
 

“IMPERFECTION SENSITIVITY” by David Bushnell, 2011 
 
This frequently used term means “the sensitivity of the load at which a shell 
buckles to imperfections in the shape of the shell”. 
 
Most of the pictures in this file are from the 1981 “Pitfalls” lecture: “Buckling of 
shells – Pitfall for designers”, by David Bushnell, AIAA Journal, Vol. 19, No. 9, 
September, 1981, Presented as AIAA Paper 80-0665R, the SDM Lecture, at the 
AIAA/ASME/ASCE/AHS 21st Structures, Structural Dynamics and Materials 
Conference, Seattle, Washington, May12-14, 1980 
 
The picture captions contain the string, “Slide”. The slide numbers correspond to 
the slides shown during the 1980 “Pitfalls” lecture. The references cited in the 
figure captions are listed at the end of this document. 
 
 
SOME ADVICE: 
 
Most of the figures are taken from published papers and reports. Please see the 
relevant complete documents for more details, especially 1981pitfalls.pdf , the 
PowerPoint slide show, pitfallsnasa.ppt, and bosor5.papers/1982decade.pdf. 
 
 
PART 1 Shells that are highly imperfection-sensitive 
 
These shells tend to have uniform properties and uniform pre-buckling stress over a 
large part of their surfaces. They also tend to have buckling modes the characteristic 
wavelengths of which are very small compared to the size of the shell. Axially 
compressed thin monocoque cylindrical shells and externally pressurized thin 
monocoque spherical shells are of this type, as the next figures demonstrate. Any 
very small dent in the shell wall is likely to initiate local buckling at a load far 
below the buckling load of the perfect shell. That initial local buckle in the 
imperfect shell is very likely to propagate over the entire surface of the shell at a 
load only slightly higher than the initial buckling load of the imperfect shell. 



 

 
Slide 44 A buckled, uniformly axially compressed monocoque cylindrical shell with 
a large radius/thickness. In this photograph the post-buckling pattern is “artificially” 
stabilized because there is a solid mandrel inside the shell. (Photograph by Horton, 
et al [44]) (Fig. 3.1 in AIAA Journal, Vol. 19, No. 9, 1981) 
 



 
 
Slide 45 Comparison between test and theory for the buckling of axially 
compressed cylindrical shells. “a” is the radius; h is the wall thickness; E is the 
Young’s modulus; 0.605Eh/a is the “classical” buckling pressure of a perfect shell 
made of isotropic material with Poisson ratio equal to 0.3; sigmaexp is the buckling 
stress from tests. The normalized buckling load of the perfect shell is 1.0. Most of 
the test points fall far below 1.0, especially for shells with very high 
radius/thickness ratio, a/h. The solid line corresponds to a design recommendation 
in which about 95 per cent of the test results fall above the curve. (from the book by 
Brush and Almroth [11]). (Fig. 3.2 in AIAA Journal, Vol. 19, No. 9, 1981) 
 



 
 

 
Slide 46 Uniformly externally pressurized monocoque spherical shell with a large 
radius/thickness. As with the buckled axially compressed thin cylindrical shell 
displayed two slides ago, there are many, many buckles over the entire surface of 
the shell the characteristic size of which is very small compared to the dimensions 
of the test specimen. In this photograph the post-buckling pattern is “artificially” 
stabilized because there is a solid mandrel inside the shell. (Photograph by Carlson, 
et al [45]). (Fig. 3.9 in AIAA Journal, Vol. 19, No. 9, 1981) 



 
 
 
Slide 48 Comparison between test and theory for the collapse of externally 
pressurized spherical caps. p is the collapse pressure; pcl is the theoretical buckling 
pressure of the perfect shell; H is the “rise” of the apex of the spherical cap above 
its base; h is the shell wall thickness. (from Abner Kaplan [43]). (Fig. 3.11 in AIAA 
Journal, Vol. 19, No. 9, 1981) 
 
 
 



 
This slide demonstrates the transition in behavior from a flat plate under uniform 
pressure to a deep spherical cap or a complete spherical shell under uniform 
external pressure.  The flat plate (a) exhibits increasing stiffness as the pressure is 
increased and membrane tension develops as the flat plate bulges downward under 
the pressure. A slightly curved plate (b) initially softens, then stiffens as the external 
pressure is increased, but there is no local maximum load-carrying capacity. The 
more curved plate (shell) (c) exhibits the type of nonlinear buckling called “snap-
through”: The shell softens until it has zero stiffness, then “snaps” into an inverted 
position, after which it stiffens with further increase in pressure. A shell with still 
more curvature (d) exhibits bifurcation buckling (black points) before axisymmetric 
“snap-through”. Yet deeper (or thinner) shells (e, f) exhibit the same type of 
behavior as (d), but the characteristic equilibrium paths have an increasing degree 
of the “doubling back” feature typical of shells the behaviors of which are 
extremely sensitive to initial imperfections. 

Slide 47 Load-deflection 
curves for externally 
pressurized perfect spherical 
caps with increasing 
“shallowness” parameter, 
lambda. Imperfection 
sensitivity increases with 
increasing lambda. p is the 
collapse pressure of the perfect 
shell; pcl is the “classical” 
buckling pressure of a 
complete spherical shell. (Fig. 
3.10 in AIAA Journal, Vol. 19, 
No. 9, 1981) 



 
 

 
 
Slide 42 Load-deflection curves for a perfect and imperfect axially compressed 
monocoque thin cylindrical shell or externally pressurized monocoque thin 
spherical shell. Note that there is a dramatic effect of an initial imperfection on the 
load-carrying capacity of the shell. The perfect shell buckles at a normalized load of 
1.0. (From the PowerPoint file: pitfallsnasa.ppt) 



 
 

 
Slide 49 Predictions from Koiter’s asymptotic theory for the collapse of perfect and 
imperfect cylindrical shells under axial compression and spherical shells under 
external pressure. PC is the buckling load of the perfect shell; PS is the collapse load 
of the imperfect shell; t is the shell wall thickness; delta is the amplitude of the 
imperfection; b is the Koiter “imperfection sensitivity” coefficient. (from 
Budiansky and Hutchinson [53]) (Fig. 3.3 in AIAA Journal, Vol. 19, No. 9, 1981)) 
 



 
PART 2 Shells that are moderately “imperfection-sensitive” 
 
Shells that are moderately “imperfection sensitive” include all shells for which the 
characteristic dimension of a buckling wave is of the same order as a typical overall 
dimension of the shell. Shells that fall into this category are axially compressed 
stiffened cylindrical shells, all externally pressurized cylindrical shells, and all 
cylindrical shells under uniform torsion. Also moderately “imperfection sensitive” 
are shells in which buckling occurs at loads for which much of the material in the 
shell wall has been stressed well beyond its proportional limit, shells in which 
destabilizing (compressive) loads are fairly concentrated over a relatively small part 
of the surface of the shell (such as internally pressurized ellipsoidal and 
torispherical shells), shells that are stabilized by internal pressure, stiffened shells 
that are designed for service in their locally post-buckled states, and optimized 
axially compressed, axially stiffened flat plates.



 

 
 
 
 

Slide 55 A buckled 
axially compressed, 
axially stiffened 
cylindrical shell. Note 
the buckles are large 
because of the large 
“effective” axial bending 
stiffness of the stringer-
stiffened shell wall. This 
behavior greatly reduces 
the imperfection 
sensitivity of stiffened 
shells compared with that 
for monocoque 
cylindrical shells under 
axial compression. (from  
Singer and Abramovich 
[40]). (Fig. 3.4 in AIAA 
Journal, Vol. 19, No. 9, 
1981) 



 
 
Slide 56 Predictions from Koiter’s asymptotic theory for the imperfection 
sensitivity of axially compressed stringer-stiffened cylindrical shells. Z is the 
“Batdorf parameter”; L is the length of the shell; R is the radius; t is the wall 
thickness of the skin of the shell; NC(stiff) is the buckling load of the perfect 
stiffened shell; NC (unstiff) is the buckling load of the unstiffened shell, and b is the 
Koiter  asymptotic imperfection sensitivity factor. (from Budiansky and Hutchinson 
[53]). (Fig. 3.12 in AIAA Journal, Vol. 19, No. 9, 1981) 
 
 



 
Slide 53 Buckled externally pressurized ring-stiffened cylindrical shells. (a) heavily 
stiffened (axisymmetric plastic buckling), (b) moderately stiffened (local buckling 
between rings), (c) lightly stiffened (general buckling) (Photographs courtesy of T. 
E. Reynolds, David Taylor Model Basin). (from the PowerPoint file, 
pitfallsnasa.ppt) 
 



 

 
Slide 54 Comparison of test and theory and the prediction from Koiter’s asymptotic 
theory for the imperfection sensitivity of externally pressurized ring-stiffened 
cylindrical shells. Z is the “Batdorf parameter”; L is the length of the shell between 
rings; R is the radius; t is the wall thickness of the skin of the shell; pc is the 
bifurcation buckling pressure; D is the bending stiffness of the skin of the shell, and 
b is the Koiter  asymptotic imperfection sensitivity factor. (from Hutchinson and 
Koiter [16]). (Fig. 3.13 in AIAA Journal, Vol. 19, No. 9, 1981) 



 
Buckling of externally pressurized cylindrical shells of intermediate or long length 
exhibits less imperfection sensitivity than does buckling of axially compressed 
cylindrical shells or externally pressurized spherical shells. The dimensions of the 
individual buckles of externally pressurized cylindrical shells are much larger than 
those of an axially compressed cylindrical shell, and buckling eigenvalues 
corresponding to different modes of buckling are not densely clustered as they are 
for axially compressed cylindrical shells. Here, in the top frame we see a 
comparison of test v. theory as a function of the “Batdorf” parameter Z. Note that in 
the region where test points fall below theory the asymptotic imperfection 
sensitivity parameter b is negative, indicating a degree of imperfection sensitivity 
(bottom frame). The curve with the most negative values of b for small Z arises 
because, for small Z (short shells), the axial component of compression generated 
by the external hydrostatic pressure produces behavior similar to that of a uniformly 
axially compressed cylindrical shell. 
 
 

 
Slide 40 Elastic-plastic deformations of an axially compressed, rather thick 
cylindrical shell and the load-end-shortening curve with limit point A, bifurcation 
buckling point B, and post-bifurcation equilibrium path, BD. (from Sobel and 
Newman [87]). (Fig. 2.1 in AIAA Journal, Vol. 19, No. 9, 1981) 



 
 

 
 
Slide 41 Load-deflection curves for a shell with moderate imperfection sensitivity. 
The bifurcation point, B, occurs before the limit point, A, is reached. In other 
words, non-axisymmetric buckles start to appear before axisymmetric collapse.  
There is some sensitivity to initial imperfections, that is, the maximum load-
carrying capacity of the imperfect shell (dashed line) is moderately (but not 
dramatically) below the load-carrying capacity of the perfect shell. (Fig. 2.2a in 
AIAA Journal, Vol. 19, No. 9, 1981) 
 
 



 
Slide 51 Thin monocoque cylindrical shells under uniform torque either without 
(left) or with (right) internal pressure exhibit much less imperfection sensitivity than 
do the same shells under uniform axial compression. (Photographs from Harris, et 
al [42].) (Fig. 3.7 in AIAA Journal, Vol. 19, No. 9, 1981) 
 
 



 
Slide 52 Comparison between test and theory for the buckling of monocoque 
cylindrical shells under torsion. Z is the “Batdorf parameter”; L is the shell length; a 
is the shell radius; h is the wall thickness; D is the shell wall bending stiffness; taucr 
is the bifurcation buckling stress. (from the book by Brush and Almroth [11]) (Fig. 
3.8 in AIAA Journal, Vol. 19, No. 9, 1981) 
 
 



 
Slide 65 Elastic-plastic buckling of internally pressurized torispherical shells. 
Similar buckling patterns for internally pressurized aluminum and mild steel 
torispherical test specimens. With metallic specimens the nonlinear behavior is 
complicated by the presence of both moderately large pre-buckling deformation and 
elastic-plastic material behavior.  The behavior of these and other pressure vessel 
heads has been extensively studied by Gerry Galletly and his colleagues at the 
University of Liverpool. (Photographs by Professor Gerald Galletly and colleagues 
at the University of Liverpool). (from the PowerPoint file, pitfallsnasa.ppt) 
 



 
 

 
 
 
Fig. 2 Pressure-deflection curve for an internally pressurized ellipsoidal pressure 
vessel head. Each local peak in the pressure-deflection curve is mildly sensitive to 
initial geometrical imperfections. (Photo by Gill and his colleagues at the 
University of Manchester.) (from STRUCTURAL ANALYSIS SYSTEMS, Vol.2, 
A. Niku-Lari, editor, Pergamon Press, paper on BOSOR5 by David Bushnell, pp. 
55-67, 1986) 
 
 
 
 



 
Slide 77 Axially compressed stiffened panels (drawing after van der Neut.) (from 
the PowerPoint file, pitfallsnasa.ppt) 
 
 

 
Slide 78 Imperfection sensitivity of an optimized axially compressed, axially 
stiffened panel. The imperfection sensitivity exists because a small, local 
deformation of the skin reduces its effective axial stiffness, which then reduces the 
general buckling load. (from Thompson and Lewis [172].) (Fig. 7.8 in AIAA 
Journal, Vol. 19, No. 9, 1981) 
 



 
 
PART 3 Shells that are not imperfection-sensitive 
 
A beam in bending with a deep, thin web falls into this category. The locally 
buckled web continues to carry load far above that at which web buckling initially 
occurs. Diagonal tension develops in the buckled web. This diagonal tension acts as 
a truss. Also, a spherical shell with an inward-directed concentrated load is not 
imperfection sensitive. Unstiffened, axially compressed flat rectangular plates are 
not sensitive to initial imperfections. In an overall sense, internally pressurized 
ellipsoidal and torispherical shells are not imperfection sensitive because they can 
carry internal pressure far above that which causes initial buckling provided that 
fracture of the shell wall does not occur upon formation of the first few local 
buckles in the knuckle region where a relatively narrow band of circumferential 
membrane compression occurs. 
 
 
 



 
Slide 70 The development of post-buckling diagonal tension in the web of a deep 
beam under a concentrated load that causes bending of the beam. Buckles in the 
web reduce somewhat the effective bending stiffness of the beam, but the beam 
does not fail. Instead, “diagonal tension” develops along the long axis of the 
buckles, simulating truss members and giving the beam an effective shear stiffness. 
(from the PowerPoint file, pitfallsnasa.ppt) 
 



 

 
Slide 71 Concentrated inward load applied to a spherical shell. Initially a small 
axisymmetric inward dimple occurs. As the inward load is further increased a multi-
lobed pattern gradually develops, indicating bifurcation buckling and post-buckling 
that is stable. (Photograph by Sendlebeck and Horton at Stanford University taken 
in the early 1960’s.) (from the PowerPoint file, pitfallsnasa.ppt) 
 
 



 
Slide 72 Comparison between test & theory for the spherical shell with the inward-
directed normal concentrated load. As the load is increased the number of lobes in 
the non-axisymmetric pattern gradually increases.  The pre-buckling behavior is 
very nonlinear. (from the PowerPoint file, pitfallsnasa.ppt) 



 

 
Photograph by Connie Indrebo, Crazy Creek Air Adventures, Middletown, California  
 
Local buckling of the top surfaces of the wings of a glider. The top surfaces are like 
thin cylindrical shells under axial (span-wise) compression. The axial compression 
is largest near the roots of the wings and exists because the wings, clamped at their 
roots, are bent “upward” (toward the viewer) as the glider makes a tight turn around 
the peak of a nearby mountain from which this photograph was taken. The wings in 
their locally post-buckled state do not fail catastrophically because there exist 
strong internal spars that remain intact (unbuckled). The load at which the wing 
fails is not sensitive to initial imperfections even though the load at which the 
cylindrical skin of the upper surface of the wing is sensitive to initial imperfections 
because there is a strong internal structure that accepts the load shed by the skin of 
the wing as it buckles. 



 
PART 4 A buckling failure that is not caused by an unavoidable 
imperfection, but is caused by a known flaw in the design. The design 
flaw can be thought of as an imperfection, but it is an “imperfection” 
that can be incorporated exactly into the analysis. Therefore, the shell 
is not “imperfection sensitive” in the “classical” sense of imperfection 
sensitivity in the presence of unknown and possibly random 
imperfections. The behavior of the shell with the design flaw is 
predictable if it is modeled correctly. 
 
 



 
 
 
 
 
 

An externally corrugated, 
internally ring-stiffened payload 
shroud that failed during a test. 
The segmented stiffened 
payload shroud can buckle 
during launch. The skin 
thicknesses and external 
corrugation thicknesses increase 
in steps from tip to base of the 
shroud. In a test of this payload 
shroud buckling occurred 
unexpectedly at the field joint at 
Station 468. As demonstrated in 
the next three slides, buckling 
can occur from non-
axisymmetric external dynamic 
pressure that generates 
primarily axial compression on 
the leeward side of the shroud 
that increases from its tip to its 
base as the shroud bends like a 
beam under the non-
axisymmetric dynamic pressure 
loading encountered during 
launch. (Fig. 1.9a in AIAA 
Journal, Vol. 19, No. 9, 1981) 



 
 
Slide 34 Buckling mode of a non-axisymmetrically loaded rocket payload shroud 
shown in Fig. 9(a): (a) Pressure distribution measured in a wind tunnel test; (b) Pre-
buckling beam-type deflection; (c) Non-axisymmetric buckling mode. Buckling is 
between the discrete rings and occurs with 13 circumferential waves. (from the 
PowerPoint file, pitfallsnasa.ppt) 
 
 



 

          
Fig. 1.9b in AIAA Journal, Vol. 19, No. 9, 1981            Fig. 1.9d in AIAA Journal, Vol. 19, No. 9, 1981 
External axially oriented corrugations in the payload     Schematic of local buckling failure at Station 468 
shroud.                                                                              in the payload shroud. 
 
 
Slide 35 (right-hand sketch above) Local buckling failure is caused by an 
axisymmetric inward excursion of the load path of the axial compression seen by 
the payload shroud at Station 478. This is a known “imperfection” that can be 
included in the computerized model. This known “imperfection” is the most serious 
imperfection in the entire fabricated shell because during a test the payload shroud 
failed because of it and not because of some unknown and unknowable random 
imperfection at some other location. Therefore, one might say that the payload 
shroud as fabricated is not “imperfection sensitive” in the “classical” sense of that 
term. If the payload shroud had been designed taking account of the load path 
eccentricity at Station 468 (by the use of a thicker doubler, for example) then the 
stiffened cylindrical shell would be classed as “moderately imperfection sensitive” 
(See Part 2 above). (Fig. 1.9d in AIAA Journal, Vol. 19, No. 9, 1981) 
 
 
 



 
Slide 36 Local buckling failure of the payload shroud at Station 468. (Fig. 1.9c in 
AIAA Journal, Vol. 19, No. 9, 1981) 
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FOR A MORE COMPLETE BIGLIOGRAPHY OF SHELL BUCKLING 
PAPERS PUBLISHED BEFORE 1980, SEE THE LIST OF REFERENCES 
AT THE END OF THE PAPER: 
 
“Buckling of shells – Pitfall for designers”, by David Bushnell, AIAA Journal, Vol. 
19, No. 9, September, 1981 (1981pitfalls.pdf). 


