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BUCKLING OF ECCENTRICALLY STIFFENED 0RTHOTROPIC CYLINDERS

By David L. Block_ Michael F. Card_

and Martin M. Mikulas_ Jr.

Langley Research Center

SUMMARY

A small-deflection theory for buckling of stiffened orthotropic cylinders

which includes eccentricity (one-sided) effects in the stiffeners is derived

from energy principles. Buckling solutions corresponding to classical simple-

support boundary conditions are obtained for both orthotropic and isotropic

stiffened cylinders subjected to any combination of axial and circumferential

loading. Comparable solutions for stiffened flat plates are also given. Sample

calculations of _ predicted compressive buckling loads obtained from the solutions

are compared with existing solutions for ring-stiffened corrugated cylinders,

ring-and-stringer-stiffened cylinders, and longitudinally (stringer) stiffened

cylinders. The calculations demonstrate that eccentricity effects are large

even with very large diameter cylinders of practical proportions and should be

accounted for in any buckling analysis.

INTRODUCTION

As early as 1947, Van der Neut (ref. i) demonstrated the importance of

eccentricity or one-sidedness of stiffening elements in determining the buck-

ling strength of stiffened cylindrical shells. Unfortunately_ this early work

seems to have been largely neglected. More recent theoretical work (refs. 2,

3, and 4) indicates a renewed interest in eccentricity effects in stiffened

shell structures. Recent experimental results (refs. 3, 4, and 5) have shown

that the eccentricity effects suggested by theory are real and large enough to

warrant their appraisal in design.

In view of the great variety of stiffened shell configurations that are

now under consideration by structural designers_ a buckling analysis of stif-

fened cylindrical shells which includes eccentricity effects and is applicable

to a broad class of structures is needed. A buckling analysis that has a wide

range of applicability can be obtained by considering a cylindrical shell con-

structed from an orthotropic material having stiffening elements on its surface.

With appropriate definitions of the orthotropic material constants, such an

analysis can be used to predict buckling for a wide variety of stiffened shells_

for example sandwich-type_ corrugated, or filament-wound cylinders.



The purpose of the present paper is to present a small deflection theory
for buckling of an orthotropic cylinder stiffened by both stringers and rings.
The theory includes stiffener eccentricity effects and represents a generaliza-
tion of the work by Baruch and Singer (ref. 2) for ring-and-stringer-stiffened
isotropic shells. The theory is a classical buckling theory in that the effect
of prebuckling deformations is neglected and only small deflections are con-
sidered. The buckling equations and boundary conditions are derived in a con-
sistent manner from the potential energy of the loaded stiffened shell. Solu-
tions to the equations corresponding to boundary conditions analogous to
classical simple support in isotropic shell theory are obtained for cylinders
subjected to any combination of axial and circumferential loading. Sample cal-
culations of predicted compressive buckling loads obtained from the solutions
are compared with existing solutions for ring-stiffened corrugated cylinders_
for ring-and-stringer-stiffened cylinders_ and for longitudinally stiffened
cylinders.

SYMBOLS

The units used for the physical quantities in this report are given both
in the U.S. Customary Units and in the International System of Units_ SI. The
relationship between these two systems of units can be found in reference 6.

A cross-sectional area of stiffener

D bending stiffness of isotropic plate_
Et 3

12(l _p2)

Dx_Dy bending stiffnesses of orthotropic plate in longitudinal and

circumferential directions_ respectively

Dxy twisting stiffness of orthotropic plate

E Young's modulus

ExJEy
extensional stiffnesses of orthotropic plate in longitudinal and

circumferential directions_ respectively

G shear modulus

Gxy in-plane shear stiffness of orthotropic plate

I moment of inertia of stiffener about its centroid

I o
moment of inertia of stiffener about middle surface of shell

J torsional constant for stiffener



Nx,Ny,Nxy

R

Z

a

d

m

n

P

t

t c

U_V_W

bending and twisting moments in orthotropic shell

normal and shearing forces in orthotropic shell

applied compressive and shear loads

radius of cylinder to middle surface of orthotropic shell

(see fig. i)

extensional stiffness ratio for ring,
ErAr

EtZ

extensional stiffness ratio for stringer_
EsAs

_.td

curvature parameter, a2_(l- _2)

Rt

length of stiffened cylinder (see fig. i)

stringer spacing (see fig. i)

ring spacing (see fig. i)

nmmber of half waves in the cylinder buckle pattern in longitudinal

direction

number of full waves in the cylinder buckle pattern in circumfer-

ential direction

width of element of corrugation (see fig. 2)

thickness of cylinder shell wall (see fig. i)

effective wall thickness of stiffened isotropic cylinder_ Asm+t
d

thickness of corrugation (see fig. 2)

displacements in x-, y-_ and z-directions_ respectively, of a point

in middle surface of orthotropic shell

amplitudes of buckling displacements

orthogonal curvilinear coordinates with origin lying in middle

surface of orthotropic shell (see fig. i)

distance from centroid of stiffener to middle surface of orthotropic

shell (see fig. i)_ positive if stiffener lies on external surface

of shell
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m_R
a

I[ total change in potential energy of loaded stiffened cylinder

Hc,Hr,H s change in strain energy of orthotropic shell, rings; and stringers,

respectively

H L
change in potential energy of external forces

_x,_y,Txy strains at middle surface of orthotropic shell

cXT,[YT'TXy T
strains in orthotropic shell

_Xs,Cy r
strains in stringers and rings, respectively

corrugation angle (see fig. 2)

A defined by equation (17)

Poisson's ratio

Poisson's ratios for bending of orthotropic plate in longitudinal

and circumferential directions, respectively

! !

_x ,by
Poisson's ratios for extension of orthotropic plate in longitudinal

and circumferential directions, respectively

Sub scripts :

s,r denote properties of stringers (longitudinal stiffening, parallel

to x-axis) and rings (transverse stiffening, parallel to y-axis),

respectively

x,y longitudinal and circumferential directions, respectively

A subscript preceded by a comma denotes partial differentiation with

respect to the subscript.

DERIVATION OF THEORY

In developing the theory for the stiffened cylinder shown in figure i,

several basic assumptions are made. The stiffened cylinder is considered to be
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composed of an orthotropic shell stiffened by uniform equally spaced stringers

and rings_ all having elastic material properties. The elastic constants of

the orthotropic shell are taken as those given in reference 7- However_ for

the present analysis the transverse shearing stiffnesses of the shell are

assumed to be infinitely large. The rings and stringers are assumed to be

spaced closely so that their elastic properties can be averaged over the stif-

fener spacing. The usual Donnell-type assumptions are used to specify buckling

displacements in the shell_ whereas the stiffeners are treated as beam elements

with stiffener twisting accounted for in an approximate manner. In cases where

both rings and stringers lie on the same surface of the shell_ the effect of

joints in the stiffener framework is ignored.

The theory is derived by obtaining strain energy expressions corresponding

to buckling displacements in the shell and stiffeners and by applying the method

of minimum potential energy to obtain the equilibrium equations of the system.

The following sections detail the derivation of the strain energy for the

orthotropic shell and stiffeners_ and present the corresponding equilibrium

equations governing the buckling behavior of the stiffened cylinder.

Strain-Displacement Relations

For the coordinate system shown in figure i, the strain-displacement rela-

tions in the orthotropic shell due to buckling displacements can be written as

eXT = cx - ZW,x x

Cy T = Cy - ZW,yy

7xy T = 7xy - 2ZWJxy

(i)

with

E x = U_X

ey = V,y + R

7xy = U_y + v_ x

Equations (i) are the usual strain-displacement relations of Donnell-type shell

buckling theory where u_ v_ and w are the additional displacements induced

by buckling.
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If the stiffeners are assumed to behave as beam elements_ the stiffener

strain-displacement relations can be written as

"x

= 6 x - zw_
6X s xx

J
ey r = ey - ZW_yy

(2)

where the subscripts s and r are used to denote stringers and rings_

respectively. Equations (2) specify that buckling displacements are such that

strain varies linearly across the depth of the stiffener, yet satisfies compat-

ibility of displacements between the stiffener and the surface of the shell to

which it is fastened. This compatibility requirement is the source of the

eccentricity or one-sided effects in buckling of stiffened shells.

Strain Energy of the 0rthotropic Shell

The change in strain energy of the orthotropic shell H c can be expressed

in terms of resultant middle-surface forces and moments as follows:

F2_R a
f

_c = _ v0 Jo (Nxe_ + Nxyrxy+ Ny_y- _,_,= + 2AyW,xy- _W,yy)dX dy
(3)

Middle-surface force-strain relations and moment-curvature relations that

are consistent with the strain-displacement relations of equations (i) are

given in reference 7 as

Ex

= , (ex + _y'ey)
Nx i - _x'by

Ey

Ny = ,(eY + _x'ex)
i - _x'by

Nxy = GxyYxy (4)

+

Dy (w'_ + _xw'xx)
l - _y

Mxy = DxyW,xy



Substituting equations (4) into equation (3) and using equations (i) yields
the following strain energy expression for the orthotropic shell

ls02 Rj0.2 - _x 'by ' U_x i - _x

+ Gxy(V, x + U,y) 2 + , 'y ÷ ÷ W,xx
I - _x'_y i - _x_y

Dy
W,xx w_yy + 2Dxyw,xy 2 + •

i - _x_y w, yy21 dx dy

Strain Energy of Stiffeners

The change in strain energy of stiffeners corresponding to buckling dis-

placements in the stringers H s is taken as

_0 GsJs
Hs i _2_R a ESCxs dAs + _ W,xy dx dy

=g J0 d d
s

(6)

where dA s denotes an element of the cross-sectional area of the stringer As,

GsJ s is the twisting stiffness of the stringer section_ and d is the stringer

spacing.

The first term in the energy expression is the usual expression for energy

associated with bending and extension of a beam. The second term has been

inserted as an approximation to the energy stored as a result of twisting the

stringers. (See, as an example_ ref. 8.) This term is a result of assuming

that the stringer twists in a fashion so that its angle of twist is equal to the

angle of twist of the shell. The use of more accurate energy expressions for

twisting in equation (6) complicates the solution of the buckling problem.

Such expressions introduce effects which are assumed to be of little consequence

in buckling of stiffened cylinders having contemporary aircraft or spacecraft

proportions. The energy contributions of the stringers in equation (6) are

averaged over the cylinder circumference_ hence_ discreteness of the stringers

is ignored.

When the stringer strain-displacement relation (eqs. (2)) is substituted

into equation (6) and integration over the stringer area is performed, the

strain energy expression for the stringers becomes
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Hs i F 2_R ra
= 2-_ _0 J0

EsAsU,x _ 2_sEsAsU_xW_xx + EslosW,xx 2 + GsJsW_xy2)dx dy

(7)

where _s is the distance from the centroid of a stringer to the middle sur-

face of the shell (see fig. i) and is positive if the stringer is on the exter-

nal surface of the cylinder, and where los is the moment of inertia of a

stringer about the middie surface of the shell.

For the rings, the change in strain energy H r can be shown to be

s0a 2 (vi + - 2_rErA r ,y + W,yy
Hr = 2-T _JO rAr 'Y

+ ErlorW_yy 2 + GrJrW,xy2_dx dy

where Z is the ring spacing and the subscript r is used to denote ring

properties comparable to those appearing in equation (7) for the stringers.

(8)

Potential Energy of External Forces

A rigorous derivation of the buckling equations from the potential energy

of the loaded shell requires use of nonlinear theory and techniques such as

those employed in reference 9. However_ when the effects of prebuckling defor-

mations are not considered explicitly as is done in the present theory_ the

correct loading terms in the equilibrium equations and associated boundary con-

ditions can be obtained by use of the following expression for the change in

potential energy of the forces causing buckling:

f02_'R _0a C -- )_T, = - _ _xw,x 2 + 2NxyW,_W,y+ _yW'y2 dx dy (9}
2

In equation (9), Nx is a stress resultant (positive in compression)

obtained by considering the shell and stringers to be loaded with a uniform

normal stress in the x-direction. Similarly_ ND is a stress resultant (posi-

tive in compression) obtained by considering the shell and rings to be loaded

with a uniform normal stress in the y-direction. For example_ if the shell is

loaded with an external hydrostatic pressure q, then Ny = qR and Nx = qR-Z"
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Equilibrium Equat ion s

The total change in potential energy of the loaded stiffened cylinder

can be written as

H

71 = H c + H s + H r + 71L (io)

The application of the method of minimum potential energy so that 5H = 0

yields the following equilibrium equations corresponding to arbitrary varia-

tions in u_ v_ and w, respectively:

E x EsA s .

, U'xx + 7(U'xx - _'sW,xxx)

i - lax'by

+ V_xy = 0
i - _x'lay'

(lla )

_'Y ,(v _yy + _) _(v+ _YY + w,RY _rW_YyY)
i - _x'lay

_x 'Ey

( ++ U_xy + Gxy U_xy V_xx
i - lax'lay'

(lib)

I Dx ESI°s_ w I_ _yDx laxDy GsJs+ _ _ _xxxx + - + 2Dxy + +- laxlay _x_y i - laxly d

+

I Dy + Erlor_ wi- [_ 'YYYY
laxly /

+ R(1 - tax 'lay

EsAs _

ZSU_xx xd ErAr- (2WRYY+Z z r V_yyy)+ ErArlvRZ\ _Y + R)

+ _xW,xx + 2NxyW,xy + NyW,yy = 0 (llc)

Equations (Ii) can be shown to reduce to the equilibrium equations obtained

by Baruch and Singer for stiffened isotropic shells (ref. 2) if the orthotropic
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constants appearing in the equation are replaced by their equivalent isotropic

values_ that is_ if

_x = _y = _x' = by' =

Et 3

D x = Dy =_
12

Gt3 (12)
Dxy - 6

E x = Ey = Et

Gxy = Gt

Boundary Conditions

D x !

(W,xx + _yW,yy),x + [2Dxy
+

i - _xl_y

In addition to the equilibrium equations_ the variation of the potential

energy yields a set of admissible boundary conditions consistent with the energy

expressions employed. The resultant homogeneous boundary conditions prescribed

at each end of the cylinder at the middle surface of the orthotropic shell are

as follows:

GsJs _0_+ W_xyvffd

+ Esl°s EsA s _ -- _
--7-- W'xxx d ZsU'xx + NxW'x + NxyW'y = 0

or w = 0

(13a)

D x

+ +
i - _y

or

Esl°s EsAs - : 0
d W_xx d ZsU_x

W_ x
=0

(l]b)

i0



I - bx'by' _x + by' y + +

or U =0

EsA s _
Z

-- U_x d SW_xx
=0

(13c)

Gxy(U,y + V x)= 0

or v = 0

_w

(13a)

The natural boundary conditions are the first conditions given in each of

equations (13) and can be explained as follows: Equations (13a) require a

quantity comparable to the so-called Kirchhoff shear term to be set equal to

zero and hence is a free-edge boundary condition. The remaining three natural

boundary conditions in equations (13b), (13c)_ and (13d) correspond to condi-

tions in which the edge moment resultant_ the extensional stress resultant_ and

the shearing stress resultant_ respectively_ are set equal to zero. The geo-

metric boundary conditions are the usual conditions for displacements pre-

scribed in isotropic cylinder theory.

SOLUTIONS TO THE EQUILIBRIUM EQUATIONS

When the stiffened cylinder is loaded with any combination of axial and

circumferential loading (Nxy = 0), an appropriate set of displacement functions

can be found which satisfy the geometric boundary conditions of equations (13a)

and (13d) and the natural boundary conditions of equations (13b) and (13c).

These functions are

nyu = u cos m_x cos --
a R

v = 9 sin m_x sin n__y
a R

__ nyw = w sin m_x cos --
a R

(14)

where m denotes the number of longitudinal half waves in the buckle pattern

and n_ the number of circumferential full waves. The boundary conditions
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satisfied are analogous to the conditions of simple support in classical cylin-
der buckling theory_ that is, w = Mx = Nx = v = O.

Buckling of Stiffened 0rthotropic Cylinders

If equations (14) are substituted into equations (ll) with Nxy : 0, the
existence of nontrivial buckling displacements requires that the determinant of
coefficients of [_ 9_ and _ vanish. This condition reduces to the stability
equation

(.mK_.)2_x n 2 /A12A23 - A13A2AA + AIIA22-A 22723

in which

All = Ii

_'x

- Vx'_y'

+ EsAs_(m_2 n 2

Ii_Y 'ExAI2 = _ --[_ ,
- _x y

ill IXY 'EX _{m_
AI5 = R , , \TI

- _x by /

+ _s
d

= G [m_2 ( Ey

A22 xY\a/ + \i - _x%y'

if I Ey + ErAr_[n_ + _'rAr n _A23 : R- p,x'tXy ' _ )\R/ _ _r(_)

A35 = _x_y

+ + g + _ - I-'.x'i_y'm - mxt.J_y

GsJs
+

d

-- + GrJr_¢m_2(nf

/\ a i \RI

ErAr _r n2
+ 2 l R-_

12



where the reciprocal relations _x'Ey = _y'E x and _xDy = _yDx have been
employed to simplify the equation.

Equation (15) can be used to determine buckling loads for any specified
combination of axial and circumferential loading; thus_ the equation can be
used to investigate buckling under axial compression or under hydrostatic or
lateral pressure_ or to investigate interactions between axial compression and
lateral pressure. To compute buckling loads from equation (15) j the specified
loading must be minimized numerically for integral values of both m_ the num-
ber of axial half waves in the buckle pattern_ and n_ the number of circumfer-
ential full waves in the buckle pattern.

A stability equation valid for compressive buckling of an unstiffened
orthotropic cylinder can be obtained from equation (15) by setting Ny and the
quantities with subscript r

-

+

or s equal to zero. The resulting equation

( 2__yDx + 2D k/ha _2 + Dy _na__a__4_

1 - tXxl..l,y xY)tm--"_'Rsl 1 - _x_y\m_RJJ

ExEy+ (16)

(_)2R21Ex- (2_y'Ex ExEy_(naGxy]\m_R]_2+ Ey(_R)4 l-

is identical to that obtained by Stein and Mayers (ref. i0_ eq. (A4)) when the

transverse shearing stiffnesses of the referenced equation are taken to be

infinitely large. Equation (16) or forms comparable to it have been used in

many contemporary compressive buckling analyses of stiffened isotropic cylin-

ders. In such analyses_ effective orthotropic constants are defined to approxi-

mate the total bending and extensional stiffnesses of the composite wall com-

posed of shell and stiffeners. Such approximations neglect eccentricity effects

and will be shown later to have serious shortcomings for compressive buckling

predictions even in large diameter stiffened cylinders.

Buckling of Stiffened Isotropic Cylinders

A buckling equation for stiffened isotropic cylinders subjected to combi-

nations of axial and circumferential loading can be obtained by substituting

the isotropic relations (eqs. (12)) into equation (15). The resulting equation

after some manipulation can be written as

(Nx -- -2 a21 (1 f32) 2 ESl+ NyB _D - m2 + + m2 dDS
_+ m2_ 4 Erlr

ZD

+ IGsJs GrJr_ 22

\-_-- + -_--)m

12Z21. I + _As + _r + _RArs_

+ m2_4\ A J
17)
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where

Ar = i + 2_2_2(i - _)_ + _4_4(i + _2)2(_) 2

with

Z 2 - a4( 1 - 1"1"2) D = Et_

- EsAs R--- ErAr

Etd EtZ

m_R na

a m_R

Note in equation (17) that I s and I r are the moments of inertia of a

stringer and ring_ respectively_ about their centroids. As in the case of

equation (15), the specified combination of axial and circumferential loading

must be minimized numerically for integral values of m and n in order to

compute buckling loads. When the applied loadings Nx and ND are related in

the manner appropriate for external hydrostatic pressure loading_ equation (17)

can be shown to be identical to the result obtained by Baruch and Singer

(ref. 2).

In equation (17), the effect of locating the stiffeners on the internal or

external surface of the cylinder shell is reflected in the quantities Ar_ As_

and Ars by the terms linear in _r or _s" (The eccentricities _r and _s

are positive when the stiffeners are located on the external surface of the

cylinder and negative when the stiffeners are on the internal surface.) Note

14



in equation (17) that these terms are weighted by functions of m and n and

that sign changes can occur in these terms depending on the buckle mode shape.

This fact suggests that some caution should be exercised in predicting whether

external or internal stiffening of a specified cylinder will be more effective

under a given loading condition.

To illustrate the latter comment, equation (17) can be specialized to a

stability equation for compressive buckling of a longitudinally stiffened

cylinder by setting Ny, Ir, Jr, and R all equal to zero. The resulting

equation is

Nx a2 m2(l + _2_2} Esls GsJs- + m2 + 2
_D dD dD

+ i +  2)2 + 2  2(I + + #(l
(18)

Equation (18) is similar to that obtained by Hedgepeth and Hall (ref. 4,

eq. (12)) and differs only in that the reference equation was derived by

treating the cylinder shell as a membrane and by neglecting the torsional

stiffness of the stiffeners so that the first and third terms on the right-hand

side of equation (18) do not appear in the reference equation.

Calculations using equation (18) reveal that longitudinally stiffened cyl-

inders usually buckle asymmetrically (n _ 0), and that cylinders which buckle in

this mode and are stiffened externally may carry loads substantially greater

than their internally stiffened counterparts. In fact_ it has been shown

experimentally that an externally stiffened cylinder can carry over twice the

load sustained by its internally stiffened counterpart (ref. 5)- However, in a

few instances, calculations for short stiffened cylinders indicate axisymmet-

rical buckling (n = O) for both internally and externally stiffened cylinders.

For this buckle mode shape, the sign of the Zs term in A s in equation (18)

changes from positive to negative with the result that the magnitude of the

buckling load for a cylinder with internal stiffening is slightly larger than

that of its externally stiffened counterpart. Thus_ for longitudinally stiff-

ened cylinders loaded in compression_ externally stiffened cylinder designs are

not necessarily always superior to similar designs with internal stiffening.

_xamination of equations (17) and (18) suggests that eccentricity effects

are not restricted to stiffened shells, but are also present in stiffened

plates. A description of the effects of eccentricity in stiffened plates can

be found in the appendix.
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DISCUSSION OF COMPUTED RESULTS

Generalized nondimensional buckling coefficients corresponding to minimi-

zations of the load parameters appearing in equations (15) and (17) are imprac-

tical to present in view of the number of geometric parameters involved. How-

ever, it would seem pertinent to present some computed results for cylinders of

contemporary proportions to study the magnitude of eccentricity effects as well

as to compare buckling predictions of existing theories with those derived from

the present paper. Accordingly_ computations of compressive buckling loads were

made for three types of stiffened cylinders appropriate for large diameter

booster interstage structures: ring-stiffened corrugated cylinders, ring-and-

stringer-stiffened isotropic cylinders, and longitudinally (stringer) stiffened

isotropic cylinders. The material in the cylindrical shells and in the stiff-

eners was taken to be identical and a value of 0._2 was assigned to Poisson's

ratio for the stiffened isotropic shells. The dimensions of the cylinders are

given in figure 2.

The corrugated and ring-and-stringer-stiffened cylinders are susceptible

to general instability, that is_ buckling in a mode in which the rings deform

radially. The ring spacings Z of these cylinders were varied; the corre-

sponding nondimensional general instability buckling loads Nx/_x or Nx/Et

( )-- + t were corn-
where _ is the effective thickness of the cylinder wall_ d

puted. For large ring spacings_ the ring-and-stringer-stiffened cylinders are

susceptible to panel instability, that is, buckling in a mode shape in which

the rings have no radial deformation. Panel instability buckling loads were

computed for the ring-and-stringer-stiffened cylinders by considering the stiff-

ened cylinder between rings to be a simply supported longitudinally stiffened

cylinder having a length a equal to Z. The panel instability calculations

then constituted the computed results for longitudinally stiffened isotropic

cylinders. Eccentricity effects in each of the three classes of stiffened

cylinders were studied by moving stiffeners from the internal to the external

surface of the shell.

The results of the computations are presented in table I, and in figures 3,

4, and 5- All the computations presented were performed on a digital computer

by minimizing numerically the compressive buckling load for integral values
of m and n. The details of the individual, calculations as well as discus-

sion of the computed results follows.

Ring-Stiffened Corrugated Cylinders

General instability predictions for the corrugated cylinders are shown in

figure 3. The compressive load at buckling Nx/Ex has been plotted against

the nondimensionalized ring spacing Z/R. Curves are shown for the cylinders

stiffened internally or externally. The solid curves _n the figure were com-

puted by employing equation (15) with Ny equal to zero and with the following

values assigned to the orthotropic constants appearing in equation (15):

16



_x = _y : _x' : _y' = 0

D x -
Etcp2< sin28 )3 i + cos 8

Dxy = Dy = 0

+ cos 0

Gxy = GtcIEtc_

/

Ey = 0

(19)

where 8 is the angle shown in figure 2_ t c is the thickness of the corruga-

tion_ and p is the width of an element of the corrugation.

The computed results indicate that eccentricity effects are quite large

even though the cylinders have diameters of over 30 feet (9.2 m). Cylinders

with internal rings buckle at loads that are only a third of those of the com-

parable externally stiffened cylinders. The result can be explained by noting

that the large depth of the ring coupled with the depth of the corrugation

induces very large values for the eccentricity of the rings _r" Note also

that the large eccentricity produces an unusual change in buckle mode shape

(see table l(a)).

The dashed curve shown in figure 3 was computed by using the Stein and

Mayers buckling equation (eq. (16)). To use the equation to predict buckling

of a stiffened shell_ the bending and extensional stiffnesses of the stiffener-

shell combination were approximated by

Elr

Dy -

The remainder of the stiffnesses appearing in equation (16) were computed from

the expressions given in equation (19).

The computation with the Stein and Mayers equation neglects the effect of

eccentricity and hence represents buckling predictions for both internally and

externally stiffened cylinders. Figure 3 indicates that large differences
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exist between such computations and those derived from the present theory. If s

however s the corrugated cylinders were symmetrically stiffeneds equation (16)

with the orthotropic constants just given would be expected to be a valid

approximation; thuss the Stein and Mayers predictions are bracketed by predic-

tions for cylinders with internal and external eccentricity.

Ring-and-Stringer-Stiffened Cylinders

General instability predictions for compressed ring-and-stringer-stiffened

cylinders derived from equation (17) with ND = 0 are shown as _he solid curves

in figure 4. Three types of stringer-ring locations are shown. The differences

between internal and external stiffening are not quite as large as those found

for the corrugated cylinders but are nevertheless substantial with external

rings and stringers appearing as the most effective stiffening configuration.

The dashed curve in figure 4 represents results computed by using the

Stein and Mayers equation (eq. (16)) with the following values assigned to the

orthotropic constants:

_x = by = _x' = by' = 0

I
Dx = +

Dxy --2\d + T +

ErIr I (_r/Or)l+Arl

Zt_

Ex = E(_--_s+ t)

Gxy = Gt

where Ps and Dr are the radii of gyration of a stringer and rings respec-

tively_ about the centroid of the stiffener. As in the case of the corrugated

cylinderss the dashed curve falls between curves associated with all internal

and all external stiffenings but actually crosses the curve computed for

18



external stringers and internal rings. The agreement between the latter curve

and that computed by using equation (16) is coincidental.

The dash-dot curves shown in figure 4 are general instability predictions

based on a stability equation (eq. 7.7 of ref. i) derived by Van der Neut. The

differences between these curves and those of the present theory are attributed

to the fact that_ in Van der Neut's buckling theory_ Poisson's ratio _ of

the cylinder shell was taken to be zero everywhere except in computing the

inplane shearing stiffness Gxy of the cylinder wall. Note, for example_ in

equation (17) that terms in _2 appear in the quantities A r and Ars _ and

hence that some differences might be expected between the present theory and one

in which these terms were neglected. Moreover_ computations using the present

theory and Van der Neut's theory with Poisson's ratio set equal to zero every-

where in each of the two stability equations were found to be in excellent

agreement for all three stiffening configurations shown in figure 4. It should

be noted also that Van der Neut's equations were intended for use with stiffened

cylinders having buckled skin and hence could be applied for this situation in

lieu of equation (17). A modified form of equation (15) could also be used to

analyze this type of stiffened cylinder; the orthotropic stiffnesses in this

equation would be defined by effective width formulas which account for reduc-

tion in stiffness due to buckled cylinder skin.

Longitudinally Stiffened Cylinders

The susceptibility of the ring-and-stringer-stiffened cylinder configura-

tion (fig. 2) to panel instability can be estimated by considering the cylinder

wall between rings to be a compressed longitudinally stiffened cylinder that is

simply supported at the rings. Panel instability predictions based on equa-

tion (18) are shown as the solid curves of figure 5 for stiffeners located on

the internal or external surface of the cylinders.

The dashed curve shown in figure 9 is based on the stability equation of

reference ii. The equation contained therein was derived from the Stein and

Mayers equation (eq. (16)) and hence neglects eccentricity. Agreement between

the dashed curve and the curve of the present theory for internally stiffened

cylinders is believed to be merely coincidental. Also shown in figure 5 are

curves computed from Van der Neut's stability equation (eq. 7.7 of ref. i).

The Van der Neut curve coincides with that of the present theory for internally

stiffened cylinders and differs slightly only for short externally stiffened

cylinders. The agreement suggests that the effect of Poisson's ratio in com-

pressive buckling predictions of longitudinally stiffened cylinders may be

small.

Attempts were also made to make panel instability predictions by using the

buckling formula equation D-15 of reference 3- This formula was applied suc-

cessfully to predict panel instability of several large-diameter integrally

stiffened cylindrical panels and is appealing to designers because of its sim-

plicity. Unfortunately_ when applied to cylinders stiffened longitudinally by

the Z-sections shown in figure 2_ the formula gives different trends for inter-

nally and externally stiffened cylinders than those shown in figure 4. The
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formula is believed to be in error by virtue of its bending stiffness term

which forces longitudinal bending of the stiffened cylinder wall to occur about

the middle surface of the cylinder skin. The agreement between the formula and

the test data of the reference can be explained by observing that the neutral

axis of the stiffener-shell composite considered in reference 3 occurs rela-

tively near the middle surface of the skin. For many stiffened cylinder con-

figurations, of course, bending does not occur in this fashion and therefore

the formula has limited validity. Agreement was obtained between calculations

based on the present theory and the test data of reference 3 for which the com-

pressive buckling solution (eq. (18)) was appropriate.

Although the theoretical results contained herein are useful analytical

tools, they do not necessarily encompass all the problems likely to face the

designer of stiffened cylinders. References 3 and 4 have demonstrated the

importance of boundary conditions as well as prebuckling deformations induced

by eccentric loading in the analysis of longitudinally stiffened cylindrical

shells. Reference 4 has also suggested that stiffened cylindrical shells may

be stronger in bending than in compression and that discreteness of ring stiff-

eners can be signficant for certain stiffened shell configurations. The degree

of importance of each of these effects will vary with the specific cylinder

configuration under study_ but nevertheless, the designer must be aware of

their consequences.

CONCLUDING REMARKS

A smal!-deflection theory for buckling of stiffened orthotropic cylinders

has been derived in a consistent manner by using the method of minimum poten-

tial energy. Equilibrium equations and admissible boundary conditions have

been presented. Solutions to the governing equations which satisfy a set of

boundary conditions comparable to that for simple support in classical shell

buckling theory have been obtained for cylinders loaded with any combination of

axial and circumferential loading.

The stability equations appropriate for stiffened orthotropic and isotropic

cylinders have been presented and discussed. Differences between the solutions

obtained for stiffened isotropic cylinders and the results of existing theories

are noted; the differences in the equations of the existing theories stem from

neglect of eccentricity_ stiffness terms, or terms dependent on Poisson's ratio.

Eccentricity effects in stiffened plates have also been discussed in an appendix.

Sample calculations have been shown for three types of stiffened cylinders

to illustrate the importance of eccentricity effects in contemporary cylindrical

structures loaded in compression. Substantial eccentricity effects are demon-

strated in general instability predictions for ring-stiffened corrugated cylin-

ders and ring-and-stringer-stiffened cylinders of proportions appropriate for

large launch-vehicle interstage or intertank structures. Substantial effects

are also shown in panel instability predictions for longitudinally stiffened
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cylinders of similar proportions. Thus, account of eccentricity effects is
shown to be imperative for accurate design calculations.

Langley Research Center_
National Aeronautics and Space Administration,

Langley Station_ Hampton, Va., May 24, 1965.
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APPENDIXA

BUCKLINGOF STIFFENEDPLATES

General Theory

Equilibrium equations for buckling of stiffened, flat plates can be derived
by following the procedure already outlined for stiffened cylinders. For
plates, the midplane strain-displacement relations employed for the cylinder
are replaced by

£ x = U,X

£y = V_y

+

7xy = U,y v_ x

If this procedure is followed_ equilibrium equations and boundary condi-

tions identical to equations (ll) and (13) with R taken to be infinitely

large are obtained. Note that_ unlike the usual flat-plate theory, equa-

tion (llc) does not become a simple equation in w alone, but that coupling

terms remain as a result of eccentricity of the plate stiffeners. Thus, a one-

sided effect is present in stiffened plates as well as cylinders.

Solutions for plates subjected to combinations of longitudinal and trans-

verse loading Nx and Ny for simple-support boundary conditions can be

obtained by assuming the following functions for displacements:

n_y
u = _ cos m_x sin

a b

m_x n_y
v = V sin _ cos

a b

w = w sin m____xxsin n_y
a b

(il)

where a and b denote the stiffened plate length and width_ respectively.

The significance of solutions obtained for stiffened isotropic plates is dis-

cussed in the following paragraphs.
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Solution for Buckling of Stiffened Isotropic Plates

The stability equation obtained by substituting the displacements speci-
fied in equations (AI) into the equilibrium equations for stiffened isotropic
plates can be expressed as

(_x+ _,_2_j]m2_2Da2 = (l+ _2) 2 + EsIsd--_-+ \-_--(GsJs+ GrJrl_2-_--_+ ErIrz--_-_4

EsA s _S2( 1 + _2)2 EsA s ErA r ErA r 2
d d EtZ

+ '_2fEsAs ErArl + (i- _2_ sAs ErArD 1 + 92) 2 2(i +_j_ _E-_-- + EtZ ] ._-_- + 2(1+ _)_t As EtZ

where

_2 + ErArEtZ_)

_A2)

and

13 = na

mb

In equation (A2), the subscript

to the x-axis) and the subscript

to the y-axis).

s now denotes longitudinal stiffening (parallel

r now denotes transverse stiffening (parallel

Equation (A2) is appropriate for buckling of simply supported isotropic

plates stiffened longitudinally and transversely with sturdy stiffeners.

Buckling is assumed to occur with long sinusoidal waves encompassing several

stiffeners. Note in equation (A2) that if the plate is stiffened by only lon-

gitudinal or transverse stiffeners, all terms involving _s or _r are squared

and hence the surface on which the stiffener is located is unimportant (as might

be expected intuitively). However, if both longitudinal and transverse stiff-

ening are present, the coupling term Cp in equation (A2) has terms with the

coefficient ZrZ s which can change sign if the longitudinal and transverse

stiffeners are on opposite sides of the plate.

If the plate is stiffened longitudinally and loaded in compression_ equa-

tion (A2) can be written as

Nxa2 - (1 + 132) 2 + __GsJs 132 + (E/)eff (A3)
m 2 _2 D dD dD
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where

(El)el f = Esl s +

2
EsAs_s

Es As

l+Zmn E td

with the coefficient Zmn defined by

Zmn

i + _2) 2

When the twisting stiffness GsJ s is taken to be zero_ equation (A3) with

n = i can be shown to be identical in form to the stability equation obtained

by Seide and Stein (eq. (i) of ref. 12) if_ in the reference, the product of

number of bays and the stiffener spacing is replaced by the plate width b.

In equation (A3), (El)ef f is the effective bending stiffness of the

stiffener-plate combination. Note that (El)eff is a function of the buckle

aspect ratio parameter _ and the eccentricity Zs" An analysis of the effec-

tive bending stiffness for plates with one, two, or three stiffeners was made

by Seide in reference 13. Although the results of the present theory are based

on investigation of sinusoidal buckling modes, which encompass several stiff-

eners and hence cannot be compared directly with the results of reference 13,

both analyses give the result that bending of plate columns (a/b = O) occurs

about the neutral axis of the plate-stiffener combination (i.e., Zmn = i - _2).
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TABLE I.- BUCKLING PREDICTIONS FOR STIFFENED CYLINDERS

(a) Ring-stiffened

corrugated cylinders

-- -- m n
R _ Ex

Rings - external

0.15 0.005061

.20 .004289

•25 .003826

•30 .003517

•35 .003297

.4O .003132

•45 .003003

.50 .002900

2 0

2 0

2 0

2 0

2 0

2 0

2 0

2 0

Rings - internal

0.15
•20

•25
•30
.35
4O
.45
•50

0.001761

.001491

.001324

.001210

.001126

.001061

.OOlO09

•000967

i

i

i

i

i

i

i

I

6
6
6
6
6
6
6
6

(b) Ring-and-stringer- (c) Longitudinally

stiffened cylinders stiffened cylinders

Z Nx m n _ Nx__ m n

Stringers - external; tiffeners

rings - external

0.05 0•005970 3 6

.kO .005121 3 6

•15 •004733 3 7

.20 .004467 3 7

•25 •004137 3 8

Stringers - external;

rings - internal

0.05 0.0041kl

.i0 .003836

•15 •003720

.20 .003629

•25 •003574

3 7

3 7

3 8

3 8

3 8

Stringers - internal;

rlngs - internal

0.05
i0

.15

•20

.25

0.003764 3

.003430 3

.003160 2

.002988 2
.002779 2

7

7

7

7
8

0.15
.20

.25

.30

.35
•40
.45
•50

- external

0.007043

•004739

.003614

•002814

.OO2243

.001843

.001554

.002340

1 o
1 8
1 18

1 25

1 27

1 27
1 26

1 25

Stiffeners - internal

0•15 0•006747

.20 •003804

.25 •002443

•30 .001706

• 35! .001262
.40 •000975

.45 .000780

.50 .000641

i

i

I

i

21

20

19
18

I 18
1 18

1 18

1 17
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Figure 1.- Geometry of stiffened cylinder.
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(0.25)

4.00
(10.16)

Ring section

(a) Ring-stiffened corrugated cylinders; a = 200 in. (508 cm).

-"--2.50 -"

(6.35_ Stringer

R = 200 (508)

0.90--_
(2.29)

2.00

(o.25)j L n (5.08)1_
--.-J

StringeP

-_--0.90
(2.29)

section

(b) Ring-and-stringer-stiffened cylinders; a = 200 in. (508 cm). (See fig. 2(a) for ring section.)

Figure 2.- Dimensions of stiffened cylinder walls. Dimensions are in inches.
(Parenthetical dimensions in cm.)
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Figure 3.- General instability predictions for compressed ring-stiffened corrugated cylinders.
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instability predictions for compressed ring-and-stringer-stiffened cylinders.
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Figure 5.- Panel instability predictions for compressed longitudinally stiffened cylinders.
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