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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3783

HANDBOOK OF STRUCTURAL STABILITY
PART IITI - BUCKLING OF CURVED PLATES AND SHELLS

By George Gerard end Herbert Becker
SUMMARY

Available theories and test data on buckling of curved plates and
shells are reviewed. For torsion and external-pressure loadings, the
test data are correlated in terms of linear buckling theories for both
the elastic and inelastic ranges.

The cases which exhibit a marked disagreement between linear theory
and test data include those of curved plates and cylinders under axial
compression, cylinders under bending, and spherical plates under extermnal
pressure. These cases have been analyzed by a unified semiempirical
approach for both the elastic and inelastic ranges which is satisfactory
for analysis and design purposes.

The effects of internal pressure on buckling of elements under uni-
axial loads are discussed and data on various combined loadings are pre-
sented in interaction form.

INTRODUCTION

In Part I ("Buckling of Flat Plates," ref. 1) and Part II ("Buckling
of Composite Elements," ref. 2) of this Handbook the available theories
and experimental data are in relatively good agreement. However, in the
buckling of curved plates and shells, which is treated in the present
report, there is considerable disagreement between theory and experiment
in many cases. As & consequence, considerable reliance must be placed
on semiempirical methods using theory as a guide. In order to minimize
the use of differing semiempirical approaches which have appeared in the
literature, a unified presentation of experimental and theoretical results
on buckling of curved plates and shells is attempted.

The fundamentals of the buckling behavior of curved elements are
described in the section "Physical Behavior of Curved Elements" and the
linear and nonlinear theories relating to stabilility of curved elements
follow in "Stability Theory of Curved Elements.” The principles presented
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in these introductory sections are referred to throughout the report.

The unification attempted in the various sections utilizes the principles
and theory of the above-named iwo sections a5 a guide in establishing semi-
empirical methods where theory is deficient.

Large discrepancies between linesr theory and test data have long
been known to exist for the buckling of axially compressed cylinders
In the section "Circular Cylinders Under Axial Compression," three basic
concepts are used in an effort to resolve the discrepancies from a struc-
tural analysis and design standpoint. In the first, the relation between
buckling stress and cylinder-wall curvature is shown to give correlation
with the dats when s semlempirical construction is utilized based on the
limiting data for short and for long cylinders. The transition between
these cases 1s guilded by the results of linear theory. The second con-
cept relates to the end effects on short cylinders which result in signif-
lcant increases in the buckling-stress coefficient in the transition
region. . - —

The third concept, which aspplies to long cylinders, is based upon
the use of the classical equation for axilal-compressive-buckling stress
of & circuvlar cylinder utilizing a coefficient C which is a function
of r/t. Test data lie in a range of large values of r/t, for the most
part, whereas theory defines the relation between C and r/t for
relatively small values of r/t. In this report the two are shown to
coalesce, thereby providing a continuous dependence of C upon r/t.
This permits correlation of inelastic-buckling date with theory for the
pertinent plasticity-reduction factor and depicts the effect of initial
imperfections upon buckling behavior.

These concepts also are used for correletion of buckling of curved
plates in uniaxisl compression and spherical plates under external pres-
sure. In addition, the data on cylinders in bending are shown to permit
unification with the semlempirical theory resulting from these concepts.

The behavior of circular and elliptic cylinders 1ln bending is pre-
sented in the section "Cylinders in Bending, in which the concept of a
gradient effect upon buckling stress is introduced. This is applied to
the inelastic range as well as to the elastic range. In addition, the
familiar modulus of rupture is resolved Into its component elements, and
instability in the inelastic range is explored in some detail.

The behavior of cylinders buckling in torsion is described in the
section "Cylinders Under Torsion," in which test data on circular and
elliptic cylinders and on D-tubes of semicircular and semielliptic cross
section are shown to correlate reasonably well with linear theory. The
effect of internal pressure is discussed.

?..
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Behavior of circular cylinders under external pressure is discussed
in the section with that name. Buckling of circular cylinders under
combined loadings is described in the following section, in which inter-
action curves and equations are presented for various load combinations:

The behavior of axially loaded plates curved in one direction is
discussed in the section "Curved Plates Under Axial Compression."” The
approach used for axially compressed cylinders was applied here in an
effort to correlate the data with empirical theory utilizing the varidus
geometric parameters of the plates. The results of this approach are
not so well defined as those for axielly compressed cylinders although
the trends are comparable. Data on the effects of plasticity are com-
pared with inelastic-buckling theory for axlally compressed cylinders.
Also, the effect of internal pressure on axisl compressive buckling is
described.

The buckling of spherical plates under normal pressure is discussed
in the section "Spherical Plates Under Normal Pressure.” It is shown
that the wnified approach used for axially compressed circular cylinders
and singly curved plates appears to form a realistic basis for snalyzing
the spherical-plate test data. An analysis of initial imperfections is
presented based upon the measured geometric imperfections in the spherical
plates from which buckling test data were obtained. The relstion of C
as a function of r/t was constructed from this information end is shown
to give reasonable correlstion with the test results.

The sections "Curved Plates Under Shear" and "Curved Plates Under
Combined Shear and Longitudinal Compression” pertain to the buckling
behavior of singly curved plates in shear and in combined shear and axial
compression, respectively. The effects of internal pressure and plastic-
ity are discussed. The appendix summarizes the results of lmportance in
analysis and design in a convenient form.

This survey was conducted at New York University under the sponsor-
ship and with the financial assistance of the National Advisory Committee
for Aeronautics.

SYMBOLS
An plasticity coefficients
a semimajor axis of ellipse, iIn.
ag initial imperfection, fraction of sheet thickness
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axiel rigidity, Et/(l - v2)

semiminor axis of ellipse, in.; also, width of curved
plate, in.

chord of cilrculer-arc section, in.
compresslve-buckling coefficlent for long cylinders

bending-buckling coefficient for long cylinders

bending rigidity, Et3 / [12(1 - V2 )], in-1b

diameter of spherical plate (chord width), in.
elastic (Young's) modulus, psi

secent modulus, psi

tangent modulus, psi .

stress function for cylinders™

exponent in expression for ag

depth of circuler-arc section, in.

constent in expression for &g
buckling coefficlent for cylinders in bending

buckling coefficient for axlelly loaded cylinders snd
singly curved plates .

buckling coefficient for hydrostatic pressure
buckling coefficient for flat plate, in general

buckling coefficient for singly curved plate in shear

buckling coefficient for cylinder or D-tube in torsion

2T
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buckling coefficient for radial pressure on cylinder

length of eylinder or curved plate, in.

wave length of buckle axislly and circumferentislly as
used in expression for ag, in.

bending moment, in-1b

wave nmumber in axial direction of cylinders and singly
curved pletes

axial, circumferential, and shear loads applied to
cylinder

wave number in circumferentisel direction of cylinders and
singly curved plates

pressure, psi

stress ratio for bending on cylinder

stress ratio for axial compression on cylinders and singly
curved plates

pressure ratio for cylinders and singly curved plates

stress ratio for shear on singly curved plates
stress ratio for torsion on cylinders

stress ratio for axial loadlng, elther tension or compres-
sion, on singly curved plate

radius, in.

eritical redius of curvature on section of elliptic
cylinder in bending

gensitivity factor in expression for a4,

section modulus of circumscribed cilrcle, K82t

section modulus of circulaer cylinder, cu in.
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Se section modulus of elliptic eylinder, cu in. ~
>
t gheet, plate, or cylinder-wall thickness, in. : -
U,Uq unevenness factors in expressions for &g
U, v,w displacements In x-, y-, and z-directions, in.
X dimensionsl factor in expression for ay, in.
X,¥,2 coordinates for circular cylinders and singly curved -
plates, axial, tangential, and radial directions,
respectively :
y/a elliptic cylinder parameter (eq. (36))
Z general length-range parameter for cylinders, singly
curved plates, and spherical plates
1l/2
71, = L2( - ve2)-//rt
/2 L
Zb=b2<l-ve2)/ rt A
1/2 I~
Zd. = d.2 (l - Ve2) / /I‘t
o = (3/0’12)[ (Et/Es)]
g =L/
7 gredient factor )
Ye strain gredient factor )
T stress gradient factor
€ strain, in./in.
plasticlity-reduction factor o
A buckle wave length, in.
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Ve
Yp

p

o]

Op

Ocl

6

X
Subscripts:
er

emp

exp

X,y

o3 = (ck2 + 0y2 - OxOy + 312

megnification factor, kexp/kKemp

Poisson's ratio, v, = (vp - ve) (Eg/E)

elastic Poisson's ratio, 0.3 in this report
plastic Poigson's ratio, generslly 0.5

shape factor for inelastic-bending-stress dilstribution
normsal stress, psi

actual plastic stress at extreme fiber of cylinder in
bending

classical buckling stress of sphere under external pressure

)1/2

bending modulus of rupture, M/sq

shear stress, psi
cylindrical coordinate

curveture

critical (buckling stress)

empirical

experimental

edge; also, elliptic cylinder
initial

bending

compression; also, circular cyiinder

in axisl and tangential directions, respectively
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PHYSICAL BEHAVIOR OF CURVED ELEMENTS

‘Correlation of Test Data and Lineasr Theory

In Part 1 of this Handbook (ref. 1) the buckling of flat plates was
reviewed. The close correlation of experimental data on the elastic and
plastic buckling of flat plates under various types of loadings and
boundary conditions confirms the use of classical linear stebility concepts
in such problems. Furthermore, it suggests that small initial imperfec-
tlons unavoidably present in practical structural elements are unimpor-
tant from an engineering standpoint. o -

In investigating the elastic buckling of thin-wall circular cylinders,
curved plates, and thin-wall spheres, classical stabllity theory has been
used also. In genersl, however, the close correlatlon between theory and
test data observed for flet plates is not obtained for curved elements.

The amount of agreement veries and depends upon the type of loading and
the geometric pereameters of the curved element.

The most complete test data are avalleble for cylinders. These data
were reviewed by Batdorf (ref. 3) and were compered with a simplified
linear buckling analysis based on the use of Donnell's equations. This
set of equations as well as others are discussed 1ln the section entitled
"Stability Theory of Curved Elements." For the purposeés here, it will
suffice to compare the results of the simplified analysis with available
test data.

Representative elastic-buckling deta for cylinders under axial com-
pression, torsion, and lateral pressure are shown in figure 1. It can
be observed that for compressive loading the best test deta at fallure
are gpproximately one-helf of the theoretical buckling values with some
deta as low as 10 percent of theory.

Furthermore, the scatter in the data is large, even on the logarithmic
plots on which the resulis are shown becsuse of the large numerlcal range
of the peremeters. Other test data on elastic buckling of curved pletes
under axlal compression, spheres under hydrostatic pressure, and cylinders
under bendlng all behave in the characteristic manner of axially compres-
sed cylinders.

For torsion loads the test data on fallure of the cylinders are in
considersbly better agreement with buckling theory than are those for
compression. Here too, 'However, the test date are consistently below
the theoretical values. In the case of buckling under lateral pressure,
the relatlvely small amount of test data is in good agreement with theory.

The particularly poor agreement between linesr theory and tests for
exielly compressed curved elements has motilvated considerable theoretical
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investigation to determine the cause of such behavior. Some investi-
gators have maintalned that such elements are particularly seasitlve to
initial imperfections which lead to premature fallure. Others have
sbandoned classical buckling concepts. By use of large-deflection theory
in conjunction with deflection functions corresponding to the experi-
mentally observed diasmond pattern, it was found that neighboring large-
deflection equilibrium configurations exist at loads less than those of
the linesr theory. It has been suggested that the small amount of energy
required to trigger the jump to the neighboring equilibrium configurs-
tions can be supplied by small vibrations in the testing machine. Thus,
the compressed cylinder cannot reach the classical loed and fails at a
fraction of this wvalue.

These gpproaches are dliscussed at some length in the sections
"Stability Theory of Curved Elements" and "Circular Cylinders Under
Axisl Compression." At thie point, however, it seems important to inquire
for the reasons for the spparent failure of linear theory for compressive
buckling of curved elements. In this case, large-deflection theory must
be introduced, whereas for torsional buckling linear theory provides
reasonable agreement with test data and for cylinders under lsteral pres-
sure good agreement is obtained.

Postbuckling Behavior

Some explanstion on physical grounds is required to indicate when
large-deflection effects may assume importance in pesrticuler buckling
problems. For such an explasnstion, it i1s logical to consider the post-
buckling behavior of various elements, since this is the region of large
deflections.

A schemastic representation of the postbuckling behavior of axially
compressed columns, flat plates, and cylinders is shown in figure 2 for
both theoretically perfect elements and those containing initial imper-
fections. It 1s assumed that all elements behave elastically.

For the perfect column, the postbuckling behavior is essentially
horizontal in the range of Wave depth/Shell thickness velues consid-
ered here (elastic effects are negligible) and buckling can follow either
the right branch (0, 1, A+) or the left (0, 1, A-). The horizontal
behavior can be attributed to the fact that, after buckling, no signifi-
cant transverse-tension membrane stresses are developed to restrain the
lateral motion and, therefore, the column is free to deflect laterally
under the critical load. '

The flat plate, however, does develop significant transverse-tension
membrane stresses after buckling because of the restraint provided by the
boundary conditions at the unloaded edges. These membrane stresses act
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to restrain latersl motion end thus the flat plate is capable of carryling
loads beyond buckling ss indicated by the spproximately parabollc char-
acter of the stress-deflection plot of figure 2. The flat plate also

can follow either the right branch (o, 1, B+) or the left (0, 1B-).

For the axially compressed curved plate, the effect of the curvature
is to translate the flat-plate postbuckling parabola downward and toward
the right, depending upon a width-radius paremeter. For the complete
long cylinder a considerable trenslation occurs. Note that by shifting
the parsbola to the right buckling would tend to follow the right branch
only (0, 1, C) because of the lower loads involved, with the result that
the inward type of buckling is observed for curved plates and cylinders.
This inwerd buckling ceuses superimposed transverse membrane stresses
of a compressive nature so that the buckle form itself is unstable.

As & consequence of the compressive membrane stresses, buckling of
en axially compressed cylinder is coincident with failure and occurs
suddenly (snep buckling, "oilcanning”) accompanied by a considerable drop
in load. This is in contrast with the behavior of a flat plate which,
because of superimposed tension membrane stresses after elastic buckling,
can support loads in excess of the buckling load.

From figure 2 it cen be observed that the behavior of elements with
small initiel imperfections tends to follow closely that of the theoreti-
cally perfect elements except in the.reglon where o/ccr approaches 1.0.

For columns and flat plates the data for the initially imperfect element
asymptotically approach the theoretically perfect postbuckling curves for
Wall depth/sShell thickness values at which failure occurs. Thus, small
initial imperfections are relatively unimportent in these cases. For the
cylinder, however, the divergence 1s greatest in the region where buckling
and maximum load occur simulteneously. Consequently, initial imperfec-
tions can be expected to be of relatively great importance in this case

as reflected by the low test data and its large scatter shown in figure 1.

From this discussion, it can be concluded that the nature of the
trensverse membrane stresses superimposed after buckling provides en
importent clue to the discovery of ceses in which large-deflection effects
are likely to be important in buckling problems.

By returning now to the data shown in figure 1, it is possible to
understand the degree of correlation between test data and linear sta-
bility theory. As discussed above, poor agreement would be anticipated
for the axislly compressed cylinder since transverse compressive stresses
are superimposed when buckling occurs. For the cylinder under torsion,
the membrane stresses superimposed after buckling, transverse to the axes
of the buckles, are tensile. Therefore, large-deflectlon effects would
be relstively unimportant and good asgreement between linear theory and
test data would be expected.

4
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When & cylinder buckles under leteral pressure, transverse tensile
membrane stresses are superimposed along the generastors of the cylinder
and are resisted by the boundary restraints at the ends. In the case
of very long cylinders, this effect would be negligible and the load-
deflection characteristics would epproach those of a column. Actually,
under lateral pressure, the buckling of an infinitely long cylinder is
equivalent to that of a ring. TFor shorter cylinders, the superimposed
membrane stresses become progressively more important, approaching those
of a flat plate as the length-radius ratio approaches zero.

The superimposed-transverse-membrane-stress states when buckling
occurs for the cases considered above, as well as for several other
cases, are summarized in table 1. From table 1 it can be observed that
in a3l cases in which significant transverse compressive membrane stresses
are superimposed when buckling occurs, there is unsatisfactory correlation
of test data with linear stability theory. For such cases only large-
deflection theory must be used. In all other cases, linear stability
theory should be satisfactory.

STABITITY THEORY OF CURVED ELEMENTS

From the discussion presented in the section "Physical Behavior of
Curved Elements" it is apparent that classical stability theory (linear,
infinitesimal deflections) yields satisfactory correlation with test date
when tensile (Z 0) transverse membrane stresses sre superimposed after
buckling. In cases in which significant transverse compressive (< 0)
membrane stresses develop, the buckle form itself tends to be unstable
and nonlinear theory (finite deflections) has been used in the attempt
to resolve the discrepancies between test data and clessical buckling
theory.

It is the purpose in this section to review the mathematical tech-
niques available for the solution of linear and nonlinear problems asso-
ciated with buckling of curved elements containing no initial Imperfec-
tions. The theoretical buckling load is of importance because it closely
coincides with the failure of cylinders, of wide plates of sharp curvature,
and of spheres. For pletes of small curvature, buckling marks the region
in which continued spplication of load results in an accelerated growth
of lateral deflections which ultimately leads to fallure.

In small-deflection (linear) stability theory, the deflections are
assuned. to be infinitesimsl. Thus, the stralns are linesr functions of
the displacements and therefore the stresses are also linear in displace-
ments. As a result, linear equilibrium differential equations in terms
of displacements are obtained. In Timoshenko's book on stability theory
(ref. 4), the solutions for a large number of curved-element elastic-
buckling problems are presented. ‘These solutions are based on a set of
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three equilibrium egquations which vary only in minor terms from those
suggested by Fligge (ref. 5). The complex geometry involved in distor-
tions of curved elements is responsible for widespread dissgreement among
investigators as to the proper minor terms to be included in the strain-
displacement relationships and hence .in the equilibrium equations.

By omitting terms which are of small magnitude when the cilrcular
cross section of a thin-wall cylindrical element 1s distorted, Donnell
reduced the set of three equillbrium equations to a single eighth-order
partial differential equatlon in the radial displacement w (ref. 6).

For plastic buckling of cylindrical elements, Gerard utilized the simpli-

fied strain-displacement and equilibrium equations of Donnell and obtained
a set of three equilibrium equations in the displacements (ref. 7). These
equations reduce to Donnell's single elghth-~order equilibrium equation in

the elastic case.

In large-deflection (nonlinear) theory, the deflections are assumed
to be finite though small. They are large, however, as compared with
those of small-deflection theory. The strain-displecement relations now
include nonlinear terms and therefore the equilibrium equations in terms
of displacements are nonlinear. Donnell, in his approximate analysis of
the effects of initial imperfections on the buckling behavior of compres-
sed cylinders, derived a large-deflection equilibrium equation (ref. 8)
which is an extension of that derived by Von Kérmdn for lerge deflections
of flat plates (ref. 9). By use of a corresponding energy formulation,
Von Kérm#&n and Tsien investigated the postbuckling behavior of compres-
sed clrcular cylinders (ref. 10). They discovered that neighboring large-
deflection equilibrium configurations existed at loads comsiderably below
those of classical stabllity theory. They formulated sn energy criterion
of buckling based on this behavior which yields buckling loads in reason-
able agreement with test data.

Linear Stability Theory for Cylindrical Elements

Donnell's simplified equations for thin-well circular cylinders
(ref. 6) have been used with a considerable degree of success in buckling
problems. The linear stability theory is based on the followlng rele-
tions between the displacement derivatives and the middle-surface strain
variations and curvature changes that occur during buckling of circular
cylindrical elements:
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eq = du/dx
es = (dv/r 38) + (w/r)

=T %<;a_ge— ’ %) > (1)
X3 = 32w/

Xo = d%w/r2de?

X3 = d°w/r dx 39 j

By use of appropriaste stress-strain relations, equations relating
the incrementel forces and moments with the displacement derivatives can
be dérived. Upon substituting the latter into the simplified equilibrium
equations, a set of three equations in terms of the displacements and
their derivatives 1s obtained.

Using deformation plasticlity theory, Gerard derived a set of equilib-
rium equations applicable to plastic buckling of thin-wall circular
cylinders (ref. 7). In the interest of generality, these equations are
presented in equations (2) to (4) and are then reduced to Donnell's
eighth-order equation for elastic buckling.

32u _ A3 62u + fé Bau _ A3 Bzv + Lyp + fz 32v .
2 2 r dx 06 Y 2.2 4 2 2 4 /r dx 06
Ax r o8 dx

Ay

2 A
Apz av+1aaw_A23 v _ (2)
b %392 2 rox b 223
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3%y Az 3%y fﬁ 82 Az 32u + <A12 + f%) 82u
L r

A‘E - v
232 2 r Ox 36 dx2 b 2 2 4 /r dx 98
A 2 A :
A23 o%u Ao ow__ B23 ow _ o (3)
i 1‘2392 1'239 L r ox
)y )il - Iy L h
DAl-a—‘i-Al5 o w +<A12+A5>——3-W—-A23——3—L+A28W +
axt r %336 r23%2302 r53x 30 rdek

BAodu A2 du M3 dv, , dv W), g B0, oy _DW
r<‘2 ox L r 38 Lk ox T he r o8 * A2 T <2 T Ty r dOx 36 ¥

d%w '
N +p=0 (&)
r2392

The plasticity coefficients are defined as follows:

Ay =1 - (ono‘xz_/h)
A =1 - (acye/u)
A3 =1 - aTe

Ay = Ap=1 - (ow’xcy/2>

Az = A13 = aoxT

A32 = A23 = G,O'y-T .



>

NACA TN 3783 15

where:

= (3 012) [1 - (Et /Es):l
2)1/2

oy = (ckz + cyz - Ox0Oy + 3T

The axial rigidity is:

t
il

4Bt [3 (5)

The bending rigidity is:

v
It

Est5/9 (6)

In the elastic region, o = O and, therefore, A} = Ap = Az = Aj1p = 1
and Ajz = Apz = 0. By replacing the definitions of equations (5) and (6),

which are for a fully plastic plate, with B = Et/(l - Ve2> and

D ='Et%/;2<i - veg), respectively, and replacing the coeffilcient 1/2 by
Ve, equations (2) to (4) reduce to the following elastic relations:

3%u + 1-ve 3% s Lt ve 3%y + 2 AW _ g (7)
3x2 2 2392 2 r dx J86 r ox
82v N 1 - ve 82v + 1+ vg 32u + ow -0 (8)
2302 2 32 2 roxo8 L2y
du v W 3%w >%w 3%y
- - —_— 2N =0
Dvuw+r6/e8x+rae+r>+lvx 2 % 7 ox 08 gt
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By suitable manipulation of equations (7) to (9), Donnell was able 4
to obtain the following single equation in terms of the radial displace-
ment (ref. 6): o

L 2 2 2
Et 0w H 0w 07w ow
Dv8w+r_23_wE+ ng;2-+mxym+ny;_2-&?+p = 0 (10)

The relestionships smong the other displacements are

3 3
= -y a“5+ 53"'2 (11)
r Ox r“Ox 08

37 p) -
V’+v=—(2+v)2z -iw (12)
2% rte’
It is to be noted that by letting 1/r = 0 and replacing r 08 N
by Oy, equations (4), (9), and (10) reduce to the governing equations
for flat plates. v

Boundary Conditlons

The usuel boundary conditions for flat plates discussed in Part 1
(ref. 1) apply directly to curved pletes. However, a complete cylinder
has only two boundaries (at the ends) instead of the four of a rectangular
plate. Thus, for the cylinder, two of the four sets of boundary condi- .
tions are replaced by the condition that the displacements are cyclic
functions of the angle 6 with a cycle length of 2xr.

For cylinders which can be clessified as long, the boundary condi-
tions &t the ends have a negligible influence on the buckling stress.
At the other limit, short cylinders approach flat plates in their behavior
and, consequently, boundery conditions are of considerable importence in

such cases.

Appropriate boundary conditions on the displacements, u, v, and W
can be handled in a straightforward menner in ceses in which egquations (2)
to (&) or (7) to (9) are used. However, boundary conditions on the dis-
placements u end Vv cannot be handled directly when equation (10) is «
used since this equation is in terms of the displacement w only. This

N
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situation is not serious, however, since certain conditions on u and v
are Implied which correspond to those often occurring in practical
constructlon.

Donnell's eighth-order differentisl equation, equation (10), requires
elght boundary conditions for a unique solution. The usual boundsry con-
ditions of simple support or claemping impose a total of only four boundary
conditions (two at each end) on the displacement w. However, by use of
equations (11) and (12), four additional boundary conditions on the dis-
placements u and Vv are implied.

Batdorf has discussed this problem at some length (ref. 3) and has
concluded that the substitution of a double-sine-series expansion for w
into Donnell's equation corresponds to the following boundary conditions:

(a) Each edge of the cylinder or cylindrical plate is simply sup-
ported (We = 0, (Bzw/ Byz)e = 0).

(b) Motion parsllel to each edge during buckling is prevented
entirely (ve = 0).

(e¢) Motion normal to each curved edge in the plane of the sheet
occurs freely (ue # O).

Such boundery conditions on u and v are appropriste to cylinders or
cylindrical plates bounded by supporting members such as deep stiffeners
or ribs. BSuch members are generally stiff in their own planes but may
be readily warped out of their planes.

By comparing solutions using Donnell's equaebion with more exact
solutions for which warping is not permitted (u = 0), the effects of
the implied boundary conditions can be evaluated. Batdorf has shown
that generally the effect on the buckling stress of preventing free
warping normal to the curved edges of a cylinder or cylindrical plate
is negligible (ref. 11).

Solutions Based on Donnell's Equation

Although solutions based on sets of three equilibrium equations such
as equetions (7) to (9) were known, Batdorf demonstrated the simplicity
of using Donnell's equetion by rederiving several solutions for simply
supported cylinders in a unified manner (ref. 3). The method of solu-
tion used in seversal of these problems is demonstrated below.
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For more complicated boundery conditions, such as clamped edges, a
slight modification of Donnell's equetion permits solution by use of the
Galerkin method. This procedure has been used by Batdorf and his col-
laborstors to solve the compressive buckling of cylinders and curved
plates with clamped circumferential edges and to snalyze curved plsates
under shear and combined loading.

Case 1. Axielly compressed cylinders and curved plates.- For a
cylinder, a solution of equation (10) which sastisfies the boundary con-
ditions of simple support is

W = W 8in %% sin EEE (13)

wvhere A = nr/n and is the half-wave length of the buckles in the cir-
cumferential direction. Upon substituting equation (13) into equation (10)
and letting Ny = Nxy = O for this case, the compressive-buckling coef-

ficient is

(2 ¢ 02, 1225 (14

k., =
¢ me ﬂll-(mQ + BQ)E

where

g = L/A

75, = (Lz/r'b) {(1 - vez)l/z}

The compressive-buckling stress i1s

kc‘l’t2E + 2
Ocr, = Ezzifjf:;;§5ég) (15)
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The critical value of k., can be found by suitasble minimizations of
equation (14). For long cylinders :

1/2
_ 4(3) 7

ke > 1, = 0.7027;, (16)
s

For short cylinders (Zy, < 2.85), the critical value of k, is determined

by substituting the limiting values of B =0 and m= 1 into equa-
tion (14). Such results are shown as the theoretical line in figure 1l(a).

By substituting egquation (16) into equation (15), the classical
buckling stress for a long axlally compressed cylinder is obtained:

-1/2
Oere = 3(1 - vez) Et/r = 0.6E(t/r) (17

These results can be gpplied to the compressive buckling of a long
simply supported cylindrical plate by a change in certain of the varilables.
For a long plate the unlosded-edge boundery conditions are of importance
and consequently the compressive-buckling coefficient becomes

2 ' 2
kg = (n2 + p2) + 127,78 _ (18)
82 ,tlp(na + Ba) .

where n replaces B in equation (14), B = b/k and replaces m, and

Zy = (02/rt) (1 - vee)l/ 2

kaPE  [g)2
Sore = T Vb
12(1 - ve2)

Upon minimizing equation (18), the solution given by equations (16)
and (17) is obtained for wide, long, cylindricel plates. For narrow,
long, curved plates, the critical value of. k; .1s obtained by substituting

n =1 into equation (18) and minimizing with respect to B.
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For the limiting velue of Zp = O, equation (14) reduces to the

value corresponding to an infinitely wide plate column and equation (18)
reduces to a long flat plate. For values of Z, &t which the element

can be considered long, the buckling of the cylindrical plate and cylinder
are identical according to linear theory.

Case 2. Cylinders under lateral and hydrostatic pressure.- For
hydrostatic loading, 2Nx = Ny and Nyy = O in equation (10). TUpon

substitubing equation (13) into equation (10), the following value for
the buckling coefficlent can be determined:

2

(w2 + g2)° 222 il

kp = S (19)
me g2 st (m2 + 32) (% + 82)

2

The terms B eand Zy, are defined asccording to equation (14) end

kanE £ \2 (20)
o T e——————— | a—
erp T 5 (1 _ Ve2) (L)

A minimum velue for Xp i1s obtained when m = 1 and, therefore, equa-
tion (19) reduces to

2
%=(i+ﬁf+ 127,

_ = (21)
Lo (e ot (E e )

The fraction 1/2 in the denominators of each term of equation (21)
reflects the fact that the axial stress is one-half the circumferential
stress in hydrostatic loading. For the case of lateral pressure only,
the axisl stress 1s zero end, therefore, equation (21) reduces to

2 2
_eg2) 2

. (22)
p2 <p2(1 + p2)

The critical values of ky as a function of Zy are shown in figure 1(ec).
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Nonlinear Stability Theory for Cylindrical Elements

As discussed at the beginning of this section on the stability of
curved elements, nonlinear theory has been used in attempts to resolwve
the large discrepancies between buckling loads based on linear stability
theory end test data for certain cases. These cases include cylinders
and cylindrical plates under axial compression and spheres and spherical
plates under external pressure.

The difference between linesr and nonlinear theory sppears in the
strain-displacement relations. By virtue of finite deflections, for
nonlinear theory additional terms involving derivatives of the radial
displacement w are included in the relations given by equations (1)
for linear theory:

N

el = (du/dx) + [(aw/ax)a/e}

es = (dv/r d8) + (w/r) + !an/r 36)2/éﬁ S (23)
i/ du  ov 10w ow

- E(r 5 *s:)*zaras

The curvature relations remain the same as in the linear case and are
given by equations (1). It is to be noted that equations (23) are valid
for small finite deflections only. For larger deflections, additional
terms are required in the strain and curvature relations.

By use of the stress-strain reletions and equilibrium equations used

previously in the linear theory, the following two governing equeations
in terms of a stress function F result:

Pr/e = (Pufox 3y)? - (Puforl) (Bfoy2) - (afr) (dwfox?)  (20)
The equilibrium equation for p =0 1is
Iy = t(BEF/By2> (fo2) - 21:(32F/3x ay) (Bzw/ax ay) +
t(&zF/Bx2> [(a?—w/a;,Z) + (l/r)] (25)
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It is extremely difficult to obtain an exact solution of equations (24) ¥
and (25). As an approximation, a fundtion for w is chosen which R
contains undetermined parsmeters and which corresponds approximately to
the wave form observed experimentslly. By use of equation (24) the middle
surface stresses may be determined. Finally, by use of suitable minimum-
energy considerations, the undetermined parsmeters may be ascertained.
It is to be noted that equation (25) is not used in this method of
solution. '

Energy Criterion of Buckling

Von Kdrm#n and Tsien used nonlinear stability theory to investigate
the large-deflection behavior of an axlally compressed circular cylinder
(ref. 10). As a result, they discovered finite-deflection equilibrium
configurations et loads conslderably below the classical buckling load
of linear theory. It was postulated that before the classical buckling
load based on infinitesimel disturbances .could be reached, finite dis-
turbances in the form of random impulses, unavoidably present during the
loading processes, trigger the jump to the finite-deflection equilibrium
configurations. Tsien further investigated the details of how this Jjump
occurs and formulated the "energy criterion” of buckling or the existence
of the "lower buckling load" as contrasted with the "upper buckling load" .
of clessical theory (ref. 12).

o

The energy criterion of buckling depends to some extent on the type -
of loading system employed. As one limit, a controlled-deformation type p
of rigid testing machine can be considered in which the Jjump to finilte
deflections occurs at a constant value of end shortening. As the other
limit, a dead-weight or controlled-load type of testing machine can be
congidered in which the jump occurs at a constant value of load. Most
likely a Jump pattern would lie between these two limits, depending upon
the rigidity of the actual machine and the detalls of the loading system.

Consider now the large-deflection behavior of an axislly compressed
cylinder in a controlled-deformation type of testing mechine. In fig-
ure 3 the results of a large-deflection anelysis are shown schematically
with both average stress and strain energy plotted as a function of the
controlled variaeble end shortening. According to classical theory, the
cylinder under loading follows the path OBA and buckles at A. From the
strain-energy diagram, however, once polnt B has been reached, less straln
energy 1is required to follow the path BD (the finite-deflection equilibrium
configuration for the buckled cylinder) than to follow the path BA (unbuck-
led equilibrium configuration). Thus, Teilen contended that, because of
finite disturbances, the jump to the large-deflection equilibrium config-
uration occurs along path BC at constant end shortening (ref. 12). The <
buckling load according to the energy criterion is thereby reduced to
approximetely one-helf of the classical value.
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_ In a controlled-load type of testlng machine, the loading force can .
move during the buckling process and, therefore, the total potential
energy of the system must be considered. 1In figure 3(b) the end short-
ening and total potential energy are shown schematically as & function
of average stress for this case. At point B, less energy is required
to follow the path BD than to follow the path BA. Therefore, the jump
occurs at constant average stress slong path BC and the buckling load
determined by the energy criterion is approxlmstely one-third of the
classical wvalue.

In both figures 3(a) and 3(b) the shaded areas ABE represent the
small additional energy which is presumsbly supplied by the finite dis-
turbance necessary to trigger the jump. The shaded areas EFC represent
the energles released by the cylinder after passing point E so that the
net change in energy is zero. It can be observed that the point F cor-
responds to the minimum value of end shortening or average stress at
wvhich a Jump can occur.

CIRCULAR CYLINDERS UNDER AXIAT, COMPRESSION

Certain of the general background material relating to the behavior
and theory of the buckling of circular cyllnders under aexial compression
have been presented in the sections entitled, Physical Behavior of Curved
Elements" and "Stability Theory for Cylindrical Elements." This material
forms an essential adjunct to the discussion presented in the present
section.

Because of the essentlally nonquantitative character of the avail-
able theories on buckling of circular cylinders and curved plates under
axial compression, cylinders under bending, and spheres and spherical
plates under pressure, a much greater reliance must be placed on the use
of test data than is usual in buckling problems. By using the various
theories as a guide, an approach toward a unified treatment of test data
on the aforementioned elenients has been attempted.

In the present section, circular cylinders under axisl compression
are treated. Semlempirical relations established for these cylinders
are extended to cylinders under bending in the section Cyllnders Under
Bending,' to axially compressed curved plates in the section "Curved
Plates Under Axial Compression," and to spherical plates under pressure
in the section "Spherical Plates Under External Pressure.”



24 1 } NACA TN 3783 -

Historical Background M

In the period before 1934 theoretical investigations into the o
buckling stress of an axially compressed circular cylinder were limited .
to the use of linear theory. Attempts were made to obtain correlation

of theory with the existing test data, primerily furnished by Robertson

(ref. 13) and by Lundquist (ref. 14), by employing expressions for experi-

mental buckle weve shapes in a theory derived in general form by Southwell

(ref. 15). Details of this early work can be found in reports by Lundquist

(ref. 14) and Domnell (ref. 8), and in the book by Timoshenko (ref. U4).

In 1947, Batdorf, Schildcrout, and Stein employed linear theory as a guide -
and constructed empirical curves using the data of several of the early
investigators (ref. 16). By this means they were able to accentuete the

dependence of the buckling coeffilcient for long cylinders upon r/t,

‘which was discussed in 1934 by Donnell (ref. 8).

In reference 8, Donnell postulated that initial imperfections were
responslble for observed experimental buckling stresses which were low
when compared with those from linear theory and derived the lerge-
deflection compatibility equation for shells. Since then the classical
linear epproach to this problem has been virtually abandoned. An Inves-
tigation of the postbuckling behavior was made by Von Kérm#n and Tsien
(ref. 10), who derived a family of curves of stress as a function of end
shortening by use of the large-deflection compatibility equation derived

by Donnell together with equations for the energy of the shell and an A |
assumed deflection function representing the diamond buckle pattern. In
order to determine the buckling load, an energy criterion was used to ¢

replace the classical definition. In obtaining a solution to their equa- -
tions they assumed values for some of the parameters of the system of

equatlons, instead of minimizing the work energy with respect to all the
peraemeters. This latter approach was made by Leggett and Jones (ref. 17),

who found that the family of curves derived by Von Kdrmén and Tsien became

a single curve unlique for a specific material.

Through further investigation, Tsien developed the energy criterion
of buckling which, for a long circular cylinder, leads to a specific value
for the buckling coefficient C equal to 0.375 in the buckling-stress
equation GOeoyp = CET/r (ref. 12). Furthermore, by this approach, Tsien
showed that this value applies to a specimen loaded in a perfect controlled-
deformation type of testing machine. The buckling stress will be lower for
actual machines or for a controlled-losding type of testing machine. Fur-
ther work has been done by Michielsen (ref. 18) and Kempner (ref. 19) on
the postbuckling behavior in an end-shortening range in which plasticity
effects probably are of importance. o ) L.

Donnell and Wan (ref. 20) more recently refined the initial- A
imperfection concept developed by Donnell (ref. 8). Their results indi-
cated thet the sensitivity of axlally compressed cylinders to initilal N
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imperfections is associated with the fact that these imperfections usually
are of the same gize as the relaftively small buckles generated at critical
load. They also defined, theoretically, the relationship between C

and r/t in terms of an unevenness factor U which reflects the initial
imperfections in the shell.

The theoretical work, for the most part, has been confined to the
elastic range, as was a large portion of the experimental data. However,
Osgood (ref. 21), Moore and Holt (ref. 22), and Moore and Clark (ref. 23)
performed tests on compressed cylinders at stresses beyond the proportional
limit. Bijlaard (ref. 24) and Gerard (ref. T) .derived plasticilty-reduction
factors to be used for such a case. Bijlaard extended his inelastic-flat-
plate approach to cylinders, wheress Gerard rederived the cylinder equilib-
rium equations using the effects of plasticity in combination with an
assumed buckling-stress coefficient of 0.6. In this manner he was able
to obtaln good correlation. with test dats.

Buckling Behavior

The buckling behavior of an axially compressed circular cylinder
may be classified into four ranges of behavior, as shown in figure k.
"Short" cylinders tend to behave as wide plate columns with sinusoidal
buckles, whereas "long" cylinders buckle in a characteristic diamond
pattern. These two types of behavior define the limits of local buckling.
For cylinders with lengths between these extremes, defined here as the
"transition" range, there sppears to be an interaction between the plate
sine-wave buckle pattern and the cylinder dismond pattern. At the short
limit, the effects of the supports and rotational restraints at the ends
of the cylinders are most marked.

The buckle patterns for these ranges are shown in figure 5 together
with a schematic cylinder-buckling curve covering the three regions men-
tioned above. The fourth region pertains to "very long” cylinders in
which the ratio of length to radius is so large that primary instebility,
or Euler buckling, occurs unaccompanied by local buckling. The action
of a column, which corresponds to very long cylinders, is well known;
and flat-plete buckling, which corresponds to that of short cylinders,
has been examined in reference 1. The investigations described in this
section are confined to the transition and long ranges of the cylinder.

In an sttempt to clarify the significance of the test data, and,
correspondingly, to clarify cylinder buckling behavior under axial com-
pression, the work of Batdorf, Schildcrout, and Stein (ref. 16) has been
emplified in this report. By use of available theoretical data for long
cylinders, the reletlonship between the buckling coefficient C and the
parameter r/t has been extended to low values of r/t which are well

7))
< . >
POk
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within the -inelastic renge. Furthermore, in the transition region where
length effects are important, test data on ke as-a function of Zj,

have been shown to exhibit cusps associated with integer wave forms
according to expectations based upon theory.

Long-Cylinder Range

In the section "Physical Behavior of Curved Elements" a criterion
was suggested for determining the epplicability of linear theory to shell-
buckling problems. Axial compression, which generates compressive mem-
brane stresses in the cylinder after buckling, was shown to reguire con-
sideration of large-deflection behavior. Such investigations have been
confined to long cylinders because the diemond-buckle-pattern deflection
functions which are assumed in the energy equations do not satisfy the
end boundery conditions. Furthermore, test data show that for long cyl-
inders the buckling stress is independent of the boundary conditions.
The theory is discussed in the section "Stability Theory of Curved
Elements, in which both the energy-criterion end the initial-imperfection
approach are described.

The empirical correlation for long cylinders performed by Batdorf,
Schildcrout, and Stein, in which ke is plotted as a function of Zj,

for various values of r/t (ref. 16), clearly depicts the dependence
of C upon r/t in the trensition and long ranges. This is a signif-
icant step In that it demonstrates the existence of order in the data
where before there seemed to be nothing but wide scatter when it was
interpreted from the stendpoint of avallable theoretical data.

Empirical data on the values of C were obtained by drawing curves
through the test points plotted in the form of ko as a function of Z,

for the specific ranges of r/t shown in figure 6. At large velues of
Z;, these curves were virtually straight lines at unit slope when plotted

on logarithmic plotting paper. Thus they defined an expression for
buckling stress in this range equivalent to the classical equation,
except for the dependence of C upon r/t as shown in figure 7 instead
of a constant velue of C = 0.6. .

The empirically derived curve of C as a function of r/t for long
cylinders is shown in figure T together with the theoretical curves of
Donnell and Wan (ref. 20) for several values of the unevenness factor U.
The latter is related to the initial imperfections of the cylinder. It
may be seen that the curve for U = 0.00025 merges smoothly with the
empirical curve of Betdorf, Schildcrout, and Stein (ref. 16), while all
theoretical curves converge at a very low r/t value to a value that
approaches the classical value of 0.6 as sn upper limit.
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It is evident that a cylinder with a low r/t value will probably
buckle Inelsstically. The application of figure 7 to calculation of
inelastic-buckling stresses is discussed below.

Transition Range

At the short-cylinder limit, the buckling stress under axial com-
pression depends upon L/t, since only one-half wave forms in the axial
direction. For long cylinders in which boundary conditions are unim-
portant, the effects of initial imperfections are considered to be solely
a function of r/t glthough this 1s probably a considerable oversimpli-
fication. In the transition region where the number of integer wave forms
changes as suggested in figure 5, the buckling stress is written in the
functional form

Ocr = £(Z1,r/t,L/t) (26)

Since Zj, is & function of length, and since linear theory predicts
changes of wave number with length, there is a basis for expecting cusps
in the empirical data as the wave number changes by integral values in
the transltion region. Since there appears to be little possibility of
establishing a completely theoretical variation, a rather simple semi-
empirical approach has been adopted herein.

Two basic date are selected in this development; the flat-plate-
buckling coefficient at Zy, = O, and the straight line drawn through the

logarithmic plot of ko as a function of 7, at large values of this

parameter. A transition curve is then fitted to these data using linear
theory as a guide. Several types of transition have been suggested by

the results of investigations on the buckling of axlally compressed curved
plates. However, the simplest transition, which matches the linear theory
in the specisl case of C = 0.6, is obtained (see section entitled "Sta-
bility Theory of Curved Elements') from the expression for ke presented

by Batdorf (ref. 3):

2
ke = kpp + <1azL /:c”kpl> (27)
When this relation is modified to account for the effect of =r/t,

ke = kpp + [(0.581021?2/1@1} (28)
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This beégmés the flat-plate-buckling coefficient at Zy = O and is
tangent to the curve ko = 1.162CZ;,. The complete buckling-coefficient
curve is shown in figure 5. :

NACA TN 3783

One of these complete curves has been drawn for each value of r/t
for which the data of Batdorf and his collaborators (ref. 16) apply
(rig. 6), utilizing the values of C obbained from figure 7. It mey be
seen that the data rise above the curve in the region of the transition
in each case. The magnification ratlo p of the test value of ko to

the theoretical value from the curve for the corresponding values of Zg,
appears as a function of Zy in figure 8. These individual curves were

also plotted together in figure 9, in which the cusps are clearly evident.

The highest peak occurs at Zr, = 35, approximately, with a second peak at

about 650. The data indicate possible additional cusps at larger values
of Zy. However, the average of the data appears to fall below the unity

line. The explanation for this may be found in figure 6 in which it is
gseen that the lines for ke = 1.162CZL lie above the test points in some

cases.

The reason for the presence of the pesks presumably lies in the
interaction between the sine-curve-deflection shape of the short plate
and the diamond buckle pattern of the intermediate-length cylinder. The
transition from one to the other as the cylinder length increases is
shown in figure 5, in which both r and t are assumed to be constant.
When the cylinder i1s short, the buckle pattern 1s that of a wide-plate
column in agreement with theory. The diamond buckle pattern is known to
prevail for long cylinders, as may be seen from photographs of buckled
cylinders contained in the reports of Lundquist (ref. 14) and Donnell
(ref. 8). In the transition range the competition between these wave
forms is the most evident basis on which to explain the presence of the
pesks. The cylinder is long enough to permit diamond buckles to form
and yet is short enough for the end boundary conditions to influence the

detalls of this pattern.

Numerical Values of Buckling Stress

The elastic-buckling stress for cylinders in the short, transition,
and long ranges mey be determined from the equation

2EL2 - )
Op = s > (29)
12(1 - Ve >L2
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using the value of k., obtained from figure 6 for the appropria:be values
of r /t. : -

For long cylinders the modified form of the classical buckling-stress
expression,

Oer = CEt/r (30)

may be used, in which C 1s obtained from figure T.

It should be noted that the buckling coefflcient for Zy, = O sepplies

to cylinders clamped along the edges. For any other value of edge restraint
a new set of design curves may be drawn using the pertinent plate-buckling
coefficient and the scheme deplcted in figure 5, which is perfectly gen-
erael and applies to any set of edge restraints. QConstruction of the cusps
presents some problem, since =1l of the test data used to construct the
curves of figure 6 pertain to clemped edges only.

Plesticity-Reduction Factor

As one aspect of a unified approach to the computation of inelastic-
buckling stresses in cylinders, Gerard utilized the limiting velue of
= 0.6 (ref. 7) in conjunction with the equilibrium equations of Donnell
(ref. 8) and the inelastic approach used by Stowell for flat plates
(ref. 25). It was found that the plasticity-reduction factor for axial
compression in the local-buckling range is

1 = (2/ma) (e S/E)[(l - e )/(1 - VEHI/Z (1)

Although good sgreement exists between this theory and test data, improved
correlation octurs when C is obtained from figure 7 instead of using
0.6. The correspondence is shown in figure 10. For TO75-T6 aluminum
alloy, the lack of agreement in the yield region indicates a need for

more test data before a recommendation can be made for 7 1n this range.
The theory is seen to be adequate at stresses in the plastic range.

For analysis of long cylinders, plastic-buckling curves are pre-
sented in figure 11, in which

= Ct/r (32)
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In the initisl-imperfection interpretation of cylinder behavior, the
classical value of C =:0.6 is approached ag an upper limit as shown in
figure 7. Furthermore, a simple geometrical construction based upon the
energy criterion also suggests that the classlcal buckling coefficient
should be approached as an upper limit at large plestic strains. In
addition, it is experimentally observed that axisymmetric buckle patterns
form in cylinders with small values of r/t‘ which buckled well in the
inelastic range. -

In figure 12, the large-deflection unloading curve, which is always
elastic, has been attached, at a large straln, to the schematic stress-
strain curve for a structural alloy. If the cylinder is assumed to be
loaded in & rigid controlled-deformation Type of testing machine, then
the vertical line on the figure defines the energy balance on the elastic
unloadilng curve.

It is seen from figure 12 that the vertical line intersects the
loading curve at a stress only slightly less than that at which the
unloading curve begins. The stress loss is closely proporticnal to the
local tangent modulus to the stress-strain curve. Consequently, for a
meaterial wlth a sharp knee, C should be approximately equal to the
classical velue st a stress near the yleld. 1In fact, C wlll approach
0.6 as E{ approaches zero.

Effect of Internal Pressure

Fllgge (ref. 5) investigated the effect of internal pressure on the
buckling of a circular cylinder under axiel compression by using linesar
theory end found that no increase in buckling load 1s to be expected as
a result of the pressurization. Lo, Crate, and Schwartz (ref. 26) analyzed
the problem using large-deflection theory with the energy criterion- of
Von Kérmén end Tsien (ref. 10) and found an increase from.the theoretical
value of O0.37Et/r +to the classical value of 0.6Et/r as the pressure

increases.

Lo, Crate, end Schwartz also tested a 2024-T3 sluminum-alloy cyl-
inder under axial loading through a renge of internal pressure and found
that the theoretilcal increase in load with pressure was substantiated,
order of half the classical theoretical value at no pressure. The value
of C for p= 0 was obtalned from flgure 7 and is in good agreement
with these test data, which are closely fitted by a straight line sas

shown in figure 13.

The maximum pressure applied to the cylinder produced an axial ten-
sion stress in the wall equal to.roughly half the compression stress at
which the cylinder buckled with no internal pressure. The buckling stress
in the cylinder at this pressure was twice the unpressurized buckling

stress.
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CYLINDERS IN BENDING

The buckling behavior of cylinders under bending loads corresponds
to that of axially compressed cylinders and curved plates in two respects.
First, linear theory predicts buckling stresses of the same order of
magnitude for both these cases. Second, the test data are below the pre-
dictions of linear theory by approximstely the same smount. Consequently,
it seems reasonable to correlate test date on cylinders in bending in a
manner similar to that used for axially compressed cylinders.

The buckling of cylinders subject to bending is influenced by sev-
eral considerations beyond those encountered in the buckling of axially
compressed cylinders:

(1) The linear variastion of bending strain across the section results
in a strain gradient and hence a stress gradient at any location on the
cylinder surface. A 'gradient factor" is introduced which permits cal-
culation of the bending-buckling stress from the axial-compressive-buckling
stress of a corresponding circular cylinder.

(2) For elliptic cylinders buckling mey not occur at the extreme
compression fiber of the section but at a location depending upon the
axis ratio of the ellipse. The elliptic-cylinder geometry at this loca-
tion must be used in the buckling-stress expression together with the
section modulus for this location to permit a comparison of applied
stress to allowable stress.

These two effects apply in both the elastic and inelastic ranges.
In the latter range two additional effects occur:

(3) The nonlinear distribution of bending stress across the sec-
tion leads to the well-known modulus of rupture effect.

(4) The reduction of local wall stiffness due to plasticity leads
to the plasticity-reduction factor.

These factors are discussed in the present section, in which the
bending behavior of cylinders of circular, elliptic, and clrcular-arc
sections is examined. Figure 14 depicts the cross-section geometry for
the various shapes.

Historical Background
Brazier calculeted the stress at which a circular cylinder would

beccrme unstable as a result of flattening of the cross section (ref. 27).
This type of instability is comparable with Euler buckling of a very long
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axially compressed cylinder. Brazier instability can be observed in
some of Osgood's tests on long, thick-wall cylinders that buckled in
the inelastic range (ref. 21).

The stress at which local buckling occurs in cilrcular cylinders
under bending has often been assumed to be equal to the value for axial
compressive buckling of the same cylinder. Flﬁgge, however, performed
calculations based upon linear theory that showed a 30-percent increase
in bending-buckling stress over the classical axial value (ref. 28).
Such an increase is in general asgreement wilth the test results obtained
by Lundguist on sluminum-alloy specimens (ref. 29) and by Donnell on
steel and brass specimens (ref. 8). '

Lundquist and Burke extended the experimentel investigation to cyl-
inders of elliptic cross section bending about the minor sxis (ref. 30).
Heck performed tests in which elliptic cylinders were bent about the
major axils as well as about the minor axis (ref. 31). More recently,
Frahlich, Mayers, and Reissner anelyzed circular-arc cross sections
(ref. 32), and Anderson, Pride, and Johnson conducted tests on specimens
of this shape (ref. 33%).

Inelaestic-buckling date were obtained for circular cylinders in
bending by Osgood (ref. 21), Moore and Holt (ref. 22), and Moore and
Clark (ref. 23).

Behavior of Circular Cylinders in Bending
The local-buckling behavior of circular cylinders in pure bending
may be divided into several ranges.similar to those pertaining to axially

compressed cylinders. In the short-cylinder range the buckling coeffi-
clent Xp approaches that of a wide compressed plste as a lower limit,

for which the buckling stress is expressed in the form

2E .
Ocr = ———kbﬁ <E>2 (33)
12(1 - ve2) L

and

77, Le(l - ve2)1/2

In the long-cylinder range the relation between buckling stress and the

cylinder geometry is of the form OJer = CEt/r. In figure 15 the various
ranges ere shown for the data of Lundquilst (ref. 29) and that of Donnell
(ref. 8).
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The two limits of the local-buckling region are connected by a transi-
tion curve, and throughout this entire region buckliing occurs in the dis-
mond pattern observed in axially compressed cylinders. When the cylinder
is very long, the flattening of the cross section caused by the radial
components of the axlial deformations in the bent cylinder leads to a
large reduction of the effective section modulus of the cylinder, and
ingtability occurs as a single transverse wave on the compression side
of the shell. This 1s the type of behavior investigated by Brazier

(ref. 27).

The behavior of cylinders in the upper-transition and long ranges
is evident from the plot of C as a function of r/t shown in figure 16.
The pertinent curves of figure T, which appear in this figure, were
obtained by utilizing the imperfection theory of Donnell (discussed in
the sections entitled "Circular Cylinders Under Axial Compression" and
"Spherical Plates Under External Pressure") in combination with test data
obtained by several investigators on axially compressed circular cylinders.

The relation between C and r/t is shown in figure 7 for a range
of U wvalues. The upper limit of the axial-compression data corresponds
to U = 0.00015, which is representative of Lundquist's data, whereas the
lower limit for U = 0.00035 ig representative of Donnell’'s data. The
difference in U for the specimens of Lundquist and Donnell may be the
result of the different material thicknesses used. The cylinders of
Lundquist were shells on the order of 0.025 inch thick, which are typical
of aircraft structures, whereas Donnell utilized shim stock on the order
of 0.00k inch thick.

For comparison with the bending data of these Investigators, the
pertinent values of U from the axlal curve were multiplied by Flugge 8
theoretical value of 1.3 (ref. 28) to obtain a curve with which the
bending test dsta could be compared. This increase is attributed to the
strain gradient associated with the linear cross-sectionsl strain dis-
tribution and is termed herein the gradient factor . In general, there
is relatively good agreement with these curves for aluminum and for steel.
However, the large scatter in the brass data would appear to render it of
dubious value for comparison with the empirical unified theory being used
here for comparison.

A comparison of axial-compression and bending data obtained by
Lundquist on Duralumin cylinders (refs. 14 and 29) sppears in figure 17.
Corresponding data obtained by Donnell appear in table 2. Both Lundquist
and Donnell reported an average value of 1.4 for the gradient factor on
the basis of these data. Since stress and strain are linearly related
in the elastic range the gradient factor pertains to both. However,
there 1s considerable scatter in the data, as may be seen from table 2

and figure 17.
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The tests of Donnell were run on matched cylinders, some of which -
vere tested in axlal compression and some, in pure bending. Because of ’
the close dimensional agreement between corresponding cylinders of these
two types of tests, ¢ was calculasted for each cylinder as glven in
table 2.

The dsata of Lundquist, however, do not permit this cylinder-for-
cylinder compearison, and consequently it was necessary to compare the
buckling stresses for the two types of loeding by a method such as that
shown in figure 17, in which curves have been drawn through the mass of
test data for both types of loading. The ratio of the of/E intercepts
at any value of r/t leads to the gradient factor v since the slopes
of the curves are virtually the same. Thus, ab r/% = 1,000,

y = 0.000295/0.000205 = 1.4k from figure 17.

Numericeal Value of Buckling Stress for Circular Cylinders

For long cylinders, the buckling stress mey be determined from

dcr = CbEt/r (3’"')

On the basis of test data presented in figure 16, it is recommended thet
Cp = 1.3C, where C 1is the coefficient determined for axially compressed
circular cylinders from the data in the section 'Circular Cylinders Under
Axial Compression.” Considering the scatter in the test data, the gradient 1
factor of 1.3 represents a conservative average value to be used with the

curve of C as a function of r/t from figure T for en average wvalue

of U= 0.00025. "For short and transltion-range cylinders no data are
available to permit recommendetion of a gredient factor.

Behavior of Elliptic Cylinders in Bending

Since the curveture varies with location, the buckling behavior of
a long elliptic cylinder involves the location of the point of critical
curvature as well as the use of a sultable gradient factor. Tests indi-
cate that the buckles are diamond sheped and similer to those observed

on circular cylinders.

Since it has been assumed that the gradient fector is a result of
the linesr variation of strain across the cylinder sectlion, then a similaxr
increase is 1o be expected for long elliptic cylinders afy the point where
the criticel curvature is located. This 1s substantiated by test data -
of Lundquist and Burke (ref. 30). and Heck (ref. 31) on aluminum-alloy '
elliptic cylinders which cluster in the region of the circular-cylinder
dsta, as shown in figure 18. -
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In order to reduce the data to a form which would permit comparison
with the axial-compression-stress date, 1t is first necessary to determine
the point of critical curvature (y/a)cr which corresponds to the buckle

location on the cross section. By use of the procedure described below,
the critical curvature is readily obtained from figure 19. For example,
for ellipses tested by Lundquist and Burke with a = 7.5 inches, the
criticel radius of curvature ¥ is 6.08 inches for b/a = 0.8 and
8.13 inches for b/a = 0.6. The test data for these cylinders are shown
in terms of C as a function of ¥/t in figure 18 and as ky, as a

function of Zy, in figure 20. It should be noted that, in the equation

for Zg,

1/2

L2
Z, = —(_t 1 - ve?) (35)
r

the radius of curvature at (y/a)cr is used. The local-buckling stress
at (y/a)er 1s found from equation (33).

Although no axial-compression data exist with which to compare these
bending results directly, it may be assumed that the quality of fabrica-
tion of the bending specimens was similar to that of the specimens pre-
viously tested by Lundquist in compression. Consequently, a value of
U = 0.00015 was used to correlate the data. As may be seen in Ffigure 18,
the gradient factor ¢ has approximately the same value of 1.3 for the
elliptic cylinders tested as for the circuler cylinders tested in bending.

The relation between ky and Z7 1s depicted in figure 20, which

shows no appreciable effect of f/t for a range from 250 to 750. For
all practical purposes, all the data appear to cluster about one curve.
This is also substantisted by figure 18, which reveals a rather flat dis-
tribution of the date over a renge of wvalues of f/t. The curve corre-
sponding to kp = 1.3k, has been plotted in figure 20 for r/t = 500,

where it 1s seen to fit the data well.

Computation of Buckling Stress for Elliptiec Cylinders

From the standpoint of the analysis of a structure, it is generally
desirable to compare appllied stress with allowaeble stress. On an elliptic
cylinder in bending, therefore, it is necessary to locate the position on
the cross section at which buckling occurs (see fig. 21) and to compute
the section modulus for this lpcdtion. The quotlent of applied moment
and this section modulus yields the applied stress, and the local radius
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of curvature permlts computation of the allowable stress for this posi-
tion. In sumary, then, the following steps are suggested:

(1) Compute the section modulus of the circumscribed circle Sg = 82t
(see fig. 21). '

(2) Find the extreme-fiber section modulus of the elliptic cylinder
using the relation S¢ = (Se/Sa)Sa together with figure 22 in which

Se/Sa appears as a function of 'b/a.

(3) From figure 19 find (y/a)er and 7/a as functions of b/a.

(1) Compute the applied stress at the location of the critical curva-
ture from oy, = M(y/e)er/Se.

(5) Compute the allowable stress at this location (for long cylinders
only) using oey = CoBt/F, in which Cp is found from the curve of fig-
ure 18 f¢r the pertinent value of f/t1 The gredient factor of 1.3 is
included in this curve. :

The location and megnitude of the critical curvature l/f, where P
1s the critical radius of curvature, can be determined by plotting the
nondimensional curvature of the ellipse i T ' -

-3/2
afr = (/) {1 - [3 - (83/e3)|(5/m) (%)

as a function of y/a for selected values of b/a. Since the stress
across the section varies linearly from zero abt the neutral axis, and
since the axls of a/r mey also be considered to be an arbitrary-
megnitude stress scale (fig. 23), a line from the origin tangent to the
a/r curve determines the location of (y/a)er and T, or

(a/r) _ da(a/r) .
(v/e)  aly/e=) (1)

Figure 19 displays (y/a)er and ¥/a as functions of b/a. Actually,
it has been analytically determined that: |

(v/8)cr = 0-5[1 - (b%/a2{]'1/2 (38)
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(F/a) = 0.649a/b ‘ (39)

Note that when b/a > 0.866, buckling must occur at the extreme of the
major axis, and F = a.

Behavior of Circular-Arc Sections

A cylinder consisting of two clrcular arcs symmetric about their
common chord tends to flatten during bending in the same menner as a
very long circular cylinder which becomes unstable in the Brazier mode.
The behavior of long circular-arc-section cylinders was analyzed theoreti-
cally by Fralich, Mayers, and Reissner (ref. 32), who investigated the
nonlinear relation between moment and stress and found that the insta-
bility strees may be computed by the expression

Oor = 0.285Et/r (%0)

in which r is the radius of curvabture of each arc in the doublet.

Anderson, Pride, and Johnson (ref. 33) performed tests on three
circular-arc-section cylinders of TO75-T6 aluminum alloy with the results
shown in table 3. The cylinder section geometry is shown in figure 1h.
Because of its shape, & circulaer-arc cylinder undergoes chordwise. deforme-
tion of the section which leads to a neutral exis shift. This secondary
effect was neglected in the derivation of equation (40).

It might be expected that for certain cylinder proportions local
buckling would precede Brazier instability. For example, this could be
anticipated in circular-asrc cylinders corresponding to the upper transi-
tion range of circular-cross-section cylinders. Also, at a certain value
of r/% the local-buckling stress could be found from a curve of C as
a function of r/t, such as that for axially compressed circular cylinders
(fig. 7), providing sn appropriate gradient Ffactor could be found for the
circular-arc section in bending in terms of the axial-compression case.
This is complicated by the fact that each arc of the profile asctually is
a curved plate with boundary conditions along the contiguous edges of the
section arecs.

The gradient factors for the three test cylinders were obtained by
taking the ratio of the test C +to the theoreticel C. The test C 1is
equal to the ratic of measured buckling stress to the theoretical wvalue
from equation (40), multiplied by 0.285 (the coefficient of eq. (40)).
This C has been designated C; in teble 4. The coefficient from fig-

ure 7 for U = 0.00015, which applies to the aluminum-alloy date of
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Iundquist on circular cylinders, 1s designated Cp in table 4, in which
v is shown as the ratio of these two C values. Because of the sparse
data, no recommendation can be made for s value of ¥ for circular-arc
sections. )

Inelastic Behavior of Long Circular Cylinders in Bending

It was shown in the preceding sections that a long circular cylinder
which buckles elastically under bending sustains a stress aspproximately
30 percent greater than would the same cylinder loaded in axial compres-
sion. This has been ettributed to the gradient effect. When the extreme-
fiber stresses are in the inelastic renge, the redistribution of the cross-
sectional stresses leads to a significant reduction in the stress gradient,
which would be expected to .reduce the gradient factor. For large inelsstic
stresses on a cylinder consisting of a material with a flat straln-hardening
curve, for example, the stress would be virtually constent around most of
the compression arc.

As a countermeasure to the diminished stress-gradient effect, the
nonlinearity of stress distribution permits the cylinder to sustaln &
plastic bending moment greater than the fictitious elastic moment cal-
culated according to OgrSe. This is the well-known modulus of rupture

effect. A further plasticity effect is the decrease in the local rigidity
of the cylinder wall, which is represented by the plasticity-reduction
factor 1.

For = beam with the extreme-fiber stress in the inelastic range, it
has become common practice to define a fictitious elastic stress or as

the bending moduvlus of rupture:

Or = M/Sc ()'bl)

Since the actual stress distribution is nonlinear and depends upon the
shape of the cross section, it is customary to use a "shape factor” to
deterhine the actual plastic stress at the extreme fiber op. The shepe

factor is defined as

p = or/op (k2)

Thus, the actuasl stress op in terms of the moment and section modulus
is

Oy = M/pSc . ) (’"’5)
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For both the reduction of experimental data and design purposes,
it is convenient to use the ratio of o,, computed from equation (41)

for a cylinder under bending, to the buckling stress of the corresponding
cylinder under axial compression. Thus,

MfSe _ o Ter PYg ()

0'Cic:r- o'Ccr

where:
Gbcr = 7ecﬂbE(t/r)
Ocop = CncE(t/r)

In the elastic range it was not necessary to distingulsh between
the strain gradient factor 7y, and the stress gradient factor 74.

They were the same and equel to l.3. As a simplification of the problem
for the inelastic case, it 1s assumed that

Ye=1.3= ebcrleccr = (chr/nb> (Uccr/nc) (45)

Thus, from equation (45), the value of 95 4is obtained as the ratio of
Obey TO Ocep from & plot of o against o/n as shown in figure 2k.
The stress Oc,, corresponds to the selected value of Gccr/nc(= CEt/r)

and Op,, corresponds to l.BGccr/nc.

In order to demonstrate the influence of the two factors y5; and op

of equation (44) for a typical material, the stress-strain curve for
6061-T6 aluminum elloy shown in figure 24 was used for purposes of cal-
culation, from which the plot of Ucr/n was derived as a function of o.
The plasticity-reduction factor 7 i1s that for an axially compressed
circular cylinder as given In the section "Circular Cylinders Under Axisl
Compression."”
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The factors 7, end p are depicted in figure 25(a) as functions
of cccr/dcY' It cen be seen that ¢y decreases from 1.3 to unity, whille

p rises from unity to the fully plastic velue of h/n. The product of
these two factors falle slightly from 1.3 and then rises to h/ﬂ. The
most rapid changes are confined to the region of Uccr/ccy near 1.

The trends of figure 25(a) are substantiated by the experimenteal
date of figure 25(b) which were obtained from matched cylinders, one
© group of which was tested in compression while the other was tested in
bending. The data for 2017-T4 aluminum-alloy cylinders were obtained by
Osgood (ref. 21) and the 7075-T6 aluminum-alloy cylinders were tested by
Moore snd Clark (ref. 23). Osgood's photographs of the failed specimens
indicete the presence of Brazier instability at large buckling stress
which tends to account for the decrease of 'ys0 for the 2017-Th data

beyond the yield stress.

The different shapes of the curves for the two materials reflect
different inelastic properties. The sudden change for T075-T6 alloy is
consistent with the sharp knee of the stress-strain curve for that mate-
rial, whereas the more gradusl variation for 2017-Th alloy would follow
from the rounded knee of its stress-strain curve.

CIRCULAR CYLINDERS UNDER TORSION

' Historical Background

The early torsional-instability investigations were concerned with
long elements. Greenhill determined the buckling stress of a long twisted
rod or wire (ref. 34) and Schwerin calculated the local buckling stress
of a long, thin-wall tube with two helical waves (ref. 35). Donnell used
the eighth-order equilibrium differentisl equation, equetion (10), and
extended the anslysis of the torsion-buckling problem to moderate- and
short-length thin-wall cylinders (ref. 6). TFair agreement with experi-
mentel dets of Donnell (ref. 6) and Lundquist (ref. 36) was obtained.

Donnell's results were based upon certain simplifications employed
in the numerical computations. Leggett enalyzed the problem without
such simplifications and obtained improved agreement with test data
(ref. 37). Betdorf, Stein, and Schilderout (ref. 38) utilized a modified
form of the single equilibrium equaetion of Donnell and by use of Galerkin's
method obtained results in good agreement with those of Leggett.

Gerard included the effects of plasticity in the three simplified
equilibrium equations from which the Donnell equation was derived and
showed that the secant modulus is the applicable plasticity-reduction
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factor for this case (ref. 7). Close correlation was obtained with the
test data of Stang, Ramberg, and Back (ref. 39), of Moore and Paul
Eref. 40), of Moore and Wescoat (ref. 41), and of Moore and Clark

ref. 23).

The effects of internal pressure were investigated theoretically
by Hopkins and Brown (ref. 42), who obtained fair correlation with the
test date of Crate, Batdorf, and Basb (ref. 43).

Experimentsal Data

The test data for elastic buckling of thin-wall cylinders under
torsion appear in figure 26 in the form of the torsional-buckling-stress
coefficient plotted as a function of Zj. The theoretical curve of

Batdorf, Stein, and Schildcroubt is shown and it appears to yleld reason-
ably good egreement in this logarithmic plot. However, when a section

of the curve is plotted linearly, as 1n figure 27, the differences between
the theory and the data are epparent. It may be seen that the lower data
points are as much as 40 percent below the theoretical wvalue of buckling
stress for a particular value of ‘Zy,. On the averasge the test data lie

16 percent below the theoretical curve.

In addition to the low values of the data, appreciable scatter is
evident. This may be partly due to initial imperfections in the cylinders
which were rolled from flet strips with a longitudinal connection along
the contiguous edges. Also, some of ‘the scatter may be the result of the
method by which buckling was determined. The objective electric-strain-
gage indication of buckling, in use todsy, was unknown when Donnell and
Lundquist ran their tests. It was necessary to discern buckling visually.
Furthermore, Donnell and Lundquist reported collepsing stresses and not
buckling. These two situations leave room for greater departure between
theory and actuel buckling stresses then the data reveal.

Buckling Behavior of Cylinders Under Torsion

For e thin-wall cylinder loaded in torsion in the elastic range,
buckling is not accompanied by immediate collaepse as is the case with
axielly compressed cylinders. This is i1llustrated for typical test dsta
by the curve shown in figure 28, from which it mey be seen that after
buckling a practical twisted cylinder will behave somewhat like a column.
The load gradually increases with small lateral deflection of the cylinder
wall. At a load near buckling the curve gradually flattens, and large
lateral deflection follows with little verietion in load until failure
occurs. At failure, the torque drops sharply with continued lateral
deflection of the wall. The mechanism by which a twisted tube msy attain
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e fallure load In excess of the buckling load has been ascribed in the
section "Physical Behavior of Curved Elements" to the tensile membrane
stresses genersted along the buckle ridges when the deflection becomes
large. - -

Both Donnell and Lundquist observed thet small initisl dimples in
the surfaces of the test cylinders did not seem to affect the buckle
formation. Also, from the experimental results the initiel imperfections
do not appear to affect the buckling strengths to any apprecieble extent.
Contrary to their role in the compressive-buckling behavior of circular
cylindrical shells, small lnitial imperfections seem to have small Influ-
ence upon the buckling behavior of cylinders loaded in torsion.

It is to be noted that the Greenhlll type of inetaebillty may have
occurred in the tubes tested by Stang, Ramberg, and Back, which buckled
well within the plastic renge (ref. 39). Several failed by helical deform-
ation of the tube axis without distortion of the cross section, which was
the nature of the instability predicted by Greenhill for long elements
that would not buckle locally (ref. 34).

Numerical Values of Torsional Buckling Stress

The theoretical curve of buckling-stress coefflcient ki as a func-
tion of Zj &ppears in figure 26 together with the corresponding test
data. As mentioned previously, these data report failure and not buckling.
Consequently, the theoretical curve is somewhat optimistic. However, the
reported data 4o not indicate the buckling stresses of the cylinders and,
therefore, it would be advisable to use a more conservative value then is
furnished by the theoretical curve.

A clue to the selection of such a curve is provided by the model
of postbucklinhg behavior for the twisted cylinder as described above.
It is indicated that the failure stress of a perfect cylinder should not
be much greater than its buckling stress. Since the average departure
of the test deta is sbout 16 percent, the buckling stress of a cylinder
under torsion may be taken as 84 percent of the theoretical value on the

average. : .

For very short cylinders the buckling coefficlent kt corresponds
to that for a long flat plate under shear kg with the buckling stress

expressed in the form:
ktn2E 2
Tery = ————il———-——GE> (46)
12(1 - ve2)
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For clamped edges the torsional-buckling coefficient is 8.98 and for
simply supported edges it is 5.35. For intermediate-length cylinders
the curves approach straight lines which correspond to

Ter = 0.93(x2/12) (1 - veE)'5/8E(t/r)5/h"(r/L)l/2 (&7)

for clamped edges snd

rex = 0.85(x2/12) (L - ve2) ™/ Bt /) 7/ (x/1)2/2 (48)
for simply supported edges. These expressions apply theoretically for
10(6/) Y2 < 1fr < 3(x /) /2,

In these cases the number of circumferential buckles was greater

than two. When the cylinder L/r exceeds 3(r/t)l/2- there are only
two circumferentiel buckles, and the buckling stress for long cylinders
as derived by Donnell is

Top = 0.272(1 - ve?) 3/ 4E(t/r)3/2 (49)

Plasticity-Reduction Factors

A plasticity-reduction factor must be determined for each of the
three cylinder length ranges. For very short cylinders, flat-plate
action is approached. Gerard has demonstrated empirically that the shear
secant modulus ylelds agreement with test data (see fig. 29) for long
flat plates loaded in pure shear (ref. 44). The equation for the buckling
stress of the cylinder in this range, as shown in reference 1, is then

2 p)
k_n°E
12(1 - ve2)

vhere 7 = (Bg/E)(1 - ve2)/(1 - v2) and corresponds to a value of T = o/2.

For very long cylinders, to which equetion (49) is applicable for
elastic buckling, the secant modulus is agein the plasticity-reduction
modulus, as was shown by Gerard theoretically (ref. 7). This agrees with
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test data, as may be seen from figure 30. Thus, the inelastic cowmter- N
part of equation (L9) is - . ~

Ter.= 0.2727(1 - ve2) -3/ ”E"(t/r)5/ 2 (51)

L
where 1 = (Es/E)[kl - ve2)/(l - vei]B/ and corresponds to a value of
T = g/2. '

No inelastic theory has appeared in the literature for intermediate-
length cylinders. However, the applicability of the secant modulus in
the limiting cases would seem to Justify its use in this range. This is
partially bolstered by test data, in which, unfortunately, there is large
scatter (fig. 31). Still, the trend is seen to agree wilth the secant-
modulus plasticity-reduction factor. . . .

Inelastic-buckling stresses for twisted cylinders may be found from
the nondimensional curves of figure 32 by using )

€cr = Tor/nE (52)

Effects of Internal Pressure =

By use of Donnell's equation, Hopkins eand Brown analytically cal-
culated the effect of internal pressure on the buckling stress of twisted
cylinders (ref. 42). Fair correlation was obtained with the experimental
results of Crate, Batdorf, and Baasb, who utilized an empirical interaction
equation to fit the test data (ref. 43).

On the basis of tests performed on a single cylinder with different
stiffener ring spacings, Crate, Batdorf, and Baab derived the interaction

relation
RtZ + Rp = 1 - (5%)

in which the pressure ratlo Rp 1s equal to the quotient of the applied

internal pressure and the external hydrostatbtic pressure that would buckle

the cylinder by itself. The torsional- and hydrostatic-buckling stresses

can be found from the curves discussed in this sectlon and in the sectilion "
"Circular Cylinders Under External Pressure." ~
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The test results of Crete, Batdorf, and Bsad are shown in figure 33
from which it can be observed that good agreement of test data with the
interaction curve 1s obtained.

Elliptic and D-Section Cylinders

A circular cylinder loaeded in torsion buckles over its entire sur-
face. If initiel Imperfections are smell, buckling will occur suddenly
and will colncide with failure. If imperfections are eppreciable, the
buckling stress is not preclsely defined, as it is for a perfect cylinder;
however, failure will occur at a stress substantially the same as for the
perfect cylinder.

In general, the behavior of a noncirculsr cylinder follows that of
a circular cylinder with initisl imperfections. When torque is applied
to a cylinder with an elliptic cross section, buckling occurs first at
the ends of the minor axis and progresses toward the ends of the msjor
axls. When the buckle reaches thils point the cylinder collapses. The
reason for this behavior mey be evident if the radius variation from the
minor axis to the major axis 1s considered. Since the radius at the major
axis 1s the smsllest for the cross section, this reglon stabilizes the
cylinder ageinst collapse until the buckle forces failure.

D-section cylinders behave in the same manner as complete cylinders.
In fact, all cylinders with the same Zj, fail at the same ki, as may

be seen in figure 34. In this figure buckling coefficients are plotted
as a function of Zj, for elliptic cylinders tested by ILundquist and
Burke (ref. 30) and for circulaer and elliptic D-tubes tested by Sherwood
(ref. 45) and by Kavenaugh and Drinkwater (ref. 46). The buckling-stress
expression ls the same as that given for circular cylinders in equa-
tion (46) and for

2
Z1, = %%(l - Ve2)1/2

For Zj, the semimajor axis of the ellipse or D-tube section is

taeken equal to r. This is depicted in the sketches accompanyling the

datea of figure 34, which also contains the theoretical cilreular-cylinder
curve of Batdorf, Stein, and Schildcrout (ref. 38). As is spparent from
this filgure, the asgreement is good. Some of the test data for the .elliptic
cylinder rise above the theoretical curve. However, the main mass lies
almost entirely within the circular-cylinder scabter band.
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CIRCULAR CYLINDERS UNDER EXTERNAL PRESSURE

Historical Background

A rather complete bibliogrephy up to 1939 on the buckling of circular
cylinders under préssure is contained in a paper by Sturm (ref. 47). The
present section, for the most part, is confined to the work of Windenberg
and Trilling (ref. 48), of Sturm, and the more recent work of Batdorf

(ref. 3).

Windenberg and Trilling performed tests from which empirical rela-
tions were obtailned between certain cylinder parsmeters and buckling
stresses. Sturm investigated radial and hydrostatic buckling both theo-
retically and experimentally, with the test data confined to the long-
cylinder range. He solved the set of differential equations for both
simply supported and fixed ends. Bgtdorf employed Donnell's single equa-
tion to obtain solutlions to the cases of simply supported cylinders under
radial end hydrostatic pressure. The simplicity of using Donnell's equa-
tion was demonstrated in the section "Stability Theory of Curved Elements.

Kempner, Pandalail, and Patel investigsted the postbuckling elastic
behavior of hydrostatically loaded cylinders and demonstrated theoreti-
cally that significant pressure increases could be sustained in short
cylinders after buckling (ref. hg) This work tends to substantiate the
explanations given in the section "Physical Behavior of Curved Elements"
concerning those cases in which large—deflection effects are likely to
be of importance.

Test Date

The test data for failure of circular cylinders under pressure loads
appear in figure 35(a) for radial pressure alone and in figure 55(b) for
hydrostatic pressure. On the whole, the agreement with Batdorf s theo-
retical results is good, with relstively little scatter. This agreement
suggests that small initial imperfections are unimportant in this case.
In fact, Sturm's test data indicate that initial eccentricities in the
test specimens varied from negligibly small to some considerably greater
than the wall thickness. Furthermore, the results reported by Windenberg
and Trilling (ref. L8) as well as by Sturm (ref. 47) were failing stress,
and not buckling stress, which tends to smooth out the effects of small

imperfections.

The test data of Windenberg and Trilling for the hydrostatic-losding
case appear to lie along a straight line at a slight slope to the theo-
retical line of Bstdorf. The agreement with theory 1s goed for values
of Zj, beyond 100. Below this value of Zj,, however, the test data are

-
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below the theoretical values. A close examination of these data indi-
cated that plasticity effects may have lowered the falling stress com-
pared with the theoretical elastic-buckling stress. This suspicion is
based on the fact that the data are at a fairly large fraction of the
tensile yleld strengths reported. Compression yield strengths for
straightened sheet materisls are generally considerably below the tension
yield values, which would tend further to increase the influence of plas
tieity effects. :

Behavior of Cylinders

A long circular cylinder under either radial or hydrostatic loading
will buckle into two circumferential harmonic waves in the same manner i
as a ring. As the cylinder length decreases, the number of circumferential
waves increases with a consequent increase in buckling stress. Sturm has
shown that when the buckling pressure is plotted as a function of L/r
for particular wvalues of r/t, pesks will occur in the curves similar to
those obtained for flat plates when k 1s plotted as a function of a/b.
Each of these pesks represents the transition from n circumferential
buckles to n + 1 buckles as the emergy for n + 1 buckles becomes less
than the energy for n buckles.

For very short cylinders under radisl pressure, Batdorf has demon-
strated that the behavior corresponds to that of a long flat plate under
longitudinal compression, with the boundary conditions along its longi-
tudinal edges corresponding to those slong the cylinder edges. The
behavior of hydrostatically loaded short cylinders theoretically aspproaches
that of an infinitely long flat plate with biexial compression loeding in
.which the trensverse component is half of the longitudinal. In both these
cases the buckling stress and wave number sre determinable from the curves
of reference 1, with a/b equal to 2rr/L.

The low data for Zj, < 100 obtained by Windenberg and Trilling per-

tain to cylinders reported to be fairly free from initial imperfections.
Some of the decrease may be chargeable to the effects of plasticity, since
the stresses approached the yield for some of these cylinders.

There may also be a conflict of testing procedure and theoretical
analysis. Theory assumes that the deformation of the cylinder under the
externsl loads is not restrained. However, radial rigidity of the end
plates of & test cylinder under hydrostatic pressure would result in a
relative inward displacement of the cylinder wall before buckling begins.
If the cylinder were long, this initial eccentricity might not affect
the buckling stress. However, it may exert apprecisble influence on the
buckling stress of a short cylinder under hydrostatic pressure.



48 NACA TN 3783

Buckling-Stress Equations

Radial pressure.- Under inward-acting radial pressure, the
circumferential-compression stress generated in the cylinder wall is

==~ (54)

The buckling stress of the cylinder under this losding is

ky2E N -
Ocr = m(J - (55)

When more than two complete waves are formed around the circumfer-
ence of the cylinder, Donnell's equation may be used to compute the
buckling stress. Thils was done by Batdorf for cylinders with simply
supported edges as shown in the section "Circular Cylinders Under Axial
Compression.” Values of ky are shown in figure 35(a).

When the length aspproaches zero, the cylinder degenerates into s
long, longitudinelly compressed, flat plate. In reference 1, the buckling
coefficient was shown to have a value of 4 for simply supported edges and

6.98 for clamped edges.

When the cylinder is of sufficient length, buckling will occur in
two circumferential waves, and Donnell's equation, which is based on the

assumption that n2 >> 1, cannot be used. A solution for a long cylinder
has been given by Timoshenko in the form

2 '
der = —E———<3) (56)
(1 - ve2)\TF

for (L/r)2 > 5(r/t). Figure 35(a) contains the theoretical curves for
all three cylinder length ranges. .

Hydrostatic pressure.- Under hydrostatic pressure, which is a par-
ticuler case of the general combination of radlel pressure and axial
loading on a cylinder, the following biaxial-stress field is generated

in the cylinder wall:
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pr
0 (57)
. Br
= J

For simply supported edges, the solution obtalned by Batdorf by use of
Donnell's equation is given in the section "Circular Cylinders Under
Axisl Compression.”

When the cylinder length becomes small the circumferential-buckling
coefficient approaches 2. This result follows directly from the flat-
plate interaction curves corresponding to the bilaxial-stress field of
equation (57).

For long cylinders, the behavior under hydrostatic pressure is the
same ss that for radial pressure alone (eq. (56)) according to linear
theory. The buckling-coefficient curves for this case appear in fig-
ure 35(b) together with the theoretical curves for the other two cyl-
inder length ranges.

Effects of Plasticity
When the circumferentiel stress in the cylinder wall under radial

pressure exceeds the proportional 1imit, equation (55) may be written
in the form

Q
I

cr —

kyn°F (P_>2 (58)

|
12(1 - ve2) \L

The plasticity-reduction factor for long cylinders was found by Bijlaard
(ref. 24) to be the same as that for a wide plate column, which was shown
in reference 1 to be

B (- v 1 5B (59)
E (1-) \& k&g

utilizing a value of 0.5 for the plastic Poisson's ratio after the manner
of Stowell. This result applies to long cylinders only ((L/r)2 > 5(r/t))
and corresponds to the curves of figure 35(b) for which specific values
of r/t are indicated.
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CIRCULAR CYLINDERS UNDER COMBINED LOADS

Historical Background

The first investigations into the buckling of circular cylinders
under combined loads were experimental. Bridget, Jerome, and Vosseller
conducted tests on steel and brass cylinders in torsion combined with
axisl tension or compression and derived empiricel interaction curves
from the results (ref. 50). Wagner and Ballerstedt comstructed an inter-
action equation from data obteined from tests on brass cylinders under
torsion and tension (ref. 51).

Theoretical analyses were made by Leggett (ref. 52) and by Kromm
(ref. 53) on the combination of torsion and axial compression, using the
basic linear shell equlilibrium equations. Subsequently, Bruhn conducted
a large number of tests on celluloid cylinders under various combinations
of axlal compression, axial tension, bending, and torsion (ref. 54). He
compared his results with empirical interaction relations.

More recently Batdorf, Stein, and Schilderout investigated buckling
under axlal compression and torsion using Donnell's equation (ref. 55).
They derived theoretical interaction relations which they modified for
practical spplication by substituting empirical buckling stresses for
the theoretical values in the denominators of the stress ratios.

Interaction Equations

The use of interaction equations in terms of stress ratios for solu-
tion of combined-load buckling problems on flat plates was described in
reference 1. Interaction equations for various combinations of loadings
on circular cylinders sppear in table 5 of this report. In the followling
paragraphs these equations are dilscussed in detail.

Axisl Compression and Bending

Since the nature of the buckle pattern is the same for axial com-~
pression and bending of a circular cylinder, a linear interaction equa-
tion might be expected for this case. Bruhn has shown this to be a good

approximation to the data in figure 36(a).
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Axiel 1oad and Torsion

Theoretical snalyses of combined-load buckling of cylinders have
been limited to application of linear theory to the combination of axisl
load and torsion. This was done by Kromm, Leggett, and Batdorf, Steiln,
and Schildcrout, whose work differs mainly in mathematical details. They
all obtained essentlially the same results.

From linear anelysis, Batdorf, Stein, and Schildcrout (ref. 55)
obtained an interaction equation for axlel compression and torsion,

Reo + Rt = 1 (60)
which is spplicable for small values of Zf, (see table 5). For large
values of Zy, they suggested retaining the form of equation (60) with

the provision that empirical results for the sheer- and axiasl-compression-
buckling stresses be used In the stress-ratlo denominators instead of the
theoretical values in order to obtain correlstion with the data for numer-
ical stresses in the limiting cases of Rg = 0O or Rt = 0. The ranges

of applicebility of this equation ere shown in table 5, and the, sgree-
ment with Bruln's test data is shown in figure 36(b). Similar sgreement
was obtained with the data of Bridget, Jerome, and Vosseller (ref. 50).

For axisl tension and torsion, Batdorf, Stein, and Schilderout
recommended

0.8R; + Ry = 0.9[:-1 <Re <0, 30 < Z7, < 7.7(r/t)2] (61)

Bruhn cbtained good agreement with test date using O.4LR, + Ry =1
for the same range of R, and Zj.

Bending and Torsion

The experimental results of Bruhn are shown in figure 36(c) together
with three interaction equations. The parabolic equation is seen to be
conserveative, while the equation for the circle gives too large a value
at large values of Rg. The best overall agreement is obtained with the

relstion

Bylo + R2 =1 - (62)

Axial Compression, Bending, and Torsion

Bruhn performed tests on cylinders with 230 < r/t < 800 under the
combination of axial compression, bending, and torsion, and cobtained
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results that show considerable variation in predicted value of cone stress
ratic for selected velues of the other two (ref. 54). A typical set of
these data is shown in figure 37 from which these varlations are apparent.
However, the two-dimensional interaction curves derivable from these charts
agree reasonably well with those of figure 36. Additionsl tests conducted
on cylinders covering a range of axlal tension as well as compression
egree fairly well with the expression

Ro + Rp + Re2 = 1 (63)

It may be concluded, therefore, that interaction relationships for this
combination are uncertain at present.

Transverse Shear and Bending

Lundquist conducted tests on the behavior of circular cylinders
under combined transverse shear and bending (ref. 56), and Lundquist and
Burke continued this program to include elliptic cylinders (ref. 30).
By varying the lengths of the centilevered cylinders, it was possible to
determine the shear-buckling stress under combined bending and shear.
By extrapolation of these results to a zero bending stress, the equivalent
pure trensverse shear-buckling stress was obtained.

These stresses were compared with the torsional-buckling stresses
for these same cylinders as determined from the theoretical curve of
figure 26, which revealed & value of sbout 1.6 for the ratio of the trans-
verse to torsional shear-buckling stresses for both circuler and elliptic
cylinders. This value, however, represents an average for the data. The
minimum value of 1.25 was used by Lundquist and Burke in the derivation
of interaction relationships for combined transverse shear and bending.
The buckling stress in pure bending was available from previous investi-
gations described in the section "Cylinders in Bending."

As a result of this analysis, it 1s possible to express the stress
ratios in the form .

Ry + Rg2 = 1 (6L)

In computing Ry, 'use figure 16 to £ind the buckling stress under bending
slone. For Rg multiply the theoretical torsional-buckling stress

obtained from figure 26 by 1.25 to account for the transverse-shear
effects. This value of 1.25 is conservative when compared with the

average of the test data. :
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CURVED FLATES UNDER AXTAT. COMPRESSION

It is natural to expect that the behavior of curved plates under
compression would be similar in many respects to that of a clrcular cyl-
inder under compression since a curved plate is essentially a section of
a cylinder. Long plates of sufficient curvaeture and width do, in fact,
exhibit the same characteristice as long cylinders. Both buckle at
stresses considerably below the predictions of linear theory and it is
apparently necessary to utilize large-deflection theories to obtain
improved agreement with test data. Also in both cases diamond buckle
patterns are observed.

In this section, an attempt has been maede to extend the unified
approach, which was spplied to cylinders under sxisl-compression and
bending loadings, in order to correlate test data with theory for axially
compressed curved plates. Since previous-analytic investigations on
axial-compressive buckling of curved plates were primerily limited to use
of linear theory, close sgreement with test data was found to occur only
near the flat-plete limit, as might be expected by analogy to the cylinder
results. Consequently, it was necessary to extend by empirical methods
the unified spproach of the sections "Cylinders in Bending" and "Circular
Cylinders Under Axial Compression."

Historical Background

Redshaw spplied the classicel energy approach to the determination
of the buckling stress of axially compressed curved plates and obtained
an explicit equation for the buckling stress which reduces to the flat-
plate-buckling stress as one limit and to the classical cylinder-buckling
stress as the other limit (ref. 57). Sechler and Dunn suggested modifying
Redshaw's equation by using experimental values for the cylinder-buckling
stress instead of the classical theoreticel value (ref. 58). Both of
these methods can be reduced to the form in which the curved-plate-
buckling coefficient is plotted as a function of the curvature parameter.

Stowell proposed a form for Redshaw's equation which utilizes the
classical cylinder-buckling stress and the flat-plate stress as limits
and employed a transition curve of the form utilized in the section
"Circulsr Cylinders Under Axial Compression” for cylinders (ref. 59).

Test data on curved plates were obtained by Cox and Clenshaw
(ref. 60), Crate and Levin (ref. 61), Jackson and Hall (ref. 62), Welter
(refs. 63 and 64), and Schuette (ref. 65). Generally, no attempt was
made to correlate these data with the nonlinear theories of axisl-
compressive buckling until the comprehensive treatment by Cox and Pribram
(ref. 66), who utilized the energy-buckling criterion of Tsien to explain



5k NACA TN 3783

the behavior of axially compressed curved plates. As shown in the section
"Stability Theory for Curved Elements," Batdorf utilized Donnell's egquation
to derilve the buckling coefficient for an axlally compressed curved plate,
and Batdorf, Schildcrout, and Stein (ref. 67) attempted a synthesis of the
test data of Crate and Levin and of Cox and Clenshaw. Except for some

test data by Schuette in the inelastic range, all the preceding work was
confined to elastic behavior.

Summary of Test-Specimen Detalls

The dimensions of the plates tested during the four investigations
described herein are summarized in table 6. Schuette tested magnesium-
alloy plates (ref. 65), whereas the remainder of the tests were performed
on aluminum alloys. Two series of tests were run by Jackson and Hall
(ref. 62) because in the first series the behavior of the supporting
combs on the plate unloaded edges led to erratic results. The present
report contains data for the second series only, in which this defect
spparently was remedied. .

Buckling Behavior of Axially Compressed Curved Plates

A curved plate loaded in axial-compression buckles in the same manner
as a cylinder when the plate curvature is large, and when the plate curva-
ture is small i1t buckles essentially as e flat plate. Between these two
limits there is a transition from one type of behavior to the other.

When load 1s applied to the plate it attains e critical load, after
which the load suddenly drops (at constant end shortening in a rigid
testing machine). Upon further axial deformation the load continues to
rise again and reaches a failure load which is greater than the buckling
load if the latter occurs elastically. When the plate buckles plastically,
buckling and failure are coincident. For a treatment of failure of com-
pressed curved plates, refer to Part IV of this Handbook (ref. 68).

Tests by Cox and Clenshaw (ref. 60) and by Jackson and Hall (ref. 62)
revealed that upon successive tests of a particular plate the upper
buckling load is usually reduced, whereas the lower buckling load and
failure level remained essentially constant. :

The numerical values of buckling stress depend not only upon the
geometry of the plate but also upon the boundary conditions. In contrast
with cylinders with two edges along which boundsry conditions exlst, there
are four edges for curved plates, which not only increase the difficulty
of predicting the plete-buckling behavior, but also require additional
parameters to describe the behavior.

.
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Test data for each of four investigations are shown in figure 38(a)
in terms of ko and 2Zp, where

7°E kt

_ 12(1 - ve2)ccr/b)2

(65)

Zy = (b2/rt) (1 - Vea)l/ 2

/

At small Z; values, the buckling coefficient approaches that of a flat

plate. The boundary conditions of the plates tested were between simple
support and clamped. Thus an average of the buckling coefficlents of
these two limiting cases, kpy = 5.7, was used for correlation purposes.

At large values of Zy, it can be observed that the buckling coef-
ficilent is linearly related to Zp. Thus, the buckling stress in this
region of large velues of Zp reduces to the form of equation (30). In

order to Indicate this behavior more clearly, the deta of figure 38(a)
have been replotted in figure 38(b) according to r/t groupings. The
80114 lines of unit slope represent behavior according to equation (30)
in which the values of C were obtained from figure 7 for circular
cylinders. It can be cobserved that in the large Zp reglon the curved

plate approaches the cylinder in behavior.

In the intermediate region, a transition curve was f£itted to the
two limiting cases discussed above. Thls transition curve is of the
same type used for cylinders in the section "Circular Cylinders Under
Axial Compression." It can be observed that the experimental data lie
above this curve. The cylinder data in the transition region displayed
a similer type of behavior which was attributed to length effects.

The range of geometric veriables possible on a curved plate are
depicted in figure k4, which shows the meny combinations of width and
length possible for such an element. In each case, s somewhat different
type of buckling behavior may be expected depending upon the curvature
of the plate. The two limiting cases of a short, wide plate with small
curvature and a long plate of large curvature effectively have two edges
along which boundary conditions may influence the buckling behavior of
the plate. Such plates behave essentially as circular cylinders. All
other cases depicted in figure L4t involve boundary conditions along four
edges. Most practical plates are of this type.
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In the tramsition region the buckling coefficient should reflect the
influences of the geometric parameters of the curved plate as well as the
boundary conditions. For this region, the buckling coefficilent can be
written in the followlng functional form:

ke = £(Zp,r/t,L/r,r/b) (66)

For the cylinder, the first three paremeters sppeared. For the curved
plate, an additional parameter r/b reflects the additional set of
boundaries.

Attempts were mede to synthesize the available test data according
to the different parsmeters of equation (66). Since it is likely that
a long wide plate of apprecieble curveture would buckle in the dlamond
pattern observed in axially compressed circular cylinders, it appeared
reasonable to expect b and L to influence ke as they approached
the size of a diamond buckle. For example, if the plate length were to
be decreased while malntaining the rest of the plate geometry constant,
the circumferential plate edges would begin to confine the buckle pattern
until eventually only one buckle would remein lengthwise while several
“might still exist circumferentially. Any further reduction in plate
length might be expected to cause a transition from one diamond buckle
to a single sine curve representative of plate behavior. Thus, at the
transition geometry a peek would be expected in the plot of kg

against Zp.

The presence of peaks in the data may be demonstrated in a general
fashion by plotting all the test data in terms of ke as a function of

Zy, together with the compressed-cylinder semiempirical curves of fig-

ure 6 as shown in figure 38(b) for r/t = 300, 500, and 1,000. Then the
megnification factor pu = kcexp/kcemp is plotted for all the data as a

function of Zp as shown in figure 39. This plot reveals that peaks

exist at approximately the same values of .Z as were found for axlally
compressed clrcular cylinders. However, it 1s evident that the peaks
are not so positively defined as they are for compressed cylinders. The
gcatter in the data is large, yielding megnification factors ranging
from 1 to 3 or more at the same values of Zy for plates with the same

values of r/t.

Further evidence of the existence of a magnification factor in the
transition region is shown in figure 4O which contains envelopes of the
data obtailned by Crate and Levin (ref. 61), Cox and Clenshaw (ref. 60),
Jackson and Hell (ref. 62), and Schuette (ref. 65). Peaks are observed
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at Zp values of approximately 5, 50, and 500. The first peak was not

observed in the cylinder data of figure 9 although the second and third
roughly correspond.

Attempts to define quantitatively the behavior of curved plates in
the transition region were unsuccessful. For example, each point in
figure 39 was merked with the pertinent L/r and r/b values. Attempts
to draw contour lines through the data for constant values of L/r, =r/b,
or L/b did not reveal any consistent trend.

In general, therefore, it may be concluded that there is consider-
able evidence for the existence of a mesgnification factor. However, the
inability to obtain consistent trends for the various geometric parameters
used precludes any recommendations for design and analysis purposes.

Initial Eccentrileity

Jeckson end Hall measured the initial surface irregularities of 18
of the plates which they tested (ref. 62). Ordinerily this information
might be used to determine U for long specimens. However, the values
of %, for these plates were in the lower transition range close to the
flat-plate limit and consequently would be of little value in analyzing
curved plates of large values of Zp on which the relation of C

sgainst r/t is based.

Cox and Pribram utilized these data to comstruct curves of buckling
coefficient as & function of Zp for different values of &5, basing the

construction of the curves on the semliempirical approach which they used
to derive a general theory for the behavior of axially compressed curved
plates (ref. 66). However, the use of these curves requires a prior
knowledge of the magnitude of &gy, which seldom is available to designers.

Inelastic-Buckling Behavior

As was demonstrated in the preceding sections, a curved plate with
a large value of Zp buckles in a diamond pattern at a stress equal to
that of the corresponding cylinder. This would appear to imply similar
correspondence in the inelastic behavior. It was shown for cylinders in
the section "Circulasr Cylinders Under Axial Compression" that the axial-
compression plasticity-reduction factor, when spplied to the elestic-
buckling-stress expression, yields the inelastic-buckling stress for a
long axiaelly compressed circulsr cylinder

Oor = TMCEL/r (67)
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where
1/2 .

Oor Eslzl - Ve?) Ey (68)

" CEt/r E'_(l ~ v2) Eg

n

In this section the inelastic test data of Schuette on magnesium-alloy
curved plates (ref. 65) are compared with equation (68) to determine
whether correletion exilsts.

It was assumed that the value of U for &ll the test data of
Schuette was constant. The relation between C and r/t was then
determined in the inelastic range by fittlng a curve through the elastic
data, as shown in figure 41, utilizing the theory of Donnell and Wan
(ref. 20) to extend this curve to low values of r/t. It can be observed
that for this case U is 0.000092. To aid in locating this curve, it
was noted that for r/t = 300 & value of C = 0.36 fits the test data
of Schuette shown in figure 3%8(a).

In figure L2, test data and theory are compared for the three mag-
nesium alloys Ma, Mh, and J-lh. The plasticity-reduction factor is
plotted as a function of stress. The theoretical value of 7 was .
obtained from stress-strain curves presented by Eastman, McDonald, and
Moore (ref. 69). The experimental value was found by computing the ratio
of experimental buckling stress to CEt/r, as-shown in equation (68). .
As may be seen from figure 42, the asgreement is good. The secant-modulus
plasticity-reduction factor is also shown in these figures for comparison.
Schue“te originally recommended that it be used in the lnelastic-buckling-
stress equatlon

Oor = 0.42Egt/r (69)

in which the average value of C = 0.42 was used for all the test data.

However, better sgreement is obtained with the factor for axially com-

pressed circular cylinders, particularly for the alloy Mh, for which the .
scatter is small, by using the curve of figure 4l. _ B

Effect of Normal Pressure
Application of pressure to the conceve face of a curved plate

raises the aexisl-compressive stress that the plate can sustain before
buckling. Refel and Sandlin (ref. 70) and Rafel (ref. T1) performed
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tests on curved plates under this load combination, the results of which
may be correlated with the interaction equation

Re® + Rp =1 (70)

where RP is the ratio of the applied internal pressure to the external
pressure which would buckle the cylinder of which the plate is a section
(see fig. 43).

SPHERICAL PLATES UNDER EXTERNAL PRESSURE

The buckling behavior of externally pressurized spherical plates is
similar to that of axislly compressed clrcular cylinders and curved plates
In two ways. First, linear theory predicts the same buckling stress for
externally pressurized spheres, long compressed cylinders, and long curved
plates. Second, test data are considerably below the results of linear
theory and large-deflection theories have been used to obtain improved
agreement. Consequently, it appears reasonsble to correlate test data
on spherical plates in the same manner as used previously for cylinders
and curved plates.

For long cylinders, the theory of Donnell and Wan (ref. 20) led to
the determination of the buckling stress as a function of r/t. It was
thus possible to constrmict a relationship for C (in the modified clas-
sical buckling-stress equation) as a fumction of r/t for axially com-~
pressed circular cylinders which involved selecting a numerical value
for the unevenness factor U. For a velue of U = 0.00025, the theoret-
ical curve of C merged with that derived empirically by Batdorf. This
matching of theory with test results was necessary because of the lack
of measurements of initial imperfections of the cylinder and curved-plate
test specimens.

For spherical plates, on the other hand, experimental deta are avail-
able on the magnitude of the geometrical imperfections although a theory
for the influence of such imperfections is lacking. By using the param-
eters of the Donnell-Wan theory, however, it was possible to establish
from experimental data s reasonsble estimate of the effect of geometrical

initial imperfections.
Historical Background
Timoshenko (ref. 4) reported linear analyses of the buckling of

spherical shells under external pressure by Zoelly (ref. T72), Schwerin
(ref. 73), snd Van der Neut (ref. T4), who obtained the same expression
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for this case as for a long axlally compressed circulasr cylinder. As

in the case of the axially compressed circuler cylinder, s nonlinear
theoretical investigetion by Tsien (ref. 12) revealed the presence of
equilibrium buckle configurastions at large deflectlons for a spherical
shell under external pressure. The theory permitted the calculations of
both the upper buckling load (which occurs during the loading of the
shell) and the lower equilibrium load utilizing the energy criterion pre-
viously employed on sxially compressed cylinders. These theoretical
values are in agreement with the trend of the data obtalned from tests

Additionel tests were recently conducted by Kaplan and Fung to
determine whether the classicel criterion or the energy criterion is
appliceble to the buckling of-externally pressurized spherical plates
(ref. 75). They concluded that the classical criterion is applicable
to very shallow plates, while the deeper plates tend to buckle according
to the energy criterion.

Initisl Imperfections

In 1934 Donnell postulated the initial imperfections of a circular
cylindrical shell as the reason for velues of the experimentally observed
axlal-compressive-buckling stresses being low compared with the classical
theoretical value of 0.6Et/r for long cylinders (ref. 8). Subsequently,
Donnell and Wan extended this concept, utilizing the large-deflection
approach developed by Donnell together with a relation between initial
imperfection and the buckle geometry of the cylinder (ref. 20). This
involves a paremeter which Donnell and Wan teérm the "unevenness factor"

of the cylinder.

More recently Loo extended this approach to include torsional buckling
(ref. T6) by redefining initial imperfection in e form slightly different
from that utilized by Donnell and Wan:

g

I,L

12

ao = Uo ——(l) (71)
Ip + Iont

In this expression &, is the initial imperfection and Iy and Lo

are the wave lengths of the buckle measured sxially and circumferentlally
on the cylinder. The value of ay is selected to include not only geo-
metric imperfection, but, also theoretically, residual stresses, material

anisotropy, end loading eccentricities. Numerically, it 1s the ratio of
the amplitude of the equivalent imperfection sine wave to the thickness

of the.wall of the cylinder.
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By properly selecting I3 end L2, equation (71) can be applied to
the case of externally pressurized spherical plates and cylinders as well
to the other cases examined by Loo. This suggests the possibility of
generalizing equation (7l) to permit an overall evaluation of initial
imperfection. This 1s done by first recognizing that L; and Io
usually are proportional to one another in any particular case and that
either of these two dimensions can be expressed as some proportion of a
geometric parameter of the structure under considerstion, such as the
radius of the cylinder surface or the diemeter of the spherical-plate
aperture. Symbolically defining this dimension as X, and including the
proportionality constants in a single symbol K, equation (71) becomes

ag = Uo(¥X/t)8 (72)

The amount of initlal imperfection is fixed for a particular structure
manufactured in a specific manner, and the magnitudes of X and k are
reasonably well known for a specified type of loeding. The unknown gquan-
tity in this expression is then Uy. Donnell found it necessary to deter-
mine Up 1in order to fit the theory to the test data. In this report it

is determined experimentelly.

The expression for Uy 1s obbtained by writing equation (72) in the
form

Uo = ao(Kx/t)78 (73)

Tt is apparent from this' relation that large buckle wave lengths lead to
small values of U, and small lengths lead to large values. Actually,
the quantity (KX/‘l;)'g .1s & measure of the sensitivity of Uy .to the

wave-length pattern and, consequently, to the type of loading. If this
is termed the "sensitivity factor" S, then

S = (t/Kkx)8 (74)

end equation (73) becomes

Uo = 808 (75)

This genersl expression relates unevenness to initial lmperfectlion and
sensitivity to this imperfection in terms of the buckle wave lengths.
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Returning to equation (71), it is seen that in general

g
5 = [9‘%22”} (76)

Donnell end Wan (ref. 20) and Loo-(ref. 76) foudd satisfactory agreement
of the general theory with test data when g is chosen equal to 2. ¥For
spherical plates, it appears likely that IL; = Lo due to axisymmetry.

Thus for this case

s = (2t/11)% (77)

If the dismeter of the spherical plate d 18 selected as X, and
if there are n buckle half waves across the cap, then ILj = d/n; equa-~

tion (77) becomes

s = (ent/a)® (78)

and Uy follows from equation (75) in the form

Uo = ao(2nt/a)? (79)

Analysis of Initial-Imperfection Data

Donnell and Wan presented a theoretically derived relstion between
Ucr/Ucl and Ubr/t for axially compressed clrcular cylinders, from

which the relstion between C and r/t 1s reedily obtained for a spe-
cific value of U, (ref. 20). The datae on spherical plates would be

most effectively evaluated, therefore, by deriving the curve of C as
a function of r/t' empirically. The manner of accomplishing this follows.

Keplan end Fung measured the initial profile of each spherical-plate
specimen and recorded the deviation from a sphere through the pole of the
plate (ref. 75). This permits computing a value of 8,5 for each plate
which is equal to the maximum initial departure taken as a fraction of

the sphericel-plate thickness. Thus one quantity in equation (75) can
be found. It now remeins to determine the numerical value of the sensi-

tivity factor.
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This factor S for the spherical plates is expressed in equation (78).
In this relation the only unknown quantity 1s the value of n, the number
of buckle half waves across the base dismeter of the plate. This is deter-
minable from Kaplan and Fung's data, in which the buckle shapes are pre-
sented for several cases. The width of the buckle was obtained by pro-
Jecting the buckle shape down to the datum line used to messure the plate
profile. The number of buckles i1s related to Z3 as shown in figure L4k
for the points taken from Kaplan and Fung. For values of 23 less than
42 there is one buckle at the pole of the plate. For 42 < 23 < 85 there
are two buckles equally spaced sbout the pole, and for Z3g > 85 there
are three buckles, the center one of which occurs at the plate pole. .
Thus the few points displayed in figure L&, together with this informa-
tion, do not permit precise determination of n for each specimen. How-
ever, since the princilpal purpose of this section 1s to compere the empir-
ical trend with Donnell's theory, this purpose is served satisfactorily
by drawing a straight trend line through the date in figure Lk,

When this is done, n can be found for each specimen, after which
S can be found from equstion (78). Then U, follows for each specimen,

and Ubr/t can be calculated. Thls 1s then plotted as a function of
Gcr/ccl as shown in figure 45, utilizing the relations

Ocr = Perr/2t (80)
0g1 = 0.6Et/r (81)
which yield
UCI/UCl = Pcr(l‘/t)a/(l-zE) (82) .

The empirical plot of C as a function of r/t can now be made
when the average value of U, 1is determined for the caps. This is found

to be 2 X 1.0'lL from table 7, which is so close to the value of 2.5 X 10'4

found in the section "Circular Cylinders Under Axial Compression" for
axially compressed circular cylinders that this latter value will be used
for purposes of comnsistency. Little difference will exist between the
two curves. Figure 46 contains the plot of C as a function of r/t
together with the test points obtained by using C = Ucrr/Et. The agree-

ment appears to be reasonable.
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On the basis of the agreement of the empirical curve with the average
of the test data, it may be inferred that the geometric portion of the
total initial imperfection controls the average behavior of the spherical
plates while the other factors such as residual stress mey contribute to
the scatter observed in the test data. -

It may also be inferred that the concept of initial imperfections
and the perameters selected by Donnell snd Wan (ref. 20) in general pro-
vide a reasonable basis for evaluating the buckling behavior of curved
plates and shells, although the theory required and the interpretation
of the sensitivity paremeter S may be different in each case. Further
research is indicated to determine theoretically the empirically derived
relation shown in figure 45. In this connection, Klein showed correlea-
tion between Ucr/“cl (es & function of r/t) and an imperfection param-

eter that is essentially a different form of ag (ref. 77).

Compressive-Buckling Coefficients

From figure 46, it ie now possible to construct empirical curves of
kp as a function of Z3 in the manner of figure 5 and to compare them

with the test data for externally pressurized spherical plates. This

has been done in figure 47, in which the two curves for r/t equal to

200 and 2,000 have been drawn, since all the data lie within this range.
The value of k for the circular flat plate is 6.0. Because of the
flatness of the curve of C at large values of r/t, the spacing between
the two lines is small compsred with that shown in figure 6 for axially
compressed circular cylinders. It may be seen that the agreement of the
test data with the empirical curves is good. A peak appears to occur

at 23 = 50; however, the data are too few to substentiate it conclusively.

The results reported by Tsien pertain to values of r/t greater
, than 1,000, with the experimental buckling coefficients a large percentage
of the classical value (ref. 12).
Numerical Velues of Buckling Stress

For computation of elastic-buckling stresses of externally pres-
surized spherical plates, the equation

Ocr

R ‘
12(1 - veE)Qi) &
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mey be used for all values of Zg. When Zj 1s large and the plate

approaches pure sphere behavior, it is permissible to use equation (30)
to find the buckling stress. The curves to be used in conjunction with
these equations may be found in figures 46 and L7T.

Effects of Plasticity

The plastiecity-reduction factor for a sphere under external pressure
was theoretically derived by Bijlaard (ref. 24). When Poisson's ratilo
in the inelastic range is chosen equal to the fully plastic value of 0.5,
the factor is equal to that found by Gerard for axially compressed long
circulsr cylinders (ref. T),

/2
_Es|(1- veA) By (84)
E (l - V2) Es

This factor is epplicable only to spherical plates of large Zg +values

for which the behavior is primarily that of a sphere wilth little flat-
plate influence. Consequently, the buckling-stress equation to be used
is that given by equation (67).

CURVED FLATES UNDER SHEAR

The usual convention adopted for pleates loaded in shear requires
thet the b dimension be the shorter side. When this is applied to
curved plates some embiguity arises, since such plates may be curved
elther along the short edge or elong the long edge. For clarity, there-
fore, a long curved plate is defined as one in which the long side is
parallel to a generator of the cylinder of which the plate is a segment,
and a wide plate is defined as one in which the long side is perpendic-
wlar to the cylinder generators. Since the generators of a right cir-
cular cylinder are parsllel to the axis of the cylinder, these edges
have been referred to as the axial and circumferential edges, respectively.

Historical Background

Leggett snalyzed the problem of sheer buckling of long strips of
small curvature with both simply supported and clamped axial edges
(ref. 37). It was assumed that motion in both the axial and circumfer-
ential directions was prevented along the edges of the strips. Kromm
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analyzed the same problem for simply supported edges without restraining
the motion normal to the axial edges of the plate and errived at lower
buckling stresses. These results agree with the subsequent work of Batdorf,
Schilderout, and Stein which was based on the use of Donnell's equation
(refs. 67 and 78). They investigated the buckling of a long curved plate
under shear with both simple support and clamping along the axial bound-
aries for a complete curvature range. They also investigated wide curved

plates (ref. 79).

Good correletion has been obtained of theory wilth the experimental
deta of Rafel (ref. 80), Rafel and Sandlin (ref. 70), Moore and Wescoat
(ref. 41), Kuhn and Levin (ref. 8l), and Chiarito (ref. 82). Further,
the effects of intermal pressure were investigated theoretically by Brown
and Hopkins (ref. 83), who obtained fair correlation with the test data
of Rafel and Sandlin.

Test Data

The experimental results appear together with the theoretical curves
of Batdorf, Stein, and Schildcrout (refs. 67, T8, and T9) in figure 48.
Somewheat better correlation is apparent for curved plates with small
initial eccentricities than for those with larger eccentricities. A
rather detaliled discussion of the test data is included in the report of

Batdorf, Schildcrout, and Stein.

The results shown in figure 48(a) were obtained from plates which
snap-buckled or in which the buckling stress was measured in a menner
that tended to minimize the effects of initiael eccentricity such as by
the selection of the top of the knee of & torque-twist plot. The date
of figure 48(b) were obtained primarily from determinations of buckling
torque by meens consldersbly more sensitive than were used for the data
of figure 48(a). For example, Kuhn and Levin used optical strain gages
to plot sheet strain as a function of load &nhd selected the point of
departure from a straight line as the torque at which buckling was pre-
sumed to occur. In this latter group one snap buckle occurred.

In general., the data agree fairly well with the theory. The results
of Kuhn and Levin for strips of large width lie as close to the cylinder
curve as some of the data reported in the section entitled "Cylinders
Under Torsion." This tends to substantiate further the use of the linear
theory for torsional buckling of cylinders. It should be noted in fig-
ure 48(a) that the buckling coeffilcients for Zp = O are equal to those

reported in reference 1 for flat plates loaded in shear.
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Behavior of Curved Plates Buckling Under Shear

An infinitely long rectangulsr plate with transverse curvature will
buckle under shear loeding at a stress greater than the flat plate of
the same developed width as a result of the restraint of radial deflec-
tion due to the curvature. Curves of buckling coefficient appesr in
figures 49(a) and 49(b) as a function of 2y, for the infinitely long
curved plate with both clamped and simply supported edges with no restraint
to motion normsl to the axiel edges. The values of the buckling coeffi-
cients for these two cases have a constant ratio for all values of Zj.

This suggests that for intermediaste values of edge rotational restraint,
the buckling coefficient could be determined with the aid of figure 23(a)
of reference 1, in which kg is plotted as a function of edge rotationsl
restraint for an infinitely long flat panel.

As the plate length becomes reletively short the buckling stress is
influenced not only by the axlial boundary conditions but by the circum-
ferential conditions as well. When the length becomes smell compared
with the plate width, the curved plate behaves like a short cylinder, or
like a flat plate, which is the limiting case of a short cylinder. In
this case, the axial boundery conditions no longer influence the buckling
stress of the curved plate and the circumferential boundary conditlons
govern.

In this transition from infinite to zero length, two a/b ranges
are defined depending upon whether the plate is long or wide. The square
plate (a/b = 1) marks the division between these ranges. In the wide-
plate range the 1limiting buckling behavior 1s that of the cylinder, while
in the long-plate range the infinitely long plate is at the other limit.
The relation between buckling coefficient and Zp mey be seen in fig-

ures 49(a) to 49(d). It should be recalled that, because of its defini-
tion, a/b is always greater than 1, and the meanings of kg and 2z

change at a/b = 1l. It is evident from the curves that wide plates tend
toward cylinder behavior more rapidly, as a/b increases, than do the
long plates toward the behavior of the infinitely long plate.

Numerical Values of Buckling Stress
On the basis of the good agreement between data and theory for curved

plates loaded in pure shear, the curves presented in figure 49 may be used
in conjunction with the buckling-stress equation

- kgn2E £12
o= (c) (85)
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For small values of Zj, equation (85) becomes the flet-plate equation
end kg may be found from the charts presented in Part I of the Handbook
(ref. 1).

The buckling stress for a long curved plate loaded in shear has been
found by Batdorf, Stein, and Schildcrout (ref. 79) to be of the form

___kem?E 42 "1/p
Ter Iézzfj—;;és(b) (2p) (86)

where Zp, > 30. The ratio of the curved-plate-buckling stress to the
corresponding flat-plate-buckling stress has been found to be O. 57(Zb)1/2
for Zp > 30, for both simply supported and clamped edges. Utilizing

this ratio for plates with any elastic rotational restraint, the buckling
stress of a curved plate loaded in shear with Zp > 30 can be found from

Ter = 0-3MTerg oy late( Zp) 2 (87)

The critical shear stress of the long flat plate may be determined from
reference 1.

Plasticity-Reduction Factors

The shear secant modulus was shown to be the appropriate plasticity-
reduction factor for long, flat, rectangulsr plates in shear (ref. 1)
and. for long circular cylinders in torsion (see section Cylinders Under
Torsion' ). It is reasonable to suggest, therefore, that the shear secant
modulus maey be applicable to long plates with slight curvature and to
wide curved plates which tend to behave as long cylinders and long flat
plates, respectively. o

Effects of Internal Preésure

Brown and Hopkins (ref. 83) solved the classical equilibrium equa-
tions to determine the effect of radiaslly outward pressure upon the shesr-
buckling stress of curved panels and obtained fair agreement with test
deta of Rafel and Sandlin (ref. 70).
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The date also correlate well wlth the parasbolic interaction curve
used for the effect of internal pressure upon cylinders in torsion and
upon curved plates in axlal compression. For curved plates in shear,

RgZ + Rp = 1 (88)

Agreement of the test data wlth this relation is shown in figure 50,
which is of the form used by Crate, Batdorf, and Basb to correlate the
date for cylinders buckling in torsion under internslly epplied pres-
sure (ref. 45).

CURVED FLATES UNDER COMBINED SHEAR AND

LONGITUDINAL COMPRESSION

By use of a set of equilibrium equations, Kromm investigated the
critical loading for a long curved plate with simply supported edges
subJjected to the simultaneous application of shear and longitudinal com-
pression (ref. 53). With the aid of Donnell's equation, Batdorf,
Schildcrout, and Stein extended this analysis to long curved plates with
clamped edges (refs. 67 and 84).

As indicated in the preceding section, a long curved plate under
shear buckles at a stress in close agreement with the theoretical value
derived from linear theory. However, as shown in the section "Curved
Plates Under Axisl Compression," the action of exially compressed long
curved plates departs appreciably from the predictions of linear theory.
Consequently, & linear analysis of buckling under the combinstion of
these loads would be unconservative. Batdorf, Schilderout, and Stein
recognized this and, therefore, recommended the use of empirical data to
determine the buckling stress of the curved penel under axial compression.

Batdorf, Schildecrout, and Steln derlved a theoretical interaction
equetion by use of linear theory in the form

Rg2 + Ry = 1 (89)

in which the axial stress may be either tension or compression. Since
compression stress would have the positive sign in this conventlon, it
would be necessary to use the negative sign for tension.

The stress ratios are defined as the ratic of the stress in the
long panel at buckling under combined loading to the buckling stress
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under simple loading. In order to account for the discrepancy between
theory and experiment for axial-compressive loasding, Batdorf, Schildcrout,
and Stein suggested using the empirical instead of the theoretlcal value
of buckling stress which mey be found in the section "Curved Plates Under
Axial Compression." When this change is made, egquation (85) may be used
to compute criticel combinations of loading for this case. Comparisons
of test data with the parsbolic interaction curves for simply supported
curved plates under combined shear and axial compression are given in

figure 51.

Regsearch Division, College of Engineering,
New York University,
New York, N. Y., July 20, 1955.

<
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APPENDIX A
APPLICATION SECTION

Procedures for numerical computation of buckling stress of curved
plates and shells are summerized In this sppendix. For information on
details of stress-strain curves, Poisson's ratio, and the effects of
cladding, reference 1 should be consulted.

In the sumaries below, references are made to the ranges of behavior
of the components discussed. The geometric parsmeters are displayed in
figure 4, while sketches appear in figure 5 depicting the influence of
geometry upon the buckle pattern for an axially compressed cylinder.

Compressive Buckling

Circular cylinders.- In the short-cylinder range (Le/rt-< 1), the
flet-plate equation msy be used:

k,n°E 2 X
Oop =1 m@) (A1)

For velues of mn and k., the charts in reference 1 for axially com-
pressed flat plates may be used.

Tn the transition-length range (1 <12/rt < 100) equation (Al) may
be used for elastic stresses, employing figure 6 to determine k,. If

desired, use may be made of the magnification-factor chart of figure 9
to account for end effects.
In the long-cylinder range (Lz/rt > lOO), the modified classical
buckling-stress equation (67)
Oer = NCEt/r (67)

mey be used, where C can be obtained from figure T.
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The plasticity-reduction factor for this case is equation (75)

9\]1/2
n=-gfE oy (75)

E s @.- v2)
which 1s given in nondimensional form in figure 11l. In this chart
€p = Ct/r (32)

Elliptic cylinders.- Timoshenko recommends using circular-cylinder-
buckling date to compute the buckling stress of an elliptic cylinder.
The pertinent radius of curvature occurs at the ends of the minor exis

and 1s equal to aQ/b.

Curved plates.- Curved plates of large radius (bz/rt < l) may be
analyzed as flat plates using equation (A2) together with values of kg,
and 1 from reference 1 for axially compressed flat plates:

2
k “E £\ 2
fo7 = _G___<_) (Az)
T 12(1 - ve?) P

For elastic stresses in the transition-length and transition-width
ranges, figure 38(b) may be used to find ko 1in conjunction with equa-

tion (A2). TFor curved plates of lerge radius v/t > lOOJ equations (67)
and (75) ere valid, and the nondimensional buckling chart of figure 1l may
be used.

For the effects of internal pressure the interaction equation
2 =
Re“ + Ry =1 (A3)

may be used, in which RP' is the quotient of the applied internal pres-
sure and the critical externsl pressure that would buckle the cylinder.
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&
Bending Buckling of Long Cylinders \L

Circular cylinders.- For long circular cylinders that buckle
elastically E-=

ogy = CpEb/r= %%’ % (k) €=

vhere Cb, which contains a gradient factor of }.3, may be found from
figure 18.

To compute inelastic-buckling stresses of circular cylinders in
bending, figure 25 may be used.

Elliptic cylinders.- For loﬁg elliptic cylinders that buckle elas-
tically proceed as outlined in the section "Cylinders in Bending,"
employing figures 18, 19, 21, and 22.

Torsional Buckling of Cylinders

Circuler cylinders.- For short cylinders (T.,/r < 10 ('b/r)l/ 2) ‘the
flat-plate equation

k n°E 2
Top = 1 —-——g———js-cg) (Ak)
12(1 - v2)\L

may be used employing values of n and %k from reference 1 for flat
plates in shear.

' 2
For transition-length cylinders QUD(t/r)l/ < L/r < 5(r/t)l/2) elther
the general buckling-stress equation

kin°E t>2
Tor =0 = (A5)
cxr 12(1 - ve? (L

mey be used employing figure 26 to determine ky or one of the following
equations may be employed: For clamped edges:

(a6)

O.93ﬂ2E ia 5/4, \1/2
Ter =1 12 - ve2)5/8\r) (%>
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For simply supported edges:

0.85¢°E___ (£\5/%/p\ 1/2 |
Ter = 1 = (AT)
For long cylinders QL/r > B(r/t)l/e):
0.272E @3/2 (49)

Ter = 10 (l _ Ve2>3/)+

utilizing 7 from equetion (A8) or the nondimensional buckling chart
of Pigure 32.

The stresses obtained from equations (Ad) to (A7) are approximstely
16 percent higher than the average of the test data. For conservatism
this correction factor may be used.

The plasticity-reduction factor 1s

T

n =T (18)
-V
The nondimensional buckling chert of flgure 32 may be used with
€or = Tor/NE (52)
The effect of internal pressure may be included by using the
interaction equation
2
Ry + Ry =1 (53)

Elliptic cylinders and D-tubes.- The data for circular cylinders
in torsion msy be used providing thst the semimajor axis of the elliptic
sectlion 1s chosen equal t0 1r. Then
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77, = 121 - veo) 1/ 2 /et (49)

Shear Buckling of Curved Plates

For plates of large radius flast-plete buckling-stress equation (Al)
is appliceble. For values of kg and 1 Part I of the Handbook

(ref. 1) may be used.

For transition-length plates

o kTR 2
e T 1oL - ved) ® (83)
for which kg msy be found in figure kg,

For b2/rt > 30

1/2

T (87)
CTer1at plate

Ter = 0:37(%)

For the effects of internal pressure, the interaction equation

Rg” + R, =1 (88)

may be used.

Buckling Under External Pressure

Circulasr cylinders.- For short and tremsition-length cylinders
(Le/ rt < lOO) which buckle elasticelly under radial pressure

"E 2 (55)
a, = ——
cr 12(1 - ve2 G')

where figure 35(a) may be used to find ¥y



76 NACA TN 3783

Under hydrostatic pressure

Ocr

=1 ——kz——-ﬁeE <E>2 (A10)

12(1 - vez) L

where figure 35(b) is used to find kp.
£ 2
For long cylinders QLOO =< (L/r) <5r/t) the buckling stress may

be found from either equation (55) or equation (AlO) end is essentially
the same for both cases. It mey also be compubted using

Oyp = O.93E(t/r)3/2 (i#/L) (a11)

For very long cylinders ((L/r)2 > 5(::-/1:)) under elther radilal
or hydrostetic pressure

0.25E 2 -
e (o
in which 2) .
_ Eg (1 - ve Eg
n_f(l_ﬁ (&HFE-E-E:) (59)

Spherical plates.- In all diameter renges, for elastic buckling,

_ R (E)e (83)

Oer _ . 2\\a
12(1 - ve?)

where % mey be found in figure 47.

For plates with dz/r‘t > 100, the modifiled classical buckling-stress )
equation N R

Oop = NCEL/r . (67)

mey be used in conjunction with figure 46 and 7 from equation (75).
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Buckling Under Combined Loads

Circular cylinders.- See table 5 and figures 36 and 37 for inter-
action equations and stress-ratio relationships.

Curved plates.- For curved plates under combined axisl compression
and shear, with 10 <7 <100 and 1 <a/b <3,

Ry“ + Ry = 1 (89)
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TABLE 1

85

MEMBRANE STRESS STATES WHEN BUCKLING OCCURS FOR VARIOUS CASES

Superimposed Correlation
Element Losding transverse of test data
membrane stresses|and lineer theory
Column Compression None Satisfactory
Flat plate Compression. Tension Satisfactory
' Shear
Bending
Cylinder and Compression Compression Unsatisfactory
cylindrical Bending Compression Unsatisfactory
plate Torsion or shear Tension Satisfactory
Tateral pressure Tension Satisfactory
Sphere and Lateral pressure Compression Unsatisfactory

spherical plate




TABLE 2
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RATIO OF BENDING- TO AXTAL-COMFRESSIVE-BUCKLING STRESS FOR MATCHED

CIRCULAR CYLINDERS

[Data of Donnell (ref. 8); average 7 for all tests, l.’+6]

Steel cylinders Brass cylinders
Number 7 = %y %y Numbexr 7 = O%ep/%cr
(=) (a)
1 1.36 1 1.49
2 1.10 2 2.62
3 1.18 3 1.18
4 .96 L 1.99
> 1.50 5 1.95
6 1.69 6 2.26
T 1.02 T 1.28
8 1.67 8 2.i8
9 .86 9 1.29
10 1.0k 10 1.34
11 1.37 11 _.&
Av. 1.25 Av. 1.67

a%cr’ bending~buckling stress; -o
buckling stress.

Cer

, compressive-
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TABLE 3

DATA FOR CIRCULAR-ARC SECTIONS IN BENDING

Ef\ll specimens were fabricated from TOT75-T6 aluminum
alloy and were 120 in. long]

Specimen H/t H/c r/t 71, Oexp / Oemp
1 3.3 0.04 667 1h6 1.43
2 7.6 .08 333 293 1.16
3 10.5 .10 250 390 1.15
TARLE 4

GRADIENT FACTORS FOR CIRCULAR-ARC SECTIONS

(from table 3) (from fig. 7,
uging U = 0.00015)
0.408 0.270 1.5L
<331 .250 1.32
.329 . .395 .83

87
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TABIE 5
INTERACTION EQUATIONS FOR CIRCULAR CYILINDERS

UNDER COMBINED LOADINGS

Loading Interaction Appliceble range
equation (a)
Axial compression R, + Ry =1 A1l values of Zp, all edge
and bending restraints
Using theoretical o,, and Tap,
Zy, <1, 8S
Zr, <5, C

Axial compression R, + Rt2 =1

and torsion Using empirical ooy and Tep,
1<2;<7.7(c /)3, 88

5<zp, < 7.7x/8)%, ¢

Using theoretical T,
Axial tension and O.4R; + Ry = 1 =L <R, <O

torsion 30 < Zp, < 7.7(r/'t)2
both 88 and C
Bending and Rb1-5 + Rt2 = 1 |All values of Zy, all edge
torsion regstraints

855, simply supported edges; C, clamped edges.
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TARLE 6
PLATE DIMENSIONS FOR TEST SPECIMENS OF
VARIOUS INVESTIGATORS
[All dimensions are in inche%
Cox and Crate and Jackson Sehuett
Dimension Clenshaw Levin and Hall ue 6e
(ref. 60) (ref. 61) (ref. 62) (ret. 65)
L oL oL 18 3 to 25
r 18, 36, « 11.4 to 121 24, 48, « - 3.25 to 21
and o
b 4, 6, 8, 10, ag.7 3 to T 3.2 to 26
12
t 0.018 to 0.067|0.065 to 0.128|0.018 to 0.039{0.015 to 0.248

BAverage value.
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TABIE T

NACA TN 3783

IMPERFECTION PARAMETERS FOR TEST SPECIMENS

OF KAPLAN AND FUNG (ref. 75)

Specimen | r/t | oop/oe1 | 4/t 8o Uy
1 516 | 0.6k 635 |o0.249| 2.17 x 10°*
2 319 425 645 L4kl 3.78
3 309 439 635 | .358] 3.22
4 219 - 373 640 592 6.25
5 211 L1k 635 3631 3.93
6 628 . 708 1,210 .050 W17
7 602 .563 1,210 .156 .55
8 517 .521 1,230 .18k T3
9 384 .587 1,160 .118 .65

10 382 .517 1,250 176 .99
11 372 448 1,250 .386 1 2.30
12 851 .262 2,050 .292 .84
13 691 . 369 2,000 354 | 1.34
1k 732 . 315 2,050 .325]1 1.2k
15 615 .356 1,950 694 | 3.15
16 591 o2 1,950 292 | 1.kk
17 621 .332 2,220 624 | 4.5
18 207 Lok 635 L4031 L.39
19 186 42 635 136 1.60
20 549 654 " | 1,160 .082 .32
21 359 .556 1,190 L1k 67
22 722 .379 2,000. | .323| 1.17
23 606 . 554 1,950 .148 LTL
82.00
aAverage value.
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Figure 1.- Comperlson of linesr buckling theory and test data for circular cylinders under axial
compresslon, torsion, and external radial pressure.
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(a) Rigid testing machine.
- Figure 3.- Theoretical behavior of axlally compressed circular cylinder -

%n rigid and dead-welght testing machines according to theory of Tsien
ref. 12).
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Figure 3.- Concluded.
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t
in!
SHORT TRANSITION LONG
2 2 2
(a) Cylinder. Oop = _ kt"E (E) 3 Zp, = L= (l -V 2>l/2;
2\ \L rt €
12(1 - Ve
X = foy1 inder (2L T/6,1/).
NARROW ] O 1 L _
4
TRANSITION
z
wIiIDE
SHOAT TRANSITION LONS
2 2
kn“E 2 b 1/2
(b) Curved plate. Oop = S (%—) 3 2y = = (l - Ve2) 3
12(1 - ve

K = f1pte (Zb,r/t,L/r,r/b) .

r
\

| :
FLAT SHALLOW oEEP

2 . 2 1/2
(c) Spherical cap. 0,. = kn"B L Zg = a_ (l - Ve2) / ;
( 2\ \d rt
12\ - vg )

k = fogp(Za,7/8,4/7)-

Figure b4.- Geometrical pesrameters and ranges of behavior for cylinders,
curved plates, and spherical caps.
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Figure 5.- Method of construction of curve for k as a function of 7. Typical buckle patterns
shown for cylinder in each range of 7.
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Figure 10.- Plasticity-reduction factors for axially compressed long
circular cylinders of aluminum alloy. Comparison of test data and
theory using values of C from figure 7.
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Figure 11.- Nondimensicnal buckling chart for axially compressed long circular cylinders.
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Figure 12.- Hypothetical buckling behavior of axially compressed circular
cylinders in inelastic range.
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Figure 15.- Comparison of linesr theory with bending-buckling data for ecircular cylinders.
from Lundquist, reference 29; Domnell, reference 8.
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Figure 16.- Test data for long circular cylinders in bending.
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Figure 17.- Test data of Lundquist for long circuler cylinders in axial
compression and in bending (refs. 14 and 29).
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Figure 18.- Test date for long elliptic cylinders in bending.
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Figure 20.- Comparison of test data on elliptic cylinders with empirical
curve for 7/t = 500. For test data, 250 < £/t < 750.
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(a) Theoretical variation based on 6061-T6 alumimm-alloy date of figure 2.

Figure 25.- Variation of (M/Sc)/o for long circular cylinders in bending.
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Figure 26.- Camparison of test data and theory for simply supported circuler cylinders 1n torsion.
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Figure 27.- Enlargement of a section of figure 26 on & linear scale.
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Figure 30.- Comperison of test data with theoretical plasticity-reduction
factor for long cylinders in torsion.
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long cylinders. Test results are from reference L3,
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(a) Combined bending and compression.

Figure 36.- Interaction curves and test data for combined stresses on
circular cylinders. Test data from Bruhn (ref. 54).
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Figure 36.- Continued.
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Figure 36.- Concluded.
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Figure 37.- Interaction curves for combined compression, bending, and
torsion on circular cylinders of different proportions.
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(a) Comperison of test data with linear theory.

Figure 38.- Comparison of test data with theory for axially compressed
curved plates.
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Figure 38.- Concluded.

€gLE NI VOVN

LeT




138

NACA TN 3783

i o e lapst f
LA UL A |
“r ] ] poo
L1
(&) r/t = 300.
° 3
FMoesp ey ¢ s % e ’
Lﬂ g o .°.
’ I 100 oo -
F3
(v) r/t = 500.
o ° F)
20 5 5
/"‘l-‘up/*fnlp : °
8 oo -] o °
& °
r [ 00 o000
F 3
(e) r/t = 1,000.

Figure 39.- Summary of megnification factors for axlaslly compressed curved
plates of figure 38(b).
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Figure 40,~ Ranges of magnification factors for test data of figure 38(a). Data from Crate and
Levine, reference 61; Cox asnd Clenshaw, reference 60; Jackson and Ha.ll, reference 62; and
Bchuette, reference 65
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Figure 41.- Theoretical varistion of C as a function of r/t for U = 0.000092 and comparison
with elastic data of Schuette {ref. 65) for exially compressed curved plates.
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Figure 42.~ Comparison of test data for axially compressed. curved platea with plasticity-reduction
factor for axially compressed circular cylinders. Data for magnesium-slloy plates.
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Figure L43.- Effect of internal pressure on axial-compressive-buckling stress of curved plates.
Test dets are from Rafel and Sandlin (ref. T70).
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Figure hki.- Relation between mumber of buckles and Z3z Tfor spherical plates under external
pressure tested by Kaplan and Fung. Test polnts are for test data of Kaplan and Fung (ref. 75).
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Figure 45.- Empirical curve fitted through sphericgl-plate test dsta of
Kaplan and Fung (from ref. 75) to cbtain relation between Oer/%cl

and Usr/t. o, = 0.6Et/r.
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Figure 46.- C as a fumction of r/t derived from figure 45 using Uy = 0.00025.
Kaplan end Fung (ref. 75) and of Tsien (ref. 12) shown for comparison.
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(a) Plates slightly effected by initial eccentricities. Test data from Rafel (ref. 80), Rafel
and Sandlin (ref. 70), and Moore and Wescoat (ref. L41).

Figure 48.- Comparison of test data with theory for critical shear stress of simply supported
curved plates affected by initial eccentricities. Theoretical curvea from work of Batdortf,

Stein, and Schilderout (refs. 67, 78, and T9).
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(v) Plates greatly affected by initial eccentricities. Teet data from Kuhn and Levine (ref. 81)
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(a) Long simply supported plates.

Figure L49.- Shear buckling coefficients for various curved plstes.
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(b) Long clamped plates.

Figure 49.- Continued.
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(c) Wide, simply supported plates.

Figure 49.- Continued.
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Figure 49.- Concluded.
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Figure 50.- Effect of internal pressure on buckling of curved plates in
shear. Test data from Rafel and Sandlin (ref. TO).
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Figure 51.- Comparison of test dats with parabolic intersction curves
for simply supported, curved plates under combined shear and axisal
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