periodicity of the buckling mode in the circumferential
direction) and Eq. (6) or its equivalent for the multimode case
is used to obtain the peak load hg. This approach is used by
Hutchinson and Amazigo® and Hutchinson and Frauen-
thal? in their studies of eccentrically stiffened and barreled
cylindrical shells, and by Amazigo and Budiansky® in their
asymptotic treatment of the buckling of axially compressed
cylinders with localized or random axisymmetric im-
perfections.

4) A “‘brute-force’’ approach is used to obtain the peak
load Ag as discussed in the section on nonlinear collapse. For
example, the STAGS computer program® has been used for
the analysis of axially compressed cylinders with cutouts!!
and the BOSORS program% has been applied to determine
axisymmetric collapse loads of elastic-plastic cylindrical
shells.

Examples

Figures 3.12 and 3.13 demonstrate the kind of results that
asymptotic imperfection-sensitivity theory generates. The top
portion of Fig. 3.12 shows plots of normalized critical axial
loads N (stiffened)/N. (unstiffened) as functions of the
Batdorf length parameter Z=(L2/Rt) ~1—-»?, and the
bottom portion displays the imperfection-sensitivity
parameter b. The load-carrying capability can easily be
determined as a function of imperfection amplitude from Eq.
(6). While classical bifurcation buckling theory yields a
prediction that a design with outside stiffeners is more ef-
ficient than one with inside stiffeners, this advantage is
counteracted by increased imperfection sensitivity over a wide
range of Z. A common trend in shell buckling is here revealed:
Design changes that raise the bifurcation buckling load of the
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Fig. 3.13 Comparison between test and classical theory and initial
posibuckling predictions for externally pressurized cylinders (from
Hutchinson and Koiter16).

perfect shell without increasing the amount of material tend
also to increase the sensitivity of the critical load to initial
geometric imperfections. We shall see this phenomenon in a
following section on buckling of axially compressed shells
made of laminated composite materials and again later in the
case of optimized buckling-critical structures.

The results of Hutchinson and Amazigo®' shown in Fig.
3.12 are based on use of the membrane prebuckling state.
Hutchinson and Frauenthal 62 extended the treatment of Ref.
61 to account for nonlinear prebuckling behavior and
barreling of the cylinder generator. Inclusion of nonlinear
prebuckling effects does not alter the conclusions demon-
strated in Fig. 3.12 that location of the stringers on the outer
surface of the shell enhances the resistance to buckling but
simultaneously increases the sensitivity to initial geometric
imperfections, at least over some of the range of Z.

Figure 3.13 demonstrates a qualitative agreement between
test and asymptotic imperfection-sensitivity theory. In the
range of Z in which experimental results fall below the
classical critical bifurcation pressure, b is negative.

Laminated Cylindrical Shells Made of Composite Material

When composite materials as opposed to metals are used in
plate and shell structures, the following questions arise:

1) Metal plates, stiffened shells, and shallow cylindrical
panels with supported edges can sometimes carry loads
considerably in excess of the lowest bifurcation buckling load.
The skin may buckle locally, transferring its load to adjacent
structural elements. Examples include axially compressed
oval cylinders and stiffened panels with oversized stringers. In
view of the brittleness of composite materials, will designs
which permit local buckling remain feasible?

2) Are cylinders of composite material (with anisotropy
and membrane-bending coupling) more or less imperfection
sensitive than isotropic cylinders?
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3) Will the actual size of typical geometric imperfections in
practical applications be more or less severe than they are in
metal cylinders?

4) Do other types of imperfections, such as voids and
delaminations, affect the buckling load for structures made of
composite material?

A number of publications attempt to answer the question of
whether cylindrical shells of composite material are more or
less sensitive to small geometric imperfections than are
isotropic cylinders. Use of a nonlinear analysis,® Koiter’s
general theory, ®” and Koiter’s special theory ®® indicate that in
comparison to isotropic cylinders, composite cylinders may be
somewhat less sensitive to geometric imperfections. Also, in
keeping with the trend mentioned above, it is clear that
cylinders with close to optimum fiber orientation are most
sensitive. This is illustrated in Fig. 3.14.

The possibility remains that composite cylinders, while less
sensitive to imperfections, as manufactured display more
severe imperfections and therefore possibly more severe
knockdown factors. Additional observations of experiments
and measurements on practical structures are required before
this question can be satisfactorily answered. The possibility
must be faced that the composite-material plates and shells
contain flaws of types other than those that affect isotropic
cylinders. It does not seem likely that delaminations will pass
undetected through any reasonable inspection if they are large
enough to cause the type of separate buckling that is discussed
in Ref. 69. However, smaller delaminations will still reduce
the stiffness of the shell. Although the results of the bulk of
the test data seem to be reassuring, the fear that repeated
loading can cause a growth of such flaws is not completely
dispelled.

A final evaluation of the state-of-the-art must, of course,
be based on results from laboratory tests and from the ex-
perience acquired by use of composite material in structural
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applications in the past. Many experimental results on the
buckling of composite-material plates and shells have been
presented over the last few years. In general, they tend to
indicate that the theory for composites is approximately on a
par with the theory for metal shells with respect to its
reliability. It is prudent to assume, however, that quality
control may be better for laboratory test specimens than for
mass-produced structural components. The literature scanned
during a recent evaluation of the state-of-the-art’® contains
little information about the performance of actual hardware.

In Ref. 12 a procedure is presented for calculation of a
lower bound to the buckling load. This procedure, to be
described in more detail later, is based on Koiter’s special
theory® and the assumption that cylinders with the same
effective radius-to-thickness ratio (R/t), have identical
dimensionless amplitudes of axisymmetric imperfections
when these imperfections are expressed as a percentage of the
wall thickness of an equivalent isotropic shell with the same
wall radius of gyration as that of the composite cylinder.
Predictions with use of this method were compared in 1970 to
the test results on composite cylinders available at that time.
All the test specimens failed above the prediction by this
lower-bound method. However, a comparison shows that the
procedure is only slightly less conservative than direct ap-
plication of the knockdown factor for the equivalent isotropic
cylinder with the same (R/¢),. A similar evaluation of results
obtained in later experimental investigations would be of
value. As of this writing there is little reason to recommend
knockdown factors for cylinders of composite materials
under axial compression different from those chosen from
charts for the equivalent isotropic cylinder. For cylinders in
torsion or external pressure, a knockdown factor of about 0.8
seems to be appropriate.”! For fairly wide cylindrical panels
(or local buckling between stiffeners of complete cylinders)
the results in Ref. 72 indicate that knockdown factors similar
to those for complete cylindrical shells must be used. Suf-
ficiently narrow panels of isotropic material are able to carry
loads above the critical load. However, due to brittleness,
such use must be further tested before it can be recommended
for the design of panels made of composite materials.

Elastic-Plastic Post-Bifurcation Analysis

Practically all of the development and application of
asymptotic postbuckling theory including the effect of
plasticity has been done in the last decade by Hutchinson,
Tvergaard, Needleman, and their co-workers.!7-19:47,73-80
Hutchinson gives a summary in Ref. 18 and Tvergaard in Ref.
17. The theory represents extensions to the general theory of
uniqueness and bifurcation in elastic-plastic solids derived by
Hill in 1958-19598182 and the general postbuckling theory
developed by Koiter for elastic structures in 1945, 2546

Bifurcation in the plastic range occurs under increasing
load, so that unlike the elastic cases, the maximum load-
carrying capability of perfect structures is slightly above the
bifurcation load A and occurs at amplitudes w, for which a
finite amount of material has experienced strain reversal.

Perfect Elastic-Plastic Structures

For the plastic range an asymptotic theory of initial
postbifurcation behavior of perfect structures was developed
by Hutchinson. 873 An asymptotic expansion is obtained for
the initial post-bifurcation load in terms of the bifurcation
modal amplitude w,, as in Koiter’s elastic postbuckling
theory. In the plastic range the treatment is complicated by
the phenomenon of elastic unloading, which starts at
bifurcation and spreads into the material as the buckling
modal amplitude increases. When the buckling mode is
unique the asymptotically exact expression for the load
parameter A in terms of the normalized buckling modal
amplitude w, is

MAe=1+X,w,+\,wi+s ®)
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with 0<B< 1. The value of 3 depends on the shape of the
unloading regions.!® The constant A, is positive since
bifurcation takes place under increasing load. Its value is
determined by the requirement that plastic loading takes
place. The coefficient N, is negative, so that the truncated
expansion [Eq. (8)] can be used to estimate the maximum
support load of the perfect structure, which is slightly above
the critical bifurcation load. An extension of the asymptotic
expansion [Eq. (8)] to cases of several coincident buckling
modes has not been carried out. The asymptotic theory for
plastic post-bifurcation of perfect structures has been applied
by Tvergaard and Needleman to study the behavior of
structures with symmetric’ and asymmetric post-bifurcation
behavior, 75:83.84

Imperfect Elastic-Plastic Structures

In 1972 Hutchinson” reported the results of a numerical
axisymmetric plastic buckling analysis of perfect and im-
perfect spherical shells loaded by uniform external pressure.
For very small imperfections the plastic buckling load is not
as sensitive to imperfections as is the elastic buckling load.
Also, as Hutchinson points out, imperfection sensitivity is not
as severe a problem for plastic as it is for elastic shells because
plastic buckling requires relatively high thickness-to-radius
ratios for which it is much less difficult to manufacture
“‘reasonably perfect’’ shells. This conclusion is borne out by
the comparisons between test and theory for a great variety of
axisymmetric shells shown in Ref. 65.

Hutchinson further discusses the effect of small im-
perfections on plastic buckling loads in Ref. 77. There he
provides an asymptotic estimate of the load at which elastic
unloading begins. For many unstable structures this load is
only slightly below the maximum load. An asymptotic ex-
pression for the maximum load, such as given by Koiter’s
general theory for elastic shells [Egs. (5) and (6)] is not yet
available. The main problem is that the maximum load of the
structure with an infinitesimal imperfection in the form of the
critical bifurcation buckling mode is not infinitesimally close
to the bifurcation point, as is true in the elastic range, but lies
a finite distance away. Consequently, elastic unloading
usually occurs before the maximum point is reached. An
asymptotic expansion of the initial part of the equilibrium
solution for the imperfect structure is valid only to the point
at which elastic unloading begins. Representation of the
remaining part requires a second asymptotic expansion that
accounts for the growing elastic unloading region.

Hutchinson and Budiansky,’”® Needleman and
Tvergaard,” and Tvergaard® have devised asymptotic
theories for the plastic maximum loads A of imperfect
structures with use of hypoelastic theories (J, flow theory
without elastic unloading). Even though these asymptotic
analyses ignore elastic unloading, they yield accurate
predictions of the maximum loads.

Qualitative Guidelines for Imperfection Sensitivity

The question so often asked by the analyst is: Given the
idealized structure and loading and given the means by which
to determine the collapse and bifurcation buckling loads,
what ‘“‘knockdown’’ factor should be applied to assure a
reasonable factor of safety for the actual imperfect structure?

We shall see examples in which shells exhibit load-carrying
capability considerably greater than that corresponding to the
lowest eigenvalue. Postbuckling stability is also exhibited by
simple columns and flat plates. On the other hand, it has been
shown that the critical loads of axially compressed cylindrical
shells and externally pressurized spherical shells are extremely
sensitive to imperfections less than one wall thickness in
magnitude. These highly symmetrical systems are very sen-
sitive to imperfections because many different buckling
modes are associated with the same eigenvalue or closely
spaced eigenvalues, the structure is uniformly compressed in a
membrane state, and the buckling modes have many small
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waves. Very small local imperfections will tend to trigger
premature failure. The buckling loads of most practical shell
structures are somewhat sensitive to imperfections, but not
this sensitive. How much so is a very important question.

Buckling loads associated with local failure due to some
known peculiarity of the structure which can be modeled a
priori are generally less sensitive to unknown imperfections
than are loads associated with buckle patterns covering a large
percentage of the surface area. Redistribution of the stresses
occurs as the load is increased; a serious unknown im-
perfection is less likely to appear in the local area of the
failure and considerable local prebuckling deformations to
occur, tending to diminish the significance of the initial
unknown imperfections. Failure loads of structures that are
subjected to enforced displacements are likely to be less
sensitive to initial imperfections than are those of structures
subjected to enforced loads. In the former case the growth of
an isolated buckle near the worst imperfection tends to cause
a reduction of the stress in that area, shifting the load to the
better parts of the structure. Buckling of cylinders with
cutouts and locally loaded shells are examples of this. Thicker
shells appear to be less sensitive to imperfections than thinner
shells simply because it is easier during fabrication to control
the quality of the shell. Imperfection amplitude expressed in
terms of wall thickness is therefore likely to be smaller the
thicker the shell. Cylinders subjected to external pressure are
less sensitive to imperfections than are cylinders subjected to
axial compression because the axial wavelengths of the
buckles are longer in the former case and eigenvalues do not
cluster above the critical value. Hence, very small local im-
perfections do not affect the critical pressure as much as they
do the critical axial load.

4. Nonlinear Collapse

Three buckling phenomena will be discussed in this and the
next two sections: nonlinear collapse (Fig. 3.10c), bifurcation
buckling from a deformed prebuckling state in which
nonlinear prebuckling effects are significant (Fig. 3.10d), and
buckling which is critically affected by boundary conditions
(Figs. 3.10e and 3.10f).

As has been emphasized already, loss of stability of a shell
structure may be due to nonlinear collapse (snap-through) or
to bifurcation buckling. The purpose of this section is to
present examples in which the failure mode is nonlinear
collapse. Examples discussed include axisymmetric coilapse
of elastic-plastic monocoque cylinders under axial com-
pression and general collapse of a straight pipe under uniform
bending, of cylindrical panels and shells with concentrated
loads and cutouts, and of noncircular cylinders under axial
compression. The section closes with an example of
axisymmetric collapse of an axially compressed complex
rocket interstage. The collapse is caused by a local load-path
eccentricity that gives rise to concentrated bending and local
plastic flow.

Elastic-Plastic Collapse of Axially Compressed Monocoque Cylinders

Tests have been conducted on fairly thick metal cylinders
by Lee,® Batterman,8 Sobel and Newman,® and others
referenced in Sewell’s survey.$ Tests on truncated cylinder-
like (steep) conical shells have recently been conducted by
Ramsey.? In all of the tests, end displacement was con-
trolled. Local end effects such as bulging due to Poisson’s
effect, so obvious in Fig. 2.1, were ignored in early analyses
of plastic buckling of axially compressed cylinders. Bat-
terman® used flow theory and Gerard® used deformation
theory. Murphy and Lee?! were the first to include the effect
of radial end restraint on plastic buckling load predictions.
End effects are also accounted for in the analyses of
Bushnell® who used the BOSORS computer program, and
Sobel and Newman,® who used STAGSC.® All of the
studies in which end effects are included are based on in-
cremental flow theory and all predict that the collapse load
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corresponding to axisymmetrical deformation occurs before
bifurcation, as shown in Fig. 2.1. Comparisons between
BOSORS predictions and Lee’s and Batterman’s tests are
given in Ref. 65.

The inclusion of end radial restraint in theoretical models
essentially eliminates the discrepancy between test and theory
and reveals that, in the case of plastic buckling of axially
compressed cylinders tested in the usual way, it is not
necessary to resort to the use of a bifurcation buckling
analysis with deformation theory or flow theory with a
singularity in the loading surface in order to bring test and
theory into agreement. Fairly thick metallic cylinders
(R/t<90) are not very sensitive to initial random im-
perfections if they buckle at stresses above the material
proportional limit. The axisymmetric bulge which develops
near an end, so evident in Fig. 2.1, represents a predictable
“imperfection” that grows with load and is much more
significant than any wunknown imperfections due to
fabrication or handling errors.

Gellin®? shows that collapse loads of axially compressed
cylinders buckling in the plastic range are not as sensitive to
initial axisymmetric imperfections as are collapse loads of
elastic cylinders. Hutchinson?® demonstrates the same result
for externally pressurized elastic-plastic spherical shells. This
fact, the fact that the tangent modulus of most metals
decreases by more than an order of magnitude within a stress
range of 20% of the 0.2% yield stress, the fact that high-
quality cylinders with the relatively low radius-to-thickness
ratios required for plastic buckling are easier to fabricate than
those with high R/¢, and the fact that significant predictable
axisymmetric bulges due to radial end restraints grow as the
load is increased combine to reduce dramatically the
deleterious effect of random unknown imperfections. We can
therefore make fairly accurate predictions of the collapse
loads of axially compressed cylinders tested in the usual way.
Note that this conclusion may not apply to cylinders in which
the ends are locally tapered and in which other devices are
introduced into a test to prevent failure due to end bulging as
shown in Fig. 2.1.

Bending of Long Tubes and Elbows

The elastic-plastic collapse and bifurcation buckling
analysis of straight and curved tubes subjected to bending is
needed for the design and evaluation of nuclear powerplant
piping components, offshore pipelines, and other structures
involving tubular members. Most of the recent work on
piping has been motivated by a desire to be able to predict
stress, stiffness, and limit moments of piping systems in
nuclear reactors. Since the most flexible and highly stressed
piping components are elbows, a significant portion of the
total effort has been focused on test and analysis of various
elbows under in-plane and out-of-plane moments. In the
offshore oil industry the laying of underwater oil pipelines
involves the bending of rather large-diameter straight pipes in
the presence of external hydrostatic pressure. The degree of
ovalization of the pipe cross section under bending is very
much affected by the external pressure.

One of the earliest efforts in nonlinear structural analysis
was presented in 1926 by Brazier.??* His paper is concerned
with the problem of the stability of long cylindrical shells
under bending. If a long tube is subjected to bending, its cross
section flattens. Consequently, its bending stiffness
deteriorates with increasing load. The primary path, a graph
showing the bending moment as a function of applied cur-
vature, exhibits a maximum. Brazier performed a somewhat
approximate analysis and found that the limit of stability is
given by

M= (2V2/9) (Emah? /NT—=v?) )
in which « is the tube radius and 4 its thickness. If the

maximum stress caused by this moment is computed with use
of the undistorted cross-section properties it is found that
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with p=0.3
0,=0.33E(h/a) (10

The problem of the stability of circular cylindrical shelis
under bending was solved as a bifurcation buckling problem
by Seide and Weingarten in 1961.9% Assuming that the
prebuckling behavior can be defined with sufficient accuracy
by a linear membrane solution, they found that the critical
buckling stress is only 1.5% higher than the critical uniform
compression stress for a shell with a/h=100. For thinner
shells the difference is even smaller. Thus for all practical
purposes, the critical stress corresponding to the Seide-
Weingarten model with »=0.3 is ¢, =0.6E (h/a). This value
is well above the critical stress found by Brazier for infinitely
long cylinders.

Boundary conditions usually restrict deformations so that
at the shell edges the cross section remains circular. This
restrains the cross-section flattening at all axial stations.
Finite-length shells therefore collapse at load levels that are
higher than is predicted by Brazier’s analysis, as shown in Fig.
4.1. For sufficiently short shells the prebuckling behavior is
well approximated by the linear membrane solution. For
longer shells there is a coupling between the flattening of the
cross section and the formation of a short axial wavelength or
wrinkling buckle pattern. The flattening of the cross section
increases the local radius as well as the actual bending stress.
Consequently, it reduces the load level at which the wrinkling
pattern appears. For the infinitely long shell, one must
consider the possibility that the critical load corresponds to
bifurcation from a nonlinear prebuckling state. For a cylinder
of finite length, the wrinkling pattern is not orthogonal to the
smooth prebuckling flattening mode and therefore the
situation is not one of pure bifurcation. However, the
wrinkling mode as a component of the prebuckling
displacement is extremely small until a load level is reached at
which it begins to grow rapidly. The structural behavior is
therefore approximately the same as if a bifurcation point did
exist. More details are given in Refs. 5, 19, and 96, including a
rather complete survey of elastic and elastic-plastic collapse
analyses and tests of tubes and elbows under bending.
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Numerical Strategies for Two-Dimensionally Discretized Problems

Most of the examples of nonlinear collapse shown so far
can be analyzed with mathematical models in which the
discretization is one-dimensional. An exception is the collapse
of finite-length tubes in bending just described. The problems
described in this section must also be treated with two-
dimensional discretization. The distinction between one- and
two-dimensional discretization is important because of the
great difference in computer cost for cases with equivalent
nodal-point density. With one-dimensionally discretized
models, convergence with increasing nodal-point density is
not too important because one can generally afford to provide
more than enough nodes to be on the safe side. With two-
dimensionally discretized models, however, limitations of
budget for computer runs and limitations of computer core
and auxiliary mass storage capacity often dictate the use of
models with rather sparse nodal-point distributions. The
quality of the solution is often questionable because the
sparsely discretized models behave differently from the actual
continuum and the size or even the sign of the error is rarely
known.

Prediction of nonlinear collapse of structures that require
two-dimensional discretization is expensive because large
systems of equations must be set up and solved iteratively for
many load increments. These systems of equations have fairly
large bandwidths. The great expense of solving such systems
has been a motivating factor in the search for efficient and
accurate numerical strategies. Many of these are described in
Ref. 19.

One of the strategies is to treat the two-dimensional
problem as a linear bifurcation problem. This shortcut is
cheaper than an incremental nonlinear analysis because it
involves the solution of only one linear equilibrium problem
plus one eigenvalue problem, which is usually equivalent to
solution at about two-to-four load steps of a nonlinear
equilibrium analysis. Several cases are outlined in this section,
however, for which the linear bifurcation model is
inadequate.

The question arises, of what use would a nonlinear
bifurcation model be? There are two reasons why such a
model is not usually advantageous. In the first place,
bifurcation from the nonlinear fundamental state in perfect
two-dimensional nonlinear shell problems is much rarer than
for axisymmetric shells simply because there is less symmetry
in the two-dimensional case. Therefore, bifurcation modes
that are orthogonal to the prebuckled state (determined from
nonlinear analysis) are less likely to exist. In the second place,
it is generally just as expensive to calculate the nonlinear
prebuckling state for the perfect system as it is to calculate the
nonlinear precollapsed state for the same system in which a
small general imperfection has been introduced in order to
convert any bifurcation points (such as point B in Fig. 2.2a)
into maximum load points (such as point E).

The only way in which a nonlinear bifurcation model might
be used to advantage would be to provide intermittent
estimates of the collapse load such that the total number of
load increments required to find this critical load is reduced.
Also, it may turn out that the collapse corresponds to the
rapid development of a short-wave mode superposed on a
smooth precollapsed state, as is seen in the example of the
finite-length tube in bending.® In such cases one might set up
two discretized models, a fairly crude one to capture the
smooth nonlinear precritical deformation and a locally fine
one in order to calculate accurately the short-wave bifurcation
from the smooth precritical deformed state. The generally
expensive prebifurcation nonlinear iterative solution would be
carried out with the sparsely discretized model and the far less
frequently performed eigenvalue analysis would be carried
out with the more finely discretized model.

Cylindrical Panel with a Concentrated Normal Load
Figure 4.2 shows a panel with a normal load P applied at its
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center. The panel has free longitudinal edges. The simply
supported panel collapses because distortion (flattening) of
the cylindrical cross section reduces the axial bending stiff-
ness, an effect similar to the Brazier flattening of a long
complete cylindrical shell due to bending. If the curved edges
are restrained from axial motion (clamped), axial tension
develops as the panel deflects, preventing collapse.

Note that the linear bifurcation buckling predictions for
this case bear little relationship to the true behavior. In the
simply supported case, the linear bifurcation load greatly
overestimates the load at which the panel collapses because
the bifurcation analysis does not account for the flattening of
the cross section. In the clamped case, bifurcation is predicted
when no collapse occurs because the linear analysis does not
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Fig. 4.2 Load-deflection curves for a cylindrical panel with bifur-
cation buckling loads predicted from linear theory—these results
demonstrate the inadequacy of a linear bifurcation model (from
Almroth and Brogan 9.
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Fig. 4.3 Equilibrium paths for axially compressed cylindrical shell
with two diametrically opposed cutouts. (From Buckling of Bars,
Plates, and Shells by D. O. Brush and B. O. Almroth.1! Copyright ©
1975 by McGraw-Hill, Inc. Used with permisson of McGraw-Hill
Book Co.)
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account for the stabilizing axial tension that develops in the
panel as it deflects vertically.

Collapse of an Axially Compressed Cylindrical Shell with
Diametrically Opposed Cutouts

A plot of load vs normal deflection at a point A on the edge
of the cutout is displayed in Fig. 4.3, along with a prediction
of failure from linear bifurcation buckling theory. In this case
the bifurcation analysis underestimates collapse by more than
a factor of two. The bifurcation model predicts the load at
which the vertical edges of the cutout buckle. The linear
bifurcation load does not correspond to failure of the
structure. As bending occurs near the vertical edges of the
cutouts the compressive stresses are redistributed away from
these regions and the load is carried by the remaining portions
of the shell. Thus, the shell shown in Fig. 4.3 collapses after
significant stress redistribution has taken place. In the
postbifurcation range the deformations in the neighborhoods
of the cutouts have the effect of making these cutouts appear
larger structurally than they do visually.

In general, one can assume that if the bifurcation buckling
mode is fairly local and if alternate postbifurcation load paths
are available, then a linear bifurcation buckling model will
yield a conservative estimate of the collapse load. On the
other hand, if the bifurcation buckling mode is global and if
the precollapse deformation is significant, global, and of an
unfavorable nature (e.g., curvatures decreasing) and if no
alternative load paths are available in the postbuckled state,
then the linear bifurcation buckling model will generally yield
an unconservative estimate of the collapse load.

Collapse of Axially Cempressed Noncircular Cylinders

Axially Compressed Elliptical Cylinder

Load vs end-shortening curves for perfect and imperfect
elliptical cylinders are shown in Fig. 4.4. The cylinder has a
length of 25.4 mm (1.0 in.), a thickness of 0.366 mm (0.0144
in.), and semiaxes of lengths 4.45 and 25.4 mm (1.75 and 1.0
in.). Young’s modulus is 6.895x10° Pa (107 psi) and
Poisson’s ratio is 0.3, It is subjected to a uniform end
shortening with the edges free to rotate but restrained from
moving in the radial and circumferential directions. The "
load/end-shortening curve for the perfect shell is that in-
dicated by 0ABC. The other curves correspond to imperfect
shells with the imperfection shape given by :

§= Win, /1= —&sin(mx/L) cos(66) (11)

In a test on this shell, sudden changes in the deflection
pattern (buckling) would be noticed at points A, B, and C.
Notice that the shell may carry more load than the initial peak
A indicates. While the primary buckling load A is rather
sensitive to imperfections, it appears that the second
maximum B is relatively insensitive to imperfections. Hence,
it may be suitable as a design limit.
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The curves Aw vs S at the bottom of Fig. 4.4 are buckling
modes calculated by subtraction of the displacement vectors
obtained in two sequential steps in end shortening and nor-
malization of the result. Such a subtraction yields the shape of
the fastest growing displacement component, which might be
interpreted as a buckling mode. As one traces one’s way along
the load-deflection curve 0ABC, the axial stress in the shell is
constantly being redistributed by the local growth of normal
displacement. For example, early in the load history the most
rapid growth of normal displacement occurs at the point
labeled S=2.2, the area of minimum curvature. This growth
relieves the axial stress there and permits loading above the
initial peak A. At point B the most rapid growth of normal
displacement is about halfway between the ends of the minor
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and major axes. This growth relieves the axial stress in the
corresponding area and thus permits loading to an even higher
peak C, where the rapid growth of normal displacement
occurs near the end of the major axis in an area of relatively
large curvature. The results shown in Fig. 4.4 were obtained
with use of the STAGS computer program. %

Axially Compressed **Pear-Shaped’’ Cylinder

A similar stress redistribution phenomenon occurs in the
case of the noncircular cylinder depicted in Fig. 4.5. The
behavior of this shell subjected to uniform end shortening was
also investigated with the STAGS code.% The theoretical
results are based on a two-dimensionally discretized model
with 45 circumferential nodes and 9 axial nodes covering one-
half of the circumference and one-half of the length.

The linear range in this case represents less than 1/30th of
the total load history of the shell. The rapid change in slope of
the load-deflection curve at about P=444.8 N (100 1b)
corresponds to rapid growth in normal deflection (buckling)
of the flat portions of the shell. Associated with this rapid
growth in w is a redistribution of the axial stress so that the
curved portions begin to take up a larger percentage of the
total axial load P. As more and more of the axial load is borne
by the curved portions, the slope of the load/end-shortening
curve increases until just before collapse, at which load the
entire structure fails. As in the case of the cylinder with the
cutouts, a linear bifurcation model, which predicts buckling
of the flat portions, is clearly too conservative an estimate of
the load-carrying capability unless the material of the flat
regions is so brittle that these sections fail due to excessive
bending strain in their postbuckling states.

The rather complex behavior in this case indicates the need
for a flexible strategy for calculation of collapse loads of
shells. Small load steps and frequent refactoring of the
equation system matrix are required in the load region be-
tween 444.8 and 889.6 N (100 and 200 1b), even though the
displacements are relatively small in this range. Farther out on
the load/end-shortening curve, where the displacements are
larger, rather large load steps can be used and few refac-
torings are necessary. Just before collapse many small load
steps and frequent refactorings of the stiffness matrix are
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again required. Efficient use of the STAGS code, or any code
for prediction of nonlinear behavior of shells, requires a
sophisticated iteration strategy built into it and a well-trained
user to take advantage of this strategy.

Axially Compressed Cylindrical Shell with Local Load-Path
Eccentricity

Practical shell structures are often built up of several parts
fabricated at different places. These parts must be assembled
to create the finished product. The mating of the various parts
often gives rise to instability problems which do not exist in
the separate pieces, the design of which may not have included
consideration of these ‘‘global’’ problems. Figure 4.6
represents such an assembled shell structure. It is a missile
interstage with two sections, a forward adaptor made of
composite material at missile stations (MS) 170.0-175.4, and
an equipment section made of aluminum at MS 175.4-182.8.
There is an aluminum primacord backup ring with a cavity for
primacord at a notched separation joint at MS 177.0. This
complex cylindrical shell structure must withstand axial
compression during launch. The most severe problem of
instability arises from inward excursion of the axial load path
in the region between MS 175.4 and MS 177.6. This
axisymmetric inward excursion causes axisymmetric
deflections shown in Fig. 4.7, which was obtained with use of
the BOSORS5 computer program.® Failure of the complex
structure is due to elastic-plastic collapse in the short, thin
[r=1.78 mm (0.07 in.)] aluminum section located at MS
175.9. In a test of this structure failure occurred at a load
within 1% of that predicted in the analysis.

5. Bifurcation Buckling in which Nonlinearity
of the Prebuckling State is Important

Introduction

Whereas the emphasis in Sec. 4 was on nonlinear collapse
rather than bifurcation buckling, the emphasis here is on
bifurcation buckling with nontrivial prebuckling behavior. As
was pointed out before, bifurcation from a nonlinear
prebuckling state is of practical interest only in configurations
with a great deal of symmetry. That is why the applications
here all involve axisymmetrically loaded shells of revolution.

There are two principal kinds of influences that the
prebuckling state has on the bifurcation buckling load:

1) The prebuckled loaded shell has a different shape from
the unloaded shell; given a membrane prestress distribution,
this new shape may be more likely or less likely to lose its
stability than the original undeformed shape.

2) The prebuckling membrane stress distribution is an
important factor; given a prebuckled shape of the shell, the
membrane stress distributions calculated from linear or
nonlinear analysis and membrane or bending shell theory may
drastically affect the predicted bifurcation buckling load and
mode shape.

In this section many examples will be given in which the
combination of these two influences is present.

Particular emphasis is given here to elastic-plastic bifur-
cation buckling of internally pressurized torispherical shells, a
complex problem for which both prebuckling shape change
and nonlinear material properties greatly affect the prediction
of the critical load. Comparisons from test and theory are
then given for the hydrostatic buckling pressures of two ring-
stiffened cylinders of nominally identical dimensions, one
machined from a single billet and the other fabricated by first
cold bending a flat sheet about a cylindrical die and then
welding rings to it. Predicted residual deformation patterns
due to welding are displayed for two cylindrical shells: one
with rings welded to the inside surface and the other with rings
welded to the outside surface.

Buckling of an Internally Pressurized Rocket Fuel Tank

Figures 5.1 and 5.2 pertain to this section. The geometry of
the problem is shown in Fig. 5.1. The tank wall and skirt are

BUCKLING OF SHELLS—PITFALL FOR DESIGNERS 1201

2500 t— l Symmetry Plane —= ~(
|
= ‘ Internal ?
E X Pressure, p S
~N I~ 1S
. ¢ g
= [}
<<
= I
= L I Shown
x Enlarged
(=]
8 } /Q\ =) on the
2 ' o) Next
5 i “\e“,\ g Figure
| S%Q
0 - 2:1 Ellipse
1
L | ] L
0 1500

RAD [AL COORD INATE, r (mm)

Fig. 5.1 Bottom part of rocket fuel tank as modeled for input to the
BOSOR4 computer program.

divided into segments and analyzed with use of the BOSOR4
computer program.® Under small internal pressure the
portion of the rocket fuel tank enclosed in the rectangle in Fig.
5.1 is drawn radially inward, resulting in development of a
narrow band of hoop compression that might lead to
bifurcation buckling. At the top of Fig. 5.2 is shown a
bifurcation buckling mode predicted with use of linear theory.
The modal normal displacement component w, (s,8) varies
around the circumference as w,, (s)cos 906.

This is a problem for which the use of linear theory in the
prebuckling phase of the analysis is inadequate. As the in-
ternal pressure is increased the ellipsoidal dome changes
shape. The hoop stresses are redistributed and grow more
slowly than linearly with pressure, as indicated in the bottom
part of Fig. 5.2. As the internal pressure p is increased, the
hoop resultant becomes tensile in the region where linear
theory predicts bifurcation buckling to occur and the peak
hoop compression initially increases more slowly than
predicted by linear theory, eventually reaching a maximum
value of about —800 N/mm at a pressure of 1.4 Pa, after
which it decreases with further increases in internal pressure.
Thus, the prediction with nonlinear prebuckling effects in-
cluded is that bifurcation buckling will not occur at all.

Elastic-Plastic Buckling of Internally Pressurized Torispherical Vessel
Heads

Introduction

The examples presented here fall into the same class as
those with hoop compression. The problem is of special
significance to designers of pressure vessels, many of which
have torispherical or ellipsoidal heads. An example of a
typical postbuckled pattern for an elastic shell is shown in Fig.
5.3.

This class of problems is particularly interesting because in
the range of practical design parameters predicted behavior is
found to be sensitive to prebuckling geometric nonlinearity as
well as material nonlinearity, the former effect increasing the
critical pressure and the latter decreasing it. Therefore, the
problem serves as an excellent demonstration of the kinds of
nonlinear phenomena an engineer should be aware of when he
undertakes a stability analysis. The description here applies to
both torispherical and ellipsoidal vessel heads.

Interest in buckling of internally pressurized torispherical
heads was originally stimulated by the failure of a large fluid
coker undergoing a hydrostatic proof test at Avon, Calif. in
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Fig. 5.2 Nonsymmetric buckling mode (top) and hoop resultants
(bottom) for the part of the internally pressurized rocket motor in-
dicated in Fig. 5.1.

1956. The failed vessel is shown in Fig. 1.3. The possibility of
nonaxisymmetric buckling of such a system was first
predicted by Galletly.! Mescall®® was the first to present a
solution of the nonaxisymmetric stability analysis. He used
the small deflection theory. Adachi and Benicek® conducted
a series of buckling tests on torispherical heads made of
polyvinyl chloride (PVC), chosen primarily because of the
high ratio of yield stress to Young’s modulus, which insures
that buckling occurs before large-scale yielding. The
correlation of elastic analysis with these tests was much
improved by inclusion of nonlinear geometric effects.
Thurston and Holston!® were the first to account for the
moderately large axisymmetric prebuckling meridional
rotations in the stability analysis of these heads. Since
publication of Ref. 100 many computer programs have been
written which calculate nonsymmetric buckling loads of
arbitrary elastic shells of revolution, including geometric
nonlinearity in the prebuckling analysis and prebuckling
shape changes in the stability analysis. $:22-24

Recently, several papers have appeared on nonsymmetric
buckling of elastic-plastic pressure vessel heads: Brown and
Kraus!®! calculated critical pressures for internally
pressurized ellipsoidal heads with the use of the small-
deflection theory. Bushnell and Galletly!®2 found buckling
loads for externally pressurized torispherical heads pierced by
nozzles and for conical heads with the use of large-deflection
theory in the prebuckling analysis, and Bushnell and
Galletly, ! Lagae and Bushnell, % and Galletly 10519 ysed
the BOSORS computer program to compare theoretical
predictions with tests by Kirk and Gill, ” Patel and Gill, 198
and Galletly %1% for buckling of internally pressurized
torispherical and ellipsoidal heads. Other work on stress and
stability analysis of vessel heads is surveyed by Esztergar. 10

Cause and Characteristics of Nonsymmetric Bifurcation Buckling

The development of visible buckles such as shown in Fig.
5.3 is a process and not the single event predicted by a
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Fig. 5.3 Flastic buckling under internal pressure (from Galletly,
Proceedings of Institution of Civil Engineers, Pt. 2, Vol. 67, Sept.
1979, p. 615).
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aluminum torispherical head subjected to internal pressure (from
Galletly, Proceedings of Institution of Civil Engineers, Pt. 2, Vol. 67,
Sept. 1979, p. 615). a) Meridional stresses on outside surface, p =414
kPa; b) circumferential stresses on outside surface, p =414 kPa.
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bifurcation (eigenvalue) buckling analysis. As the pressure in
a test specimen is increased above some critical value a very
localized isolated incipient buckle forms in the knuckle
region, invisible to the naked eye but detectable by a sensitive
probe or a strain gage. The buckle grows slowly at first, then
more rapidly, and suddenly becomes visible. This visible
buckle generally covers most of the knuckle region in the
meridional direction but has a very short circumferential
wavelength. After formation of the first buckle the pressure
can be further increased substantially, causing the formation
of other visible buckles in the knuckle region, each isolated
circumferentially from its neighbors, as shown in Fig. 5.3. An
isolated buckle, generated by circumferential compression in
the knuckle region, apparently causes the relief of this
compression within a sector surrounding the buckle, thereby
preventing the formation of the uniform buckle pattern
typical of buckled axially compressed cylindrical or externally
pressurized spherical shells.

The theoretical results shown here are derived from an
analysis which is founded on the assumption that one is
especially interested in the pressure at which the first incipient
buckle forms. Therefore, buckling is treated as a single event
predicted by means of an eigenvalue formulation which yields
the bifurcation point B in Fig. 2.2a.

Geometric Nonlinear Effects

Given the assumption that the wall material remains elastic,
the most significant determinant of the buckling pressure for
a shell of given properties is the hoop stress resultant N, in
the area of the knuckle where buckling occurs. The bottom
plot in Fig. 5.4 shows that in this region N,, does not grow
linearly with pressure but quite a bit more slowly. The slower-
than-linear growth of compressive N,, in the axisymmetric
prebuckling regime is due to two factors: As the pressure is
increased the torispherical shape ““tries’’ to become more
spherical. The second and smaller factor causing slower-than-
linear growth of N,, is the pressure-rotation effect. The
nonlinear growth of N,, explains why buckling pressures
from nonlinear elastic theory are higher than those from
linear theory.

There is another nonlinear geometric phenomenon which
has the opposite effect on the buckling load: As the pressure is
increased, the meridional curvature diminishes in the region
where buckling occurs. This axisymmetric decrease in
meridional curvature in the prebuckling regime has the effect
of reducing the circumferential stress resultant required to
cause buckling,
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Fig. 5.5 Nonlinear relationship of peak compressive hoop resultant
in torispherical head to internal pressure: a) material with con-
siderable strain hardening, b) elastic-perfectly plastic material.
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Nonlinear Material Effects

The two biggest effects of plastic flow on the predicted
bifurcation buckling pressure are the following:

1) The rate of change of the compressive hoop stress
resultant with increasing pressure is strongly dependent on the
rate at which the material strain hardens.

2) The ‘“‘tangent stiffness’ (integrated constitutive coef-
ficients) which govern at the bifurcation load are reduced
from their elastic values. The values of these coefficients are
sensitive to the postyield paths followed by the material points
in the stress space and the postyield paths are sensitive to the
rate at which the material strain hardens.

Figures 5.5 shows the peak hoop resultant as a function of
internal pressure for two values of postyield hardening
modulus E;. A typical behavior of mild-steel torispherical
shells is that they buckle nonsymmetrically at pressures for
which the hoop compression is diminishing in the knuckle
region, as shown in Fig. 5.5b.

Figure 5.6 demonstrates that the postyield path in the stress
space of a typical material point in the knuckle region is
strongly dependent on the hardening modulus £, Bifurcation
buckling predictions for mild-steel torispherical heads are
somewhat questionable because we do not yet understand
metal plasticity well enough to be able to predict with cer-
tainty the state of a material that has undergone non-
proportional biaxial loading.

Comparison of Test and Theory

Figures 5.7 and 5.8 pertain to aluminum torispherical
specimens tested by Patel and Gill.!'% Figure 5.8 gives
comparisons of predicted and measured incipient buckling
pressures for the heads discretized for analysis with
BOSORS®* as shown in Fig. 5.7. The ranges of pressures over
which the buckling patterns were observed to develop are also
indicated in Fig. 5.8. In Fig. 5.8:

P, =pressure at which the first buckle was fully
developed

P, = pressure at which the first buckle could be felt by
touching the surface of the specimen
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with increasing internal pressure in ellipsoidal heads with two dif-
ferent hardening moduli (from Bushnell, Transactions of ASME,
Journal of Pressure Vessel Technology, Vol. 99, Feb. 1977, p. 63).



1204 D. BUSHNELL

P ipient = Pressure at which the first buckle was detected by
a sensitive probe revolved around the cir-
cumference at a station in the toroidal knuckle

It is seen in tests that what is being characterized in the
analysis as a single event called ‘‘bifurcation buckling’’ is
actually a process occurring over a finite range of internal
pressure. The quality of the theoretical predictions of in-
cipient buckling and the behavior of the test specimens as the
pressure is increased above the incipient buckling pressure
indicate that these types of vessels are not particularly sen-
sitive to initial imperfections.

Effect of Fabrication Residual Stresses and Deformations on Plastic
Buckling of Ring-Stiffened Cylinders under External Hydrostatic
Pressure

In 1958 Ketter !0 identified four sources of residual stresses
and deformations of fabricated metal structures: differential
cooling during and after rolling sheet metal, cold bending,
various erection procedures, and welding. He considered the
effect of differential cooling in-the fabrication process on
buckling loads of axially compressed I-beams.

Cold Bending

Several authors have investigated residual stresses due to
cold bending. Almen and Black!!! give the residual stress
pattern through the thickness of a bar which has been bent
about a circular die. Queener and De Angelis!'? derive ap-
proximate formulas for residual stresses and the ratio of the
die radius R, to the final radius after springback R, for
materials with stress strain curves of the form o=Ke".
Lunchick !? determines the effect of cold bending on buckling
loads of cylindrical pressure vessels. He calculates effective
stress-strain curves for the prestressed material by averaging
effective stresses and strains at 12 stations through the
thickness of the shell wall. Such curves depend on the service
loads. Lunchick’s model is based on elastic-perfectly-plastic
material and deformation theory. It is determined in Ref. 113
that bending residual stresses have the greatest weakening
effect for cylindrical shells in which the effective stress in the
wall is near the material proportional limit at the buckling
pressure calculated with neglect of these residual stresses. For
such structures, the reduction in buckling pressure due to cold
bending can be as much as 30%. Tacey!!* has written a
computer program for the calculation of the residual stress
distribution and the effective stress-strain curve of cold-bent
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Fig. 5.7 Discretized models of torispherical heads under internal
pressure tested by Patel and Gill 1% (from Lagae and Bushnell 104),
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beams for a wide range of practical cross-section geometries.
The Bauschinger effect and possible inelastic behavior on
springback are accounted for. The hardening rule used in
Tacey’s program is a combination of isotropic and kinematic
rules.

Welding

During the 1970s much work was done on the numerical
modeling of mutlipass welding. The ASME volume,
Numerical Modeling of Manufacturing Processes,'> contains
several papers on this subject. Masubuchi !¢ wrote a survey of
the field in 1975. Three frequently referenced papers are by
Hibbitt and Marcal,!?” Nickel and Hibbitt,"® and Fried-
man.!'® The results presented in these papers are generally
obtained from sophisticated computer programs for
multidimensional analysis. Although the heat conduction and
the thermal stress problems are uncoupled, the models include
nonlinear boundary conditions for solid and liquid regions,
temperature-dependent material effects, latent-heat effects,
and convective and radiative heat-transfer boundary con-
ditions.

It is impractical to incorporate such elaborate models of the
welding process into an analysis of buckling of a ring-
stiffened shell with many welds. A simple, computationally
efficient model is introduced in Ref. 65 in which buckling
pressures are calculated for a welded ring-stiffened ellipsoidal
shell. The shell and rings are assumed to be machined and
stress relieved separately and then welded together. The ef-
fects of weld shrinkage are simulated in Ref. 65 by means of
the assumption that a certain amount of material in the local
neighborhoods of each weld is cooled below ambient tem-
perature to a difference approximately equal to the annealing
temperature. The residual stress distribution thus generated is
characterized by local tensile circumferential yielding near the
welds and elastic circumferential compression over the rest of
the cross sections of the shell wall and ring stiffeners. The
structure prestressed in this way remains axisymmetric, of
course, but the radial shrinkage varies in the meridional
direction, introducing an axisymmetric imperfection with a
characteristic wavelength equal to the ring spacing. The weld
effect thus modeled reduces the predicted buckling pressure
by about 10%.
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Bending and Welding

Few papers exist in which residual stresses are calculated
for more than one fabrication process. Chen and Ross!?
calculate residual stresses from cold bending a flat sheet into a
cylindrical shape and then welding the longitudinal seam.
They suggest that these residual stresses will cause early
column buckling of long cylinders under axial compression.
Faulkner '?! gives a survey of work done on calculation of
residual stresses due to welding ring stiffeners to cylindrical
shells and cold bending sheets into cylindrical shells and
beams into rings. He states that when ring stiffeners are
welded to a cylindrical shell of thickness ¢ there is a tensile
yielding over a length of shell equal to 29z and over a length of
the ring web equal to 5. These tensile regions are balanced by
compressive residual stresses distributed over the remainder
of the shell and ring cross sections. Typical values of 4 ob-
tained from measurements are in the range of 1.5<7<4.5.
The measured radial shrinkage at the welds is approximately
10% of the shell thickness ¢.

Residual Deformations from Welding Internal vs External Rings

In 1957 Krenzke ' investigated experimentally the effect of
welding residual stresses and deformations on plastic buckling
of ring-stiffened cylinders under external hydrostatic
pressure. Two of his specimens, designated ““M1°’ and “M2”’
were nominally identical except that the rings of specimen M1
were internal and those of M2 external. Krenzke measured
average welding distortions for specimen M1 approximately
equal to those exhibited in Fig. 5.9b, which are predicted by
BOSORS5% to result from the imposed nonuniform tem-
perature distribution shown in detail AA. An analogous
temperature distribution corresponding to externally welded
rings yields a predicted residual deformation shown in Fig.
5.9¢c. These displacements have the distribution measured by
Krenzke for specimen M2 but the amplitude of the predicted
waves is about twice that measured. It seem that, in this case
at least, about half as much ‘“‘cooldown” is required to
simulate the welding process with external rings as is required
for the simulation of welding internal rings.

In the tests the externally stiffened specimen M2 collapsed
at a pressure about 5% higher when corrected for different
material yield strengths than that for the internally stiffened
specimen. The same difference is predicted by BOSORS. The
collapse mode is characterized by formation of an axisym-
metric inward dimple. The ‘‘hungry horse’’ residual welding
deformation pattern displayed in Fig. 5.9b represents an
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Fig. 5.9 Cylinder with welded internal and external rings:
a) dimensions and BOSORS discretized reference surface; b) predicted
residual deformations after welding and before loading of specimen
with internal rings; c) predicted residual deformations after welding
and before loading of specimen with external rings.
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initial imperfection that is more harmful than the “‘cater-
pillar’’ mode exhibited in Fig. 5.9c because the former
resembles the collapse mode whereas the latter has a shape
opposite to that of the collapse mode.

Effect of Cold Bending and Welding on Buckling of Ring-Stiffened
Cylinders

The BOSORS5 computer program can be wused for
calculation of bifurcation buckling on cold-bent and welded
ring-stiffened cylinders under external pressure. Residual
stresses and deformations from cold bending and welding can
be included in the model for buckling under service loads by
introduction of these manufacturing processes as functions of
a time-like parameter, ‘‘time,’”” which insures that the
material in the analytical model experiences the proper

sequence of loading prior to and during application of the

service loads. The cold-bending process is first simulated by a
thermal loading cycle in which the temperature varies linearly
through the shell wall thickness, initially increasing in ‘‘time’’
to simulate cold bending around a die of radius R, and then
decreasing in ‘‘time’’ to simulate springback to a final
somewhat larger design radius R. The welding process is
subsequently simulated by the assumption that the material in
the immediate neighborhoods of the welds is cooled below the
ambient temperature by an amount that leads to weld
shrinkage amplitudes typical of those observed in tests. In
Ref. 123 buckling loads are calculated for a configuration
including and neglecting the cold-bending and welding
processes. These predictions are compared to values obtained
from tests by Kirstein and Slankard!?* and Slankard!®® on
two nominally identical specimens, shown in Fig. 5.10. The
specimen designated BR-4 was fabricated by cold bending the
shell and then welding machined ring stiffeners to it, and the
specimen designated BR-4A was carefully machined. Figure
5.11 illustrates the loading sequence followed in an analysis
with use of BOSORS.

In the analysis the machined specimen is predicted to fail at
3,723 MPa (540 psi), precisely in agreement with the test on
specimen BR-4A. Simulation of only the cold-bending process
leads to a prediction of p,=3.172 MPa (460 psi) and
simulation of both cold bending and welding does not change
this result. The predicted radial shrinkage due to welding is
maximum at the ring stiffeners (equal to about 8% of the shell
thickness) and minimum midway between rings, a mode
similar to that shown in Fig. 5.9¢c. The welding process ap-
parently has little influence on the buckling pressure because
of two counteracting effects: the residual welding stresses

a)
Fig. 5.10 Buckling patterns in ring-stiffened cylindrical shells: a) the
cold-bent and welded specimen BR-4, (p_, = 390,psi); b) the machined
specimen BR-4A, (p, =540 psi) (from Wenk, E., Jr., “Pressure
Vessel Analysis of Submarine Hulls,”’ Welding Research Supplement,
June 1961, p. 277).
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weaken the shell but the ‘‘caterpillar” type residual defor-
mations strengthen it.

The BOSORS simulation of the fabrication process explains
a little more than half of the experimental difference between
the buckling pressures of the machined model BR-4A and the
cold-bent, welded model BR-4. The remaining discrepancy is
probably caused by some combination of the following effects
not included in the BOSORS model:

1) There exist nonaxisymmetric initial imperfections which
are greater for fabricated models than for machined models.
These include nonuniformity in shell thickness.
Measurements of the steel plate from which specimen BR-4

“was fabricated indicate that the thickness varied by as much as
10%. 123 ‘

2) The stress-strain curve of the ‘‘Alan Wood steel’” from
which specimen BR-4 was made is unknown. The material
proportional limit may have been less than the yield stress
quoted in Ref. 125. If so, inclusion of the Bauschinger effect
in the BOSORS model would have generated yielding in
compression at lower pressures than those calculated with the
present model, which is based on an isotropic hardening law.
Presumably, the critical pressure would then also have been
lower.

3) The welding simulation is a heuristic model which is in
qualitative agreement with measurements on other specimens
made of other materials, 6512112 A rigorous treatment in-
cluding welding sequence and nonaxisymmetric effects might
lead to a lower critical pressure.

4) The sheet from which specimen BR-4 was fabricated
may have contained initial residual stresses due to differential
cooling during and after it was rolled into its flat form of
thickness 3.35 mm (0.132 in.).

6. Boundary Conditions, Transverse Shear
Deformation, and Stable Postbuckling Behavior

Introduction

This section contains a potpourri of buckling phenomena
and modeling tips for the solution of buckling problems.
First, boundary conditions are discussed. They influence
buckling loads in two ways: through the prebuckling mem-
brane stress field and through the admissible buckling mode.
An important effect is load eccentricity, which is particularly
significant for axially compressed, axially stiffened cylin-
drical shells. An example is given in which the boundary

1003

constraint has an unexpectedly large influence on the critical
load of a test panel, forcing it to buckle in a higher crippling
mode not likely to occur in the actual flight environment the
test was supposed to simulate. The section closes with a
discussion of results from buckling analyses of two rather
large discretized models, one in which collapse loads
calculated with and without transverse shear deformation are
compared and the other in which the far postbuckled state is
stable.

Effects of Boundary Conditions and Load Eccentricity

Practical shell structures are very often built in parts with
different organizations or even companies being responsible
for the design of ‘‘their’’ part. Very often buckling loads for
each part are calculated with the sometimes unjustified
assumption of simple support or clamping at the boundaries
of that part. The main purpose of this discussion is to sound a
note of warning not to take these factors for granted,
especially when one is designing test specimens and per-
forming final detailed analyses.

Figure 4.6 is an example in which a short region of par-
ticular interest, the rocket interstage between stations MS
170.0 and 182.8, is isolated and analyzed separately from the
remaining structure through the assumptions of clamping at
MS 170.0 and simple support (with additional support
provided by a rather large edge ring) at MS 182.8. The
thicknesses of the adjacent structural parts to which the in-
terstage is attached seem to justify these assumptions.
However, usually it is best to include portions of the adjoining
segments in the discretized model, possibly with a cruder
nodal point density. This is especially true if the structure is
axisymmetric and a one-dimensionally discretized model is
sufficient. A good general rule in such a case is to include in
the model ail parts of the structure that are defined, or all
parts between stations at which there is no doubt as to what
boundary conditions and loading should be assumed.

If little is known about the adjoining structures, sensitivity
studies should be performed in which both upper and lower
bounds on the degree of boundary constraint are assumed.
Before expensive test specimens are fabricated, analytical
simulations of the test should be performed, with proper
representation of the boundary conditions to be applied in the
test and account taken of the possibility of local buckling. The
effort in building and testing the expensive shroud shown in
Fig. 1.9a, for example, was largely wasted because of
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unexpected local crippling near the field joint, a failure which
could have been predicted before the test if the joint had not
been treated merely as a simple support for the surrounding
structure but instead had been modeled more rigorously.

Because of limitations in computer budgets or lack of
definition of the adjacent structural parts, it is often necessary
to establish boundaries at which there is some doubt as to
what the support conditions are and where the load path is.
For example, if one assumes that the end of the model of the
rocket interstage depicted in Fig. 4.6 is at MS 182.8, one must
then decide which of the displacement and rotation com-
ponents u, v, w, and 8 are to be restrained and at what radius
the axial load is to be applied. The purpose of this section is to
provide some examples which reveal the sensitivity of
predicted bifurcation buckling loads to assumptions such as
these.

A linear bifurcation buckling problem has the following
form

(K, +\K,1g=0 (12)

in which K, is the stability stiffness matrix, A the load factor
(eigenvalue), K, the load-geometric matrix, and ¢ the
eigenvector. Boundary conditions and eccentric loading in-
fluence the stability, in particular the bifurcation buckling
load A, in two ways:

1) The prebuckling membrane stress resultants at a given
load depend on these factors; therefore the load-geometric
matrix, K, in Eq. (12) depends on them.

2) The prebuckling deformations and the structural stiff-
ness at the boundary depend on these factors; therefore the
stiffness matrix, K, in Eq. (12), depends on them.

It is often true that the boundary conditions affect the
bifurcation buckling load and mode most strongly through
their influence on the stability stiffness matrix K,;, whereas
the load eccentricity affects the bifurcation buckling load and
mode most strongly through its influence on the prebuckling
state and hence on the load-geometric matrix K,. This
statement is probably more valid when applied to cylindrical
shells than to shells of other geometries. (Note that in relating
boundary conditions to the stability stiffness matrix K,, we
tacitly assume that the Lagrange multiplier or penalty func-
tion method is being used or that certain rows and columns of
K, have been modified to account for the boundary constraint
conditions.)

The prebuckling state of a uniformly axially compressed,
fairly long, thin monocoque cylindrical shell loaded at its
middle surface depends on the boundary conditions only
within a ‘“‘boundary layer’ or a distance of approximately
two or three times (Rt)” of the edge. The prebuckling
conditions at the edge have only a mild influence on the
predicted bifurcation buckling load, as seen from Table 6.1.
However, there are several different sets of boundary con-
ditions for which the prebuckling behavior and hence the
load-geometric matrix K, is the same but the bifurcation
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buckling load and mode shape change radically. For instance,
any change in the boundary condition having to do with the
circumferential tangential displacement v, which does not
appear in the prebuckling problem at all, drastically affects
the bifurcation buckling load and mode through changes in
the stability stiffness matrix K, only. A dramatic example is
an axially compressed cylindrical shell with free edges. The
axisymmetric prebuckling solution is characterized essentially
by the uniform compressive axial resultant N,,= —P/2xR,
but the bifurcation buckling load P, is several orders of
magnitude smaller than the classical value because the
possibility of inextensional buckling modal deformation
exists.

On the other hand, the major effect of load eccentricity on
cylindrical shells under axial compression is to produce bands
of prebuckling hoop compression or tension as well as
meridional curvature change. The load eccentricity effect is
especially significant in cylinders with axial stiffening because
the stiffeners provide an eccentric surface to push against and
the boundary layers near the supported edges are longer than
they are in the case of monocoque cylinders. Therefore, the
circumferential tension or compression generated in these
boundary layers has an important effect on the load-
geometric matrix K, and hence on the buckling load.

Boundary Conditions

Much of the early work on the effect of boundary con-
ditions on the buckling of cylindrical shells is reviewed by
Hoff.¥ Von Mises,!?¢ Nash,!?” Galletly and Bart,'?
Singer,'? and Sobel!*® studied cylindrical shells under
uniform hydrostatic external pressure. Nachbar and Hoff, 13!
Stein, 132 Fischer, 133 and Almroth!3* and others identified in
Ref. 36 treated cylindrical shells under uniform axial com-
pression. Detailed investigations were carried out by Sobel 13
and Almroth, '3 They assumed that buckling would be
symmetrical about the midlength of the cylinder generator,
and they calculated buckling loads for the eight boundary
conditions listed in Table 6.1.

The most significant result of Sobel’s analysis is the
revelation of the important effect of axial restraint =0 on
buckling pressures, even for moderately long cylinders. The
most significant results obtained by Almroth are those
corresponding to edge conditions S3 and S4, for which the
circumferential tangential displacement v is free (N,, =0).
This result, first calculated by Stein, '3 is similar to that
obtained by Nachbar and Hoff 3! for axisymmetric buckling
of an axially compressed cylinder with a completely free edge.
However, neither type of free-edge buckling is likely to occur
in practice because friction at the ends of the axially com-
pressed cylindrical shell is sufficient to prevent the buckling
modes from developing. )

Inextensional Modes

Even lower buckling loads for axially compressed cylin-
drical shells than those calculated by Almroth’** are possible

Table 6.1 Influence of boundary conditions and prebuckling behavior
on the buckling load (from Ref. 57)

’ )\cril

Hoff and

Soong 13? Almroth 134
Sobel 130 Singer 140 Actual (membrane (rigorous
nomenclature nomenclature boundary conditions prebuckling)  prebuckling)
S4 w=w  =0,=7,=0 0.5 0.502
S3 W=w, =u =71,,= 0.5 0.503
S2 SS3 w=w, =0.=v =0 1.0 0.844
S1 SS4 w=w . =u =v = 1.0 0.867
Cc4 w=w, =0,=7,,=0 1.0 0.908
C3 w=w,  =u =7,,=0 1.0 0.926
C2 w=w :aX:v/ = 1.0 0.910
Cl1 w=w, =u =v =0 1.0 0.926




1208 D. BUSHNELL

if one assumes that the edges are completely free. Cohen!36
was the first to point this out. The critical buckling stress is
several orders of magnitude lower than the classical value,
0.6E¢/R, and the mode is antisymmetric about the midlength
of the cylinder, and it involves no change in curvature of the
generators. This mode is prevented if the buckling modal
displacement pattern is assumed to be symmetrical at the
symmetry plane at the cylinder midlength. The buckling mode
is inextensional, that is, the middle surface undergoes no
stretching. This mode is unlikely to occur in tests of axially
compressed cylindrical shells because of friction.

A physical appreciation of the flimsiness of a thin cylin-
drical shell with free ends can be gained by rolling a sheet of
paper into a cylindrical shell and taping the seam. The two
lowest-energy modes of deformation are uniform ovalization
(cylinder acting like a thin ring with n_ =2 circumferential
waves) and nonuniform ovalization in which opposite ends
ovalize with a circumferential shift of 90 deg in the phase
angle of the normal displacement field. Again, n,=2. A
gentle squeeze at one end of the paper cylindrical shell will
reveal the latter mode. Since the axial load does no work as
the shell deforms in the uniform ovalization or ring mode,
only the antisymmetric #n =2 mode is critical.

A physical appreciation of inextensional behavior of
spherical shells can be gained by cutting a ping-pong ball in
half and squeezing one of the halves between your fingers.
Large deflections occur with a very small applied force. A
coffee cup dispensed from a vending machine is made with a
reinforcing ring at the top to limit the amplitude of inex-
tensional deformations caused by the squeezing pressure of
your fingers required to keep the full cup from dropping to
the floor. The shallow conical Viking aero shell'?” used for
deceleration during entry into the Martian atmosphere was
designed on a similar principle: Potentially large inex-
tensional deformations caused by nonsymmetric re-entry
pressures and n=2 type buckling are prevented by a large
edge ring. Rocket nozzles are similarly designed.

Because of the small amount of energy required to deform
shells inextensionally, designers should avoid configurations
in which inextensional deformations of the wall are free to
occur in systems subjected to destabilizing loads. Analysts
investigating buckling of shells should avoid the use of
boundary conditions that might permit inextensional buckling
unless these conditions represent the actual support. It is the
writer’s experience that users of BOSOR4 have had difficulty
when leaving some branch of the structure free at the end
because ‘“it’s not the part I’m interested in.”” Often the lowest
eigenvalue corresponds to large buckling modal displacements
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Fig. 6.1 Buckling modes for an externally pressurized spherical shell
with an edge ring of dimensionless area 4* = (4/at)(a/H) " =0.4, 6.4,
and 25.6 (from Bushnell, 4744 Journal, Vol. 5, 1967, p. 2046).
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at the end left dangling. The program user is not able to
obtain buckling in the region he is concerned about unless he
restrains this troublesome end, either through an edge ring or
by direct application of displacement constraints.

Change in Buckling Behavior with Change in Boundary Stiffness

Figure 6.1 shows predicted buckling modes for an ex-
ternally pressurized spherical shell with an edge ring of square
cross section. With a very small edge ring, the buckling mode
is almost inextensional with maximum normal buckling
modal displacement at the edge and a low critical pressure
Pe=0.03 pry (P =classical buckling pressure of the com-
plete spherical shell). With a ring of such an area as to permit
a perfectly membrane prebuckled state, the classical mode is
critical with p_, =p.,. With a very large ring, the buckling
modal displacements are confined to a ‘‘boundary layer’’ near
the edge and the critical pressureis p_, =0.84 p, .

“Long’’ Boundary Effect for Axially Stiffened Cylinders

Boundary conditions can have an unexpectedly strong
effect on critical loads, even though our intuition may con-
tradict this. Figures 6.2-6.4 illustrate this point. Figure 6.2
shows nonsymmetric pressure loading on the ring-stiffened,
corrugated rocket payload shroud depicted in Figs. 1.9a and
1.9b. The pressure distribution (Fig. 6.2a), measured in a
wind tunnel, corresponds to a small angle of attack. The
payload shroud, attached to a heavy motor stage at its aft
end, bends as a beam and the side under maximum axial
compression, the leeward side (Fig. 6.2b), buckles between
discrete rings (Fig. 6.2¢). (Buckling does not occur at the root
of the beam because the shell wall is made of thicker gage
material there, as indicated in Fig. 1.9a.) A decision was made
to test cylindrical panels clamped at the curved edges with the
same wall construction as the shroud. The question naturally
arose, how wide and long should the panels be so that the test
is representative of the situation depicted in Fig. 6.2?7 At the
time it seemed reasonable to assume that a panel large enough
to permit about two to three half waves of the buckling
pattern around the circumference and along an interior length
at least one bay removed from the clamped edges would be
adequate. However, when tested such panels failed at loads
considerably above those predicted for the full shroud. The
failure mode, an example of which is photographed in Fig.
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Fig. 6.2 Nonsymmetric pressure loading on the payload shroud
shown in Figs. 1.9a and 1.9b (from Bushnell?). a) Pressure
distribution. b) Prebuckling beam-type deflection. ¢) Nonsymmetric
buckling mode. 7, = 13 circumferential waves.
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Fig. 6.3 Crippled corrugated semisandwich panel which was sup-
posed to fail in a mode similar to that shown in Fig. 6.2¢, but was
prevented from doing so by clamped boundaries.

6.3, was crippling near one of the clamped boundaries rather
than inter-ring buckling as displayed in Fig. 6.2c. An ex-
planation is provided in Fig. 6.4: Many bays along the length
are required for the critical load of a clamped panel to closely
approach that of a simply supported panel, even though the
critical buckling mode has the inter-ring characteristic
displayed in the inset sketch in Fig. 6.4. As a result, the test
corresponding to Fig. 6.3 was unconservative. A longer panel
might have failed well below the theoretical asymptote in-
dicated in Fig. 6.4 because of random imperfections in the
panel, fabrication residual stresses, or other causes not in-
cluded in the computerized model that generated the results in
Fig. 6.4.

Ignorance of the length effect demonstrated in Fig. 6.4
might result in designs which are not optimum with respect to
weight. For example, the dimensions of the corrugated
semisandwich wall construction shown in Fig. 1.9b may be
arrived at by an assumption that local crippling is to occur at
the same axial load as inter-ring buckling, such as shown in
Fig. 6.4. If the critical load level for inter-ring buckling is
calculated with the assumption that the panel is of length
equal to the ring spacing and is simply supported at its ends,
then the local dimensions of the wall cross section will be
established based on a critical load equal to that indicated by
the asymptote in Fig. 6.4. However, actual panels used in a
practical structure contain a finite number of bays and may be
effectively clamped at certain bolted connections. Because of
the significant length effect displayed in Fig. 6.4, these
structures will cripple in a mode such as that photographed in
Fig. 6.3 before buckling in the inter-ring mode depicted in
Fig. 6.2 or 6.4.

Load Eccentricity

One of the first studies of the effect of eccentricity of axial
load on the buckling of axially compressed cylinders is
reported in Ref. 138. Singer and his colleagues have published
several papers on this topic, 13141

An interesting although somewhat indirect example of the
sensitivity of a buckling load to load eccentricity is
represented in Fig. 6.5. The problem is buckling under
uniform external pressure of a shallow spherical cap with an
edge ring. Nonsymmetric bifurcation buckling is due to the
narrow band of circumferential compression that develops
near the edge. Plotted in Fig. 6.5 are prebuckling distributions
of circumferential compression at the critical pressures for
two analytical models, cases 1 and 2. In both cases there is, in
addition to the uniform external pressure, an edge moment
M,;=3.56 N-m/m (0.8 in.-lb/in.). The test result was ob-
tained by Wang. 142 The test most resembled case 1. In case 2,
the shell is considered to penetrate the ring and terminate at
the ring centroid. In each configuration, the external pressure
is assumed to be reacted by an axial load acting through the
ring centroid. Buckling occurs at the pressures p,, indicated.
The predicted buckling modal displacements have 18 cir-
cumferential waves in both cases and are maximum near the
edge where the hoop stress resultants are maximum com-
pressive.

The predicted buckling pressure is most sensitive to the
axial component e, of the ring eccentricity. This eccentricity
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Fig. 6.5 Effect of edge ring eccentricity on predicted buckling
pressures of shallow spherical cap (from Bushnell 143),

has essentially the same effect as eccentric application of a
radial load equal to that produced by the ring. In case 1 the
meridional prebuckling stress resultant N,, produces a
clockwise moment about the ring centroid, which acts to
reduce the destabilizing hoop compression near the edge of
the cap and thus raise the critical pressure. Notice that the
hoop compression distributions near the edge corresponding
to the two very different values of critical pressure, p_, (case
1)=0.619, p,, (case 2)=0.357, are very similar, providing a
clue that it is this quantity that has the greatest influence on
the bifurcation buckling load and not the meridional com-
pression or the prebuckling shape change of the spherical cap.

General Comments about Modeling

For configurations such as just shown, in which bifurcation
buckling is due to a localized effect, the predicted buckling
load is often very sensitive to seemingly insignificant changes
in the structure or in the analytical model of it. If the analyst
perceives that a local buckling phenomenon may occur, for
instance, if he performs a stress analysis and notices local
regions of destabilizing compressive membrane forces, he
should take great care with the modeling. Local load-path
eccentricities, meridional discontinuities, prebuckling shape
change effects, and prebuckling geometric and material
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nonlinear behavior should be faithfully modeled and included
in the stability analysis. If a stress analysis reveals a local
band of circumferential or meridional compression, then a
bifurcation buckling analysis should be performed. The
minimum buckling load will generally correspond to a rather
high number of circumferential waves. A reasonably accurate
estimate, at least to within an order of magnitude, of the
critical circumferential wave number can be calculated from
the assumption that the axial and circumferential wavelengths
of the buckles will be of approximately the same lengths. If
the analytical model of the structure is reasonably good, the
predicted buckling load should be fairly close to the test loads.
Sensitivity to imperfections is much less important in such
cases because the structure has a built-in, known, local im-
perfection that is generally large compared to any random
manufacturing errors.

Transverse Shear Deformation Effects

Plate and shell theories represent means to simplify the
general analysis of structures by the introduction of
assumptions that make the displacement functions of two
rather than three spatial coordinates. Usually this reduction is
achieved by use of the assumptions:

1) Normals to the reference surface remain straight during
deformation.

2) Normals to the reference surface remain normal after
deformation.

3) The transverse normal stress is negligibly small.

The assumption that the normals remain normal to the
deformed surface means that transverse shear deformation
has been neglected. This assumption is certainly acceptable if
the shell is sufficiently thin compared to its smallest surface
dimension. Such theories are referred to as first-order
theories. A second-order theory may, for example, be ob-
tained if the first of the three assumptions is retained but the
second discarded. Such theories have been presented by
Reissner'** and Mindlin.** Higher order theories can be
obtained if the first assumption is also discarded, but it is
questionable whether uses of such theories have any ad-
vantages in comparison to a complete three-dimensional
analysis.

Laminated Composité Materials
The argument for retention of the effect of transverse shear
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Fig. 6.6 Collapse of stiffened conical shell with sandwich wall
construction (from Sharifi*®), a) Deformation at collapse. b) Collapse
load factors with and without transverse shear deformation effects.

ATAA JOURNAL

deformations in analytical models of plate and shell structures
made of laminated composite materials is much stronger for
geometries typical of practical designs than it is for isotropic
metals because the transverse shear moduli G,; and G,; are
usually one to two orders of magnitude smaller than the
longitudinal modulus E,. (In keeping with generally accepted
nomenclature, we will refer to longitudinal and transverse
elastic moduli, E, and E,, as the moduli in the plane of the
lamina parallel and normal to the fiber direction. The in-plane
shear modulus G,, is distinguished from the two transverse
shear moduli, G,;; and G;.) Typical values for a lamina may
be of the order E,/E, =20, G;;=0.6 E,, and G,; =04 E,.
Since the transverse shear moduli for a lamina are small in
comparison to the longitudinal elastic modulus, the transverse
shear deformations must have a bigger effect on the buckling
load of composites than it has on metallic plates or shells.
That is, the composite shells must be thinner relative to in-
plane dimensions or wavelengths before the transverse shear
effect can be omitted.

Since most generally available computer programs
presently do not include the effects of transverse shear
deformation, it is important for the designer to know the
limits of the first-order theory. For a simply supported
isotropic plate, first-order theory yields buckling loads in
error by 5% at most if the width-to-thickness ratio b/4 is
greater than 10. In order to obtain similar accuracy for
composite material, the reliable use of first-order theory is
restricted to even thinner plates. For a material with
E,/E, =30, transverse shear deformation should be included
if the width-to-thickness ratio is less than about 20.146.147 It
should be noted that this result applies to plates with simply
supported edges. With respect to buckling of plates, the effect
of clamping the edges is essentially equivalent to reduction of
the in-plane dimensions by a factor of two. It might be sur-
mised therefore that for clamped plates the transverse shear
deformation effect should be accounted for if b/h<40.
Similarly, it appears that the opposite argument applies for a
flange with one free edge: the transverse shear effect can
probably be omitted if b/4 > 10. More numerical comparisons
are needed for guidance in design. In particular, if composites
are used at elevated hygrothermal conditions, E,/E,, E, /G ;,
and E,/G,; may be very large, and the transverse shear
deformation effect therefore increased.

Sandwich wall construction may be thought of as a class of
laminated composite shell wall which is weaker in transverse
shear stiffness than ordinary isotropic or orthotropic con-
struction. Figure 6.6 shows a predicted collapse mode of an
actual part of a space vehicle. The cone is a ring-stiffened
sandwich structure supported by a monocoque cylindrical
skirt. The sandwich construction is made of aluminum
honeycomb core with composite face sheets. The nonlinear
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Fig. 6.7 Computer analysis of shear panel (from Skogh and
Stern151), a) Complex stiffened shear panel. b) Postbuckling behavior
predicted with the STAGS computer program.
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collapse load of this structure was investigated with the use of
two finite-element models and the NEPSAP computer
program. 4814 In the thin-shell theory model the sandwich
core and facings are represented as multilayered composite
elements with the effect of the transverse shear deformation
of the honeycomb core neglected. In the other analysis the
sandwich construction was modeled ‘‘exactly’’ with use of
three-dimensional orthotropic solid elements for the core and
composite shell elements for the facings. Figure 6.6a shows
the collapse mode, and Fig. 6.6b gives the load-deflection
characteristics of the two models. A 30% drop in the
predicted value of collapse as a result of shear deformation in
the core is indicated.

Bifurcation Buckling with Stable Postbuckling Behavior

The effective stiffness of buckled shear panels has
traditionally been estimated semiempirically.!® With ad-
vanced computer programs it is now possible to calculate the
postbuckling behavior of such panels rigorously. Figure 6.7
shows a curved, stiffened panel which was analyzed with the
STAGS computer program.!5! The panel was subjected to
imposed displacements at corners A and B. As the imposed
displacements are increased, the six subpanels buckle but
continue to carry load. Contour plots of normal displacement
are shown in Fig. 6.7, with solid lines indicating outward and
dashed lines inward buckles. The modified Newton method
was used, with 198 displacement increments and 35 refac-
torings of the stiffness matrix being required to reach a
displacement slightly in excess of the ultimate imposed
displacement, which was provided as a given value. According
to this numerical analysis, the effective shear moduli of the
buckled subpanels ranges 36-48% of that of the unbuckled
sheet. The discrete model contained 21 rows and 58 columns,
corresponding to a total of 4230 degrees of freedom and a
stiffness matrix bandwidth of 478.

7. Optimum Design and Modal Interaction
of Built-Up Thin Panels and Shells

Perfect Structures

Lightweight structures are often composed of curved or flat
thin sheets reinforced by fairly deep stiffeners which are
welded or riveted to the sheets. Weight limitations dictate that
the stiffeners be thin compared to their height. The problem
of designing such built-up shell structures is complicated by
the existence of many different failure modes and by the fact
that the shell wall distorts locally as loads are applied and
during buckling and vibration.

Three Types of Buckling

Three distinct types of buckling are often investigated,
usually in separate analyses. Long-wavelength ‘‘general”’
instability is treated by smearing the stiffeners!s? over the
sheet surface. Intermediate-wavelength or panel instability is
explored with the assumption of certain boundary conditions
at the stiffener locations or by inclusion of the stiffeners as
discrete elastic structures the cross sections of which are not
permitted to deform. Short-wavelength crippling is usually
predicted by analysis of flat or cylindrical panels under axial
compression.

Simple Design Procedure

Such structures are often designed through the use of an
optimality criterion: Dimensions of the shell wall and stif-
fener spacing are determined such that buckling in a general
instability mode, such as shown in Fig. 7.1a, occurs at the
same load as buckling of the skin between adjacent stiffeners,
such as shown in Fig. 7.1b. The heights and thicknesses of the
stiffener segments are established such that the local crippling
of each of these parts, as shown in Figs. 7.1c and 7.1d, occurs
at the same critical compressive strain as that in the shell wall
corresponding to general and local instability (Figs. 7.1a and
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7.1b). The design is arrived at by calculation of buckling
strains with the assumption that each part can be analyzed
separately and can buckle independently of the rest of the
structure, Simple support edge conditions are imposed at the
boundaries of each part in order to permit the use of simple
expressions for the assumed buckling mode, such as
sin(wx/L) % sinnf.

““Rolling’’ Buckling Modes

Figures 7.le-g show another type of stiffener buckling,
called ““rolling.”’ Three kinds of stiffener rolling are depicted,
one in which the panel skin participates (Fig. 7.1e) and two in
which it does not (Figs. 7.1f and 7.1g). In the former the
stiffener cross section does not deform but simply rotates
about its line of attachment to the skin. In the latter two
rolling modes the stiffener web deforms and the portion of the
cross section attached to this web translates and rotates.
Buckling of the type shown in Fig. 7.1f occurs because of
compression perpendicular to the plane of the paper. Buckling
of type in Fig. 7.1g occurs in the cases with internal rings on
externally pressurized cylindrical shells of external rings on
internally pressurized cylindrical shells. It is due to com-
pression in the web in the plane of the paper, a compression
generated because the portion of the ring attached to the end
of the web resists radial displacement. The resulting radial
compression in the web can lead to axisymmetric ‘‘wide-
column’’ buckling of the web.

Complicating Factors

One might think at first that the design method just
summarized should be conservative if the effect of
geometrical imperfections is ignored. It is clear that local
buckling of the skin between two adjacent stiffeners cannot
occur as drawn in Fig. 7.1b without forcing the stiffeners to
rotate. Similarly, local buckling of each stiffener cross-section
segment cannot occur as exhibited in Figs. 7.1c and 7.1d
independently of the other segments, because these segments
are not hinged at their junctions. The model with many hinges
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Fig. 7.1 General and local bifurcation buckling modes for a stif-
fened panel.
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between its parts should yield lower bound estimates of
buckling loads and therefore thicker parts than required for
the actual (perfect) structure, a designer might well reason.

However, because of the interaction of local and general
instability modes and the interaction of various local in-
stability modes, critical buckling loads calculated for an
assembled perfect structure are often lower than are those
calculated separately for the parts of this structure treated as
if they were hinged at their boundaries. In other words, there
are many cases for which the various types of instability
described above are not distinct. Local distortions of rings
and stringers may affect to a significant degree general and
panel instability predictions, and fairly long-wavelength
disturbances may significantly affect crippling predictions.
Figure 7.2 shows some examples. The T-ring and the cylinder
in Fig. 7.2a deform in such a way that neither component is
fully effective. Treatment of the T-ring as discrete with a
nondeformable cross section leads to nonconservative
estimates of prestress and buckling loads. Under axisym-
metric lateral pressure the cross-section area of the T-ring is
not fully effective because the flange does not move inward
uniformly. Similarily, the out-of-plane bending stiffness and
torsional stiffness of the T-ring are not fully effective in
preventing buckling. On the other hand, neglect of these
stiffness components entirely may lead to results that are
overly conservative.

If the ring has a faying flange (flange next to the shell wall),
it is often important to consider in detail the means by which
this flange is fastened to the cylinder. Treatment of the flange
as part of the ring, with the ring considered to be attached at a
single point to the cylinder, may lead to underestimation of
the buckling load since this model neglects the contribution of
the faying flange to the axial bending stiffness of the cylinder.
However, if the faying flange is considered to be an integral
part of the cylinder wall, the resulting overestimation of the
axial bending stiffness leads to nonconservative estimates of
the buckling load. These effects are explored in Ref. 153.

Figures 7.2b and 7.2¢ show parts of a semisandwich
corrugated panel undeformed, buckled (b) and crippled (c)
under an axial load (normal to the plane of the paper).
Classical analysis of buckling of such a panel treats it as an
equivalent orthotropic sheet with the wall cross section, of
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Fig. 7.2 Some structures built up of thin sections which deform
locally during loading and buckling (from Bushnell, A74A4 Journal,
Vol. 11, Sept. 1973, p. 1283).
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course, not permitted to deform locally. The presence of such
local deformations makes it very difficult to assign a priori a
torsional stiffness per length. This J factor is particularly
important in this case because of the enclosed trapezoidal
areas. Local distortions also affect the axial bending stiffness,
another significant determinant of the predicted buckling
load. The degree of local distortion is largely governed by the
way in which the corrugated sheet is fastened to the flat sheet.
Figures 7.2b and 7.2¢ correspond to cases in which the centers
of the troughs of the corrugations are riveted to the sheet.
Bonding along the entire widths of the troughs markedly
reduces the amount of distortion with a corresponding in-
crease in the stiffness and buckling load. This difference
between bonding and riveting would not be reflected in a
classical orthotropic plate analysis, except through the em-
pirical introduction of appropriate knockdown factors ap-
plied to the constitutive law to bring test and theory into
agreement. A significant example of the effect of the in-
teraction of local and general instability is displayed in Fig.
7.3¢, which shows nonsymmetric buckling of a shallow,
externally pressurized, ring-stiffened conical shell of the type
used to decelerate the Viking payload upon entry into the
Martian atmosphere.’3” Figure 7.3b demonstrates the
dramatic difference between the predictions with use of
discrete ring theory and branched shell theory and Fig. 7.3¢
illustrates the significant amount of local ring cross-section
deformation in the general instability mode.

The simplifications of the various classical analyses lead to
errors of unknown magnitude. The errors frequently cancel,
leading to fortuitous agreement between test and theory or
between predictions with crude and refined models. This is the
case with internally ring-stiffened cylinders under hydrostatic
compression. A discrete ring model should lead to
overestimation of the buckling load because the ring cross
section is not permitted to deform. However, errors in the
discrete ring model, such as the assumption that the shear
center and centroid coincide, lead to a more than coun-
teracting underestimation of the ring stiffness. For this and
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Fig. 7.3 Buckling of lightweight ring-stiffened shallow conical shell
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Fig. 7.4 Predicted buckling pressures from various discretized
models of ring-stiffened cylinder which had been previously optimized
with use of simple formulas.

other reasons it is often very difficult intuitively to construct
an accurate, simple model.

Brief Survey of Work Done

Until about 10 years ago axially stiffened panels were
analyzed as equivalent orthotropic plates. A great deal of
work of this type was done by Becker, Tsai, Block, Card,
Mikulas, Anderson, Jones, Peterson, and others at NASA in
the 1950s and 1960s. References to their work are given in
Ref. 154. In 1968 Wittrick 155 published an analysis of
prismatic structures composed of flat plates. Since 1971 a
series of papers!54156-164 hag appeared on the treatment of
buckling and vibration of prismatic shell structures. In most
of the papers the buckling and vibration modes are assumed
to be sinusoidal in the axial direction, with the wavelength of
deformation the same in all of the segments of the complex
structure. This assumption, which limits the analysis to
simply supported panels, permits the separation of variables
with consequent reduction of the problem from two-
dimensional to one-dimensional. Wittrick’s analysis 155
predicts, in a unified approach, all three types of instability
identified in the second paragraph of this section—general,
panel, and crippling; the treatment of Viswanathan et al, !5
extends that of Wittrick to allow orthotropic wall properties
and intermittent elastic beam-type supports; Williams!8
extends Wittrick’s analysis to include vibration and to in-
corporate substructuring techniques; Wittrick and
Williams 162 formalized their treatment in a computer
program called VIPASA; and Anderson and Stroud com-
bined VIPASA with an optimization routine by Vanderplatts
and Moses !9 to produce a computer program called PASCO
for the optimization of layered, stiffened composite
panels. ! van der Neut ' presents an accurate and simplified
method for determining critical axial loads of panels stiffened
by Z-shaped stringers. He finds that sideways flange bending
dominates the Euler component of the general instability

BUCKLING OF SHELLS—PITFALL FOR DESIGNERS 1213

@ n=0 b} n=3 ) n=5
Per” 2188 psi Per ™ 1991 psi

d n=12 e) n=12

Per 1874 psi Per ™ 2614 psi Per ™ 2958 psi

%

t

f n=0 @ n=3
pcr' 2072 psi

(th n=5
pcr = 1889 psi

D n=R

Pp” 1736 psi Per” 1739 psi

Fig. 7.5 Predicted buckling pressures and modes of internally ring-
stiffened cylindrical shell. (a-e) T-shaped rings treated as discrete
(cross sections cannot deform). (f-i) T-shaped rings treated as flexible
shell segments (cross sections deformable).

buckling mode more and more with decreasing restraint of the
web root.

Buckling of an Optimized Ring-Stiffened Cylinder

Figures 7.4-7.6 demonstrate the complex buckling behavior
of an optimally designed internally ring-stiffened cylindrical
shell subjected to uniform external hydrostatic pressure. Half
of the cylinder length is shown in Fig. 7.4 with symmetry
conditions imposed at the plane of symmetry and simple
support conditions (S2 in Table 6.1) imposed at the edge. The
insert in Fig. 7.4 depicts the discretized branched shell model
provided as input to BOSOR4. ?

The configuration with the dimensions identified in Fig. 7.4
was arrived at in the following way: Given that the structure
must be an internally ring-stiffened cylinder with Young’s

.modulus E=11.7x 10! Pa (17 x 10% psi), radius r=1.27 m

(50 in.), and length L =2.54 m (100 in.), we are asked to find
the configuration corresponding to minimum weight subject
to the constraint condition that the perfect shell will not
buckle under a uniform external hydrostatic pressure of 12.55
MPa (1820 psi). Application of the optimization programs
described in Ref. 167 leads to a minimum weight con-
figuration with very closely spaced rings. If one is willing to
accept a rather small penalty in weight (about 3%), one can
impose a lower bound on the ring spacing so that the final
design is more amenable to analytical treatment as a branched
shell. (Actually, the ring stiffeners in submarine pressure
hulls, for example, are farther apart than a simple op-



1214 D. BUSHNELL

timization scheme would dictate because of the expense and
practical spatial problems encountered in welding the rings to
the shell.) The dimensions called out in Fig. 7.4 correspond
closely to the optimum design with the lower bound on ring
spacing set equal to 19.5 cm (7.692 in.). This optimum design
is generated from the simplified buckling models described in
connection with Fig. 7.1.

The dashed line near the bottom of Fig. 7.4 shows buckling
pressures predicted from simplified theory corresponding to
ring web-wide column buckling (n=0, Fig. 7.1g), general
instability (n=3, Fig. 7.1a), ring rolling mode 1 (n =6, Fig.
7.1e), and local skin buckling (n =12, Fig. 7.1b), all of which
are active buckling constraint conditions at the optimum
design point.

The other curves in Fig. 7.4 were all obtained with the
BOSOR4 computer program.® If the shell were perfect and if
the material remained elastic, buckling would occur with five
circumferential waves at a pressure of 11.35 MPa (1646 psi),
as indicated by the minimum load on the curve labeled
“‘branched shell (nonlinear).’”” This curve represents results of
the most accurate analysis of the shell. The discrete ring
model yields erroneous results for high n because the ring web
is not permitted to deform in that model, with the result that
far too much strain energy is predicted to be stored in the
flange during buckling. Replacement of the ring by a simple
support restraint, as is done in the crude optimization
analysis, leads to a far better estimate of the actual buckling
pressure corresponding to n=12 circumferential waves, as
seen from the location of the open circle on the dashed line at
n=12,

Predicted buckling modes corresponding to bifurcation
with linear prebuckling analysis are exhibited in Fig. 7.5.
Local instability, identified by circles or squares in Fig. 7.4,
corresponds to modes in which the attachment lines of the
ring webs to the cylindrical shell do not move radially or
circumferentially, as illustrated by curves a, d-f, and i of Fig.
7.5. General instability, identified by triangles in Fig. 7.4,
corresponds to modes in which at least one of these at-
tachment lines moves radially, as illustrated by curves b, ¢, g,
and h of Fig. 7.5. Note that for n =6 the two curves in Fig. 7.4
labeled “‘discrete rings’’ correspond to modes of the types in
Figs. 7.5d and 7.5¢. From the branched shell model it is clear
from Figs. 7.5f-1 that the degree of bending in the ring webs

/—vSym metry Plane

550=—
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Deformation at . P
Critical Pressure Ner 5 circ. waves n=13circ. vfaves
by 1646 psi Per ™ 1646 psi Per” 1675 psi

Fig. 7.6 Bifurcation buckling of internally ring-stiffened cylindrical
shell shown in Fig. 7.4, with nonlinear prebuckling effects included.
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increases with increasing n. This is because the strain energy
stored in the flange increases with n4 for a given amplitude of
flange neutral axis modal displacement in the axial direction.
For n=12 circumferential waves there is a great deal less
modal axial flange displacement in the branched shell model
than exists for n =35, and for n =5 there is less than for n=0.

Figure 7.6 shows the prebuckled state and buckling modes
corresponding to the lowest curve in Fig. 7.4. The critical
buckling mode for n=35 circumferential waves is very dif-
ferent from that corresponding to the linear treatment.

Imperfect Structures

Two Types of Modal Interaction

We have already seen several examples of one type of
buckling modal interaction: Bifurcation buckling in which the
critical mode contains characteristics of more than one kind
of buckling, such as general and local instability. The modal
interaction effect to be discussed in this section is fun-
damentally different from the examples just described. It is
related primarily to local imperfections in the structure which
have the effect of decreasing the stiffness of it in such a way as
to decrease the critical load corresponding to general in-
stability. As shall be seen, the modal interaction effect to be
described here, that is, the reduction in load-carrying
capability due to small imperfections, is especially severe at
the design point corresponding to simultaneous general and
local instability.

Survey of Work Done

Tvergaard 18 presents an excellent survey of the work done
on modal interaction. Bijlaard and Fisher '¢® established that
local buckling of the plate elements in a column reduces the
critical load corresponding to Euler-type buckling of the
column. In 1962 Koiter and Skaloud!” emphasized that the
load-carrying capability of structures with simultaneous local
plate buckling and Euler-type column buckling may be
especially sensitive to initial imperfections. van der Neut!”!
proved Koiter’s conjecture correct in a very thorough analysis
of a two-flange column with idealized webs. Although the
axially compressed simply supported plates from which the
column shown in Fig. 7.7 is constructed exhibit stable
postbuckling behavior by themselves, van der Neut proved
that a column built up of such plates will experience the
sudden collapse usually associated with highly imperfection-
sensitive shell structures if the local plate buckling and general
column instability loads are close. Figure 7.7 demonstrates
that the degree of imperfection sensitivity is greatest in the
neighborhood of the design for which local and general in-

BIFURCATION
BUCKLING STRESS

COLUMN LENGTH —— L

Fig. 7.7 Column buckling load for two-flange model of given cross
section as function of column length and flange imperfection am-
plitude. This configuration was studied by van der Neut!’! and
Thompson and Lewis !72 (from Tvergaard 163).
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Fig. 7.8 Degeneration of an optimum design because of im-
perfections (from Thompson and Lewis 72).

stability of the perfect column occur at the same stress.

Thompson and Lewis'”? determined optimum designs for
van der Neut’s two-flange model, taking into account initial
imperfections of the flanges but assuming that the column
axis remains straight. They found that with growing im-
perfections the optimum load-carrying capacity decreases
steeply from the value corresponding to simultaneous local
and general instability of the perfect column, and that for
very small imperfections the optimum design shifts away
from that obtained from imposition of the simultaneous
buckling criterion to a design in which Euler-type buckling of
the column occurs at a lower load than local buckling of the
flanges, as shown in Fig. 7.8. Crawford and Hedgepeth!”
calculated optimum designs for lattice columns and truss-core
sandwich panels with initially locally wavy members. They
determined that both structures are imperfection sensitive, the
lattice column more so than the truss-core panel, and that the
effect on optimum design obtained with the assumption of
small imperfections is opposite to that obtained with the
assumption of larger imperfections, a finding in agreement
with that of Thompson and Lewis (Fig. 7.9). Their major
conclusion is that in neither case is the penalty great for using
the conventional practice of arriving at an optimum design by
equating local and general instability of a perfect structure.
(However, it is obvious that a load margin has to be provided
to account for initial unknown imperfections.) Maquoi and
Massonnet '™ discuss the optimum design of a square-box
column obtained from an analysis in which the effective width
concept is used and collapse is assumed to occur if the
maximum stress reaches the yield stress. Graves-Smith!7?
calculates collapse loads of box columns including the effects
of welding residual stresses, ‘‘cylindrical’’ imperfections due
to welding of the plates at the corners of the box column, and
initial local waviness.

Plates reinforced by axial stiffeners on one side are com-
mon in civil, marine, and aerospace structural designs.
Tvergaard 76177 has used Koiter’s general theory of elastic
stability 2’ to obtain asymptotic estimates of the imperfection-
sensitivity of such structures. The panels are assumed to be
infinitely wide with constant spacing b between the stiffeners,
are simply supported at the two edges on which the com-
pressive load acts, and are free on the unloaded edges. The
eccentric stiffeners are represented as simple beams. A panel
designed so that local buckling coincides with buckling as a
wide Euler column displays a high sensitivity to initial im-
perfections due to modal interaction.

For the analysis of panels for which the local and general
bifurcation buckling loads are not coincident, Tvergaard uses
the Galerkin method. The strong sensitivity to small im-
perfections is revealed in a continuous manner for
simultaneous and nearly simultaneous buckling. However, as
the model deflections increase, the postbuckling equilibrium
curves tend to flatten out so that the sensitivity to larger
imperfections is far less severe than that predicted by the
asymptotic equations derived from Koiter’s theory. The
solutions are used to study the optimum design of panels with
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Fig. 7.9 FErosion of the optimum load of the two-flange column

shown in Fig. 7.7 by initial flange imperfections o (from Thompson
and Lewis172).

various combinations of column mode imperfections and
local mode imperfections. For certain prescribed stiffener
spacings the local maxima near the design point correspond-
ing to simultaneous buckling vanishes for rather small im-
perfection amplitudes. The maximum carrying capacity of the
panel is attained above the critical stress for local buckling.
However, from the point of view of retaining high axial
stiffness at the highest possible load level, the optimum
usually corresponds to a design with the Euler load lower than
the critical load associated with local buckling of the skin
between the stringers.

A similar panel configuration has been considered by
Koiter and Pignataro,!”® who found a panel with a single
axial bay to be very sensitive to small initial imperfections at a
design corresponding to simultaneous wide column and skin
buckling but relatively less sensitive to larger imperfections, a
result in agreement with those of Refs. 176 and 177. In ad-
dition to the single-bay panel, Koiter and Pignataro treat the
important case of a panel continuous over several bays in the
longitudinal direction. For this multibay panel, the im-
perfection sensitivity is found to be further decreased because
of the elimination of the load eccentricity effect induced by
the shift of the neutral axis due to the crippling of the skin.

van der Neut!'” analyzed modal interaction for a hat-
stiffened panel with use of a two-flange model similar to that
used for the box column in Ref. 171. The sensitivity of the
critical load to the initial local waviness of the plate and of the
top of the hat stiffeners is greatest for designs for which local
and wide column bifurcation buckling loads coincide.

Thompson, Tulk, and Walker '8 performed experiments on
pin-ended eccentrically stiffened panels made of epoxy
plastic. Local imperfections of the skin between the stringers
were ‘‘fabricated’’ by heating the plastic, loading it, and then
cooling it, thus ““freezing’’ in an initial deformation pattern
with relatively low residual stresses. Imperfections in the form
of the Euler wide column mode were simulated by eccentric
application of the end load. The sensitivity of the critical load
to initial imperfections in the form of the local as well as the
wide column buckling modes is observed to be maximum at
designs for which local and general buckling of perfect panels
coincide.

Tvergaard and Needleman?®-%* have investigated modal
interaction of elastic-plastic panels. They used J, flow theory
with isotropic strain hardening. The panels are infinitely wide
and the stringers are modeled as simple beams. The effect of
local and global imperfections for single-bay and multibay
panels (multiple bays in the axial direction) are investigated.
They found that modal interaction leads to imperfection
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sensitivity in a single-bay panel with column mode deflections
such that the skin is being further compressed by bending. For
column mode deflections in which the skin is being stretched,
the considerable imperfection sensitivity found by Tvergaard
and Needleman is entirely due to the material nonlinearity.
This effect of material nonlinearity explains why the multibay
panel is not less imperfection sensitive than the single-bay
panel, as is the case in the elastic range. "8

Byskov and Hutchinson '8! solve the problem with use of an
asymptotic method similar to Koiter’s?® that provides
uniformly valid results whether the modes are simultaneous,
nearly simultaneous, or well separated. For the perfect shell,
the optimum design has simultaneous overall and local
buckling loads. Overall buckling loads and mode shapes are
calculated from a theory in which the stringers are smeared
out and the torsional rigidity of the stringers is neglected.
Local buckling is also calculated on the basis of neglect of the
torsional stiffness of the stringers. The stringers are con-
sidered to be stocky enough that they do not cripple. Initial
imperfections have the form of a sum of / bifurcation
buckling modes corresponding to the lowest i eigenvalues of
the perfect structure.

Modal Interaction in an Axially Compressed Two-Flange Column

van der Neut!'”! was the first to study in detail the behavior
of the axially compressed two-flange column shown in Fig.
7.7. The model consists of two load-carrying flanges of width
b and thickness A, connected at a distance 2¢ by webs which
arerigid in shear and laterally but which have no longitudinal
stiffness. The webs offer simple support to the flanges. In this
way the flanges have boundary conditions that are easy to
take into account analytically.

Figure 7.7 gives a review of the buckling behavior of such a
model. Long perfect columns buckle in an Euler mode
(6,=0g). The behavior of short columns is more com-
plicated: Initially the simply supported flanges buckle locally
at a stress o, =0,. However, the postbuckling behavior of
long rectangular plates is stable, so that the column with
crippled flanges continues to carry additional axial load until
it buckles in an Euler mode at a flange stress o, =750, in
which 7 is a factor (3 equals approximately 0.4083 for simply
supported long plates) that accounts for the reduced in-
cremental axial stiffness of the crippled flanges. Perfect
columns of such an intermediate length that yo, <o, <o fail
at o, =0, because of modal interaction: The crippling of the
flanges causes a ‘‘sudden’’ reduction in their axial stiffness
with consequent reduction of the Euler stress from o to nog.

It is reasonable to suspect that the critical loads of columns
in the intermediate range of lengths corresponding to the
neighborhood of ¢z =0, would be sensitive to small initial
imperfections, that is waviness, in the flanges. The amplitude
of the waves would grow as the axial load is increased, with
the result that the axial stiffness of the wavy flanges would
decrease, precipitously approaching the limiting value
1 =0.4083 times the stiffness of the perfectly straight flanges
at a load well below o or o, and leading to Euler buckling of
the beam in the range noz <o <o.T Curves are drawn in Fig.
7.7 corresponding to bifurcation buckling of columns with
straight axes but initially imperfect flanges. The quantity £ is
the ratio of the amplitude of the initial flange waviness to the

tProfessor van der Neut of the Delft University of Technology, in a
letter to the author commenting on this section, offers the following
more rigorous reasoning: ‘At o=o, overall buckling of the perfect
structure moves one flange into the postbuckling range with stiffness
reduction n whereas the other flange does not buckle. Then the
bending stiffness has the reduction n, =274/(1 + 7). With this bending
stiffness neutral equilibrium exists only at one intermediate column
length Ly=5}/L; (Lg being the length at which o5 =g,). Columns
the length of which is between L, and L are too slender for neutral
equilibrium at o=0,. They are unstable and consequently highly
imperfection sensitive.”’
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thickness # of the flange. It is seen that the greatest sensitivity
to initial flange imperfections occurs for column designs such
that o =o0,. Note that even for the column with initially
imperfect flanges, the failure stresses plotted as solid curves in
Fig. 7.7 correspond to bifurcation buckling in the Euler
mode, not to a limit load such as point E in Fig. 2.2a. The
bifurcation point is converted to a limit point only if im-
perfections are introduced into the axis of the column.

Optimization of Imperfect Columns and Panels in which Modal
Interaction Occurs

The conventional criterion of optimization for thin elastic
structures is that overall and local buckling loads should
coincide. The validity of this so-called “‘naive’’ approach was
originally questioned by Koiter and Skaloud!™ on the
grounds that simultaneous buckling might give rise to severe
imperfection sensitivity which could modify or destroy the
apparent optimum.

Figures 7.8 and 7.9 pertain to the optimum design of an
imperfect two-flange column in which simultaneous local and
general instability might occur. All designs corresponding to
various b in Fig. 7.8 and various x=0;/0, in Figs. 7.8 and 7.9
have the same weight. The point raised by Koiter and
Skaloud ! is illustrated in Fig. 7.8: An optimum design
arrived at by the bifurcation buckling analysis of a perfect
structure, dimensioned such that 6 = 0,, corresponds to some
dimension b=5,. However, the imperfect structure has a
maximum load-carrying capability at a different design point,
b<b,. Thompson and Lewis 7> found that for van der Neut’s
two-flange column the optimum design shifts to the left (Fig.
7.9) for small flange imperfections « and then back to the
right for larger flange imperfections. The implication is that
fairly well-made box columns should have dimensions such
that the Euler load is a bit less than the local flange buckling
load.

8. Design Method for Axially Compressed Cylinders

Almroth, Burns, and Pittner!? suggest the following
semiempirical method for evaluating designs of practical
cylindrical shells which may be pressurized, stabilized by an
elastic core (such as a solid propellant rocket motor), stif-
fened, of laminated composite wall construction, etc. An
effective radius-to-thickness ratio (R/t), is first calculated
from the formula

(R/1),=[5.46(C 1+ Css)Cyp/ (C;C —CH 17 (13)
with
Cu=Cy— (szx/cu)
055=C55‘ (Cgs/czz) (14)

The C; in Eq. (13) are the coefficients of the integrated
constitutive law for the complex shell wall which relate the
stress and moment resultants to the reference surface strains,
changes in curvature and twist:

[N, 1Cui Cp 0 Cy Ci 0] ( €
N, Cr, Cn 0 Cy Cy 0 €
Ny, 0 0 Cy 0 0 Cy €n
M, [~ Cis Cyp 0 Cu Cys 0 K; >
M, Cs Cys 0 C4x Ci5 0 Ks

M), ) L 0 0 Cis 0 0 Cg |26, )

(15)

Corresponding to the effective radius-to-thickness ratio
(R/t), calculated from Eq. (13), a knockdown factor ¢ is read
from one of the three empirically derived curves in Fig. 8.1
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corresponding to isotropic cylindrical shells. (Almroth et al.
recommended the 99% probability curve.) These curves were
originally derived by Harris et al. '¥2 in 1957 from data such as
shown in Fig. 3.2.

Buckling loads for the trial complex design in question are
then calculated in two ways: 1) from a wide-column formula
which includes a stabilizing contribution due to the curvature;
and 2) from a computer program based on an extended
version of Koiter’s special theory®® which is based on the
assumption that the imperfection is axisymmetric and which
accounts for stiffeners, orthotropic laminated skin, elastic
core, and internal pressure.

Critical Load from Wide-Column Theory

The critical axial load/length of the circumference
calculated from the modified wide-column formula is

Neg=Nyc+d(Nep —Nye) (16)
in which the wide-column buckling load Ny, is given by
Nye=R?Cyy(x/L)? 17
for shells without elastic cores and
Nye=1.19(R2C ) PE-/ (1—vL) 23] (18)

for shells with an elastic core of modulus E. and Poisson’s
ratio ».. In Eq. (16) the second term on the right-hand side
represents the contribution due to the curvature. N, is the
classical buckling load extended to include internal pressure
and an elastic core. A formula for N, is given in the ap-
pendix of Almroth, Burns, and Pittner’s paper.'? The
quantity ¢ in Eq. (16) is the knockdown factor read from the
appropriate curve in Fig. 8.1 corresponding to the (R/f),
calculated for the trial design from Eq. (13). This knockdown
factor is applied to the difference N, — Ny, because only
that part of the axial load is sensitive to initial imperfections,
the wide-column postbuckling behavior being characterized
by the curves shown in Fig. 2.3a.

Critical Load from Extended Version of Koiter’s Special Theory
The critical axial load/length of the circumference com-
puted from the extended version of Koiter’s special theory
(axisymmetric imperfection) is the lowest real root of the
equation
Nig+aNZg+BNp+v=0 (19
in which «, 8, and v are complicated formulas that depend on
the geometric and material properties of the shell wall and
stiffeners, the core modulus, the internal pressure, the
assumed buckling pattern wave numbers in the axial and
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circumferential directions, and the amplitude p and axial
wavelength A, of the axisymmetric imperfection.

The amplitude p of the axisymmetric imperfection is
determined a priori in the following way: A knockdown
factor ¢ corresponding to (R/t), is read from the appropriate
curve of Fig. 8.1. Corresponding to this value of ¢ the results
of Koiter’s special theory for isotropic shells are used to
obtain p. The actual imperfection amplitude to be used for the
Koiter theory analysis of the trial design is then given by the
product uf,, where ¢, is the effective thickness obtained from
Eq. (13).

It is assumed in the analysis that the axial wavelength of the
buckling pattern is twice the wavelength of the initial im-
perfection pattern. It is assumed also that the normalized
imperfection amplitude p for the equivalent monocoque
cylinder is applicable to any sinusoidal pattern of im-
perfections whose wavelength A, is equal to or larger than
the critical wavelength A\. for axisymmetric buckling of the
perfect shell. The computer program in which the extended
Koiter-type analysis is implemented first computes A.. (In the
presence of an elastic core, iteration is required.) The critical
load N is then determined from Eq. (19) for a series of
imperfection wavelengths A, until a minimum is found. The
half-wavelength of the buckling pattern, which is twice that of
the imperfection, is not allowed to exceed the shell length. In
addition, the critical load N, is, of course, minimized with
respect to the number of circumferential waves. Formulas for
the coefficients «, 8, and v in Eq. (19) are given in the ap-
pendix of Ref. 12.

Design Philosophy

The design philosophy in Ref. 12 is based on the assump-
tion that both the wide-column method and the Koiter theory
method are conservative. Consequently, in a particular case
the higher of the predictions from the two methods is used as
the design critical load. The computer program which
generated the results to be described next is listed in Ref. 183.

Numerical Resuits

In Fig. 8.2 comparisons between test and theory are shown
for more than 250 cylinders of different types. The reference
numbers correspond to the references given in the paper by
Almroth et al.!? In Fig. 8.2a, the test results are compared
with the critical load N, according to classical theory.
Although all the theoretical results are for cylinders with
simply supported edges, the test conditions are probably more
likely to correspond to clamped edges. For most cases, it is
believed  that the influence of the edge conditions is in-
significant, but there may be instances, especially for stringer-
stiffened shells, in which the test results would have been
considerably lower if the conditions of simply supported
edges could have been realized. This is illustrated in the tables
of Ref. 184 for some stringer-stiffened and some filament-
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wound cylinders, and it explains why three of the test results
are above the classical load.

In Figs. 8.2b-d the test results are compared with the higher
of the two predictions from the wide-column formula [Eq.
(16)] or the Koiter-type theory {Eq. (19)]. Figure 8.2b
corresponds to the use of the 50% probability curve in Fig.
8.1, while the results in Fig. 8.2¢ and 8.2d are based on use of
the curves in Fig. 8.1 corresponding to 90 and 99%
probability, respectively. It appears from Fig. 8.2c that the
results based on 90% probability would not be entirely ‘‘safe’’
and that the 99% probability curve should therefore be
recommended for design.

For pressurized cylinders, a series of test results at different
values of the internal pressure was often obtained from the
same test specimen. As the format of Fig. 8.2 is not suitable
for such cases, comparisons between tests of this type and the
theory summarized here are presented in separate figures in
Ref. 12.

Conclusions

It is evident that the classical buckling load is not a suitable
design limit for any of these classes of axially compressed
cylinders. Although it has sometimes been stated in the
literature that for one type of cylindrical shell or another the
classical theory would be applicable, the designer is generally
more prudent and applies conservative methods. As an
example, for stringer-stiffened shells the wide-column load
[Eq. (17)] is sometimes used as a design limit and in other
cases a part of the ‘““curvature effect” is added as given by Eq.
(16): The present method is less conservative because the
corresponding design critical load is either equal to or higher
than that of Eq. (16). For other cases, it is a common
procedure simply to apply to the classical load N, the same
reduction factor ¢ as for the infinite monocoque shell with the
same effective radius-to-thickness ratio. In Fig. 8.3 the
predictions of this simple alternative method (Npz =¢-N¢y )
are compared with those of the method recommended here
[Nor obtained from the higher predictions from Eq. (16) or
(19)]. It is seen that the latter method gives the same or higher
values in all cases and that sometimes the difference is sub-
stantial.

It is clear, therefore, that the design principles recom-
mended by Almroth, Burns, and Pittner 2 and summarized
here will lead to more economic designs than the methods that
are generally in use. At the same time, they should be entirely
safe, since out of more than 250 test spécimens of many
different types every one failed at a value above the design
load N, calculated from the higher of Eq. (16) or (19). It
seems that improvements may be possible through minor
modifications of the method. The choice of the curves in Fig.
8.1 and the definition of an effective radius-to-thickness ratio
may, for instance, be questioned. Although it is felt that the
method recommended in Ref. 12 represents a clear advantage
over present design practices, it is still an interim solution that
is acceptable only because totally satisfactory methods are not
available.

9. Examples of Structures in which Sophisticated
Buckling Analyses Affect the Design

Large Water Tank

The 1500 m?3 capacity water tank that failed in Belgium in
1972 was analyzed with use of the BOSOR4 and BOSORS5
computer programs.? Figure 9.1 exhibits a discretized
branched shell model of the tank sketched in Fig. 1.4 and Fig.
9.2 shows axisymmetric deformations at a load factor A=1.8
corresponding to collapse predicted with BOSORS. (A factor
A=1.0 corresponds to the condition that existed when the
actual tank failed.) It is necessary to include both moderately
large deflection effects and nonlinear material behavior in
order to obtain a sufficiently accurate prediction.

Figure 9.3a shows a new design suggested by Baltus and
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Massonnet.2 The predicted deformations at -collapse at the
new higher load factor, A=2.65, are displayed in Fig. 9.3b.
Again the mode of failure is axisymmetric elastic-plastic
collapse.

Notched Joint in a Rocket Interstage

Rockets for launching from Earth to space are staged. The
stages when consumed are separated from the remainder of
the vehicle at joints with notches designed to fracture under
forces generated by the explosion of a primacord contained
within a cavity extending around the circumference at the
plane of separation.

An example of such a joint, tested to failure in com-
pression, is photographed in Fig. 9.4a. Figure 9.4b shows the
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Fig. 9.1 Analysis of failure of large steel water tank shown in Fig.
1.4, segment numbering and discretization for treatment with the
BOSORS computer program.

Fig. 9.2 Axisymmetric deformation of steel water tank at load factor
corresponding to predicted collapse (A=1.0 corresponds to actual
collapse conditions existing in 1972 at the time of the disaster).
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Fig. 9.3 New design of the water tank and axisymmetric defor-
mation at load factor, A=2.65, which corresponds to predicted
collapse (from Baltus and Massonnet?). a) New design; b) predicted
deformation of new design at collapse.

a) ‘ b)
Fig. 9.4 Failure of axially compressed frangible joint typical of those
used in rockets for the separation of booster stages (from
Bushnell 136)_ a) Test specimen, b) BOSORG6 hybrid model.

test specimen modeled as a hybrid body of revolution, 185,186
By ‘“‘hybrid body of revolution’’ is meant a configuration in
which some parts of an axisymmetric structure are modeled
with the use of thin shell theory and other parts with the use of
isoparametric solid elements of revolution. In Fig. 9.4b the
long line segments represent reference surfaces of structural
parts treated as thin shells. The behavior of the structure in
the neighborhoods of the notches cannot be predicted with use
of shell theory, and eight-node quadrilateral finite elements of
revolution are therefore used in these limited regions.

Proper design of frangible joints is difficult because they
must be strong enough to carry the launch loads but weak
enough to fracture under the primacord explosion forces. If
the separating joint is to fracture reliably, it must contain a
circumferential notch or notches at the roots of which
fracture initiates. These notches act as stress raisers under the
launch loads, of course. Instability of the shell with the
notched joint embedded in it results from a complicated
interaction of load-path eccentricity and local plastic flow.
The growth of the regions in which plastic flow occurs as the
axial load is increased cannot be accurately determined from
shell theory. This local plastification exacerbates the load-
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junction between the cylinder and a conical frustrum: a) overall view;
b) expanded view of notched doublers; ¢) expanded view of neigh-
borhood of one of the notches, showing discretization with solid
quadrilateral finite elements of revolution (from Bushnell and
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Fig. 9.6 Axisymmetric deformation of rocket interstage under
uniform axial compression (the frangible joint lies within the bending
region of the cylinder-cone junction).

path eccentricity caused by the notches. The increased load-
path eccentricity gives rise to increased local meridional
rotations that precipitate axisymmetric collapse similar to that
shown in Fig. 4.7 or nonsymmetric bifurcation buckling
similar to that shown in Fig. 1.9c¢.

Figure 9.5 shows a rocket interstage with a frangible joint
similar to that displayed in Fig. 9.4, except that the primacord
tube is absent. In the computerized model, the web of the
large ring at the junction between the conical frustrum and the
cylindrical shell is treated as a flexible shell branch, with its
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flange included as a discrete ring. Axial load-path ec-
centricities exist in the upper part of the cylindrical shell,
which is made of graphite-epoxy. The rest of the structure is
made of aluminum. Details of the model are given in Ref.
187.

Certain geometrical constraints and the location of elec-
trical equipment imposed limitations on the location of the
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Fig. 9.7 Frangible joint detail, showing original and final designs.
This minor design change raises the compressive load-carrying
capability of the rocket interstage shown in Fig. 9.6 by about 10%.
a) an original design; b) final design.
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frangible joint. The best compromise resulted in its location
within the bending region in the neighborhood of the cylinder-
cone junction, as demonstrated in Fig. 9.6. This behavior
necessitates the use of the extensive model shown. It is not
sufficient to study only the immediate region of the joint or of
the notches in the frangible doublers in order to determine
accurately the critical axial load. There are nonlinear in-
teraction effects between the overall rotation, bending, and
shearing of the joint region and the local bending of the
frangible doublers due to the load-path eccentricities caused
by the notches. The hybrid shell-solid model is ideally suited
for this analysis because extensive regions in which shell
theory holds can be included in the model with relatively
minor increases in computer run costs.

The actual loading on the rocket interstage consists of axial,
shear, and bending components, as illustrated in Fig. 9.5.
However, the local stresses in the notch areas can be predicted
very accurately by an axisymmetric analysis in which the
axisymmetric compressive axial stress resultant ¥, is set equal
to

Vy=P/2nr+ (M+ St) /7r? (20)

where [ is the distance from the axial station at which S is
applied to the axial station at the notch.

Effect of Minor Design Change

Figure 9.7 shows the difference between an original joint
design and the final configuration. With the original design
(Fig. 9.7a) the axially loaded joint deforms in such a way that
approximately 56% of the total axial load passes through the
inboard frangible doubler and 44% through the outboard
frangible doubler, causing the stresses at the root of the in-
board notch to be higher than those at the root of the out-
board notch. The changes in segments 4 and 17 shown in Fig.
9.7 shift more axial load to the outboard member such that
the maximum stresses in the outboard member are slightly
higher than those of the inboard member. The original design
(Fig. 9.7a) leads to a predicted collapse load of 7004 N/cm
(4000 1b/in.) and the redesigned joint (Fig. 9.7b) leads to a
predicted collapse load of 7705 N/cm (4400 1b/in.). The 0.762
mm (0.03 in.) outboard shift of segments 4 and 17 is a bit too
much. A 0.635 mm (0.025 in.) shift would probably be better.
The deformations in the doublers at the collapse loads of the
two configurations are illustrated in Fig. 9.8.
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10. Summary

In order to produce efficient, reliable designs of structures
of which thin shells are important components, the engineer
must understand the physics of shell buckling. Thus, the
objective here has been to convey a ‘‘feel” for instability,
whether it be due to nonlinear collapse, bifurcation, or a
combination of these modes. Emphasis has been placed on
practical shell structures, which may be stiffened, segmented,
branched, discontinuous, and have complex wall con-
structions. Descriptions have been provided of some of the
peculiarities of shell buckling, including nonlinear behavior
caused by a combination of large deflections and plasticity,
stress redistribution effects, stiffener and load-path ec-
centricity effects; local vs general instability, imperfection
sensitivity, and modal interaction. Scattered throughout are
tips on modeling that will help the engineer to discover early
in the design process weak links in structures and to set up
tests with properly simulated design conditions without in-
troducing spurious failure modes. Extensive reference to
earlier work is provided.

Following several dramatic examples of unexpected
buckling of large, expensive shell structures, a description of
the two kinds of buckling, collapse and bifurcation, is given.
Examples of classical bifurcation buckling of uniformly
loaded cylindrical and spherical shells are then shown, with
comparisons between test and theory provided to emphasize
the sensitivity of these buckling loads to initial structural
imperfections. Asymptotic imperfection sensitivity theory is
summarized.

A section follows in which the cause of failure is nonlinear
collapse rather than bifurcation buckling. In certain of the
cases the predicted nonlinear collapse load is compared to a
critical load calculated from a linearized bifurcation buckling
model. Included are descriptions of buckling of long tubes in
bending, cylindrical panels under a normal concentrated load,
and axially compressed cylinders with cutouts, noncircular
cylinders, and a rocket interstage with a local axisymmetric
axial load path eccentricity.

The next section provides examples of axisymmetric shells
in which failure is due to bifurcation buckling and
geometrical and material nonlinearity of the prebuckling
behavior are important. Emphasis is first given to the non-
symmetric buckling of pressure vessels in which the
prebuckled state is characterized by meridional tension and
hoop compression. The effects of fabrication processes on
buckling of hydrostatically compressed, ring-stiffened
cylindrical shells are then described. Buckling pressures from
test and theory are compared for two nominally identical
specimens, one of which was carefully machined and stress
relieved and the other of which was fabricated by cold
bending a flat sheet into a cylindrical shell and subsequently
welding rings to it.

A brief discussion follows of the effect of boundary
conditions and load eccentricity on buckling. This section
features an example of local crippling of a large corrugated
cylindrical panel that failed in a mode different from that
intended because the test specimen was not made large enough
to permit the type of general instability that analysis shows is
critical in the actual flight vehicle.

Next, a description of buckling of stiffened panels and
shells is provided. The purpose here is to demonstrate the
types of local and general buckling to which such structures
are susceptible and reveal modal interaction effects that lead
to lower predictions of bifurcation buckling than those ob-
tained from simple formulas in which each type of buckling is
considered separately. A number of examples is given which
reveals the importance in certain cases of treating discrete
stiffener webs as flexible shell branches in analytical models.

The discussion of modal interaction is continued in a
demonstration of the increased imperfection sensitivity that
results from buckling-constrained optimization with respect
to weight of columns, panels, and shells built up of thin
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sections that fail in local and general instability modes at the
same or almost the same load. For years specialists in
buckling have called this ‘‘one-hoss-shay’’ approach to design
naive, presuming that a different design philosophy in which
the local and general instability eigenvalues are well separated
would lead to lighter structures because of milder sensitivity
to initial imperfections. Recent calculations tend to support

‘the ‘‘naive’” approach, however, although the proper

structural dimensions must of course be arrived at with due
consideration given to increased imperfection sensitivity at the
optimal design.

Some details follow pertinent to a design procedure for
axially compressed stiffened cylindrical panels and shells with
or without internal pressure and/or an elastic core. The
procedure, originally set forth by Almroth, Burns, and
Pittner,!? is based on application of a combination of a
curvature-modified, wide-column formula and Koiter’s
special theory.® It yields designs which according to ex-
perimental evidence are safe, yet are less conservative than
other approaches.

The paper concludes with two examples in which rather
sophisticated analysis methods are required in order to
identify design improvements for buckling-critical structures.
In the first, an improved design for the water tank shown in
Fig. 1.4 is arrived at and evaluated with a buckling analysis in
which moderately large deflections and nonlinear material
behavior are simultaneously accounted for.2 In the second
example the axially compressive load-carrying capability of a
frangible joint in a rocket interstage is increased by ap-
proximately 10% through a hybrid analysis in which certain
parts of the elastic-plastic structure must be modeled with use
of solid isoparametric elements because shell theory cannot
adequately predict the large-deflection, elastic-plastic
behavior in the immediate neighborhoods of notches in the
frangible members of the joint.
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