Fig. 1 A prismatic corrugated panel with major and minor corrugations of the type described in the
invention by Lacasse [1]. This figure, minus the added overall dimensions, WIDTH and LENGTH, is from [1].
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Fig. 2 Sample optimized panel cross section profile (blue) of half the width, WIDTH/2, of a complex
corrugated panel with 8 major cylindrical segments over WIDTH/2 and with an alternating “convex surface
up”/ “convex surface down” configuration. In this example there are no sub-segments. The panel cross section
was optimized by GENOPT/span9/BIGBOSOR4 by means of the GENOPT processor called
“SUPERDUPEROPT”. As shown in the next figure, the major segments are numbered starting from the left-
most edge. PHIBIG is the overall arching angle in degrees. THICK(i) (the wall thickness of the ith major
segment), SUBWID(i), and PHISEG(i),1= 1,2, 3,..., NSEG, are decision variable candidates. (“Candidate”
means “eligible to be a decision variable”: a variable with designated Role No. 1 in Table 1.) The number of
major segments, NSEG = 8, in this example. YPLATE(j),j=1, 2, 3, ...NSEG+1 are also decision variable
candidates, and the overall arching angle, PHIBIG, is a decision variable candidate as well. In this example all
of the decision variable candidates are decision variables except for YPLATE(1) and THICK(k),k =2, 3, ..., 8.
The variables, THICK(k),2 =2, 3, ..., 8, are all linked to THICK(1) with a linking constant = 1.0. Therefore,
the entire optimized panel cross section is of uniform thickness, THICK(1).
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Fig. 3 Sample starting designs of corrugated panels, each with 8 major segments and with an alternating

“convex surface up”/ “convex surface down” configuration. There are no sub-segments in this particular

example, which is called “fold98updown”. Top: No overall arching (PHIBIG=0.1 degree); Middle: small

overall arching (PHIBIG=10 degrees); Bottom: large overall arching (PHIBIG=60 degrees). The number of
major segments over half the width, WIDTH/2, of the panel is NSEG=8. These plots are from the BIGBOSOR4
postprocessor called BOSORPLOT. The unfortunate label on the vertical axis, “Axial Station”, is automatically
produced by BOSORPLOQOT. It is appropriate for shells of revolution but not for prismatic shells. The left-hand

boundary condition, “u,v,w = 0; rotation is free”, is referred to as ““OLD” in Section 4.
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Fig 4 Objective versus design iteration during the optimization of the complex corrugated panel the starting
design of which is displayed in the middle frame of the previous figure. The starting design corresponds to
Iteration No. 0.
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Fig 5 Objective versus design iteration during the continuing optimization of the complex corrugated panel in
the execution of the GENOPT processor called “SUPERDUPEROPT”. The new “starting” design is the best
design determined from the previous execution of SUPEROPT during the long SUPERDUPEROPT process.
The new “starting design” corresponds to Iteration No. 0.

o
e}



—— Model Geometry

fold98updown: optimum; 852; feasible; superopt3; WEIGHT=92.69 1b

o
© The mid-width gap in the STAGS
model generated automatically by
GENOPT/span9 (see Figs. 17a &
3 L 17b) is caused by the inequality
fold98updown = 8 major segments, constraint corresponding to
0 sub-segments, segment Margln No. 2.(|n the "OPM" .fll|C)1
convexity is alternating up and down Margin Margin Definition
oL No. Value of Margin
0 2 -1.500E-03 = -3.95+0.10°V
(9)+0.10"V(10)+0.10"V
(11)+0.10"V(12)+0.10"V
2 The GENOPT/SPANS model always (ISH0I0°V(24)..ekc. =1,
includes half the total width of the panel This margin corresponds to the
(in this case WIDTH=100 inches), with inequality constraint that the sum
both symmetry and antisymmetry of all the SUBWIDs is greater than
%_3 - imposed at the symmetry plane. 49.5 inches. At the optimum the

sum of all the SUBWIDs = 49.5.

Axial Station
35

30

Symmetry plane —»

UN3 -
The thickness of each of the 8 major segments is
the same because THICK(2), THICK(3)...THICK(8)
8 - are all linked to THICK(1)
u,v.w held; rotation is free

o S

—p X
o A A A A A A A A A

0 5 10 15 20 25 30 35 40 45 50

Radius ('x" coordinate in inches)
Fig. 6 Optimized design of the panel cross section for the specific case called “fold98updown”. This
optimized panel cross section is the same as that shown in Fig. 2. The optimized weight of the entire panel of
width, WIDTH = 100 inches is 92.69 1b. The STAGS model referred to above is shown in Fig. 20, not Fig. 17.
The left-hand boundary condition, “u,v,w = held; rotation is free”, is referred to as “OLD”’ in Section 4.
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Fig. 7 General buckling of “fold98updown” anti-symmetric and symmetric at the mid-width symmetry plane.
The left-hand boundary condition, “u,v,w = held; rotation is free”, is referred to as “OLD”’ in Section 4.
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Fig. 8 Local buckling of the optimized “fold98updown” panel withn=1,n=2,n =135 and n =41 axial half
waves over the reduced axial length, FACLEN x LENGTH = 0.3 x LENGTH = 30 inches. The WEIGHT of the
entire optimized panel of WIDTH=100 inches is 92.69 1b, as is indicated in Fig.6, and the boundary condition
along the left-hand longitudinal edge is “u,v,w held; rotation free”, referred to as “OLD”” in Section 4.
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Fig. 9 A new optimized “fold98updown” design; general and local buckling modes and buckling load factors.
The boundary condition along the left-hand edge has been changed from ‘“u,v,w held; rotation free”
(Figs.6-8) to “symmetry or anti-symmetry” in order to simulate the behavior of a wide panel of which
this section is a part. This boundary condition is referred to as “NEW”” in Section 4. Compare the optimized
profile shown in the top frame in this figure with that displayed in Fig. 6.
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Fig. 10 General buckling of the optimized “fold98updown” case for which the optimized weight of the entire
panel of WIDTH = 100 inches is 97.16 1b, as shown in the previous figure. Here the full panel width, WIDTH =
100 inches, is included in the new BIGBOSOR4 model. Only half of the optimized panel width is displayed in
the previous figure. NOTE: The optimization cycles are performed only for ‘“half-width” models. After
completion of the optimization process, the behavior of that same optimized panel cross section, now with the
full 100-inch width, WIDTH, included in the model, is determined by BIGBOSORA4. Notice that the 2nd
eigenvalue for n = 1 for the full-width BIGBOSOR4 model (middle frame above) is very close to that shown in
the middle frame of the previous figure, which is computed for the half-width model with the freer left-hand
edge, that is, with symmetry/anti-symmetry boundary conditions imposed along the left-hand edge as indicated
in the previous figure (referred to as “NEW?”” in Section 4) rather than with the more restrictive boundary
condition, u,v,w, held and rotation free (referred to as ““OLD” in Section 4), that is indicated in Fig. 6. In the top
frame of the next figure is shown a much larger BIGBOSOR4 80-segment model of width =5 x WIDTH = 500
inches that has 5 repeating cross section profiles, each of width, WIDTH = 100 inches and each the same as the
optimized profile shown here. The phrase “General symmetric buckling” in this figure means “symmetric with
respect to the longitudinal edges at x =0 and x = WIDTH”, not “symmetric at x = WIDTH/2”.
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Fig. 11 Optimized “fold98updown” with the freer boundary conditions (referred to as “NEW?”” in Section 4)
along the left-hand edge. This BIGBOSOR4 model of general symmetric buckling includes five full WIDTHs
of 100 inches each. (The total width of the wide panel is 500 inches, with symmetry conditions applied along
both the left-hand and right-hand edges.) There are 80 shell segments in this BIGBOSOR4 model. The optimum
design of the panel cross section is the same as that shown in the previous two figures. The eigenvalues agree
well with those from the half-width model, which is the much simpler BIGBOSOR4 model that is used for

optimization of the panel cross section.
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Fig. 12 Optimized “fold98updown” with the freer boundary conditions (referred to as “NEW”’ in Section 4) on
the left-hand edge. These frames show buckling modes corresponding to n = 2 axial half-waves over the axial
length, LENGTH = 100 inches. As with the previous figure, this BIGBOSOR4 model of general symmetric
buckling includes five full WIDTHs of 100 inches each. (The total width of the wide panel is 500 inches, with
symmetry conditions applied along both the left-hand and right-hand edges.) There are 80 shell segments in this
model. The eigenvalues agree well with those from the half-width model, which is the much simpler
BIGBOSOR4 model used for optimization of the panel cross section. Notice from this and the previous figure
how the eigenvalues are closely clustered.
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Fig. 13 Starting design and optimized designs for the specific case, fold98supdwn (panel with sub-segments):
top frame = starting design; the letter “s” in the name, fold98supdwn, indicates the presence of sub-segments;
middle frame = optimized design with u,v,w held; rotation free along the left-hand edge (referred to as “OLD”
in Section 4);

bottom frame = optimized design with symmetry conditions applied along the left-hand edge (referred to as
“NEW” in Section 4).

Compare with the optimized designs of the “convex up — convex down” panels with no sub-segments shown in
Figs. 6 and 9. In the optimized designs of the panel with sub-segments the amplitudes of the sub-segments are
very small but not zero. In this case of alternating “convex up” and “convex down” major segments and
alternating “convex up” and “convex down” sub-segments in each major segment, zero amplitude of the sub-
segments is not the limiting case equivalent to a panel without sub-segments. This fact is a consequence of the
“span9” formulation in which PHISUB(i),1=1, 2, ...8 (the half-angles subtended by a single sub-segment in
major segment number 1) are decision variables. If all the 10 sub-segments in major segment no. 1 were
“convex down”, all the 10 sub-segments in major segment no. 2 were “convex up”, and so on, then the limiting
case equivalent to a geometry with no sub-segments would have PHISUB(1) = PHISEG(1)/10,1=1, 2, ... 8.
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™ Local buckling with n = 8 axial half-waves over the reduced axial length, FACLENXLENGTH=0.3x100=30 inches
The optimized design is the same as that in the previous figure (panel weight = 94.68 Ib), but the boundary
condition along the left-hand edge has been changed from "u,v,w held; rotation free" to "symmetry".
The buckling load factor = 1.1768, which is significantly less than the critical value, 2.0.
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Fig. 14 Top frame: optimized design of fold98supdwn (panel with sub-segments) with left-hand boundary
condition “u,v,w held, rotation free”’; 2nd frame: general buckling, 3rd frame: local buckling; bottom frame:
local buckling of the same design with the boundary condition along the left-hand edge changed from
“u,v,w held, rotation free” (referred to as “OLD”’ in Section 4) to “symmetry” (referred to as “NEW”” in
Section 4). (The purpose of the change in the boundary condition along the left-hand edge is to be able to
simulate with BIGBOSORA4 the behavior of a very wide panel with repeating cross sections.)
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General buckling with n = 2 axial half-waves over the entire axial length, LENGTH = 100 inches.
The optimized design is the same as that in the previous figure (panel weight = 94.68 Ib) but the boundary
condition along the two generators has been changed from "u,v,w held; rotation free" to "symmetry".
Buckling load factor = 1.2855
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General buckling with n = 1 axial half-wave over the entire axial length, LENGTH = 100
inches. The panel has been re-optimized in view of the change in edge condition from
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Fig. 15 Top frame: starting design of fold98supdwn (entire panel width with sub-segments); Middle frame:
general buckling of the panel optimized with the boundary condition along the left-hand edge set at “u,v,w held,
rotation free” (referred to as “OLD”” in Section 4) during optimization but with this left-hand boundary
condition changed to “symmetry” (referred to as “NEW?” in Section 4) after optimization; Bottom frame:
general buckling of the re-optimized panel with boundary condition along the left-hand edge set at
“symmetry” during optimization instead of “u,v,w held, rotation free”.
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There are only three decision variables in the optimization problem:

QF THICK(1) --- [THICK(2), THICK(3)... THICK(8) are all linked to THICK(1)]
PHISEG(1) --- [PHISEG(2), PHISEG(3). ... PHISEG(8) are all linked to PHISEG(1)]
PHIBIG

40

starting values of the three decision variables:
THICK(1) = 0.1 inch, PHISEG(1) = 45 degrees, PHIBIG = 60 degrees

optimized values of the three decision variables:
THICK(1) = 0.07691 inch, PHISEG(1) = 43.66 deg., PHIBIG = 16.08 deg.

WIDTH/2 = 50 inches
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Optimized design for the specific case, fold98updwnu;
Optimized weight of the entire panel = 117.8 |b
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optimized values of the three decision variables:
THICK(1) = 0.07691 inch, PHISEG(1) = 43.66 degrees, PHIBIG = 16.08 degrees

Fig. 16 Starting design and optimized design for the specific case, fold98updwnu (panel with uniform
alternating “convex up” and ‘“‘convex down” major segments, zero sub-segments, and non-zero PHIBIG):
top frame = the starting design. The “NEW?” (symmetry) boundary condition is used on the left-hand edge.
bottom frame = the optimized design with symmetry conditions applied along the left-hand edge.

The purpose of this model is to compare the optimized weight of the complex corrugated panel shown in the
top frame of Fig. 9 (in which the geometry of each major segment is different: optimized panel weight = 97.16
Ib) with the optimized weight of a panel with uniform “convex up — convex down” major segments: optimized
panel weight = 117.8 1b). NOTE: The optimized weight of a complex corrugated panel is significantly less
(WEIGHT = 97.16 1b) as indicated in the top frame in Fig. 9 if each major segment is permitted to have a
different PHISEG(i) during optimization and YPLATE() are decision variables, than is so in this “uniform”
case (WEIGHT=117.8 1b) for which only THICK(1) and PHISEG(1) are decision variables and PHISEG(k), k =
2,3, ..., 8 are all linked to PHISEG(1). SUBWID(@),i=1,2,...,8 and YPLATE@G),i=1,2,...,9 are not

decision variables.
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Fig. 17 General and local buckling of the optimized specific case, fold98updwnu: panel with uniform
segments. The “NEW?” (symmetry) boundary condition is used on the left-hand edge.
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P Optimized weight of the wide panel =5 x WIDTH=5x 118.1 |b
Q Fixed variables: SUBWID(1 & 8) = 3.5710, SUBWID(2-7) = 7.143, YPLATE(1)=33.571, YPLATE(2-8)=30.0,
(@)) YPLATE(@=2.6429 inches
< Optimized decision variables: THICK(1-8)=0.08822, PHISEG(1 & 8)=35.50 deg; PHISEG(2,3,....7)=2xPHISEG(1)
— O . . -

S o inor non-uniformitie

<>E O le—WIDTH = 100—4 f’ * i

* il \YAYAYAVAVYAVAVAVA VAV aVaVaWAVAVAVaYaVaVaWAVAVAVA\/ aVaVa VAV aVaVaYaVWaWaW)

YPLATERT) \(PL,‘;:TE(Q" l WIDTH = 100 l WIDTH =100 l WIDTH =100 l WIDTH =100

Fig. 18 Starting and optimum designs for the specific case, fold98updwnu (uniform major segments):

Top two frames: PHIBIG is a decision variable; top frame PHIBIG = 60 deg.; 2nd frame PHIBIG=16.08 deg.
Bottom two frames: PHIBIG is not a decision variable and is fixed at 0.1 degree (essentially zero).

The minor nonuniformities (corrugations with slightly greater amplitude than the others in the bottom frame)
result from a somewhat too-high value of YPLATE(1) and too-low value of YPLATE(9) compared to
YPLATE(2), YPLATEQ3), ..., YPLATE(8) = 30 inches. [YPLATE(), i=1, 2,...,9, are not decision variables.]



Axial Station

AXial statior

Axial Station

Axial Station

general buckling: n = 1 axial half-waves over the axial length, LENGTH=100 inches; buckling load factor= 1.5358
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< 5x WIDTH = 500 inches >

general buckling: n = 2 axial half-waves over the axial length, LENGTH=100 inches: buckling load factor= 1.4385
= g ( { i 7
oY S NS
ol

local buckling: n = 1 axial half-wave over the reduced axial length, FACLEN x LENGTH=0.3 x 100 = 30 inches;

O buckling load factor = 2.6783
o

<
—

0.5

b U ZNT RN -
o

general buckling of the flat, optimized wide panel of width = 5 x WIDTH = 500 inches;
n = 2 axial half-waves over the axial length, LENGTH = 100 inches; buckling load factor = 1.4639

UL S

[ Tl diad dna o
’ \\(( i

Fig. 19 Buckling from BIGBOSOR4 of the optimized curved (top three frames; PHIBIG=16.08 degrees) and
“flat” (bottom frame; PHIBIG=0.10 degree) “uniform” (specific case = fold98updwnu) wide panels shown in
frames 2 and 4 in the previous figure.



"classical" simple support (s.s.)
(a buckling nodal line occurs along the curved boundaries)

translations
(u,v,w) fixed:
rotations free

LENGTH

symmetry or
anti-symmetry

"classical" s.s.
| WIDTH/2

g%_—ﬂ]} \
(a) STAGS “half-width” model of the corrugated panel optimized by GENOPT/span9/BIGBOSOR4

symmetry
plane

/

LENGTH = 100 inches

WIDTH = 100 inches

(b) STAGS “whole-width” model of the same optimized corrugated panel
Fig. 20 STAGS finite element models of the previously optimized specific case called “fold98updown”, the
optimized cross-section profiles of which are displayed in Figs. 2 and 6. (“OLD”’ boundary conditions)



n=1; STAGS=1.4973; BIGBOSOR4=1.5026 n=2; STAGS=1.4990; BIGBOSOR4=1.4969

n=5; STAGS=1.8617; BIGBOSOR4=1.8498

n=2: STAGS=1.5035; BIGBOSOR4=1.5007

n=3; STAGS=1.8937; BIGBOSOR4=1.8910

n=4; STAGS=1.9257: BIGBOSOR4=1.9157

Fig. 21 First six buckling modes and load factors from STAGS that are symmetric at the symmetry plane.
Predictions from BIGBOSOR4 agree very well with those from the STAGS model shown in Fig. 20(a).



n=6; STAGS=1.9513; BIGBOSOR4=1.9398

n=3; STAGS=1.9733; BIGBOSOR4=1.9711

n=2; STAGS=2.0045; BIGBOSOR4=2.0004

. STAGS=2.0327; BIGBOSOR4=2.0219

Fig. 21 (continued) Buckling modes 7 — 10 and load factors from STAGS that are symmetric at the symmetry
plane. Predictions from BIGBOSOR4 agree very well with those from the STAGS model shown in Fig. 20(a).
(“OLD” boundary conditions)



n=2; STAGS=1.5031; BIGBOSOR4=1.4989

n=2; STAGS=1.5133; BIGBOSOR4=1.5076

n=1; STAGS=1.5276; BIGBOSOR4=1.5218

n=1; STAGS=1.7179; BIGBOSOR4=1.7188

n=5; 8TAGS=1.855¢; BIGBOSORA=1.8443 n=3: STAGS=1.8937; BIGBOSOR4=1.8910

Fig. 22 First six buckling modes and load factors from STAGS that are anti-symmetric at the symmetry
plane. Predictions from BIGBOSOR4 agree very well with those from the STAGS model shown in Fig. 20(a).



n=4; STAGS=1.9043; BIGBOSOR4=1.8942 : STAGS=1.9506; BIGBOSORA=1.8390

n=3; STAGS=1.9963; BIGBOSOR4=1.9968

Fig. 22 (continued) Buckling modes 7 — 10 and load factors from STAGS that are anti-symmetric at the
symmetry plane. Predictions from BIGBOSOR4 agree very well with those from the STAGS model shown in

Fig. 20(a). (“OLD” boundary conditions)



6.05-0.107V(9)-0.10*V(10)-0.10*V(11)-0.10*V(12)-0.10"V(13)-0.10"V(14)..etc. -1.
-3.95+0.10°V(9)+0.10*V(10)+0.10°V(11)+0.10*V(12)+0.10*V(13)+0.10*V(14)..etc. -1.
LOCBUK(1 J/LOCBUKA(1 )) / LOCBUKF(1 )-1; F.S.= 2.00
BUKSYM(1 )/BUKSYMA(1)) / BUKSYMF(1 )-1; F.S.= 1.50

XEQOX+D>00O

BUKASY(1 )/BUKASYA(1 )) / BUKASYF(1)-1; F.S.= 1.50
CYLBUK(1,1 )/CYLBUKA(1 ,1))/ CYLBUKF(1 ,1)-1; F.S.= 1.00
(CYLBUK(1 ,3 )/CYLBUKA(1 ,3))/ CYLBUKF(1 ,3 )-1; F.S.= 1.00
(CYLBUK(1 ,5 )/CYLBUKA(1 ,5)) / CYLBUKF(1 ,5 )-1; F.S.= 1.00
(CYLBUK(1 ,6 )/CYLBUKA(1 ,6 ))/ CYLBUKF(1 ,6 )-1; F.S.= 1.00

GENOPT fold98updown: design margins vs YPLATE(S)

0.8

0.6

Design Margins

Optlmlzcd value of YPLATE( )

<

< = 8 789 mchcs

© : i : : : i : : : i
o i A A i i A A A i i

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
NDesian Parameter. YPI ATF(8)

Fig. 23a Sensitivity of the optimized design of the specific case called “fold98updown” to variation of the
decision variable, YPLATE(8). The optimized design of “fold98updown” is listed in Table 3 and the cross
section of half the width of the optimized panel is shown in Figs. 2 and 6. (“OLD” boundary conditions)



O 6.05-0.10"V(9)-0.10°V(10)-0.10"V(11)-0.10°V(12)-0.10"V(13)-0.10°V(14)..etc. -1.

O -3.95+0.10°V(9)+0.10°V(10)+0.10°V(11)+0.10°V(12)+0.10*V(13)+0.10°V(14)..etc. -1.

A (LOCBUK(1 )/LOCBUKA(1 )) / LOCBUKF(1 )-1; F.S.= 2.00

+ (BUKSYM(1 )/BUKSYMA(1 )) / BUKSYMF(1')-1; F.S.= 1.50

X (BUKASY(1 )/BUKASYA(1 ) / BUKASYF(1 )-1; F.S.= 1.50

o (CYLBUK(1 ,1 )/CYLBUKA(1,1))/ CYLBUKF(1 1 )-1;F.S.= 1.00

v (CYLBUK(1 3 )/CYLBUKA(1,3))/ CYLBUKF(1 3 )-1; F.S.= 1.00

K (CYLBUK(1,5)/ICYLBUKA(1,5))/ CYLBUKF(1 5 )-1;F.S.= 1.00

% (CYLBUK(1,6 )/CYLBUKA(1,6 ))/ CYLBUKF(1 ,6 )-1; F.S.= 1.00

GENOPT fold98updown: desngn margms VS YPLATE(9)

of .
e : :

Design Margins

Optlmlzcd valuc of YPLATE(Q)

=7. 239 inches
©
o‘ -
0 : : : : :
o A \ A A A i
"4 5 6 7 8 9 10

Nesinn Parameter. YPI ATF(9)

Fig. 23b Sensitivity of the optimized design of the specific case called “fold98updown” to variation of the
decision variable, YPLATE(9). The optimized design of “fold98updown” is listed in Table 3 and the cross
section of half the width of the optimized panel is shown in Figs. 2 and 6. (“OLD” boundary conditions)



Optimum design for the specific case, fold28updown; Weight of the panel = 93.37 Ib Symmetry

40
Y

Major Segment 1

\ UV, w=0,;

rotation free
O P EA i hac
al r 50 inches

-

Axial Station (inches)
30 35
Y Y

A 4

(a) A FEASIBLE optimum design found in May 2013. This optimum design is still valid. The optimized
WEIGHT =93.37 1b.

Another optimum design for the same specific case, fold98updown; Weight of the panel = 92.69 Ib ch 7 k

Axial Sta

30

Symmetry plane ——»

(b) Another FEASIBLE optimum design found in July 2013 (The same optimum design is shown in Figs. 2 and
6.) The optimized WEIGHT = 92.69 Ib.

Fig. 24. Two equally valid FEASIBLE optimum designs of the specific case called ‘“fold98updown”
(“OLD” boundary conditions). The boundary conditions are the same in (a) and (b). The optimized panel cross
sections shown here are significantly different each other, yet the optimized weights of the entire panels of
WIDTH=100 inches are only slightly different: 93.37 Ib in the top frame versus 92.69 1b in the bottom frame.
There probably exist many quite different optimum designs with weights in the range 91 Ib < WEIGHT < 98 Ib.



O weight of the corrugated panel: WEIGHT; Oth iteration=optimized FEASIBLE design weighing 92.69 Ib 0 weight of the corrugated panel: WEIGHT; Oth iteration=optimized FEASIBLE design weighing 92.69 Ib
fold98updown: objective vs design iterations; IMOVE=1; IAUTOF=1 fold98updown: objective vs design iterations; IMOVE=5; IAUTOF=2

-

96

-

o
o

100 inches
100 inches

Objective: WEIGHT (Ib) of the entire panel of WIDTH
Objective: WEIGHT (Ib) of the entire panel of WIDTH

< A A A " ) 3 A A A A )
®0 5 10 15 20 25 0 5 10 15 20 25
Design lterations: 4 executions of OPTIMIZE; 5 iterations/optimize Design lterations: 4 executions of OPTIMIZE; 5 iterations/optimize
O weight of the corrugated panel: WEIGHT; Oth iteration=optimized FEASIBLE design weighing 92.69 Ib O weight of the corrugated panel: WEIGHT; Oth iteration=optimized FEASIBLE design weighing 92.69 Ib
o fold98updown: objective vs design iterations; IMOVE=4; IAUTOF=2 o fold98updown: objective vs design iterations; IMOVE=1; IAUTOF=1
cv; - S -
[} %]
[0} []
= <
[ [S}
= £
o o
o o

Objective: WEIGHT (lb) of the entire panel of WIDTH
Objective: WEIGHT (lb) of the entire panel of WIDTH

g A A A A 'y % A A A A 'y
0 5 10 15 20 25 0 5 10 15 20 25
Design lterations: 4 optimizes; 5 iterations/optimize Design lterations: 1 optimize; 25 iterations/optimize

Fig. 25a Objective (WEIGHT of the entire panel) versus Design Iterations for 4 strategies in MAINSETUP:
(A) Four successive executions of OPTIMIZE with five iterations per OPTIMIZE with IMOVE =1

(B) Four successive executions of OPTIMIZE with five iterations per OPTIMIZE with IMOVE =5

(C) Four successive executions of OPTIMIZE with five iterations per OPTIMIZE with IMOVE = 4

(D) One executions of OPTIMIZE with 25 iterations per OPTIMIZE with IMOVE =1



Design Margins

Design Margins

6.05-0.10°V(9)-0.10°V(10)-0.10°V(11)-0.10°V(12)-0.10°V(13)-0.10°V(14)..etc. -1
-3.95+0.10°V(9)+0.10°V(10)+0.10°V(11)+0.10" v112)+o 10'v113)+0 10°V(14)..ef
(LOCBUK(1 JLOCBUKA(1 )) / LOCBUKF(1 )-1;
(BUKSYM(1 /BUKSYMA(1 )) / BUKSYMF(1 )-1; F S.
(BUKASY (1 )/BUKASYA(1 )) / BUKASYF(1 )-1; F.
(CYLBUK(1,1 )/ICYLBUKA(1 ,1)) / CYLBUKF(1,1)
(CYLBUK(1 ,3 )/CYLBUKA(1 ,3)) / CYLBUKF(1 ,3 )
(CYLBUK(1 5 JCYLBUKA(1 5 )) / CYLBUKF(1 .5 )-1; F.8.= 1. oo

cofold98updown: design margins vs design iterations; IMOVE=1; IAUTOF=1
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RQoX+>00O

-0.8

A A A )
0 5 10 15 20 25
Desian lterations: 4 executions of OPTIMIZF: 5 iterations/ontimize

6.05-0.10°V(9)-0.10°V(10)-0.10°V(11)-0.10°V(12)-0.10°V/(13)-0.10°V(14)..etc. -1.
-3.95+0.10°V(9)+0.10°V/(10)+0.10*V(11)+0.10" v112)+o 10° vna)m 10°V(14)..etc. -1.
(LOCBUK(1 JLOCBUKA(1 )) / LOCBUKF(1 )-1; F.S.= 2.0(

(BUKSYM(1 )/BUKSYMA(1 ) / BUKSYMF(1 )-
(BUKASY (1 )/BUKASYA(1 )) / BUKASYF(1 )-1; F.
(CYLBUK(1 ,1 )/CYLBUKA(1 1))/ CYLBUKF(1 ,1)-1;
(CYLBUK(1 ,3 )/CYLBUKA(1 3 )) / CYLBUKF(1 ,3)-1:
(CYLBUK(1 5 )/CYLBUKA(1 5 )) / CYLBUKF(1 ,5 )-1; F.

RaoX+>0OO

l‘fold98updown: design margins vs design iterations; IMOVE=4; IAUTOF=2
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Desian lterations: 4 ontimizes: 5 iterations/ontimize

Design Margins
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(LOCBUK (1 )LOCBUKA(1 )) / LOCBUKF(1 )-1; FS 200

(BUKSYM(1 /BUKSYMA(1)) / BUKSYMF(1 )-1;
(BUKASY (1 )/BUKASYA(1 )) / BUKASYF(1 )-1; FS 150
(CYLBUK(1 ,1 JCYLBUKA(1 1))/ CYLBUKF(1 ,1)-1; F.S.= 1.00
(CYLBUK(1 3 J/CYLBUKA(1 3 )) / CYLBUKF(1 ,3 )-1; F.
(CYLBUK(1 5 JCYLBUKA(1 5 )) / CYLBUKF(1 ,5 )-1; F.S.= 1.00

q§‘01d98updown: design margins vs design iterations; IMOVE=5; IAUTOF=2
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M<4oX+D>0OO

Desian lterations: 4 ontimizes: 5 iterations/ontimize

Design Margins

6.05-0.10°V(9)-0.10°V(10)-0.10°V(11)-0.10°V(12)-0.10°V(13)-0.10°V(14)..etc. -1.
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(CYLBUK(1,3 J/CYLBUKA(1 ,3)) / CYLBUKF(1 ,3 2
(CYLBUK(1 5 )/CYLBUKA(1 5 )) / CYLBUKF(1 ,5 )-1; F.

vfold98updown: design margins vs design iterations; IMOVE=1; IAUTOF=1
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Nesian lterations: 1 ontimize: 25 iterations/ontimize
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Fig. 25b Design margins versus Design Iterations for 4 strategies in MAINSETUP:

(A) Four successive executions of OPTIMIZE with five iterations per OPTIMIZE with IMOVE
(B) Four successive executions of OPTIMIZE with five iterations per OPTIMIZE with IMOVE
(C) Four successive executions of OPTIMIZE with five iterations per OPTIMIZE with IMOVE =

1
5
4

(D) One executions of OPTIMIZE with 25 iterations per OPTIMIZE with IMOVE =1



= = 611 weight of the corrugated panel: WEIGHT (6 optimizes/autochange; IMOVE=1; IAUTOF=1)
— 852 weight of the corrugated panel: WEIGHT (8 optimizes/autochange; IMOVE=5; IAUTOF=2)

fold98updown: objective vs design iterations for "852" & "611"
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Design Iterations during the first execution of SUPEROPT

Fig. 26 Comparison of evolution of the objective from two strategies selected by the End user in
MAINSETUP, the “611” strategy (dashed) and the “852” strategy (solid).



—— The original optimum design with "corners"
® Defining points of the cylindrical smoothing segments; RSMOOTH = 2.0 inch

fold98updown optimized with symmetry-symmetry longitudinal edges

Sr
No additional "smoothing" segments are
required at these two locations because the
"corner" angle is less than 20 degrees.
_. 3
Q 5 "smoothing" segments are added to
3 eliminate internal "'corners" between
N adjacent major segments.
x
o SF
£
e
©
S
e 8 )
n L J
2 A‘\A new segment is added at the beginning
2 of the BIGBOSOR4 model to make the
:q; ol panel slope in the x-direction = 0 at the
g « symmetry plane there.
-
O
8 A new segment is added at the end of
> 5 the BIGBOSOR4 model to make the
slope = 0 at the symmetry plane there.
<4+—— Symmetry plane Symmetry plane —p
o A A A A I\
-10 0 10 20 30 40 50

x-coordinate (inches; called RADIUS in several other figures)

Fig. 27 The optimized specific case, fold98updown: Solid line = the same optimized corrugated panel profile as
that shown in the top frame of Fig. 9. Seven sets of three points each = “smoothing” segment center of
curvature, point at the beginning of the smoothing segment and point at the end of the smoothing segment.



— Parts of Segments 1 and 2 of the optimum design with "corners”
— — The smoothing segment; RSMOOTH = 2 inches
® Defining points of the cylindrical smoothing segment between Segs. 1 and 2; RSMOOTH = 2.0 inch

Zoomed fold98updown, showing parts of Segments 1 and 2

36
\

Added "smoothing"
segment

35
Y

Part of major
segment no. 1

RSMOOTH

34
A\

RSMOOTH

y-coordinate (inches; normal to the x-z plane)
32 33
A

Part of major

»
segment no. 2
8 A A A A I\
9 10 11 12 13 14 15

x-coordinate (inches; called RADIUS in several other figures)

Fig. 28 “Zoomed” view of the smoothing segment between major segments 1 and 2 shown in the previous fig.



Y,

Fig. 29 Smoothing the profile for the optimized specific case called “fold98updown”:

Top frame: Optimized panel cross-section profile shown also in Figs 9 and 27 (before “smoothing”).

Bottom frame: The same profile with “smoothing” introduced at the left-hand and right-hand edges and
between the adjacent major segments for which the “corner” angle (discontinuous slope in the width direction)
is greater than 20 degrees. The optimized profile with “corners” (top frame in Fig. 9 and top frame in this
figure) is determined with symmetry conditions imposed along both the left-hand and right-hand longitudinal
edges (“NEW” boundary conditions described in Section 4). In this case no further optimization was carried out
with use of the “smoothed” BIGBOSOR4 model. The profile shown in the bottom frame is the same as that
shown in the top frame except that the small “smoothing” cylindrical segments have been introduced at the
locations indicated by the seven sets of three points each shown in the top frame. The radii of all the added
“smoothing” cylindrical segments are the same and equal to RSMOOTH = 2.0 inches in this particular example.



® buckling load factor versus radius of the smoothing cylindrical segments
Dependence of the buckling load factor on RSMOOTH (2xWIDTH panel)

n(critical) = 27 axial half-waves over the

«—  axiallength, LENGTH=100 inches |

2xWIDTH

1.8

1.7

1.6

/ n{critical = 10

1.5

1.4

/ n(criitical): 5

n(critical) =

1.3

Load factor for buckling at the middle of the panel of width
1.2

N A A A A A A A A )
00 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Radius=RSMOQOTH (inches) of the added smoothing cylindrical segments

o

<+«——— WIDTH +>| — WIDTH ———»

D %
B”-thm frame

of Fig.29 The type of buckling mode from which
the data points in this figure are derived

Axial Station
40

20
v

Fig. 30 Sensitivity of the critical buckling load factor of a “smoothed” optimized panel cross-section profile to
the radius, RSMOOTH, of the added little cylindrical segments that eliminate the “corners” between segments.



Odtimizcd panel dross section pfofilc before
sm:oothlng This is the same profile shown at  §
the top of F|g 9. WEIGHT= 97 16 Ib.

The 7 sets with three data points each
correspond 1o RSMOOTH=2 inches in this

e o e e e e e e

¢ figure. However. the smoothed panel was
¢ re-optimized with RSMOOTH = 1.0 inch..
Re-optimized panel cross-section profile with
"smoothing" present. RSMOOTH = 1.0 inch. The weight
of the re-optimized panel: WEIGHT = 95.93 |b.
The panel was re-optimized with one execution
of SUPEROPT with use of the "852" strategy: 8
executions of OPTIMIZE for each execution of
AUTOCHANGE; IMOVE=5; IAUTOF=2
T
N |e mdde Wide panel BIGBOSOR4 model (BEHXO0)
— frame
8
2 f\f‘f\f\ W%
o <+— WIDTH=100+ inches —> 44— WIDTH=100+ inches =—p

|

Fig. 31 Optimization of the ‘“smoothed” version of the spec1f1c case called “fold98updown”: Top frame: the
starting design, which is the optimized design obtained before the introduction of “smoothing” cylindrical
segments; Middle frame: the re-optimized design including “smoothing” segments with RSMOOTH = 1.0

inch; Bottom frame: the re-optimized “smoothed” panel cross-section profile extended to a wide panel of
width, 2xWIDTH = 200 inches. The wide panel input file for BIGBOSORA4 is called “fold98updown.BEHXO0”.



45
A

Optimized design with either symmetry or anti-symmetry at both
the left and right edges of the GENOPT/span9 model. The

P optimized weight, WEIGHT = 97.16 Ib, is greater now than that

shown in Fig. 18 (92.69 Ib) because the lefi-hand edge is freer

now than that shown in Fig. $8.

This "doubling back" of

Axial Station
40

g | . .\ Major Sogmgnt No. 4
prevents fabrication by
Major Segment No. 4 stamping.

30

Symmetry or anti-symmetry — 00—

symmetry or anti-symmetry

S New optimized profile with the upper bounds of
PHISEG(2), PHISEG(3), PHISEG(4) and PHISEG(5)
set in DECIDE equal to 60 rather than 85 deg-

AXial Station
35

30

This optimized profile has not been
smoothed. (There are "corners".)

Optimized WEIGHT=97.15 b

MOOTH = radius of small cylindrical "smoothing"
segments = 2.0 inches in this example.

R

[ 4 N

This profile has been smoothed.
(There are no "corners")

3 X coordinate
Fig. 32 Two optimum designs of the special case called “fold98updown” with “symmetry-antisymmetry”
(“NEW?”) boundary conditions applied along both the left-hand and right-hand longitudinal edges:

Top: The same optimized profile shown at the top of Fig. 9 (not smoothed; “corners” are present.)

Middle: The panel is re-optimized with use of the Fig. 9 design as a starting design. (“Corners” are present.)
Bottom: This profile is the same as that shown in the middle frame except that the “corners” have been
smoothed and the left and right ends have zero slope in the x-direction. There has been no further optimization.
The purpose of lowering the upper bounds of PHISEG(2), PHISEG(3), PHISEG(4) and PHISEG(S) is to try to
come up with an optimum design which can be fabricated by stamping, that is, an optimum design with no
“doubling back” such as that exhibited near the right-hand end of Major Segment No. 4 in the top frame.
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Fig. 33 Specific case called “fold98updown”: The BIGBOSOR4 multi-WIDTH flat wide panel model shown
in the bottom frame here and in the top frame of Fig. 11 is “bent” inextensionally into 90 degrees of a
cylindrical shell with an average radius, RCYL = 318 inches. The previously optimized weight of one
section of width, WIDTH=100 inches, is 97.16 1b (top frame of Fig. 9). Therefore, the weight of 90 degrees of
the cylindrical shell is 5 x 97.16 = 485.8 Ib. The next figure shows buckling modes of this cylindrical shell.
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. This is the critical buckling
mode: buckling load factor =
1.4637 correspondington =1
axial halfwave over the axial
length, LENGTH = 100 inches.
This is a general buckling mode.
There are several eigenvalues
clustered near 1.464

- general symmetric buckling; n = 1 axial half-wave over the axial length, LENGTH=100 inches;
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Fig. 34 Specific case called “fold98updown” mapped onto a cylindrical surface with radius, RCYL=318 inches.
Top: The critical buckling mode of the 90-degree cylindrical shell shown in the previous figure corresponds to
general buckling of the type shown in the second frame in Fig. 11 and reproduced as the bottom frame here.
Bottom: General buckling of the “flat” multi-WIDTH (same as the second frame in Fig. 11). The buckling load
factor of the “flat” panel, 1.47481, is close to that for the corrugated cylindrical shell: 1.4637.
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Fig. 35 The optimized specific case with ‘“‘corners” called ‘“fold98updown’ mapped onto a cylindrical
surface with radius = RCYL. The cross-section profile of arc length = WIDTH = 100 inches is the same as
that shown for the undeformed cross sections plotted in Fig. 10. In this case the radii, RCYL, are established so
that the “flat” (flat in the average sense) profile with arc length MMM x WIDTH maps into a complete (360

degree) cylindrical shell.

Left-hand side: MMM = 6 and RCYL = 95.493 inches. The 6 identical undeformed sectors labeled “’Bent’
Fig. 10 profile no.1”,1= 1, 2,..., 6 have the same profile as that of the undeformed structure shown in Fig. 10
except that this profile now follows the curved cylindrical surface. Because of the particular shape of the
optimized undeformed profile shown in Fig. 10, adjacent halves of the six neighboring sectors form six
flattened areas. The buckling load factor, 1.4163, is somewhat lower than that for the “flat” profile (lowest
buckling load factor = 1.4741 printed in the top frame of Fig. 10) perhaps because the averaged cylindrical shell
has these six average “flattened” areas that act as imperfections.

Right-hand side: MMM = 18 and RCYL = 286.48 inches. The buckling load factor, 1.4579, is much closer to
that for the “flat” profile (1.4741) perhaps because the 18 “flattened” areas between adjacent halves of the 18
neighboring sectors around the circumference of the cylindrical shell are much less pronounced than the six
flattened areas displayed in the left-hand plot, for which MMM = 6.



Critical general buckling load factor=1.42386 corresponding ton = 1
axial half-wave pver the axial length, LENGTH=100 inches

Optimized weight of 90
degres of the cylindrical
shell = 658 Ib.

b = stringer spacing
h = stringer web height
w = stringer flange width

t(skin), t{web), t(flange) = RCYL = 318 inches
thicknesses
b=2.6137, h=2.7138, w=1.3626, t(skin)=0.05, t(web)=0.0585, t(flange)=0.0388

The buckling deformation is
primarily tiltng of the stringers
with bending of the web and
some skin participation
Long axial wave bending-torsional buckling load factor
= 1.404 corresponding to n = 4 axial half-waves over
the axial length, LENGTH = 100 inches.

Note: The factor of safety for
‘ ‘ l ‘ local buckling was set at 1.0

—— -g_-;-- p——

The buckling deformation is combined local skin A SEsyg
buckling with bending of the stringer webs O

Local buckling load factor = 0.96848 corresponding to n = 37
axial half-waves over the axial length, LENGTH = 100 inches.

Fig. 36 Three buckling modes of an axially compressed externally T-stringer-stiffened cylindrical shell,
“equivalent” (same radius and material) to that shown in Figs. 33 and 34, was optimized by PANDA?2 [31]. The
weight of 90 degrees of this optimized T-stiffened cylindrical shell is 658 Ib. (Compare with 485.8 1b for the
optimized complex corrugated cylindrical panel shown in Figs. 33 and 34.)
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Fig. 37a BIGBOSOR4 models of general and local buckling of an optimized aluminum cylindrical truss-
core sandwich panel under uniform axial compression, 2000 1b/in normal to the page. The panel was optimized
by GENOPT/BIGBOSORA4/trusscomp [24]. The weight of 90 degrees of the optimized cylindrical shell is 579
Ib compared to 485.8 Ib for the optimized cylindrical shell with the complex corrugated cross-section profile.
The STAGS prediction of the critical general buckling mode shape and load factor (1.5022) is given in Fig. 37b.
The results from a much larger HUGEBOSOR4 model are shown in Fig. A19 (Appendix 6).



Uniform axial

compression‘: Cross section detail shown in the mode 8, por = 0.15022Ee01
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Fig. 37b The same optimized truss-core sandwich cylindrical panel as that shown in the top two frames of
the previous figure. Shown here are STAGS predictions of the critical general buckling mode and its associated
buckling load factor, 1.5022. The STAGS prediction of general buckling agrees very well with that for the same
optimized cylindrical shell obtained from the GENOPT/trusscomp/BIGBOSOR4 model shown in the middle
frame of Fig. 37a (Critical buckling load factor from BIGBOSOR4 = 1.4893, n(critical) = 2 axial half-waves).
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Optimized uniform corrugation: S
Specific case name = fold98updwnu
MMM = 5; RCYL = 318 inches o
factor of safety for local buckling = 2.0
MMMxWEIGHT = 5xWEIGHT=580.5 Ib
buckling load factor=1.460
n=2 axial half-waves over the axial length,
LENGTH =100 inches

Fixed variables: SUBWID(1 & 8) =3.5710, ,/
SUBWID(2-7)=7.143, YPLATE(1)=33.571,
YPLATE(2-8)=30, YPLATE(9)=26.429
inches -
Optimized decision variables: THICK(1-8) -
=0.08822 inch, PHISEG(1 & 8)=35.50 deg,
PHISEG(2,3....,7)=2xPHISEG(1)

Deformed /

Optimized uniform corrugation:
Specific case name = fold98updwnu
MMM = 5; RCYL = 318 inches
factor of safety for local buckling = 1.5
MMMxWEIGHT = 5xWEIGHT=564.5 |b
buckling load factor=1.598
n=1 axial half-waves over the axial length,
LENGTH = 100 inches
Fixed variables: SUBWID(1 & 8) = 3.5710, SUBWID(2-7)
=7.143, YPLATE(1)=33.571, YPLATE(2-8)=30, YPLATE(9)
=26.429 inches
Optimized decision variables: THICK(1-8)=0.08780 inch,

Optimized uniform corrugation:
Specific case name = fold98updwnu
MMM = 5; RCYL = 318 inches =
factor of safety for local buckling = 1.5
MMMxWEIGHT = 5xWEIGHT=564.5 Ib
buckling load factor=1.474
n=2 axial half-waves over the axial length, /
LENGTH = 100 inches

Optimized uniform corrugation:
Specific case name = fold98updwnu /
MMM = 5; RCYL = 318 inches
factor of safety for local buckling = 1.5

MMMxWEIGHT = 5xWEIGHT=564.5 Ib

buckling load factor=1.462 /

n=3 axial half-waves over the axial length,

LENGTH = 100 inches

Fig. 38 The spemflc case called “fold98updwnu” Optlmlzed panel with uniform corrugation. The optimized
undeformed cross-section profile in the upper left-hand corner is the same as that shown in the bottom frame of
Fig. 18, except that this undeformed profile is mapped onto a cylindrical surface with radius = RCYL =318
inches. The other three undeformed profiles are optimized profiles with the factor of safety for local buckling
set equal to 1.5 instead of 2.0. Compare the weight, 564.5 1b, with that listed near the top of Fig. 33: 485.8 Ib.



optimized fold98updwnu:
MMM=10, RCYL=318.0in.
m=1 axial half-wave over

optimized fold98updwnu:
MMM=10, RCYL=318.0in.
the axial length, m=1 axial half-wave over :
LENGTH=100 inches the axial length, m=1 axial half-wavc over
“eigenvalue o, 2= 150887 ¢ LENGTH=100inches __ § e axiallength,
buckling mode = short circ. eigenvalue no. 3 = 1.69962 ‘
wave deformation plus

buckling mode = short circ.
global displacement with

wave deformation plus
)é n = 1 global circumferential

))é global displacement with
waves ('))Ir‘

optimized fold98updwnu:

MMM=10, RCYL=318.0in.
m=1 axial half-wave over
the axial length,

_____ LENGTH=100inches _____ 2
eigenvalue no. 1 = 1.59761
buckling mode = short circ.

wave deformation plus
global displacement with
n = 0 global circumferential
waves

optimized fold98updwnu:
MMM=10, RCYL=318.0in.

buckling mode = short circ.
wave deformation plus
global displacement with

n = 3 global circumferential

waves (j‘))

n = 2 global circumferential
waves

Vaan
VA
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the axial length,
LENGTH=100 inches

eigenvalue no. 5 = 1.60966
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optimized fold98updwnu:
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optimized fold98updwnu:
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--------------------------------------------- the axial length,
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buckling mode = short circ. CtiNﬁTcHnj(;O_mfggiw --------------- - eigenvalue no. 8 = 1.63438
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Fig. 39 The specific case called ‘“fold98updwnu”’: Optimized panel with uniform corrugation. The number of
repeating segments, each of arc length = WIDTH = 100 inches, is 10, that is, MMM = 10, and the radius of the
cylindrical shell, RCYL = 318 inches. 180 degrees of the cylindrical shell is included in the large BIGBOSOR4
model, which contains 160 segments. The second mode in the top row is the same as the mode in the lower left-
hand corner of the previous figure. All these buckling modes have 1 axial half-wave over the length,
LENGTH=100 inches. All the modes are combinations of short and long circumferential wavelengths, with
fairly closely clustered eigenvalues.
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Fig. 40 The specific complexly corrugated case called “fold98updown”: This is the eigenvector
corresponding to the 11th eigenvalue for the “huge cylinder” model of the optimized cross-section profile
shown at the top of Fig. 11 and mapped onto a cylindrical shell as shown in Fig. 33 via SUBROUTINE
BOSDEC?2 (part of the file called bosdec.span9.hugecyl), except that in Figs. 11 and 33 the total arc length is
MMM x WIDTH =5 x WIDTH = 500 inches, whereas in this figure the total arc length is MMM x WIDTH =
10 x WIDTH = 1000 inches, generating 180 degrees of the cylindrical shell with average radius, RCYL = 318
inches. The buckling mode shown here is analogous to that corresponding to the first (lowest) eigenvalue in the
huge cylinder model of the optimized uniform corrugation shown in the top left frame of Fig. 39 (the specific
case called “fold98updwnu”). No other “combined” short and long wavelength buckling modes of the type
displayed in Fig. 39 were found among the 50 eigenvectors corresponding to the lowest 50 eigenvalues for this
“fold98updown” case.
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Fig. 41 Specific complexly corrugated case called ‘“fold98updown’’: The optimized complexly corrugated
“flat” wide panel of width = 3xWIDTH is mapped onto a cylindrical surface with average radius, RCYL =318
inches. Top frame: the undeformed profile. Bottom Frame: the critical buckling mode predicted by
BIGBOSORA4. A STAGS model and the corresponding critical buckling mode predicted by STAGS are
displayed in the next figure.
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STAGS model of the BIGBOSOR4
configuration shown in the
previous figure. Different colors
indicate different shell units.

There are 48 shell units in the s 100 inches
entire STAGS model. /

STAGS Buckling mode
corresponding to the lowest buckling

load factor (eigenvalue) = 1.4833.
BIGBOSOR4 prediction = 1.4605

Fig. 42 STAGS model (top) and buckling mode (bottom) for the same optimized configuration analyzed by
BIGBOSOR4 and shown in the previous figure. The specific case is called “fold98updown”.



WEIGHT of optimized 100 x 100 inch uniform "convex up"/'convex down" corrugated panel

WEIGHT of optimized complex corrugated panel: smoothed, factor of safety for local buckling = 1.5

WEIGHT of optimized complex corrugated panel: smoothed, factor of safety for local buckling = 2.0

WEIGHT of optimized complex corrugated panel: "corners", factor of safety for local buckling = 2.0

WEIGHT of optimized complex corrugated panel: "corners", factor of safety for local buckling = 1.5

WEIGHT of optimized complex corrugated panel: "corners", factor of safety for local buckling=1.5, almost feasibl
WEIGHT of optimized complex corrugated panel: smoothed, factor of safety for local buckling=1.5, almost feasib

REmMOO0e

3

\l’xEIGHTS of optimized uniform and complex corrugated panels versus NSEG
s}

120 125 130

115

Optimized WEIGHT (Ib) for a panel of WIDTH = 100 inches
110

0
o
w .
i 4 - o}
st :
(o] a] o © ®
- n n n o 5
N o B & @
(o]
= i i i i i
4 6 8 10 12 14 16

Number, NSEG, of major segments over WIDTH/2 = 50 inches
Fig. 43 Optimized weights versus the number of major segments (NSEG) spanning WIDTH/2 = 50 inches
for uniformly and complexly corrugated panels with alternating “convex up” and “convex down”
configurations. The uniformly corrugated panels (curve) are significantly heavier than the complexly corrugated
panels. The minimum optimized weight for a complexly corrugated panel, 93.15 Ib at NSEG = 7, is about 13
per cent lower than the minimum optimized weight for uniformly corrugated panels: 106.5 Ib at NSEG = 10.
Indications (described in Appendix 5) are that the optimized designs corresponding to NSEG = 13 and NSEG =
16 are not global optimum designs. See Fig. A18 and the relevant text in Appendix 5 for an explanation.
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b The BIGBOSOR4 model with 8 \
major segments over WIDTH/2 = 50 /‘\

inches is used for optimization.
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BIGBOSOR4 model with WIDTH = 50 inches
mapped onto the same cylindrical surface. This \
model has total average cylindrical reference
surface arc length = MMM x WIDTH = 6 x WIDTH 2x WIDTH
= 300 inches =100 inches

-
Fig. 44 Two optimized complex corrugated profiles with “corners”, extended and mapped onto the same

cylindrical surface a surface with average radius, RCYL = 318 inches: Top frame: This is the same profile as
that shown in the top frame of Fig. 41. WIDTH = 100 inches. The optimized half-width profile (first 8 segments
indicated in this frame) is the same as that shown in the top frame of Fig. 9. The specific case name is
fold98updown. Bottom frame: Optimized profile determined from a model in which WIDTH = 50 inches and
in which there are 4 major segments over WIDTH/2 = 25 inches. The specific case name is narw94updown.
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profile is. in this particular case.

very like the optimized profile
without smoothing shown above.

Fig. 45 Top frame: Same optimized extended and mapped profile as that shown in the bottom frame of the
previous figure. Bottom frame: Re-optimized profile with smoothing present. RSMOOTH = 1.0 inch.



0O  WEIGHT of optimized 100 x 100 inch uniform "convex up"/"convex down" corrugated panel

O WEIGHT of optimized complex corrugated panels "fold9xxupdown": smoothed, f.s.=1.5; WIDTH/2 = 50 inches

® WEIGHT of optimized complex corrugated panels "narw9xxupdown": smoothed, f.s.=1.5; WIDTH/2=25 inches

B WEIGHT of optimized complex corrugated panel "narw91updown": smoothed, f.s.=1.5, one segment per (width/z
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Table 6 and Figs. Tables 4 and 5. :
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Fig. 46 New optimized weights of 100 x 100 —inch panels (solid data points) in which panels that are
narrower than WIDTH = 100 inches are used for optimization. The curve for uniform corrugated panels and
the open data points for complex corrugated panels are the same as those given in Fig. 43. The solid data
points are lower than the open data points probably because there are many fewer decision variables needed for
optimization of the narrower panels than are required for optimization of the panels with WIDTH = 100 inches.
All of the solid square data points are generated from optimization models with only one major segment over
half the panel width, therefore with the use of very few decision variables. See Table 6 and Fig. 49 for more
information corresponding to the solid square data point plotted at the minimum weight: that data point plotted
at “Number of major segments spanning 50 inches “ = 9. It is surprising that this minimum weight (92.43 1b) is
not far above the minimum weight (91.16 1b at 12 major segments) for the solid round data points. See Table
5 & Fig. 47 for more information corresponding to the solid round data point plotted at the minimum weight:
that solid round data point plotted at “Number of major segments spanning 50 inches” = 12.
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Lowest buckling load
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corresponds to edge
buckling.
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ocecur in a complete (360-
degree cylindrical shell.

Therefore, this is considered
to be the critical buckling
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Fig. 47 Top frame: Optimized narw96updown profile with “corners” (no smoothing), extended and mapped

onto a cylindrical surface, Middle two frames: The first two eigenvalues (buckling load factors) correspond to

buckling in the neighborhoods of the edges; Bottom frame: The third eigenvalue, 1.47211, is the critical
realistic” buckling mode and load factor, that is, a buckling mode that could exist in a 360-degree cylinder.
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STAGS model of the BIGBOSOR4 configuration shown in the
top frame of the previous figure. There are 72 shell units in the
entire STAGS model. 6 sets of a repeating 12-segment profile,
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(eigenvalue) = 1.4786.
BIGBOSOR4 prediction = 1.4721
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previous figure.

Fig. 48 STAGS model (top) and buckling mode (bottom) for the same optimized configuration analyzed by
BIGBOSOR4 and shown in the previous figure. The specific case is called “narw96updown’’ (with corners).
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Critical buckling mode of the optimized configuration
shown in the middle frame. This critical buckling mode has
n =1 axial half-wave along the 100-inch-long panel.
Eigenvalue (buckling load factor) = 1.47188

Fig. 49 Results for the specific case called “narw96updown”, which has the optimized smoothed cross-section
profile associated with the smallest weight (91.16 1b, Table 5) plotted in the Fig. 46. Top frame: Optimized
profile and symmetric general buckling mode (buckling load factor = 1.4955, n = 1 axial half-wave over
LENGTH=100 inches). Middle frame: Optimized profile expanded and mapped onto a cylindrical surface.
Bottom frame: Critical buckling mode and load factor (1.47188) of the expanded and mapped profile.



Anti-symmetric buckling mode from the BEHX3 model: anti-symmetry
is i\mposed along both the left-hand and right-hand longitudinal
edge\s. Buckling load factor = 1.5188. n=1 axial half wave

<4— Anti-symmetry Anti-symmetry =————

Anti-symmetric buckling mode from the
< BEHX32 model: anti-symmetry is imposed along the left-hand
right-hand edge.
| half wave

4+—Anti-symmetry Symmetry >
- - Anti-symmetric buckling mode from the
- BEHX33 model: symmetry is imposed along the left-hand
, 4 ed}:;e and anti-symmetry is imposed along the right-hand

edbe. Buckling load factor = 1.4888. n=1.axial half wave
| ——

\

4— Symmetlry Anti-symmetry

Fig. 50 Three anti-symmetric buckling modes of the optimized, smoothed specific case “narw96updown”.
These three buckling modes and load factors are computed in SUBROUTINE BEHX3. The lowest buckling

load factor (in this case 1.4888) is used for determination of the design margin containing the name BUCASY
(Table 5).



"Smoothing"
edge segment

WIDTH/2 = 25 inches

Major

segment 2 segments

happened to be needed between Major segments 5 & 6 nor Vg

In this particular optimized configuration no smoothing segment

\ adjacent to the right-hand longitudinal edge next to the Gap. Gap (See Figs. 6 and 10)
11 shell units, 11 reflected shell units,
including the  including the smoothing
smoothing segments (typical)
segments
(typical)

This section
is shown
WIDTH=50
above left WlDTH:5O inches W:E;rh}l:SSO
WIDTH=50 inches
/V\ inches The average radius of the
. huge cylindrical shell is
~ WIDTH=50 MMM = 6 in —318i
inches SUBROOUTINE BOSDEG2 RCYL = 318 inches
b?gzgzﬁg:sg ?I:Z 6 There are 6 x 22 = 132 shell
DWIDTH=50 WIDTH = 50 inches units in this STAGS model.

| 3 inches

Critical (lowest) buckling load
factor from STAGS = 1.476.
Critical buckling load factor from
GENOPT/BIGBOSOR4 = 1.472.

Fig. 51 STAGS model (top left, top right, and middle frames) of the specific case “narw96updown” with
smoothing, and the predicted buckling mode shape and load factor from STAGS. There is very good agreement
between the predictions of STAGS and GENOPT/BIGBOSORA4. (See Fig. 49 for the BIGBOSOR4 results.)



Enlarged view
shown at right

Optimized smoothed specific

MW case "narw96updown" is mapped
l’ onto a cylindrical surface with

\’ average radius, RCYL = 318
inches; Number of repetitions of
6 sedments + \ Ml,lg-scgmcm WIDTH = 50 inches
smoothing 2xWIDTH = =mmm =6
segs reflected 100 inches
(typical)
6 segments plus
smoothing transition 24 segments pros——*
There are 880 She“ segments shown in smoothing transition \
segments in this the top frame segments repeated

24 segments plus

12 segments plus smoothing transition

smoothing segments segments repeated again
repeated

hugebosor4 model.

Notice that the ends at 0 degrees and at 360 $
degrees do not match up. That is because
symmetry conditions are used at each of the
two ends rather than displacement at the first
nodal point equals the displacement at the
last nodal point in the hugebosor4 model.

Buckling load factor = 1.4699;
n = 1 axial half wave over
LENGTH = 100 inches

Fig. 52 GENOPT/HUGEBOSORA4 specific case narw96updown with smoothing: a 360-degree cylindrical
shell processed via bosdec.span9.smoothing.huge and hugebosor4.



WIDTH = 50 \ Close-up view of the
inches. There are ‘ smoothed, complexly
S~ ool lhese 22 £ corrugated shell
\/ segment sections  {\ o

in 360 degrees.

A STAGS model analogous to
the GENOPT/HUGEBOSOR4
model shown in the top left frame
of the previous figure. There are
880 shell units in this model and
close to 2.2 million degrees of
freedom.The average radius of
the cylindrical shell = RCYL =
318 inches, and the axial length,
LENGTH = 100 inches.

50 inches
(typical)

Critical buckling mode predicted by
STAGS. The buckling load factor = 1.499.
GENOPT/HUGEBOSOR4 gets 1.4699.

See the previous figure.

Fig. 53 Top two frames: The huge STAGS model of the optimized specific case, narw96updown with
smoothing. Bottom frame: the critical buckling mode and load factor, 1.499. Compare with the bottom frame in
the previous figure. There is good agreement between the predictions of STAGS and HUGEBOSOR4.



Undeformed

Anti-symmetric

, Bugckled: Symmetric buckling
"Smoothing" end /
o buickling mode segment; RSMOOTH = /
"Smoothing" end 1.0 inch /
segment; radius = L7 Undeformed
RSMOOTH = 1.0 inch s

Major segment no. 1
(There is only one
major segment in the
BIGBOSOR4 model

o Symmetric buckling
used for optimization.)

load factor =
1.4980; n = 1 axial
half wave.

Critical anti-symmetric
buckling load factor =
1.4978: n = 6 axial half
waves over the length,
LENGTH = 100 inches.

Major Segment No. 1
(There is only one
major segment in the
model used for
optimization.)

5.5566inches o

T<_WIDTHJ'2 = 5.55556 inches ———»

9x WIDTH =
____— 100 inches
(typical)
|

Undeformed

|\ 2 segments plus

Average
|\ smoothing segments cyl;:g:;cLal_r;:j;ua
|\ repeated 26 more times 'mh_ \
|' \ (mmm=27). NICREE

v
1
' 1 segment plus [
| "smoothing" end reflected

Critical buckling mode of the optimized
.'
[ WIDTH=11.11111inches

configuration shown in the middle frame. This

\
critical buckling mode has n = 1 axial half wave -
| along the 100-inch-long panel. Eigenvalue
/ ) . \ _ 1 BOS .
|l 9 x WIDTH = \bugkllrwg Ic;ad ffactor_) 1_ 1T.t003f'l .\Th.lb is Ihlo 2nd
| 1 major segment plus 100 inches eigenvalue for n = 1. The irst eigenvalue
L T corresponds to edge buckling that cannot occur
smoothing" at the left (typical) ™ in a complete (360-degee) cylindrical shell
edge. See the top frame. S " el 9680) Gyincrical shel.
WIDTH/2 = 5.55556 inches ™

Fig. 54 Results for the specific case called “narw9lupdown” with 9 major segments per 50-inch width. (See
Table 6 for dimensions, margins, and objective.) This configuration is associated with the smallest weight
(92.43 1b, Table 6) plotted in Fig. 46 with solid square data points. (See the data point for “Number of segments
spanning 50 inches” =9.) Top left frame: Optimized profile and the critical anti-symmetric general buckling
mode (BEHX32). Buckling load factor=1.4978 (n=6). Top right frame: Optimized profile and the critical
symmetric general buckling mode (BEHX?2). Buckling load factor=1.4980 (n=1). Bottom left frame: The

optimized profile shown in the top two frames is expanded and mapped onto a cylindrical surface. Bottom

right frame: Critical buckling mode and load factor (1.5031) of the expanded and cylindrically mapped profile.



Atypical — 4 4 |
module, 1 of 27f A\

Left-hand

STAGS model analogous to the "edge Mai
GENOPT/BIGBOSOR4 model shown in smoothing’ ajor
the lower left-hand frame of the previous i segment

figure.There are 27 repeating modules segmen no. 1

in this model, each of width 11.1111
inches plus the widths of the two edge
"smoothing" segments.

Reflected

profile

Local buckling mode from
STAGS. Load factor = 1.506

1.4978 withn =6

Critical buckling mode predicted by STAGS.
The general buckling load factor = 1.512.
GENOPT/BIGBOSOR4 gets 1.5031.
See the lower right frame in the previous
figure.

Compare with the \
top left frame in the
previous figure.

Fig. 55 Top two frames: The STAGS model of the optimized specific case, narw9lupdown, smoothed with 9
major segments over a width of 50 inches (solid square data point in Fig. 46) plus the accumulated widths of
“edge smoothing” segments.

Bottom left-hand frame: The critical general buckling mode and load factor, 1.512. Compare with the bottom
right-hand frame in the previous figure.

Bottom right-hand frame: Enlarged view of the critical local buckling mode and load factor, 1.506, STAGS
predicts 6 axial half-waves over the panel length, LENGTH = 100 inches, which agrees with the BIGBOSOR4
prediction. Compare with the upper left-hand frame in the previous figure.

The first 5 eigenvalues from the STAGS model shown in the top two frames are as follows:

1.506080 (local buckling, bottom right frame), 1.507613 (local buckling), 1.510155 (local buckling), 1.511830
(general buckling, bottom left frame), 1.511931 (general buckling).



— — Undeformed: The one-segment optimized model is 90 deg. of a cylindrical shell; WEIGHT=300.7 Ib
Deformed: critical buckling mode of the one-segment model has 10 axial halfwaves.

fold91: general buck.with 90-deg.one-segment model; eig.=3.4255; n=10

o
The optimized weight (WEIGHT) of l?ht:;;rr'gc; Izb:JgI;I;:gl n;:l?_c
b gntirc "panef of axia! length = waves over the "panel" length,
100 Inches, &rc length pi x ki and optimized wall thickness, LENGTH = 100 inches
thickess, t = THICK(1) = 0.1906 inch THICK(1) = 0.1906 inch
is computed by GENOPT/ '
8 e BIGBOSOR4 as 300.7 Ib. Compare - —
with the weight obtained from
LENGTH x pi x R x t x density = 100 _ -
X pix 50 x 0.1906 x 0.1 =299.4 |b.
The small difference arises from the
value of R = 50.219 inches
ol computed by GENOPT/
N~ BIGBOSOR4 instead of R = 50 plang of symmetry ———»

inches.

shell radius, R = 50 inches

Udiform axial compression is normal to the plane of the paper. The total axial load is
4200000 Ib, distributed uniformly over the arc length, pi x R, in which R = 50 inches.
/ Therefore, the axial stress resultant, Nz = -200000/(pi x R) = -1272 Ib/in. The radius/
/  thickness ratio of this optimized shell is R/t = 263. The "classical" buckling resultant
/  for this shell is given by 0.605Et"2/R = Nz(cr) = 4384 Ib/in. Hence, the buckling load
factor calculated from "classical" theory is 4384/1272 = 3.447, not much different
from the load factor, 3.426, predicted by BIGBOSOR4. The appropriate (interpolated)
knockdown factor from Fig. 5.18 on p.186 (the curve labeled "a design
recommendation) in Brush and Almroth's 1975 book is k = 0.2873. The buckling load
factor of the imperfect shell is 3.4255 x k = 3.4255 x 0.2873 = 0.984, very close to
1.0, leading to a buckling design margin (buckling load factor - 1.0) that is critical
(very close to zero) for the optimized design.

Axial Station (inches)
60
\J

50
\

40

uv,w = 0; rotation is free

o A A A A

“315.0 316.0 317.0 318.0 319.0 320.0 321.0
Radius (inches) x10

Fig. A1 “General” buckling of a model that simulates the buckling of a perfect uniformly axially compressed
cylindrical shell. There is one major segment spanning half the 100-inch width (WIDTH) of the “panel”.
Symmetry is imposed at the symmetry plane at the right-hand edge of this model.




Specific case name = fold93 Starting weight of the panel = 121.51b

p—

40

Axial Station inches
35
Y

8r <+——— u,v,w=0; rotation=free Symmetry —p

"Global" optimum weight of the panel = 98.21 |b

35
\

30
Y

40

Specific case name = fold94; Starting weight of the panel = 121.5 |b

35

30

30
Y

"Global" optimum weight of the panel = 91.41 |b

25
Y

v

+— ali= /i (= =50i [ [=
8 r Half-width of the panel = 50 inches (typical)

Fig. A2 Starting and optimized designs of the corrugated panels, fold93 and fold94. The thickness is uniform
over the entire panel, and the corrugations are all “convex surface up”, an impractical design. The “OLD”
boundary conditions (Section 4) are used for optimization and analysis (Figs. A2 - A12).
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Specific case name = fold95; Starting weight of the panel = 121.5 b

35
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"Global" optimum weight of the panel = 91.71 |b
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Specific case name = fold96; Starting weight of the panel = 121.5 |b

35
Y
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"Global" optimum weight of the panel = 92.33 |b

35

o
™

Fig. A3 Starting and optimized designs of the corrugated panels, fold95 and fold96.
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Specific case name = fold97; Starting weight of the panel = 121.51b

35
Y

"Global" optimum weight of the panel = 92.62 Ib

35

30

Specific case name = fold98; Starting weight of the panel = 121.5|b

2 |

™

Sl g

=) "Global" optimum design of the panel = 93.07 Ib

S

0

™

o

™

Fig. A4 Starting and optimized designs of the corrugated panels, fold97 and fold98. The thickness is uniform
over the entire panel, and the corrugations are all “convex surface up”.



O Obijective (WEIGHT in Ib) of the entire 100 x 100-inch "convex-surface-up" corrugated panel
Optlmlzed welghts of convex-surface up panels w1th NSEG segments

po- -«

350

i Thc wcught of 180 dcgrcos of a unlformly aX|aIIy comprcsscd
cyllndncal shell with radius R = 50 inches and thickness, THICK( )

=0.1906 inch (Flg Al). SUBWID( ) =50 mchcs PHISEG( )= :
dcgrccs YPLATE( ) = 30 inches; YPLATE(2) = 80 inches; PHIBIG

: =0.1 dcg Only THICK( ) is a decision variable. :

300

The wolght of a panel wnth two major scgmcnts ovcr thc entire
: width, WIDTH = 100 inches, each segment spanning 50 inches.
.. THICK(1) = 0.1487 inch; SUBWID(1) = 50 inches: PHISEG(1) = - =
i 66.88 dcgrecs YPLATE( ) = 30 inchés; YPLATE(2) = 18.31
inches; PHIBIG = 24.66 degrees. The decision variables are
THICK(1), PHISEG(1), YPLATE(2) and PHIBIG

250
Y

Thc weight of a panel with four major sogments over tho entire width,

WEIGHT of the entire 100 x 100-inch panel (Ib)

o
8 ™ WIDTH = 100 inches. THICK( ) THICK( ) 0. 1006 inch; i
SUBWID(1) = 24.65 inches; SUBWID(2) = 24.85 inches; PHISEG(1) :
| = 63.32 degrees; PHISEG(2) = 64.38 degrees; YPLATE(1) = :
5 inches; YPLATE(2) = 18.20 inches: YPLATE(3) = 13.52 inches:
i PHIBIG = 34 68 degrees. The decision variables are THICK( ),
o SUBWID( ) SUBWID( ).:PHISEG(1), PHISEG(2), YPLATE(2),
:‘_’ P B R YPLATE( Jand PHIBIG i i
Fig. 6, 2nd : : : :
frame i Fig. 7. 2nd : Fig. 8 2nd
l i frame i frame
8> h ll ,,,,,,,,
T ' — f £ /fl
) T Z ‘ . Z Fig. 8, !
Fig. f?ég?qo;tom Fig. f:;ric;ttom : bottom |
: : : : : ) : frame !
8 A A i A A A A J
0 1 2 3 4 5 6 7 8

Number, NSEG, of major segments over WIDTH/2 = 50 inches

Fig. A5 Total optimized weight of the 100 x 100-inch panel as a function of the number, NSEG, of major
segments over half of the panel width, WIDTH/2 = 50 inches. All of the major segments are “convex surface
up”. The optimized weight levels off as a function of NSEG for NSEG > 4 because several of the major
segments merge into fewer, larger segments, yielding optimized designs that resemble the optimum design for
NSEG = 4. The labels, Fig. 6 — 8, have been changed: Fig. 6 is now Fig. A2; Fig. 7 is now Fig. A3; Fig. 8 is
now Fig. A4. The “OLD” boundary conditions (Section 4) are used for the optimization and analysis.



Specific case name = fold94S; Starting weight of the panel = 168.6 |b
lé? r There are 2 sub-segments in the first (lefi-most) major segment and 4 sub-
segments in each of major segments 2, 3 and 4

PHISUB(2)
4 identical sub-segs.
in Major Seg. No. 2

Major Seg. No. 3

r PHISUB(1)
2 identical sub-segments in
Major Segment No. 1

PHISUB(4)
Major Seg. No. 4

PHISUB(3) =
half-angle of all 4 sub-

segments in major

Major Seg. No. 1 segment no. 3
u,v,w=0; rotation=free Symmetry

35
\

Major Seg. No. 2

Axial Station (inches)
40

v

Specific case name = fold94S; "Global" optimum weight of the panel = 92.22 |b

v

Half-width of the panel = 50 inches (typical)

A

Axial Station (inches)
25
\J

Fig. A6 Specific case = fold94S: Corrugated panel with 4 major segments, 2 sub-segments in Major Segment
No. 1 (the left-most major segment) and 4 sub-segments in each of Major Segment Nos. 2, 3 and 4. Only half
the panel width is shown, with symmetry conditions existing on the right-hand side of the model. Compare the
optimized cross-section shown in the bottom frame here with that displayed in the bottom frame of Fig. A2,
which shows results for the specific case called “fold94” in which O sub-segments are specified for every major
segment. The “OLD” boundary conditions (Section 4) are used for the optimization and analysis.



Load factor for general buckling that is symmetric
sr about the symmetry plane = 1.4907 from
BIGBOSOR4; 1.4917 from STAGS

Axial Station inches
35
A

25

gLLoad factor for general buckling that is antisymmedtric

wn

p about the symmetry plane = 1.4874 from

€ o BIGBOSOR4; 1.4892 from STAGS ~ , 7~
c “OF - / \

O ~ /

s

n S
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Fig. A7 Specific case name = fold97. General buckling of the optimized corrugated panel predicted by
BIGBOSORA4 for general buckling that is symmetric with respect to the symmetry plane at x = WIDTH/2 (top)
and for general buckling that is antisymmetric with respect to the symmetry plane (bottom). The general
buckling mode corresponding to the critical (lowest) buckling load factor has n = 1 half-wave over the 100-inch
axial length of the panel. The axial coordinate direction is normal to the plane of the paper. The “OLD”
boundary conditions (Section 4) are used for the optimization and analysis.



Specific case name = fold38; Starting weight of the panel = 121.5 b

8 major segments, all "convex surface up"

= -+ 50 inches = WIDTH/2 —»

Specific case name = fold98; local optimized weight of the panel = 111.8 b

60
\

Axial Station (inches)
50 55
Y

Specific case name = fold98; global optimized weight of the panel = 93.07 |b

60

Axial Station (inches)
55
Y

o
L

Fig. A8 Specific case called “fold98”. Starting design of the panel with WIDTH = 100 inches (top); First
optimized design determined via SUPERDUPEROPT with six sequential executions of SUPEROPT (middle);
Second optimized design determined via several separate executions of SUPEROPT with the use of various
strategy parameters, IMOVE, IAUTOF, and number of OPTIMZE executions per execution of
AUTOCHANGE (bottom). This figure demonstrates the difficulty that GENOPT/BIGBOSOR4 has in
determining a ““‘global” optimum design. “Global” is enclosed in quotation marks because GENOPT cannot
rigorously determine a global optimum design, but attempts to get close via optimization cycles that begin from
many different points in design space for each execution of SUPEROPT. (See Figs. 4 and 5, for example).



I starting design of fold916; 16 "convex up" major segments over half the width,
WIDTH/2 = 50 inches; WEIGHT of the entire panel of WIDTH = 100 inches = 121.5 b

Axial Station
35
\J

3 WIDTH/2 = 50 inches >

S } foldo16 optimized design with use of the "852" strategy: Optimized WEIGHT of
the entire panel of WIDTH = 100 inches = 108.7 |b after 3 SUPEROPTs

'852" means: 8 executions of OPTIMIZE for each executiop’of AUT
IMOVE = 5 (move limit of each decision variable is 5 per cept); IAUTOF = 2 (Sec
permanent GENOPT prompt file, URPROMPT.DAT)

Axial Station
35

Yol
8V}

S} f0ld916 optimized design with use of the "611" strategy; Optimized WEIGHT of the

c
o entire panel of WIDTH = 100 inches = 117.6 |b after 3 SUPEROPTs
5|
» B
o
3

g “| fold916 optimized: Critical local buckling mode has 9 axial half-waves over the reduced
= axial length, FACLEN x LENGTH = 30 inches; buckling load factgr = 2.0058

%)

o

Fig. A9 Specific case called “fold916”: Top: starting design; 2nd: Optimized design with use of “852” strategy;
3rd: Optimized design with use of the “611” strategy (6 optimizes/autochange. IMOVE=1,IAUTOF=1);
Bottom: Local buckling of the “611” optimized panel. The “OLD” boundary conditions (Section 4) are used.
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Fig. A10 Sensitivity of the optimized “611” “fold916” design to YPLATE(),j =9 (A), 10 (B), 11 (C), 12 (D)



LI weignt o the corrugatea panel: WElGH | L weignt or tne corrugatea panel: WelGH |

2 fold916: objective vs design iterations; 6 optimizes/autochange fold916: objective vs design iterations; 8 optimizes/autochange
x10°5 S,
o i @
[%2} - 12}
% ol m Evo?vutior: of the objective vwit‘h use of the %’ ®) o
£ o 611" strategy = 6 optimizes per =18 : . . i :
autochange: IMOVE=1: IAUTOF = 1 ~
8 9 5 8 G Evolution of the objective with use of the
AT S 5 i "852" strategy ‘= 8 optimizes per
© [ -
; o h autochange: IMOVE=5; IAUTOF = 2
3 i !

7.0

6.0

5.0

400

3.0
\

2.0

100

Objective: WEIGHT (Ib) of the entire panel of WIDTH
4.0
Objective: WEIGHT (Ib) of the entire panel of WIDTH
300

F -
Starting design (WEIGHT=121.5 Ib)

o 2 " .,

- Starting design; (WEIGHT = 121.5Ib) /

o i : - Optimized '611" design (WEIGHT=117.6 Ib) i . i : Optlmlzcd 852 dcmgn (WEICiHT 10‘8.7 Ib) | |

°0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Design Iterations during the 1st SUPEROPT; IMOVE=1; IAUTOF=1 Design Iterations during the 1st SUPEROPT; IMOVE=5; IAUTOF=2

O weight of the corrugated panel: WEIGHT
fold916: starting from "611" optimum (117.6 Ib); 20 optimizes/autochange

-

fold916 optimized design with use of the "611" strategy; Optimized WEIGHT of the

@ c
4 o entire panel of WIDTH = 100 inches = 117.6 Ib after 3 SUPEROPTs
S (©) »
g ff
T Evolution of the objective with use of the é N .
T of "2032" strategy = 20 optimizes per 611"=6 optimizes/autochange; IMOVE=1; IAUTOF=1
"5 3 autochange: IMOVE=3: IAUTOF =2
§ H
S H
3 § = - £ R} fold916 optimized design with use of the "852" strategy: Optimized WEIGHT of
% g S the entire panel of WIDTH = 100 inches = 108.7 Ib after 3 SUPEROPTs
Q «
o {j‘) wh "852"means: 8 executions of OPTIMIZE for each executiog’of AUT E
"E § = IMOVE = 5 (move limit of each decision variable is 5 per cepit); IAUTOF = 2 (See the
) 5 permanent GENOPT prompt file, URPROMPT.DAT)
2 8
S 3
—_m
2 0
= o
T
o g
w
B
i i - B oldete optimized design with use of the "2032" strategy: Optmzcd
2 8 " . (O o EIGHT of the entire panel of WIDTH=100 inches=99.22 |b after on
‘8‘ - ‘\ e e E execution of SUPEROPT stariing with thc 611" optlmum desigry/
= lteration No. 0 = optimized "611" design (WEIGHT=117.8 Ib) i / ® 2
O Last iteration = optimized "2032" design (WEIGHT=99.22 Ib) S

=) A i A i A A i A ) é

0 50 100 150 200 250 300 350 400 450 500
Design lterations for SUPEROPT with IMOVE = 3; IAUTOF =2 2032 =20 optimizes/autochange; IMOVE=3; IAUTOF=2

Fig. A11 The use of various optimization strategies to produce optimum designs for the specific case, fold916:
(A) = optimization with use of the “611” strategy (6 optimizes/autochange; IMOVE=1; IAUTOF=1)

(B) = optimization with use of the “852” strategy (8 optimizes/autochange; IMOVE=5; IAUTOF=2)

(C) = optimization with use of the “2032” strategy (20 optimizes/autochange; IMOVE=3; IAUTOF=2)

(D, E, F) = The three different optimum designs corresponding to the three different optimization strategies.
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Fig. A12 Specific case called “wide98”. Starting design of the panel with WIDTH = 200 inches (top); First
optimized design determined via SUPERDUPEROPT with six sequential executions of SUPEROPT (middle);
Second optimized design determined via several separate executions of SUPEROPT with the use of various
strategy parameters, IMOVE, IAUTOF, and number of OPTIMZE executions per execution of
AUTOCHANGE (bottom). This figure demonstrates the difficulty that GENOPT/BIGBOSOR4 has in
determining a “global” optimum design. “Global” is enclosed in quotation marks because GENOPT cannot
rigorously determine a global optimum design, but attempts to get close via optimization cycles that begin from
many different points in design space for each execution of SUPEROPT. (See Figs. 4 and 5, for example).



Specific case name = wide98updown; Starting weight of the panel = 244.9 |b
Eight major segments, alternating "convex surface up" and "convex surface down"
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Fig. A13 Specific case called “wide98updown”. Starting design of the panel with WIDTH = 200 inches (top);
Optimized design determined via SUPERDUPEROPT with six sequential executions of SUPEROPT (bottom).
The specific weight of this wider panel (weight per unit width) is significantly greater (224.6/200 = 1.123
Ib/inch) than that for the panel with half the width (Fig. 6), which is 92.69/100 = 0.9269 1b/inch, perhaps
because the boundaries are further apart, perhaps because GENOPT failed to find the “global” optimum design.
NOTE: The best way to find optimized weights of wide corrugated panels via the “span9”’ software is to
use the method demonstrated by Figs. 9 — 12:

1. Change the boundary condition along the left-hand longitudinal edge from “u,v,w held; rotation free” (Fig. 6)
to “symmetry or anti-symmetry”’. Use the “bosdec” file called “bosdec.span9.leftedge” to do this.

2. Re-optimize the half-width model with the new boundary condition along the left-hand longitudinal edge,
that is, with the use of bosdec.span9.leftedge. (Compare the optimized weights in Fig. 6 and Fig. 9).

3. Use the file, .../genoptcase/* BEHXO0, which contains valid input data for the BIGBOSOR4 analysis of a
multi-WIDTH wide panel with repeating previously optimized cross section profiles, as shown in the top frame
of Fig. 11.
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Fig. A14 Comparison between test and theory for the buckling of axially compressed cylindrical shells. “a” is
the radius; h is the wall thickness; E is the Young’s modulus; 0.605Eh/a is the “classical” buckling stress of a
perfect shell made of isotropic material with Poisson ratio equal to 0.3; sigma,,, is the buckling stress from tests.
The normalized buckling load of the perfect shell is 1.0. Most of the test points fall far below 1.0, especially for
shells with very high radius/thickness ratio, a/h. The solid line corresponds to a design recommendation in

which about 95 per cent of the test results fall above the curve. (This is a modified form of Fig. 5.18, page 186
of the 1975 book by Brush & Almroth [25].)
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lteration number for execution of OPTIMIZE (specified in MAINSETUP as every 5 design iterations)

WEIGHT of complex corrugated panel fold914updwn versus design iteration
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Fig. A15 The initial evolution of the objective (WEIGHT) corresponding to “fold914updwn” designs of
various quality (NOT FEASIBLE, MOSTLY UNFEASIBLE, MORE UNFEASIBLE, etc.) during the initial
execution of SUPEROPT with use of the “852” optimization strategy. There are very few “FEASIBLE” data
points, and the minimum “FEASIBLE” weight is 121.9 Ib. The minimum “ALMOST FEASIBLE” weight is
108.3 Ib; The corresponding “ALMOST FEASIBLE” design is used as the starting design for the next
execution of SUPEROPT, results from which appear in the next figure.
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Design iteration number: the 1st execution of SUPEROPT; "1532" strategy

Fig. A16 The evolution of the objective (WEIGHT) corresponding to “ALMOST FEASIBLE” (black dots) and
“FEASIBLE” (open dots) designs during the first execution of SUPEROPT with use of the “1532” optimization
strategy immediately following a previous execution of SUPEROPT with use of the “852” strategy (previous
figure). Notice that the “1532: strategy leads to many more “FEASIBLE” and “ALMOST FEASIBLE” data
points than exist in the previous figure. The “1532” strategy eventually leads to a significantly lower WEIGHT
(data points near the right-hand side of the plot) than that found from use of the “852” strategy. The results from
continued optimization during another execution of SUPEROPT with use of the “1532” strategy are shown in
the next figure, which, especially in its initial phase, exhibits a continuing decrease in the optimum WEIGHT.
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Fig. A17 The continuing evolution of the objective (WEIGHT) corresponding to “ALMOST FEASIBLE”
(black dots) and “FEASIBLE” (open dots) designs during the second execution of SUPEROPT with use of the
“1532” optimization strategy immediately following a previous execution of SUPEROPT, also with use of the
“1532” strategy (previous figure). The continuing use of the “1532” strategy eventually leads to a significantly
lower WEIGHT (some of the data points near the right-hand side of the plot) than that existing after the first
execution of SUPEROPT with use of the “1532” strategy.
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Fig. A18 This figure is analogous to Fig. A16. Shown here is an example in which the same strategy used in
connection with the specific case called “fold914updwn” (Fig. A16) did not, in this different specific case
called “fold913updwn”, lead to a “global” optimum design with a WEIGHT below 100 Ib. (The “FEASIBLE”
design with the lowest weight has WEIGHT=101.1 1b.) Notice that in this “fold913updwn” case there are many
fewer “ALMOST FEASIBLE” data points below WEIGHT=105 Ib than exhibited in Fig. A16, and that there is
only one “FEASIBLE” data point below WEIGHT=105 Ib.



See Fig. 37 for details of
the truss-core sandwich
/ wall construction

Radius. RCYL=318
inches

Critical general buckling mode of
the optimized axially compressed
aluminum truss-core sandwich
cylindrical shell obtained with
HUGEBOSOR4. There are 1434
shell segments in this 20-degree
HUGEBOSOR4 model. The buckling
load factor is 1.3702, and there is 1
axial half-wave in the critical
buckling mode. The critical general Undoformod/
buckling load factor for the much
smaller BIGBOSOR4 model shown
in Fig. 37 is 1.4893 (middle frame in
Fig. 37). and the correponding
critical buckling mode has 2 axial
half-waves over the length,
LENGTH = 100 inches.

Buckling mode
2 .-

Fig. A19 A HUGEBOSOR4 model of 90 degrees of the optimized uniformly axially compressed truss-core
sandwich aluminum cylindrical shell “equivalent” to the complexly corrugated cylindrical shell of the type
shown in Fig. 33. This “huge” prismatic model includes all the little shell segments, some of which can be seen
in the much smaller BIGBOSOR4 model displayed in the top two frames of Fig. 37. The 1434 individual little
shell segments cannot be seen in this model because they are too small. This shell was re-optimized with
HUGEBOSORA4. The new design: pitch of truss = 1.927 inches; width of truss-core crown = 0.3127 inch; height
of truss-core sandwich = 1.142 inch; thickness of truss core sheet = 0.02720 inch; thickness of each face sheet =
0.03495 inch; new weight/area = 0.01158 1b/in?, very close to the old weight/area = 0.01159 1b/in* given in Fig.
37. General and local buckling occur at load factors very close to 1.5 (the specified factor of safety).



Undeformed PR, %, 7 s
v\ Nl ’ 20

WIDTH=100 ,5311 /t%
inches Y Nan,
<A :/4
Fy 4,
Averagefadius, ‘g,
o K
Deformed Y ¥
§ +)
s
=3
$—— Undeformed _’
v/
. <
There are 920 shell segents in this B“C';"”}g load 'aczlor ?II""il’f/' 5
HUGEBOSOR4 model. The buckling e e e o 5
load factor = 1.4199, and there is 1  LENGTH=100 inches. g
axial half-wave over the axial length, 3 ‘ o
LENGTH = 100 inches. 2 >
I;_ N~
AN Deformed P

T/

'fg“";.‘_ /
ez, 4 (et
'(q n.‘(“‘ ﬁ{[’ﬂ Al ‘(‘\ &

(2=

—|WIDTH =
100 [we

inches

Buckling load factor = 1.4146
and there are 3 axial half-
waves over the axial length,
LENGTH = 100 inches

Fig. A20 Three buckling modes and load factors from a HUGEBOSOR4 model of the optimized specific
case called “fold913updwn” with “smoothing” present. There are 920 shell segments in this HUGE model. The
complex corrugated cross-section profile was first optimized with the use of a much, much smaller
BIGBOSOR4 model that includes only WIDTH/2 = 50 inches. (There is a symmetry plane at the mid-width of
the small section of width, WIDTH=100 inches.)



