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ABSTRACT

PANDA2 is a computer program for the minimum
weight design of stiffened, composite, flat or
cylindrical, perfect or imperfect panels and shells
subjected to multiple sets of combined in-plane loads,
normal pressure, edge moments, and temperature. The
panels can be locally postbuckled. Recent additions to
PANDA2 include implementation of: 1. Sanders-type
shell equations as a user-specified choice in addition to
the Donnell equations; 2. a "global" optimizer
processor called "SUPEROPT" which, in a single long
run, finds optimum designs from several different
starting designs; 3. Arbocz' extension of Koiter's
special theory for computation of buckling load factors
for perfect anisotropic cylindrical shells and
knockdown factors for axisymmetrically imperfect
shells; 4. capability to handle a new truss-core
sandwich configuration, and 5. capability to handle
isogrid-stiffened panels and shells. These extensions to
PANDA2 are described and examples given.

INTRODUCTION

Previous work on PANDA2 is documented in [1-7].
PANDA2 incorporates the theories of earlier codes
PANDA [8] and BOSOR4 [9]. The optimizer used in
PANDA2 is called ADS [10]. Included among the
PANDA2 processors is a processor called
STAGSMODEL that generates input files for use with
the STAGS computer program [11-14], a general
purpose structural analysis code with sophisticated
nonlinear continuation algorithms [15-18]. Therefore,
STAGS can be used with reasonable ease to evaluate
panels that have been designed with PANDA2. A
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significant portion of the PANDA2 coding is dedicated
to finding post-locally buckled equilibrium states [4],
Optimum designs of stiffened panels with locally
postbuckled skin can therefore be obtained with
PANDA2. Other codes that have this capability are
described in [19-22]. References to other work in the
field of stiffened panel test, analysis, and design are
included in earlier papers [1-5].

The purpose of this paper is to describe the five
enhancements to PANDA2 listed in the abstract and to
provide examples for each.

INCORPORATION OF SANDERS-TYPE
EQUATIONS

PANDA2 was changed to give the user a choice as to
whether to use Donnell theory or Sanders theory for the
PANDA-type [8] (closed-form) buckling analysis.
Table 1 lists new prompts that have been introduced
into the PROMPT.DAT file, which contains prompts
and "help" paragraphs that the PANDA2 user sees
when he/she provides input data.

Theory:

In the Sanders theory the rotation about a generator of
the cylindrical panel is given by

i = wy - v/R (1)

rather than by

(2)

as is the case in Donnell theory. The circumferential
change in curvature, Ky, and twist, Kxy, are given by

(3)
(4)

rather than by
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as is the case in Donnell theory.

The work done by prebuckling resultants, Nxo, Nyo, Nxyo,
during buckling modal displacements, u, v, w, is given
in the Sanders theory by

(7)

in which the rotation y about the normal to the shell
surface is given by

(8)

In the Donnell theory the work done is given by

W =

The new terms in the a, elements listed in Eqs (54-55f)
of [8] appear (and are identified by "BEG AUG 1994"
and "END AUG 1994" comments) in SUBROUTINE
EIGREG of the BUCPAN2.NEW library of PANDA2.
The eigenvalue problem can no longer be expressed by
a simple equation, such as Eq(57) of [8], but now has
the form

Ax=X.Bx

in which A and B are 3x3 real symmetric matrices.
Therefore, much more computer time is required to
obtain the eigenvalues with the Sanders theory than
with the Donnell theory. For this reason it is
recommended that users optimize first with use of the
Donnell theory, then check the margins at the last
design iteration for each "PANDAOPT", for which
buckling loads are automatically computed with both
the Donnell theory and the Sanders theory. Only if the
buckling load factors obtained with use of the Sanders
theory are significantly different from those obtained
with use of the Donnell theory need the optimization be
conducted with use of Sanders theory. In the writer's
experience this is seldom the case because a correction
factor is applied to the eigenvalues from the Donnell

theory as described in the section on isogrid stiffened
(5) panels. This correction factor compensates for the well
(6) known inaccuracy of the Donnell theory in the case of

buckling of long cylindrical shells under uniform
external pressure.

Example:

An example for which the Donnell and Sanders theories
yield significantly different predictions follows. A
similar configuration was studied by Li, et al [23] in
work based on shallow shell (Donnell-type) equations.

The structure is a perfect, uniformly axially
compressed, unstiffened cylindrical shell with:

layup: [9,-0,9,-0,0]symmetik (10 layers);
Radius = 6 in., Length = 60 inches, ply thickness =

0.012 in.;
Lamina Material: El = 13.75 x 10s psi; E2 = 1.03

x 106 psi; nu(small) = 0.0187273
G12 = G13 = G23 = 420000 psi

Applied axial resultant, Nxo = -1.0 Ib/in (uniform
axial compression);

Boundaries simply supported.

(9) Figure 1 shows buckling loads vs layup angle from
various theories and computer programs for this axially
compressed cylindrical shell. Most significant is the
discrepancy between results from Donnell and Sanders
theories in the range 50 < 9 < 80 degrees. The
predictions labelled "PANDA2 with no transverse shear
deformation: Sanders equations" and "BOSOR4 with
membrane prebuckling theory" agree well throughout
the range of layup angle 9. Note that according to
PANDA2 there is a significant effect of transverse

(10) shear deformation. Experience has shown that
PANDA2 tends to exaggerate the effect of transverse
shear deformations somewhat, so that it yields
conservative designs in cases for which transverse shear
deformation is of major importance. Note that,
according to the BOSOR4 predictions, there is a
significant effect of prebuckling bending in the range
15 <0< 52 degrees.

INTRODUCTION OF A "GLOBAL" OPTIMIZER IN
PANDA2

Two new PANDA2 processors have been created:
AUTOCHANGE and SUPEROPT.

The purpose of the processor AUTOCHANGE is
automatically to provide a new starting design.
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AUTOCHANGE changes the decision variables as
follows:

(11)
(i = 1,2,3, ...number of decision variables)

in which x(i) is the old value of the ith decision
variable, y(i) is the new value, and dx(i) is a random
number between -0.5 and +1.5 if the decision variable
is other than a stiffener spacing and a random number
between -1.0 and +1.0 if the decision variable is a
stiffener spacing. The difference in treatment between
decision variables that are not stiffener spacings and
those that are is a result of experiments with
SUPEROPT (described below). In initial tests of
SUPEROPT it was found that:

1 . If dx(i) for all decision variables varied randomly
from - 1 .0 to + 1 .0, then rather frequently some new
starting values y(i), such as thicknesses of lamina
and heights and widths of stiffener webs and
flanges, were very small compared to values
required for a feasible design. This caused the
design becoming trapped in a deeply infeasible
region of design space. For this reason, the range of
dx(i) was changed from (-1.0 < dx(i) < +1.0) to (-0.5
< dx(i) < + 1 .5) for all variables except stiffener
spacings.

2. The range of dx(i) for stiffener spacings was kept at
(-1.0 < dx(i) < +1.0) in order to prevent lack of
convergence to optimum designs caused by too
much exploration in design space for which the
stiffener spacing is excessive.

AUTOCHANGE can be used by itself (user types
"autochange") and it is used as part of the long
procedure, SUPEROPT, which is described next.

SUPEROPT is a "batch" processor that generates
automatically many cycles of the following runstream:

AUTOCHANGE, SETUP, PANDAOPT, PANDAOPT,
PANDAOPT, ....

This new PANDA2 processor helps the user find global
optimum designs because optima are automatically
sought from many different starting designs in a single
long run. Many SUPEROPT runs can be made in
succession, but each SUPEROPT run must be followed
by at least one execution of the PANDA2 plotting
processors, CHOOSEPLOT and DIPLOT.

It is best when using SUPEROPT to set the number of

design iterations between 5 and 10, preferably nearer 5.
This is done in MAINSETUP, in the user's response to
the question

How many design iterations permitted in this run (3 to
25)?

or by direct editing the *.OPT file, which is generated
by MAINSETUP.

In SUPEROPT the user is also asked to supply the
name of the case and how many times he/she wants
PANDAOPT executed for each loop through
AUTOCHANGE. Very often four to eight
PANDAOPT executions for each execution of
AUTOCHANGE is sufficient. However, the user may
find after inspecting plots from the
CHOOSEPLOT/DIPLOT processors of PANDA2 that
more PANDAOPT executions per AUTOCHANGE
execution would be better. More will be learned about
this as experience with SUPEROPT accumulates.

SUPEROPT keeps going until the maximum total
design iterations in the case reaches between 271 and
280. Therefore, SUPEROPT runs may require a lot of
computer time. SUPEROPT should be run in the
background, often overnight. SUPEROPT can be
executed several times in succession without fear that
results in successive SUPEROPT runs will be exact
repetitions of those in previous SUPEROPT runs.
However, the user must obtain plots of decision
variables, margins, and the objective from the
CHOOSEPLOT/DIPLOT processors after each
SUPEROPT in order to keep track of what is happening
and in order that the total number of iterations can be
reset to zero before the next execution of SUPEROPT.
(At the end of the CHOOSEPLOT interactive session
PANDA2 asks the user if he/she plans to get more
plots. If the user answers "NO", then CHOOSEPLOT
resets the current value of the number of design
iterations to zero, which must happen before the user
can execute SUPEROPT again.)

The best (lightest) design is transmitted from
SUPEROPT to SUPEROPT, so that at the end of the
process the "current" design is the best found from
many, many optimization cycles and after starting from
many different points in design space.

When using SUPEROPT it is best not to allow too large
a spread between lower and upper bounds of decision
variables in the DECIDE processor. The writer does not
have enough experience yet with SUPEROPT always to
know how large a spread is too large, but he has run
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into cases for which designs become trapped near lower
bounds if these lower bounds are set too low. Variables
have a hard time getting away from very small lower
bounds because of the way AUTOCHANGE generates
new values randomly, that is, by multiplying the
existing values by random numbers in the range from
0.5 to 2.5. (See Eq. (11)). A very small value multiplied
by 2.5 is still a small value.

In the search for a global optimum design, the user
wants to have many executions of (autochange, setup,
pandaopt, pandaopt, pandaopt,..) for each execution of
SUPEROPT because each execution of
AUTOCHANGE corresponds to a new starting design.
Optimizations from as many different starting designs
as possible increase the probability that a global
optimum will be found. However, the user should not
set the number of design iterations in MAINSETUP (or
in the *.OPT file, which is generated by MAINSETUP)
to less than 5. A lower number does not permit enough
convergence in the feasible design region for each
PANDAOPT. On the other hand, too large a number
(such as 10 or 15, perhaps) may eat up a lot of
computer time and iterations for which nothing much is
happening because the "window" of permitted
excursion of decision variables shrinks with each
iteration until the next execution of PANDAOPT. (See
Fig. 83 of [7]).

Neither should the user specify too few PANDAOPTs
per AUTOCHANGE. In some cases many
PANDAOPTs are required to converge to an optimum
design because constraint gradients may become very
large in isolated design neighborhoods. Large constraint
gradients will cause the search window to be made
much smaller by PANDA2 if these gradients
correspond to constraint values that are nearly critical.
It is better for the user to try more PANDAOPTs per
AUTOCHANGE and extend the search by executing
SUPEROPT several times in succession, each
SUPEROPT execution followed by at least one
execution of CHOOSEPLOT/DIPLOT.

With each SUPEROPT there are results for many,
many design iterations (a little less than 300). The best
design is usually not the last because new starting
designs are always being generated during the
SUPEROPT run. PANDA2 was modified to print out
the "best" (least-weight) design that is feasible or
almost feasible. This new output appears near the end
of the <casename>.OPP file. However, the user should
still inspect carefully the <casename>.OPP file and
plots generated by CHOOSEPLOT/DIPLOT because
there may exist very slightly heavier designs that have

much better characteristics relative to cost of
fabrication and maintenance.

A word of caution must be introduced at this point. It
may be that during the evolution of a design (between
successive SUPEROPTs), the user "changed the rules"
somehow (changed boundary conditions, changed
upper and lower bounds, changed loading, changed the
amplitudes of the initial imperfections, etc.). PANDA2
is not smart enough to know if the user did these things.
At the end of the SUPEROPT run PANDA2
automatically conducts a search of the vector of panel
weights for the minimum weight that corresponds to
either a FEASIBLE design or an ALMOST FEASIBLE
design. This minimum weight is used by SUPEROPT
to establish the corresponding panel dimensions. It is
these dimensions that are restored to the appropriate
common blocks so that each succeeding SUPEROPT
starts with use of the best (lightest) design determined
since the beginning of the case. If the strategy that the
user had specified at the time that that particular design
was generated was subsequently found to be inadequate
for some reason (perhaps because too small a lower
bound had been set for a stiffener spacing or too small
an imperfection amplitude had been set for general
instability) SUPEROPT will not automatically take this
"mid-stream" model change into account but will
blindly store the design that corresponds to the
minimum weight for a FEASIBLE or ALMOST
FEASIBLE design generated since the case was begun
or since the user last reset the total number of iterations
to zero in MAINSETUP. (The way to do this is
described in ITEM 194 of the file, PANDA2.NEWS
[6]).

Example:

The example is the same as that depicted in Fig. 15 of
[5]. The panel is a truss-core configuration; is flat and
of length 30 inches and width 24 inches; is clamped at
the axially loaded edges; is made of aluminum with
modulus E = 10 x Iff psi, Poisson ratio nu = 0.3, and
maximum allowable effective stress = 70000 psi; and is
subjected to uniform axial compression Nxo = -500
Ib/in, in-plane shear Nxyo = 500 Ib/in, and normal
pressure p = -2.5 psi.

Figures 2-8 are plots generated from
CHOOSEPLOT/DIPLOT following SUPEROPT runs
for the truss-core panel loaded and optimized as
described in [5]. (See Fig. 15 of [5]). The decision
variables are the truss pitch b, the truss height h, and the
thickness t of the lower face sheet, the upper face sheet,
and the truss core. (All have the same thickness in this
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particular example). Figures 2 - 5 are plots of the
decision variables t (Fig. 2), b, h (Fig. 3); margins
corresponding to conditions at the midlength of the
panel (Fig. 4); and objective (panel weight) (Fig. 5).
The seven rather large spikes in the plot in Fig. 2
approximately at iterations 20, 40, 65, 115, 160, 205,
and 230 correspond to new starting designs, each
generated automatically by AUTOCHANGE. There is a
range of iterations, from Iteration 70 to Iteration 160
during which the design is apparently trapped in a
region with at least one very large constraint gradient
("local wide column buckling mode, discrete model" -
see Fig. 4). Within this range of iterations the design is
for the most part oscillating between two very close
alternatives, one feasible and the other not, as can be
seen from the plot of margins in Fig. 4. Outside this
range of iterations, the best converged feasible designs
all have thickness, t = .0165 in., b = 0.85 in., h = 0.63
in., approximately. The optimum weight is about 4.5
Ibs.

Figures 6 - 8 are plots of the objective (weight) for
three successive SUPEROPT runs, each with a different
user-specified number of PANDAOPTs for each
AUTOCHANGE. Again, the large spikes represent new
starting designs generated by AUTOCHANGE. In this
case it is clear that 8 PANDAOPTs per
AUTOCHANGE (Fig. 6) are sufficient to permit good
convergence to optimum designs; 5 PANDAOPTs per
AUTOCHANGE (Fig. 7) provide more starting designs
but are barely sufficient to permit convergence to
optimum designs; and 3 PANDAOPTs per
AUTOCHANGE (Fig. 8) are insufficient to permit
convergence to optimum designs.

NEW TRUSS CORE SANDWICH
CONFIGURATION ALLOWED IN PANDA2

Description:

The capability of PANDA2 has been expanded with
regard to configuration of a truss-core sandwich panel.
Now the panel cross section can have either of the two
configurations shown in Fig. 9(a) and 9(b).

In the interactive session BEGIN the user must now
supply a value for b2. If the user supplies b2 = 0, then
the configuration depicted in Fig. 9(a) will be treated.
This is the configuration explored in Ref. [5] and in the
previous section. If the user supplies b2 > 0, then the
configuration depicted in Fig. 9(b) will be treated.
Previously, the user was not prompted to supply any
value for b2 (See Table 3 of Ref. [5]).; b2 was always

zero.

With the new configuration (that is, if the user has
supplied a non-zero value for b2), internally supplied
constraints force the width b2 to lie in the range:

0.2b < b2 < 0.45b (12)

Note that as the width b2 approaches 0.5b the overall
crosswise transverse shear stiffness component G(2,3)
of the truss-core sandwich decreases steeply. With b2 =
0.5b the webs shown in Fig. 9(b) are vertical. The
effective crosswise transverse shear stiffness G(2,3) of
the cross section of the truss-core sandwich is in that
special case generated entirely by inextensional bending
of the webs; there is no membrane strain energy stored
in the webs as a result of crosswise horizontal
displacement of the top face sheet relative to the bottom
face sheet ("crosswise" horizontal displacement is
displacement in the "y" coordinate direction-see Fig.
9(b)). If one assumes that the webs are clamped at the
face sheets (no local rotation about the generators at the
top and bottom of each web), then under uniform
crosswise transverse shearing of the entire cross section
of the truss-core sandwich, each web acts as a wide
beam whose top end is translated in the hoop (y)
coordinate direction relative to its bottom end. There is
no rotation at either end of each web. Roark (fifth
edition) gives a formula for a beam with an end load
deformed in this way:

y(max) = WL3/(12EI) (13)

in which y(max) is the lateral deflection at one end of
the beam relative to the other end; W is the load (Ib), L
is the length of the beam, and El is the bending stiffness
of the beam. This formula can be used to calculate an
effective crosswise transverse shear stiffness G(2,3) of
the truss-core sandwich:

T=G(2,3)y (14)

in which T is the crosswise transverse shear stress and y
is the crosswise transverse shear strain, given by

y = y(max)/h (15)

where h is the height of the truss-core sandwich. (In the
truss core configuration, height is measured from
middle surface of the bottom face sheet to middle
surface of the top face sheet). With use of Eq. (13),
definition of W as the load per unit axial length applied
normal to each web, a web spacing of b/2 (which is the
case if b2 = 0.5b), and identification of the overall
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crosswise transverse shear stress T with W as follows

= W/(b/2) (16)

(where in Eq. (16) W is in units of Ib/in for example),
one can show that G(2,3) is given by

G(2,3) = 24C(5,5,2)/(bh2) (17)

in which C(5,5,iweb) is the effective "El" per unit axial
length of each web. [C(5,5,iweb) is the bending
stiffness of the web about a generator]. The beam
length L in Eq. (13) is replaced by the web height h.

Example:

This example involves the same size flat aluminum
panel and same loading as that used in the example of
the previous section and in [5], except that now the
truss core has the configuration shown in Fig. 9(b)
rather than the configurations shown in Fig. 9(a). The
decision variables are the pitch of the truss core, b, the
width over which truss core contacts each face sheet,
b2, the height of the truss, h, and the thickness t of all
the parts. The purpose of this example is to demonstrate
the advantage of allowing a non-zero value for b2.

Figures 10-13 are analogous to Figs. 2 - 5 for the other
truss core configuration (Fig. 9(a)) explored in the
previous section. Figure 12 shows margins
corresponding to conditions at the panel midlength,
where, because of bending under the normal pressure,
the upper face sheet buckles before the lower face
sheet. While this figure appears very messy, it is easy to
spot the regions where the design is feasible or almost
feasible. Figure 14 shows the margins corresponding to
conditions at the panel ends, where, because of bending
under the normal pressure, the lower face sheet buckles
before the upper face sheet.

The best design encountered in the SUPEROPT run has
truss pitch b = 1 .048 in., core-skin contact width b2 =
0.468 in., truss height h = 0.5427 in., and thickness t =
0.0161 1 in. The optimum weight is 3.53 Ibs. Notice that
the optimum weight for the case in which b2 > 0 is
quite a bit less than that for which b2 = 0.0 (4.50 Ibs). It
is probably worthwhile always to explore the case b2 >
0 for truss-core sandwich panels. NOTE: As of this
writing, the properties of the wall in Seg. 5 must be the
same as those in Seg. 1, and the properties of the wall in
Seg. 6 must be the same as those in Seg. 3. (See Fig.

Figures 15 and 16 show how the optimized panel cross

section deforms at the panel midlength and ends,
respectively, under proportionally increasing loads NX,
Nxy, and p. (The cross sections of the truss core appear
different in Figs. 15 and 16 because the vertical scale in
the plots is different). Figure 17, which corresponds to
conditions at the midlength of the panel, demonstrates
that the individual segments in the cross section of the
optimized panel start to bend locally at loads slightly
below the design load, Nx=-500 Ib/in, Nxy=+500 Ib/in,
p=-2.5 psi. Although behavior is plotted as a function of
NX in Fig. 17, it is emphasized here that the other load
components, Nxy and p, are increased proportionally
with NX. The results in Fig. 17 as well as the other
figures in this and the previous section correspond to a
panel with a local initial imperfection equal to one tenth
of the skin thickness. The optimum designs are
obtained with the switch for including transverse shear
deformation effects turned on.

Figure 18 is a design sensitivity plot, generated with use
of analysis type ITYPE = 4 by PANDA2. In this case
only the truss pitch b is allowed to vary; the contact
width b2, height h, and thickness t are all held constant.
Transverse shear deformation (t.s.d) effects are
included in the analysis. (NOTE: t.s.d. is included
throughout this example and in the previous example as
well). The deep "well" in the margins in the range
0.925 < b < 0.95 inches is caused by the crosswise
transverse shear deformation stiffness decreasing
almost to zero (that is, approaching the value G23 given
in E. (17)) as the truss core webs become vertical.

IMPLEMENTATION OF ARBOCZ' EXTENSION OF
KOITER'S SPECIAL THEORY IN PANDA2

Theory:

During the past several years Arbocz and Hoi have
been developing several computer programs for the
buckling analysis of perfect and imperfect anisotropic,
stiffened cylindrical shells [24-26]. In their theory
imperfections can be either axisymmetric on
nonsymmetric. Only part of their theory has been
implemented inPANDA2: the part in which
imperfections are assumed to be axisymmetric. This
represents an extension to Koiter's special asymptotic
theory [27] to include anisotropic wall properties.
Therefore, the version of Arbocz' theory implemented
into PANDA2 is here called 'Arbocz "special" theory'.

The purpose of this infusion of relatively new
technology into PANDA2 is to obtain more reliable
(conservative) knockdown factors to compensate for
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initial imperfections, especially for the design of curved
panels and shells made of laminated composite
material. The new addition to PANDA2 also yields
additional predictions of buckling load factors for
perfect curved panels and shells. These new predictions
may affect the design of curved panels and shells even
if they are perfect because, in the computation of
knockdown factors for imperfection sensitivity,
PANDA2 uses the ratio

(eigenvalue from Arbocz' theory)
(eigenvalue from old PANDA2 theory)

(18)

as a factor that, if less than unity, further reduces the
knockdown factor that compensates for initial
imperfections. In the ratio (18) "eigenvalue" denotes
"buckling load factor of perfect shell", and "old
PANDA2 theory" denotes the theory described in [1]
and [8]. If there is no initial imperfection PANDA2
will still generate a buckling knockdown factor less
than unity if the Arbocz "special" theory predicts a
smaller buckling load factor for the perfect shell than
does the old PANDA2 theory.

The new calculations for buckling of perfect cylindrical
shells and for imperfection sensitivity are carried out in
SUBROUTINE ARBOCZ, which appears in the same
section of the PANDA2 mainprocessor dealing with
initial local, inter-ring, and general buckling modal
imperfections described in [1] and in PANDA2.NEWS
ITEM 124 [6]. SUBROUTINE ARBOCZ represents
implementation into PANDA2 of the theory developed
in Chapters 2 and 3 and Appendices A, B, C, and E of
[24].

In [24] Arbocz delineates several special cases for
buckling of axisymmetrically imperfect, anisotropic
cylindrical shells, all generated from a cubic equation
of the form:

[E + FA, + Gp + Hi](A,c - A,)2 +(A+B A,)(A,c - A.) + P = 0
(19)

This is the form of Eq. (3.61) in [24]. (Eq.(E.lS) of
[24], which has also been incorporated into PANDA2,
has the same form). In Eq. (19) A. represents the applied
axial resultant, p represents the applied pressure, and t
represents the applied in-plane shear resultant. These
three loading components are expressed in PANDA2 in
the form:

A,= y*eig(panda2)*Nx(variable) + Nx(fixed)

p = y*eig(panda2)*p( variable) + p(fixed) (20)

T= y*eig(panda2)T(variable) +T(fixed)

in which y represents the unknown eigenvalue
(buckling load factor to be solved for); eig(panda2)
represents the known buckling load factor found from
the old PANDA2 theory for the perfect panel; (variable)
signifies the part of the load that is an "eigenvalue
parameter"; and (fixed) signifies the part of the load
that is not to be multiplied by the eigenvalue.
("Variable" and "fixed" loads here are analogous to
Load Set A and Load Set B, respectively, in the STAGS
and BOSOR4 computer programs). Further, the load
components, NX, p, T, represent the portions of the
applied load that are carried by the particular portion of
the structure being investigated. For example, NX
represents the total applied axial resultant when overall
and inter-ring buckling are being investigated, but NX
represents only that portion of the axial load carried by
the panel skin when local buckling is being
investigated.

Eqs.(20) can be used to express the load components
that appear inEq.(19) in terms of the eigenvalue y. The
cubic equation for y is then solved in SUBROUTINE
CUBIC. The lowest positive root is the buckling load
factor from Arbocz' "special" theory. The cubic
equation solver, called SUBROUTINE CUBIC, is
stored in theUTIL library.

Because of the presence of the factor, eig(panda2), in
Eqs.(20), the eigenvalue y will equal unity for the
perfect panel if the old PANDA2 theory [1] and the
Arbocz "special" theory (modified as described next)
are in complete agreement.

The Arbocz "special" theory for buckling of
axisymmetrically imperfect cylindrical shells is
modified in PANDA2 in the following three ways:

1. Transverse shear deformation effects are included in
the same way as in the old PANDA2 theory (a
posteriori knockdown via Timoshenko- type theory;
See [7]).

2. Results from the Arbocz "special" theory, which is
based on Donnell's equations, are "knocked down"
to compensate for the approximate nature of
Donnell's equations, in the same way as is done in
the old PANDA2 theory. For example, accurate
buckling loads are computed for very long
cylindrical shells under uniform external pressure.
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3. Results from the Arbocz "special" theory for shells
with smeared stringers are "knocked down" to
compensate for the inherent unconservativeness of
the smeared stringer model, in the same way as is
done in the old PANDA2 theory. (See ITEMS 2, 27,
etc. in PANDA2.NEWS).

Buckling load factors from Arbocz' "special" theory
are computed in PANDA2 for: 1. general instability
-stringers and rings are smeared out; 2. inter-ring
buckling: stringers are smeared out, rings are replaced
by simple supports; 3. local buckling: rings are replaced
by simple supports, stringers are replaced by simple
supports.

Prebuckling stress redistribution over the various
segments of a panelskin-stiffener module (skin-stringer
module, skin-ring module), generated by prebuckling
bending that occurs in nonaxisymmetrically imperfect
cylindrical shells, is accounted for in the computations,
just as for the old PANDA2 theory [1]. Specifically,
overall prebuckling bending caused by growth of the
general buckling modal imperfection during loading
affects the prebuckling loads in the inter-ring portion of
the structure (stringers smeared, between rings), and
both overall prebuckling bending caused by the growth
of the general buckling modal imperfection and
inter-ring prebuckling bending caused by the growth of
the inter-ring modal imperfection both affect the
prebuckling loads in the "local" portion of the structure
(the portion between adjacent stringers and adjacent
rings).

Arbocz' "special" theory of axisymmetrically imperfect
cylindrical shells was incorporated into PANDA2
because the old PANDA2 theory [1] does not always
yield conservative predictions. In particular, the theory
of [1] does not properly account for local hoop
compression induced in an imperfect cylindrical shell
under axial compression in which the imperfection may
have waves that are rather long in the circumferential
direction. As a cylindrical shell with this property is
loaded in axial compression, additional membrane hoop
compression is induced in the portions of the shell
where the imperfection forms inward lobes. The old
PANDA2 theory [ 1 ] accounts for the local increase in
the radius of curvature of a generally
(nonaxisymmetrically) imperfect shell, and it accounts
for prebuckling bending and stress redistribution in the
various segments of a ring and/or stringer stiffened
shell as the load is applied, but it does not account for
bands of membrane hoop compression such as are
generated in an axisymmetrically imperfect monocoque
cylindrical shell under uniform axial compression.

With the Arbocz "special" theory described in Chapters
2 and 3 of [24] now incorporated into PANDA2, both
of the major effects of general initial imperfections on
the load-carrying capacity of cylindrical shells are now
accounted for:

1. The reduction in curvature and stress redistribution
over the various segments of a skin-stiffener module
caused by prebuckling bending (old PANDA2
theory [1]),

2. The induced membrane hoop compression (Arbocz
"special" theory).

PANDA2 develops knockdown factors both from the
old PANDA2 theory [1] and the new Arbocz "special"
theory (modified as described above). It chooses the
most conservative knockdown factor predicted from
these two theories. Included in the new PANDA2
output in the *.OPM file (when the print option
NPRINT=2 is used), are the data listed in Table 2.

The PANDA2 output listed in Table 2 is for an
unstiffened, laminated (angle ply) composite cylindrical
shell under combined axial compression NX = -2000
Ib/in and in-plane shear Nxy = -600 Ib/in. (Positive
in-plane shear loading Nxy is identified in Fig. 11 of
[7]). Because there are no stiffeners, all buckling can be
considered local, inter-ring, and general. That is why
the numbers are the same for all three types of buckling
in this particular case. Notice that the knockdown factor
labelled "USED NOW IN PANDA2" is slightly more
conservative than the smallest knockdown factor
predicted from either the "PANDA2 theory" [1] or the
Arbocz "special" theory [24]. This is because Arbocz'
equations yield a slightly smaller buckling load for the
perfect shell. (The ratio (18) is 0.973). This ratio is
included as part of the knockdown factor to be used in
further calculations in PANDA2. Notice that the
knockdown factor from Arbocz' "special" theory for
the imperfect shell [24] is significantly smaller than that
from the old PANDA2 theory [1] in this particular case.

Table 3 represents output from the same section of
PANDA2 for a cylindrical shell stiffened with both
stringers and rings. The material is isotropic and the
loading is hydrostatic compression.
In this example the Arbocz "special" theory and
PANDA2 theory for buckling of the perfect shell are in
almost perfect agreement. For local and general
buckling the old PANDA2 theory give the more
conservative knockdown factors, whereas for inter-ring
buckling the Arbocz "special" theory gives the more
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conservative knockdown factor in this particular case.

Arbocz' theory is for complete (360 degrees of
circumference) cylindrical shells. However, the theory
was easily modified to apply to panels (incomplete
cylindrical shells) for cases in which either the slope of
the local buckling nodal lines as predicted by the "old"
PANDA2 theory is very small (less than 0.03) or the
circumferential width of the panel is at least half its
radius of curvature. The number of circumferential
waves used in Arbocz' "special" theory was simply
multiplied by the factor Rn/b, where R is the radius of
curvature of the perfect panel and b is the stringer
spacing. It was necessary to do this in order to avoid too
conservative estimates of local buckling of the panel
skin between stringers and rings.

Even with this simple modification of Arbocz'
"special" theory, if the stringers are closely spaced, that
is, if the piece of the shell between adjacent rings and
stringers is a very, very shallow panel, the Arbocz
predictions may be too conservative for local buckling
of a locally imperfect panel. Therefore, in PANDA2 the
local buckling load factor for a simply supported
perfect flat panel, with the same width, length, and wall
properties as the curved panel between adjacent
stiffeners, is computed and compared with that for the
imperfect curved panel. PANDA2 chooses the
maximum of these two load factors for the calculation
of the knockdown factor from Arbocz' "special" theory.
Output is provided (again with NPRINT = 2) that tells
the user what is going on. This output is listed in Table
4.

Inter-ring buckling of a stringer-stiffened cylindrical
panel is handled in an analogous way. Sample output is
listed in Table 5. Note that in this example the
eigenvalue for the imperfect curved panel, EIG8Y =
0.22473, is much lower than that for the perfect flat
panel, indicating that the Arbocz "special" theory in
this case is far too conservative for use in generating
practical designs unless it is modified as above, that is,
as stated in Table 5:

This is because the part of the Arbocz "special" theory
used in PANDA2 is based on the assumption of
AXISYMMETRIC imperfections only. An
axisymmetric imperfection is extremely unlikely in a
stringer-stiffened cylindrical shell because the stringers,
having a lot of axial bending stiffness, prevent this sort
of imperfection from occurring during manufacture and
handling of the shell. Were it possible for such an
imperfection to occur, even one of very small amplitude
would have a large, deleterious effect on the buckling

load of a cylindrical shell under uniform axial
compression because of the hoop compression induced
in the panel skin generated in bands where there are
inward axisymmetric lobes in the imperfection pattern.
This induced hoop compression, even if very small
compared to the applied axial compression, can have a
disproportionately large effect on buckling because the
hoop bending stiffness of a panel with smeared
stringers is much, much smaller than its axial bending
stiffness. Typically, axisymmetrically imperfect, axially
stiffened cylindrical shells and panels buckle with
many, many circumferential waves.

The coding for the Arbocz "special" theory is contained
in SUBROUTINE ARBAPP, SUBROUTINE
ARBIMP, and SUBROUTINE EQ361, all of which
follow SUBROUTINE ARBOCZ and SUBROUTINE
EIGARB in the BUCPAN1 library of the PANDA2
software. SUBROUTINE ARBAPP computes buckling
of the perfect shell from Arbocz' theory and
SUBROUTINE ARBIMP computes buckling of the
imperfect shell from Arbocz' "special" theory.
SUBROUTINES ARBAPP and ARBIMP contain
comments with equation numbers that refer to
equations in [24]. The search for the minimum
eigenvalues with respect to number of (axial,
circumferential) half waves (m, n), and the Khot
skewedness parameter (slope of buckling nodal lines
[28]) is carried out in a manner completely analogous to
that of the old PANDA2 theory [1]. This search method
has been subjected to a lot of exercise over the years
and is felt to be reasonably reliable. Results from the
Arbocz theory are modified by calls to SUBROUTINES
SHRRED, DONNEL, EIGKNK, and EIGMOD in a
manner completely analogous to that used for the old
PANDA2 theory. (SHRRED = reduction for transverse
shear deformation effects; DONNEL = reduction to
compensate for Donnell approximation; EIGKNK and
EIGMOD = reduction to compensate for
unconservativeness of smeared stringer models).

Example:

As an illustration, behavior of the imperfect, 4-layered,
angle-ply, unstiffened, composite cylindrical shell, the
properties of which are listed in the title of Table 2, is
used. The lay up is [+9, -OJ^and the amplitude of the
buckling modal initial imperfection is 0.5 in. The
simply supported cylindrical shell, which is 200 inches
long and of radius 100 inches, is loaded in combined
axial compression NX and in-plane shear Nxy.

Figures 19 and 20 show information of the type listed in
Table 2 as functions of layup angle 9. Figure 19 shows
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that with the combined loading NX = -2000 Ib/in, Nxy =
+600 Ib/in (positive in-plane shear loading is identified
in Fig. 11 of [7]), the Arbocz "special" theory [24]
predicts buckling of the perfect shell to occur at about
90 to 99 per cent of the buckling load predicted by the
old PANDA2 theory [1, 8]. The old PANDA2 theory
for buckling of imperfect shells [1] yields more
conservative knockdown factors over the entire range
of 9 than does the Arbocz "special" theory [24] in this
particular case.

Note: It is emphasized here that only part of the full
Arbocz theory was implemented into PANDA2: the
part with axisymmetric initial imperfections. There is
no intent to imply here that the full Arbocz theory
described in [24], which includes non-axisymmetric
imperfections as well as axisymmetric imperfections, is
unconservative.

Figure 20 shows knockdown factors from the old
PANDA2 theory and the Arbocz "special" theory for
the same cylindrical shell loaded as before except that
the sign of the in-plane shear loading Nxy has been
changed. In this case the Arbocz "special" theory is
more conservative than the old PANDA2 theory over a
considerable portion of the range of layup angle 9: 20 <
9 < 68 degrees. It is because of cases like this that the
Arbocz "special" theory was implemented into
PANDA2: the intent of PANDA2 is to generate
optimum designs that are conservative, but not overly
conservative.

Figures 21-33 show results from optimization of the
4-layered angle-ply composite cylindrical shell and
evaluation of the optimum design with use of the
STAGS general-purpose finite element code [11 - 18].

The shell is first optimized with PANDA2 for two sets
of combined in-plane loads:

Load Sell: NX =-2000 Ib/in; Nxy = +600 Ib/in.
Load Set 2: NX = -1000 Ib/in; Nxy = +1200 Ib/in.

The two decision variables of the optimization are the
ply thickness and the layup angle, 9. There are 4 layers
laid up as [+9, -9]s. Hence, in the input for the BEGIN
processor, the user provides two layer types: Layer
Type 1 with thickness t(l) and layup angle +9, and
Layer Type 2 with thickness t(2) and layup angle -9.
The thickness of Layer Type 2 is linked to that of Layer
Type 1 with a linking constant of 1.0; the layup angle of
Layer type 2 is linked to that of Layer Type 1 with a
linking constant of -1.0.

Figures 21-25 show the results of the PANDA2
optimization analysis. Two PANDAOPT runs of 5
iterations each and one PANDAOPT run that
converged to an optimum design in fewer than the
user-specified number of iterations (5 in this case) were
required to achieve convergence to an optimum design.
A fourth PANDAOPT run was made just to verify the
convergence. SUPEROPT was also used to search for a
global optimum design, but no other optima were
found. The results of the SUPEROPT runs are not
shown here in order to save space. The shell was
optimized with the Sanders theory switch "ISAND"
turned off in the input to the MAINSETUP processor.

It can be seen from Figs. 24 and 25 that predictions
from the Donnell theory and the Sanders theory are in
close agreement in this particular case. (See points
plotted in Figs. 24 and 25 for Iterations 5 and 11). Even
with the Sanders theory switch "ISAND" turned off,
results from both Donnell theory and Sanders theory are
still provided automatically by PANDA2 in Iterations 5
and 11 because these data can serve to alert the user to
the possible need to optimize with the Sanders theory
switch "ISAND" turned on. Iterations 5 and 11 are the
last iterations in each of the first two PANDAOPT runs.
At the optimum design (Iteration 15 in this example)
buckling margins for both load sets are critical.

Figure 25, which corresponds to margins plotted for
Load Set 2, exhibits a gap at Iteration 10. During
optimization cycles PANDA2 tests to see if it is always
necessary to process all of the load sets. Occasionally
PANDA2 judges it unnecessary to do the calculations
for one or more of the load sets for a design iteration.
For example, PANDA2 skips a load set if all the
margins of that load set are very close in value to those
of a previously processed load set. If this happens,
PANDA2 skips that load set for all subsequent
iterations in the current PANDAOPT. PANDA2 does
this in order to save computer time in long runs. The
skipped load set is always reinstated at the last iteration
in the current PANDAOPT run in order to provide
verification that no critical margins were skipped. At
that last iteration, if PANDA2 detects significantly
negative margins (margins less than -0.05)
corresponding to the skipped load set, it sets a switch
that prevents skipping of that load set in future
PANDAOPTs, and in the *.OPP file, a portion of which
is reproduced in Table 6, PANDA2 writes
"UNKNOWN FEASIB." for all the iterations in which
that load set was skipped. In this case, investigation of
Load Set 2 was skipped for only one iteration (notice no
critical margins listed in Table 6 for Load Set 2 at
Iteration 11), but PANDA2 found in Iteration 12 (the
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final iteration corresponding to the second
PANDAOPT) significantly negative margins in Load
Set 2. (NOTE: Iterations are numbered differently in
the figures than in the *.OPP file, Table 6. In the figures
iterations are numbered starting from zero rather than
one).

At the end of the *.OPP file PANDA2 lists the best
feasible and/or almost feasible design found during any
of the design iterations since the beginning of the case.
In this example the best design happens to correspond
to that derived at the last iteration. In general this is not
so, especially in SUPEROPT runs, as mentioned in the
section on SUPEROPT.

Figure 26 is a plot generated by PANDA2
corresponding to Analysis Type 5: load-interaction
analysis. The buckling interaction curve [Nx/Nx(cr),
Nxy/Nxy(cr)] is plotted for the optimized design, that
listed at the end of Table 6. In the ratios, Nx/Nx(cr) and
Nxy/Nxy(cr), Nx(cr) is the critical axial load for the
perfect shell with no in-plane shear loading, and
Nxy(cr) is the critical shear buckling load for the
perfect shell with no axial loading. Since there is a
buckling modal imperfection of amplitude 0.5 in. in this
case, the interaction curve intercepts the axes at values
considerably less than unity.

The optimized design was evaluated with use of
STAGS corresponding to four points on the load
interaction curve. The STAGS predictions for collapse
of the imperfect shells are indicated in Fig. 26. If the
STAGS predictions are assumed to be "exact", then
PANDA2 predictions are slightly conservative in the
range where the applied loading is primarily axial
compression and slightly unconservative in the range
where the applied loading is primarily in-plane shear.

Figures 27 - 30 show STAGS predictions
corresponding to the applied load combination: NX =
-1000 Ib/in, Nxy = +1200 Ib/in. In Fig. 27 the load
factor PA is applied to the load combination just given.
The imperfection shape is the critical buckling mode
from linear theory shown in Fig. 28. The linear
bifurcation buckling load factor from STAGS, 1.50,
agrees very well with that predicted with Arbocz'
theory for the perfect shell, 1.45, and that predicted
with the old PANDA2 theory, 1.58. The STAGS finite
element model shown in Fig. 28 was generated
automatically by the PANDA2 processor called
STAGSMODEL. The STAGS 410 finite element was
used in all of the STAGS models. Figure 29 shows the
deformations predicted by STAGS from the nonlinear
collapse analysis at the highest load factor, PA = 1.022

(the collapse load), and Figure 30 shows the post-
collapse deformations corresponding to the last load
step processed during the STAGS nonlinear collapse
analysis for this particular loading combination (Nx,
Nxy).

Figures 31-33 are analogous to Figs. 27 - 29. The
applied load combination is pure axial compression, NX
= -2420 Ib/in, Nxy = 0.0 Ib/in. Figure 32 shows that the
bifurcation buckling mode from linear theory has many
axial and circumferential waves. The finite element
mesh is probably not sufficiently dense to capture this
mode accurately. STAGS yields a prediction for linear
buckling at a load factor of 3.06, whereas the Arbocz
theory gives 2.68 and the old PANDA2 theory gives
2.72. Figure 33 shows the deformed state predicted by
STAGS from the nonlinear collapse analysis at the last
load step processed in the nonlinear STAGS run.

MINIMUM-WEIGHT DESIGN OF ISOGRID
STIFFENED PANELS AND SHELLS

Introduction:

The capability to optimize isogrid-stiffened panels and
shells has been added to PANDA2. This was done in
1992 but not reported until now except in the PANDA2
documentation file PANDA2.NEWS as ITEM 122 [6).
In addition to isogrid stiffeners, the panel or shell may
have rings. Constraints on the design are of the same
kind as for the other stiffening configurations: general
instability, buckling of isogrid members and skin
between rings (called "panel" instability), local
buckling of the triangular piece of skin between isogrid
stiffeners, buckling and rolling of isogrid stiffener
segments, ring segments, and maximum stress. The
panel skin, isogrid stiffeners, and rings may be of
laminated composite materials. In the isogrid option
there is no discretized single panel module analysis, nor
is there a post-local buckling capability; only the
IQUICK= 1 option [7] may be used. The new input
data for the isogrid option are described, and an
example of optimization of a hydrostatically
compressed, isogrid-stiffened cylindrical shell with
rings is provided.

New Input Data:

There is a new choice of type of stiffening offered in
the BEGIN processor, as indicated in Table 7 (taken
from the latest version of the PROMPT.DAT file). The
new option is Option G. Table 8 lists more new entries
in the PROMPT.DAT file pertaining to isogrid-
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stiffened panels.

Theory:

An isogrid pattern of stiffeners is composed of three
sets of identical stiffeners, each set spaced a distance b
apart and each set oriented at an angle of 60 degrees
relative to the other two sets. Hence, the isogrid pattern
forms equilateral triangles with height b and side
b/0.866. When smeared out, the isogrid stiffeners form
two equivalent isotropic layers:

triangular piece of skin between isogrid stiffeners is
derived to permit calculation of buckling load factors
for arbitrary combinations of uniform in-plane
resultants NX, Ny, Nxy in the skin and to include the
contribution of anisotropic terms from bending-twisting
coupling (C(4,6), C(5,6)).

. The isogrid option in PANDA2 plays the role of
stringers. In addition to the isogrid stiffeners, the
PANDA2 user can add rings. The example given below
involves a design with both isogrid stiffeners and rings.

1. The first equivalent isotropic layer corresponds to
the isogrid webs. It has a thickness equal to the
height h of the webs and an effective modulus

E(eff)= E(web)*t(web)/b (21)

More theory:

Local buckling of composite simply supported isosceles
triangular plate under arbitrary uniform in-plane
resultants NX, Ny, Nxy:

in which E(web) is the axial modulus of the web wall
and t(web) is the thickness of the isogrid web.

2. The second equivalent isotropic layer corresponds to
the outstanding isogrid flanges. It has a thickness
equal to the flange thickness and an effective
modulus

The local buckling of the panel skin between isogrid
members is computed in the TRIANG.NEW library.
This library contains the subroutines in which the
stiffness A and load-geometric B matrices are set up
and the eigenvalue problem

Aq = A,Bq (25)

E(eff) - E(flange)*w(flange)/b

in which w(flange) is the width of the outstanding
isogrid flange. For composite material

E(web) = [C( 1,1, web)
-C(l,2,web)2 / C(2,2,web)] / t(web)

E(flange)=[C( 1,1,flange)
-C(l,2,flange)2 / C(2,2,flange)]/t(flange)

(22) in which q represents the vector of undetermined
coefficients, a03..., is solved. The Ritz method is used.
It is assumed that the triangular skin is flat and that only
the normal displacement component w and its
derivatives play a role. The normal displacement w is
expanded in a power series in x and y in the triangular

(23) domain. The domain and coordinates are shown in Fig.
34.

The following expansion is used for the normal
(24) displacement w:

in which C(i,j,web) and C(i,j,flange) are the integrated
constitutive coefficients of the web laminate and flange
laminate, respectively, and t(web) and t(flange) are the
web laminate and flange laminate thicknesses,
respectively. The Poisson ratio of each of the two
smeared out equivalent isotropic isogrid layers is 1/3.

The isogrid concept was invented by R. R. Meyer of the
McDonnell Douglas Company, and the theory on which
it is based is set forth in [29].

The theory in PANDA2 represents extensions of the
Meyer theory to include laminated composite materials,
thermal effects, and local prebuckling bending, such as
that caused by the "hungry horse" mode described in
[1]. A more general local buckling analysis of the

w = amy 'y +a 12xy2 +3,, y3

+a31xy+a22xy +a13xy H-a^y +a41x y H-a^x y
y

+a34xy+a25x2y5+a16xy6+a07y7

.

(26)

At the boundary of the triangular domain shown in Fig.
34 the normal displacement w must be zero. The
expression (26) for w satisfies this boundary condition
at y = 0. The normal displacement w must also be zero
at y = + or - (ax+h), where "a" - 2h/s and h and s are
shown in Fig. 34. The boundary conditions

w = 0 at y = (+ or -) (ax + h) (27)

can be used to eliminate certain of the a, in Eq. (26).

137
American Institute of Aeronautics and Astronautics



Tedious algebra is required. The final expression for w, 1nal expression tor w, -JLtHrfAA\ 2 o-OrCA '
which satisfies the condition that w = 0 along all three Uskin ~ 2 J J "- ^ ' 'W** *• ''
edges of the isosceles triangle, follows: -v *

w = ajh'y -2hy2 +y3 -4a4x4y2/h3 -4aYy4/h3 -aYy/h4

-2aYyVh4 +3a2x2yV]

+a<J2h3y -3h2y2 +y4 -9a4x4y2/h2 -1 laYyV
-2a*x6y/h3 -6a4x4y3/h3 +8a2x2y5/h3]

(29)

+3,, [3h4y -4h3y2 +y5 -14a4x4y2/h -20a2x2y4/h
-3aYy/h2 -1 laYyVh2 +14a2x2y5/h2]

+a06[4h5y -5h4y2 +y6 -19a4x4y2 -30a2x2y4 -4aVy/h
-16aYy3/h+20a2x2y5/h]

+a07[5h6y -6h5y2 +y7 -24a4hx4y2 -40a2hx2y4 -5aYy
2 2 5-21aYy3+25a2x2y]

2 3 3 / |2+a,,[hxy -2hxy' +xy' -aYy/h" -3aYy'/h
-2aYy2/h3 +2a2x3y4/h3]

+a,4[2h3xy -3h2xy2 +xy4 -2a4x5y/h -8aYy3/h

+a [3h4xy -4h3xy2 +xy5 -3aYy -14a2x3y3 -
8aVy2/h +8aYy4/h]

+a,6[4h5xy -5h4xy2 +xy6 -4a4hx5y -20a2hx3y3

-HaVy'+lOaVy4]

+a [x2y -4aYy2/h3 -4x2y4/h3 -aYy/n4 -2aYy3/h4

+3xy5/h4]

+a22[x2y2 -aYy2/h2 -3x2y4/h2 -2aYyW +2x2y5/h3]

+a23[x2y3 -2x2y4/h -aYy3/h2 +x2y5/h2]

+a31[x3y -aYy/h2 -3x3yW -2aYy2/h3 +2x3yV]

+a32[x3y2 -2x3y3/h -aYyVn2 +x3y4/h2]

+a41[x4y -2x4y2/h +x"y3/h2 -aYy/h2]
(28)

The local buckling load factor is computed from the
principle of minimum total potential energy. The
potential energy consists of the strain energy U and the
work done by the prebuckling resultants NX, Ny, Nxy
in the panel skin during buckling modal displacement
w. The bending strain energy of the anisotropic panel
skin is given by

and the work done by the uniform prebuckling stress
resultants NX, Ny, Nxy in the panel skin is

(30)

The quantities (wx), (w ), (WK), (w^), (wxy) are found
by differentiating the right-hand-side of Eq. (28).
Stiffness and load-geometric matrices are computed at
an arbitrary point in the triangular domain. Integration
is performed numerically, with the trapezoidal rule
being used for x-integration and Simpson's rule being
used for y-integration.

As seen from Eq. (28) there are 15 degrees of freedom,
agj, a^,... ...a32, a41. The 15x15 eigenvalue problem is
solved with use of EISPAC routines. The lowest
positive eigenvalue is sought. If there is no positive
eigenvalue, the local buckling load factor is set equal to
a very high number so that no buckling constraint will
be generated.

As the local buckling theory is presently implemented
in PANDA2, the 15 degree-of-freedom model in Eq.
(28) is used only for analysis types that do not involve
optimization (ITYPE = 2, 3, 4, 5) because quite a bit of
computer time is required. For optimization (ITYPE =
1) a 10 degree-of-freedom model is used, that is, a
model that includes all terms in the polynomial (26) up
to and including sixth order. In all cases run so far, the
10 degree-of-freedom model yields buckling load
factors within a few per cent of the 15 degree-of-
freedom model. The 10 degree-of-freedom model
requires much less computer time than the 15 degree-
of-freedom model and is sufficient for the purpose of
preliminary design.

Discussion:

Most of the PANDA2 processors had to be modified to
accommodate the isogrid option. A new library called
TRIANG.NEW was created. The purpose of the
TRIANG.NEW library is to calculate local buckling of
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the triangular piece of panel skin between isogrid
stiffeners. This triangle is equilateral. For each load set,
the loading in the triangular piece of skin is an arbitrary
combination of uniform in-plane resultants, NX, Ny,
Nxy. These in-plane skin loads may arise from any
combination of applied edge loads Ml, N2, N12, edge
moments M1, M2, normal pressure p, and/or thermal
loading, as is the case for the other stiffening
configurations handled by PANDA2.

Note that for the isogrid configuration there is no local
panel module analysis for local bending deformations
under uniform pressure. It is assumed that the local
stress concentrations from local bending under pressure
are not significant enough to include in the preliminary
design of isogrid configurations. Nor is there any
discretized single panel module model as is the case for
the other stiffening configurations. Only the IQUICK =
I modeling option [7] can be used with isogrid wall
construction.

Example:

The following input and output are taken from a case of
an optimized hydrostatically compressed cylindrical
shell stiffened with isogrid T-shaped stiffeners and
additional T-shaped rings. The rings have a different
cross section from that of the isogrid stiffeners. The
user-assigned name for the case isISOCYL2. All
stiffeners are internal. During optimization, the overall
height of the wall (skin plus stiffeners) is not allowed to
exceed 1.25 inches. An appropriate inequality
constraint is constructed via DECIDE (See ITEM 29 of
PANDA2.NEWS [6] and Table 10) to enforce this
geometric inequality constraint condition.

Table 9 lists the input file ISOCYL2.BEG for the
BEGIN processor, Table 10 lists the input file
ISOCYL2.DEC for the DECIDE processor, and Table
II lists the input file ISOCYL2.OPT for the
PANDAOPT processor. Table 12 lists the last part of
the ISOCYL2.OPP file as updated after the last set of
design iterations, and Table 13 lists the last part of the
ISOCYL2.OPM file corresponding to the optimized
shell.

Discussion of example:

GEOMETRY AND MATERIAL: The cylindrical shell
is represented as a panel spanning 180 degrees of
circumference (length inL2 direction is rc*radius). The
material is titanium. (Note that laminated composite
materials can of course also be handled for the isogrid
configuration). Two materials were defined by the user

during the interactive BEGIN session, even though both
of the materials have the same properties, as can be
seen from Table 9. Introduction of the second material
is a "trick" to force PANDA2 to generate separate
stress margins for the rings, which are defined as being
made of Material Type 2. As will be seen later,
introduction of the second material type, with the
consequent generation of an "extra" stress margin for
the ring, has the added benefit of causing the
convergence to the optimum to be much smoother than
would be the case if only one material type were
defined for the entire structure. This phenomenon is
demonstrated later.

The shell wall is stiffened by both rings and an isogrid
pattern of stiffeners. Both rings and isogrid members
have T-shaped cross sections, with the dimensions of
the ring cross section permitted to be different from
those of the isogrid members. Both rings and isogrid
stiffeners are internal in this case. The isogrid members
are oriented in this case so that one of the isogrid
members runs circumferentially (ISOANG = 1 in
Tables 8 and 9). The stiffeners in the isogrid set are
labelled "1", "2", and "3". Stiffener "1" runs in the
+30-degree direction, that is 30 degrees from the axial
coordinate direction, x. Stiffener "2" runs in the
-30-degree direction. Stiffener "3" runs in the 90-
degree direction (circumferentially).

LOADING: The loading is uniform external hydrostatic
compression of 1500 psi. In PANDA2 this loading is
represented by applied in-plane resultants Nx= pr/2, Ny
= pr, and by external pressure, p. Input for loads
appears in Table 11. The convention for positive
pressure is given in Fig. 8 of [7]. The theory for
pressurized ring-stiffened cylindrical shells, described
in ITEM 116 of PANDA2.NEWS [6,1] applies in this
case. During optimization iterations, conditions both
midway between rings (Subcase 1) and at the rings
(Subcase 2) are accounted for. Prebuckling "hungry
horse" bending [1] is accounted for during
optimization.

DECISION VARIABLES: The design variables
B(ISO), B2(ISO), H(ISO), .......T(5) are listed and
defined at the end of Table 13. The thicknesses are:

T( 1) = thickness of skin
T(2) = thickness of web of isogrid stiffeners
T(3) = thickness of outstanding flange of isogrid

stiffeners
T(4) = thickness of web of ring
T(5) = thickness of outstanding flange of ring
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The decision variables of the optimization problem are
all of the design variables listed near the end of Table
13 except for B2(ISO), which is linked to B(ISO)
[B2(ISO) = 0.333B(ISO)], and B2(RNG), which is
always zero in this case.

EVOLUTION OF THE DESIGN: Figures 35 - 40,
created by the PANDA2 processors
CHOOSEPLOT/DIPLOT, show the evolution of the
design. The PANDA2 mainprocessor PANDAOPT was
executed 5 times, as listed in Table 12.

MARGINS: The physical conditions which may
constrain the design in this example are listed in Table
13 under MARGINS for Subcase 1 (Midway between
rings) and MARGINS for Subcase 2 (at rings). Table 13
was generated by running PANDA2 in a "fixed design
mode" (analysis indicator, ITYPE = 2) for the
optimized design. Those margins that are critical or
nearly so are indicated in Table 13.

Subcase 1 Margins corresponding to conditions midway
between rings: The origins of the margins listed under
Subcase 1 in Table 13, some of which are plotted vs
design iterations in Fig. 39, are as follows:

Margin 1 "effect, stress: matl=l, SKN, seg=2, at n=6,
layer=l, z=..." This effective stress margin is computed
in SUBROUTINE STRAIN and corresponds to the
stress in the panel skin at the line of intersection with
the isogrid web on the surface opposite to that to which
the isogrid web is attached (outer surface of the
cylindrical shell in this case).

Margins 2,3,4 "buckling margin for isogrdl, isogrd2,
isogrd3 web...": These margins are derived in
SUBROUTINE WEBBUK (BUCKLE.NEW library)
from the theory described inlTEMs 121 and 120d of
PANDA2.NEWS [6]. The terms "isogrdl", "isogrd2",
"isogrd3" mean Stiffener no. 1, 2, 3, respectively, that
is, the isogrid members that run in the +30-degree
direction from axial, -30-degree direction from axial,
and 90-degree direction from axial (circumferential
direction), respectively, in this case, in which the
user-supplied index ISOANG = 1 (Table 9, near top).
The buckling load factors are calculated with the
assumption that each web is simply supported along its
two longitudinal edges, that is, along the lines of
intersection with the skin and with the outstanding
flange. The linear variations of the axial resultant over
the heights of the webs, generated because there is
prebuckling "hungry horse" bending, are accounted for,
as described in ITEM 121 of PANDA2.NEWS [6]. The

presence of transverse compression in the web of
stiffener "isogrd3" is accounted for via a knockdown
factor derived as described in ITEM 120d of
PANDA2.NEWS [6]. The critical number of local
halfwaves along the web axis is determined by
searching for the minimum buckling load factor with
respect to this number of halfwaves in SUBROUTINE
WEBBUK. The length of web considered is
B(ISO)/0.866, that is, the length of one side of the
equilateral triangle formed by adjacent isogrid
stiffeners. In this case the critical buckling modes have
three halfwaves over the distance B(ISO)/0.866 for all
three isogrid webs. The isogrid member "isogrd3" has
the most critical buckling load factor because it runs
circumferentially and therefore "sees" the high hoop
compression Ny = pr from the hydrostatic loading and
because the outstanding flange of this particular isogrid
member generates transverse compression in the web as
the wall of the cylindrical shell moves radially inward
under the hydrostatic compression.

Margin 5 "buckling margin for isogrd3 flange...": This
margin is computed in SUBROUTINE ENDBUK from
the theory described inlTEMs 121 and 120d of
PANDA2.NEWS [6]. The number of half waves along
the length B(ISO)/0.866 is the same as that found for
the web of the isogrid member. Here only the margin
for "isogrd3" is computed rather than margins for all
three members, "isogrdl", "isogrd2", and "isogrd3",
because it is determined in SUBROUTINE STFEIG
that the flange with the maximum compressive axial
resultant (considered to be uniform across the width of
the flange) is that in Stiffener no. 3. In SUBROUTINE
ENDBUK anisotropy is accounted for, as described in
ITEM 121 of PANDA2.NEWS [6]. The minimum
buckling load factor with respect to slope of the nodal
lines in the buckling mode is determined by a search.

Margin 6 "buckling of isogrd3 segs. 3+4 together...":
This margin is derived in SUBROUTINE CRIPP2,
which is described in ITEM 30 of PANDA2.NEW [6].
The buckling mode is analogous to that shown in Fig. 5
on p. 546 of [8]. Again, the critical number of
halfwaves over the stiffener length B(ISO)/0.866 is 3.
In SUBROUTINE CRIPP2 it is assumed that the axial
resultant in the web is uniform.

Margin 7 "buckling of isogrd3 stiffener no. J=3...":
This margin is derived in SUBROUTINE EIGISO, a
new subroutine in the BUCKLE.NEW library in which
it is assumed that the web/flange isogrid member is
hinged along the line of attachment of the web to the
skin. The buckling mode is a stiffener rolling mode
similar to that depicted in Fig. 6(b) of [8], except that
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the web is hinged rather than clamped at its root. The
buckling load factor is computed from aRitz method in
which the following functions are assumed for the
normal displacement w in the web and flange:

w(web) = (as + cs3)sin(m7ix/L)
w(flange) = (a +3ch2)s*sin(mrcx/L)

(31)
(32)

in which s is the local widthwise coordinate in the web
and flange, as shown in Fig. 9 on p. 492 of [7]; h is the
height of the web; L is the length of stiffener being
considered for buckling (L = B(ISO)/0.866 in this
case); and m is the number of halfwaves in the length L.
The fact that the axial resultant in the web may vary
linearly over the height of the web is accounted for.
Anisotropic effects (for example, from the C46 and C56
terms in the integrated constitutive relation) are
neglected. The buckling load factor is computed by
minimization of the total potential energy with respect
to the undetermined coefficients "a" and "c" in Eqs.
(31,32) and setting the determinant of the resulting
linear homogeneous equations equal to zero. Buckling
load factors from this model agree reasonably well with
those computed from a BOSOR4 branched shell model
of a T-shaped stiffener. In PANDA2 only one of the set
of three isogrid stiffeners is selected for evaluation of
this rolling mode, the one with the maximum
compression in the outstanding flange. In this case, at
the midbay, the maximum flange compression occurs in
the isogrid stiffeners that run in the circumferential
direction, that is, in Stiffener 3 ("isogrd3").

Margin 8 "buck.(DONL) margin simp-support smear
isogrd, M=l, N=5....." This margin is computed from
PANDA-type theory (See Eq. (57), p. 553 of [8] in
SUBROUTINE BUCPAN of the BUCPAN1.NEW
library with use of Donnell (shallow shell) theory. The
isogrid members are smeared out and the buckling
mode is "panel" buckling between adjacent rings. The
shell is assumed to be simply supported at the ring
stations in the buckling analysis, and the rings are
ignored. In this case there is one half wave in the axial
direction (M=l) between rings and five halfwaves in
the circumferential direction (N=5).

Margin 9 "buck.(DONL) margin simp-support general
buck; M=1,N=2..." This margin is computed from
PANDA-type theory (See Eq. (57), p. 553 of [8]) in
SUB ROUTINE BUCPAN of the BUCPAN 1.NEW
library with user of the Donnell theory. There is one
half wave in the axial direction (M=l) over the entire
length of the shell and two half waves in the
circumferential direction (N=2). In the general
instability model of buckling both isogrid stiffeners and

rings are smeared out. Results from the Donnell theory,
which is known to be inaccurate for buckling of
cylindrical shells under external pressure when the
critical number of circumferential waves is three or
less, are "knocked down" by PANDA2 by the ratio
(n2-l)/n2 in order to compensate for the Donnell shallow
shell approximation.

Margin 10 "buck.(DONL) margin rolling only of
isogrd3,M=l,N=0..." This margin is computed in
SUBROUTINE BUCPAN. The buckling mode is
analogous to that shown in Fig. 6(b) on p 546 of [8].
The web is assumed to be clamped at its root, and any
variation of resultant over the height of the web is
neglected. Anisotropic effects are neglected. The
critical mode has one half wave (M= 1) over the length
B(ISO)/0.866 in this case.

Margin 11 "buck.(DONL) ISOGRID : web buckling;
M=3; N=l; slope=0...." This margin represents
essentially the same behavior as that computed in
Margin 4, except that here the buckling load factor is
computed in SUBROUTINE BUCPAN (Eq.(57) of [8])
rather than in SUBROUTINE WEBBUK.
SUBROUTINE BUCPAN handles in-plane shear loads
in the web; SUBOUTINE WEBBUK does not.

Margin 12 "buck.(DONL) RINGS : web buckling;
M=27; N=l; slope=0...." This margin is analogous to
Margin 11, except it pertains to the ring web instead of
the stringer (isogrid) web.

Margin 13 "Local triangular skin buckling load factor
-1..." This margin is computed in the new library
TRIANG.NEW as described above [Eqs.(25-30)].
Derivation of the theory to obtain this local buckling
load factor constituted most of the work of generating
the new isogrid capability discussed in this paper.

Margin 14 "(Max. allowable ave. axial strain)/(ave.
axial strain)-!..." This margin, not at all critical in this
case, is included to allow the user to account for strain
concentrations created by fasteners or other structural
characteristics for which the strain concentration is
known to be a certain multiple of the average strain.

Margin 15 "0.3333*(Stringer spacing, b)/(Stringer base
width, b2) -1..." This margin prevents the base width
from getting too large. It is not relevant in this case of
isogrid stiffening for which no faying flanges are
permitted in the isogrid members.

Margin 16"1.-[0.+0.8*VAR(10)**(1.)
+0.8*VAR(5)**(1.)+0.4*VAR(13)**(1.)]" This margin
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represents the geometric inequality constraint

1.25>H(RNG)+T(1) + 0.5*T(5) (33)

which limits the total height of the wall of the stiffened
cylindrical shell. In Eq. (33) H(RNG) is the height of
the ring; T(l) is the thickness of the skin of the
cylindrical shell; and T(5) is the thickness of the
outstanding flange of the ring. The inequality constraint
is derived in the DECIDE processor from input data
supplied by the PANDA2 user as listed in Table 10.

Margins 17-21 containing the string "(SAND)" in
their definitions are analogous to Margins 8-12.
Sanders' theory is used to calculate the buckling load
factors. In this case Donnell theory (adjusted as
described in connection with Margin 9) and Sanders
theory yield essentially the same values.

Subcase 2: Margins corresponding to conditions at the
rings: The origins of the margins listed under Subcase 2
in Table 13, some of which are plotted vs design
iterations in Fig. 40, are analogous to those just listed
for Subcase 1, midway between rings, except that here
margins associated with stress and buckling of the rings
are included as well as those associated with the isogrid
members and the skin as they behave at the rings
(different "hungry horse" bending state than midway
between rings).

The numbers for the isogrid members and the skin are
different than those listed for Subcase 1 because the
cylindrical shell deforms radially less at the rings than
midway between them ("hungry horse" prebuckling
bending [1]) and bends axisymmetrically at the rings
differently from bending midway between rings. For
example, at the rings it is isogrid Stiffener 2 (isogrd2)
that has the lowest buckling load factor corresponding
to rolling rather than Stiffener 3, as was the case
midway between rings. (The buckling load factor of
Stiffener 2 is very slightly lower than that for Stiffener
1 because PANDA2 automatically adds a small amount
of positive in-plane shear N12 to the applied loads
supplied by the user. This small positive in-plane shear
N12 creates a small tensile force increment in Stiffener
1 and an equal and opposite small compressive force
increment in Stiffener 2).

In this case, at the rings, the isogrid members "isogrdl"
and "isogrd2", which run at plus and minus 30 degrees
from the axial direction, are bent under the external
pressure so that their outstanding flanges are
compressed more than the roots of their webs. This
tends to promote rolling.

As one would expect for an internally stiffened
cylindrical shell, the local skin buckling load factor is
less critical at the rings than it is midway between the
rings because axisymmetric "hungry horse" bending at
the rings puts the skin in more axial tension than the
outstanding flanges of the isogrid members, whereas
the reverse holds midway between rings. That is why
the margin for "Local triangular skin buckling" (Margin
17 in Subcase 2) is higher than the analogous margin,
Margin 13, in Subcase 1.

Note that the maximum effective stress in Material 1 in
Subcase 2 is in the outstanding flange (Seg.4) of one of
the isogrid members (not specified in this output. The
user must run PANDAOPT in the ITYPE = 2 analysis
mode to find out which isogrid member has the
maximum effective stress). (See Section E2 of Table
122.7 in ITEM 122 of PANDA2.NEWS [6]. It is
"isogrd2" in this case).

Subcase 2, Margins 2, 9, 10, 11, 13, 14, 16,20,21,23,
listed in Table 13, pertain to buckling and rolling of the
rings and ring segments:

Margin 2 "effect, stress: matl=2, RNG, seg=4, allnodes,
layer=l, z=..." is the effective stress in the outstanding
flange of the ring (Seg. 4). As with Margin 1 in Subcase
1, this margin is computed in SUBROUTINE STRAIN.
Note that both Margins 1 and 2 are critical, that is, there
are two locations in the structure at the ring stations at
which the effective stress becomes critical. This fact
plays a role in the jumpy design evolution behavior that
occurs when only a single material type is defined for
the entire structure (Fig. 41,42, to be discussed later).

Margin 9 "buckling margin for ringseg. 3...": This
margin is derived in SUBROUTINE WEBBUK. The
number of local halfwaves is large, 26 in this case,
because the effective length over which buckling can
occur is assumed to be the entire width of the panel
rather than the distance between intersection points of
the ring webs with the isogrid stiffeners. The entire
width of the panel is u;sed because the webs of the rings
might be considerably higher than the webs of the
isogrid stiffeners and deformation of them therefore not
constrained by intersections with the isogrid members.

Margin 10 "buckling margin for ringseg. 4...": This
margin is derived in SUBROUTINE ENDBUK. The
number of local halfwaves is assumed to be the same as
that for the ring web, which is determined in
SUBROUTINE WEBBUK.
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Margin 11 "buckling of ring segs. 3+4 together...": This
margin is analogous to Margin no. 6 in Subcase 1.

Margin 13 "buck.(DONL) margin rolling only of rings,
M=0, N=l..." This margin is computed in
SUBROUTINE BUCPAN with use of Donnell theory.
The buckling mode is analogous to that of Margin 10 of
Subcase 1, except that this is a ring and the critical
mode has one half wave (N=l) over the entire width of
the panel.

Margin 14 "buck.(DONL) margin rolling only axisym.
rings, M=0, N=0..." This margin is computed in
SUBROUTINE BUCPAN. The buckling mode is
analogous to that shown in Figs. 6(c) and 13(c) of [8].

Margin 16 "buck.(DONL) RINGS: web buckling;
M=20, N=l, slope=0" is analogous to Margin 11 of
Subcase 1. Here it applies to ring webs.

Margins 20, 21, and 23 are analogous to Margins 13,
14, and 16. They are computed with use of Sanders'
theory rather than Donnell theory.

Additional output from PANDA2 for this case is
provided in ITEM 122 of PANDA2.NEWS [6].

SAME MODEL WITH ONLY ONE MATERIAL
TYPE SPECIFIED: In Table 9 two material types are
specified even though they both have exactly the same
properties. Material 1 is specified for the skin and
isogrid stiffeners. Material 2 is specified for the rings.
Ordinarily, the user would probably specify just one
material. When this is done and the structure is
optimized, the evolution of the design is rather jumpy,
as seen in Figs. 41 and 42. Figure 41 should be
compared with Fig. 35 and Fig. 42 should be compared
with Fig. 39. The "one-material" case does not
converge as smoothly to an optimum design. The
reason is that in the "one-material" case, the maximum
effective stress at the ring stations (Subcase 2), a critical
margin and hence one that influences the evolution of
the design, alternates between being in the outstanding
flange of the ring and the outstanding flange of one of
the isogrid stiffeners. Therefore, the gradients computed
for the perturbed designs are not correct. This does not
mean that convergence to an appropriate optimum
design cannot be achieved at all, or that PANDA2 will
"think" a design is feasible when in fact it is not. It just
means that convergence to an optimum design may be
inefficient.

In the case of composite materials, it may not be
possible to specify multiple materials that are in fact the

same. This is because each composite material
generates 5 different stress constraints: maximum
tension along the fibers, maximum compression along
the fibers, maximum tension normal to the fibers,
maximum compression normal to the fibers, and
maximum in-plane shear. If there are several load cases
and subcases the total number of constraints can
become larger than allowed by PANDA2 (99
behavioral constraints) as it is presently written.

USE OF SUPEROPT FOR THE ISOGRID-
STEFFENED CYLINDRICAL SHELL: Figures 43-48
pertain to this section. SUPEROPT was executed three
times in succession. In the first execution there were 5
PANDAOPTs per AUTOCHANGE, in the second
seven PANDAOPTs, and in the third eight
PANDAOPTs per AUTOCHANGE. Figures 43 - 45
show the objective (panel weight) and the margins for
conditions midway between rings (Fig. 44) and at the
rings (Fig. 45). The margin plots are rather messy in
appearance, and one might wonder, "Why plot so many
margins in the same frame?" The main purpose of the
margin plots generated after a SUPEROPT run is to
enable the user quickly to see the iteration ranges for
which the design is feasible or almost feasible.
(Feasible designs = no negative margins or only slightly
negative margins). Taking into account both Figs. 44
and 45, the user can easily determine which designs are
feasible. Then he/she can overlay Fig. 43 to determine
the design with lowest weight that is feasible. From
plots of the decision variables (not included here to
save space) the user can then determine the dimensions
of the structure that correspond to the best feasible
design over the entire range of iterations.

Figures 43, 46, and 47 show the panel weight for three
successive SUPEROPT runs. It is clear from these plots
that PANDA2 converges to several different optimum
designs. One of them, with weight of 26.2 Ibs, appears
to be a global optimum design. There is a slightly
heavier feasible design that PANDA2 converges to, as
evident in Fig. 47 between Iterations 150 and 225, and a
yet heavier feasible design as seen between Iterations
225 and 275 in Fig. 43 and between Iterations 50 and
60 and between Iterations 120 and 130 in Fig. 46. Other
local optimum designs at yet higher weights are found
by PANDA2 during the second SUPEROPT (Fig. 46)
between Iterations 140 and 225. Probably further
executions of SUPEROPT would yield still other local
optimum designs. This behavior demonstrates the need
for a global optimizer such as SUPEROPT.

OPTIMUM DESIGN OF ISOGRID-STTFFENED
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SHELL WITH IMPERFECTIONS: The previous
results for the isogrid stiffened shell all correspond to a
perfect structure. Figures 48 - 50 show results from
optimization of the hydrostatically compressed isogrid
and ring stiffened cylindrical shell with combined
buckling modal general and inter-ring imperfections,
Wg and Wp, respectively. Before optimization cycles
were carried out, the DECIDE processor was rerun with
the geometrical constraint condition (33) changed to the
following:

2.00 > H(RNG) + T(l) + 0.5*T(5) (34)

This change permits the ring web to grow considerably
in height. Extra ring height is needed to resist
prebuckling bending of the out-of-round shell. Without
the change, even a small initial general buckling modal
imperfection would have greatly increased the weight
because the ring web and outstanding flange would
have had to be unreasonably thick since the ring web
would not have been able to grow in height because the
geometrical constraint (33) is critical for the optimized
perfect shell.

A general buckling modal imperfection with an
amplitude of 0.05 inches corresponds approximately to
a 1.0 percent out-of-roundness in this case, for which
the diameter of the shell is 18.8 inches. [Out-of-
roundness is defined as (Maximum diameter -
Minimum diameter)/(Nominal diameter)]. One per cent
out-of-roundness is a limitation often imposed by
ASME rules.

Figure 48 shows the objective (weight) for over 120
design iterations. At intervals the amplitudes of the
general buckling modal imperfection Wg and the
inter-ring buckling modal imperfection Wp were
increased until both Wg and Wp had amplitudes of 0.05
inch. Converged optima were always obtained before
either Wg or Wp was increased. Wg was first increased
in two steps to a final value of 0.05 inch followed by
0.01-inch increments of Wp. As expected, the optimum
designs become heavier as the initial imperfection
amplitudes are increased.

Figure 49 shows the isogrid spacing B(ISO) and the
widths and heights of the isogrid and ring T-sections.
As imperfections are "applied" the height of the ring
web H(RNG) increases until the geometrical constraint
(34) is active. Further increases in Wp then cause the
isogrid spacing B(ISO) to decrease and the width of the
outstanding flange W(RNG) of the ring to increase.
Figure 50 shows what happens to the thicknesses of the
various segments of the structure.

CONCLUSIONS

During the past few years several new capabilities have
been added to the PANDA2 program for the minimum
weight design of perfect and imperfect stiffened fiat and
curved composite panels and shells subjected to
multiple sets of loads. The main three goals of these
additions have been:

1. To prevent PANDA2 from generating designs that
are unconservative;

2. To allow PANDA2 to search for and find global
optimum designs;

3. To allow the user to find minimum weight designs
of more kinds of panels.

The addition of Sanders' equations and of Arbocz'
"special" theory of imperfection sensitivity contribute
to the achievement of Goal 1; the addition of the
AUTOCHANGE and SUPEROPT processors
contribute to the achievement of Goal 2; the addition of
the new truss-core cross section and of isogrid stiffened
panels contribute to Goal 3.

Examples that exercise the enhancements to PANDA2
are presented and where possible verified is obtained by
comparison with predictions by STAGS, a general-
purpose finite element code.
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Table 1
Incorporation of Sanders' shell equations into PANDA2. A new input datum called ISAND is required for the
processors, MAINSETUP and PANDAOPT

470.0 Next, you will be asked to provide an index, ISAND, for the type
of shell theory to be used in the PANDA-type (closed form)
buckling analysis. You can choose either ISAND = 0 or ISAND = 1

ISAND = 0 means that Donnell theory will be used (corrected for
"live" pressure that effects primarily n = 2 and n = 3
buckling load factors of complete cylindrical shells)

ISAND = 1 means that Sanders' theory will be used.

The Donnell theory kinematic and "work done" terms are appear in
Eqs (53) and (49b) on p 552 of Vol. 27 of Computers and
Structures (1987 - "Theoretical basis of the PANDA......"[8], with
modifications described in ITEM 68 of the file PANDA2.NEWS [6].

You should always do optimization first with ISAND = 0, then
check the optimium design with an ITYPE=2 run with ISAND = 1.
If the ISAND=1 results show negative margins, only then do
optimization with ISAND = 1 . ISAND=1 requires more
computer time than does ISAND = 0.

471.1 Index for type of shell theory, ISAND

Table 2
Comparison of buckling loads and knockdown factors from Arbocz' "special" theory [24] and the old PANDA2
theory [1] for a 4-layered angle-ply [+theta,-theta]s cylindrical shell under combined axial compression, NX = -2000
Ib/in and in-plane shear, Nxy = -600 Ib/in with an initial buckling modal imperfection with amplitude 0.5 inch.
(Shell properties: Length = 200 in., Radius = 100 in., ply thickness - 0.15 in., layup angle theta=45 deg., simply
supported ends; Material properties for each lamina: El 1 = 20.0 x 10**6 psi, E22 = 1.0 x 10**6 psi, G12 = G13 =
0.5 x 10**6 psi, G23 = 0.4 x 10**6 psi)

BUCKLING LOAD FACTORS AND IMPERFECTION SENSITIVITY SUMMARY

LOCAL INTER-RING GENERAL
BUCKLING BUCKLING BUCKLING

RATIOS OF BUCKLING LOADS FROM ARBOCZ THEORY TO THOSE FROM
PANDA2 THEORY FOR THE PERFECT STRUCTURE:

(ARBOCZ/PANDA2): 9.7368E-01 9.7368E-01 9.7368E-01

KNOCKDOWN FACTORS FOR IMPERFECTIONS DERIVED FROM
PANDA2 THEORY VS THOSE FROM ARBOCZ 1992 UPDATE OF KOITERs
1963 SPECIAL THEORY:
FROM PANDA2 THEORY: 5.9022E-01 5.9022E-01 5.9022E-01
FROM ARBOCZ THEORY: 4.8495E-01 4.8495E-01 4.8495E-01
THE GOVERNING KNOCKDOWN FACTOR FOR EACH TYPE OF BUCKLING
(LOCAL, INTER-RING, GENERAL) IS SET EQUAL TO THE MINIMUM
KNOCKDOWN FACTOR FOR THAT TYPE OF BUCKLING, REDUCED
FURTHER BY THE RATIO (ARBOCZ/PANDA2) FOR THE PERFECT PANEL
IF THE RATIO (ARBOCZ/PANDA2) IS LESS THAN UNITY:
USED NOW IN PANDA2: 4.7218E-01 4.7218E-01 4.7218E-01

147
American Institute of Aeronautics and Astronautics



Table 3
Comparison of buckling loads and knockdown factors from Arbocz' "special" theory [24] and the old PANDA2
theory [1] for a hydrostatically compressed, imperfect, isotropic, ring and stringer stiffened cylindrical shell.

BUCKLING LOAD FACTORS AND IMPERFECTION SENSITIVITY SUMMARY

LOCAL INTER-RING GENERAL
BUCKLING BUCKLING BUCKLING

RATIOS OF BUCKLING LOADS FROM ARBOCZ THEORY TO THOSE FROM
PANDA2 THEORY FOR THE PERFECT STRUCTURE:

(ARBOCZ/PANDA2): l.OOOOE+00 9.9301E-01 1.0001E+00

KNOCKDOWN FACTORS FOR IMPERFECTIONS DERIVED FROM
PANDA2 THEORY VS THOSE FROM ARBOCZ 1992 UPDATE OF KOITERs
1963 SPECIAL THEORY:
FROM PANDA2 THEORY: 5.2938E-01 9.2727E-01 8.7080E-01
FROM ARBOCZ THEORY: 6.7059E-01 8.4979E-01 9.4260E-01
THE GOVERNING KNOCKDOWN FACTOR FOR EACH TYPE OF BUCKLING
(LOCAL, INTER-RING, GENERAL) IS SET EQUAL TO THE MINIMUM
KNOCKDOWN FACTOR FOR THAT TYPE OF BUCKLING, REDUCED
FURTHER BY THE RATIO (ARBOCZ/PANDA2) FOR THE PERFECT PANEL
IF THE RATIO (ARBOCZ/PANDA2) IS LESS THAN UNITY:
USED NOW IN PANDA2: 5.2938E-01 8.4385E-01 8.7080E-01

Table 4
More new output from PANDA2 generated by the new routines based on Arbocz' "special" theory

LOCAL BUCKLING LOAD FACTORS FROM THE
ARBOCZ EQUATIONS FOR THE FOLLOWING PANELS:
CURVED PERFECT PANEL: EIG7X= 9.8940E-01
CURVED IMPERFECT PANEL: EIG7Y= 7.8156E-01
FLAT PERFECT PANEL: EIG7Z= 8.1114E-01

THE ARBOCZ KNOCKDOWN FACTOR IS COMPUTED WITH USE
OF THE MAXIMUM OF EIG7Y AND EIG7Z.

Table 5
Yet more new output from PANDA2 generated by routines based on Arbocz' "special" theory.

INTER-RING BUCKLING LOAD FACTORS FROM
THE ARBOCZ EQUATIONS FOR THE FOLLOWING PANELS:
CURVED PERFECT PANEL: EIG8X= l.OOOOE+00
CURVED IMPERFECT PANEL: EIG8Y= 2.2473E-01
FLAT PERFECT PANEL: EIG8Z= 5.5443E-01

THE ARBOCZ KNOCKDOWN FACTOR IS COMPUTED WITH USE
OF THE MAXIMUM OF EIG8Y AND EIG8Z.
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Table 6
Part of the *.OPP file produced during optimization cycles for the minimum weight design of a 4-layered angle ply
perfect composite cylindrical shell under two load sets: Load Set 1: (Nx.Nxy) = (-2000, +600) Ib/in; Load Set 2:
(Nx.Nxy) = (-1000, +1200) Ib/in;

SUMMARY OF STATE OF THE DESIGN WITH EACH ITERATION

ITERA
TION
NO.

1 3
2 2
3 2
4 2
5 2
6 2

7 2
8 2
9 1
10 1
11 1
12 1

13 1
14 1
15 1
16 1

17 1

WEIGHT
OF

PANEL

.1400E+03

.8260E+03

.5999E+03

.4335E+03

.3089E+03

.2144E+03

.2144E+03

.0413E+03

.9608E+03

.9272E+03

.9106E+03

.8915E+03

.8915E+03

.8808E+03

.8957E+03

.8976E+03

.8976E+03

LOAD SET NO . -
DESIGN IS. . .

T

FEASIBLE
FEASIBLE
FEASIBLE
FEASIBLE
FEASIBLE
FEASIBLE

FEASIBLE
FEASIBLE
FEASIBLE
FEASIBLE

UNKNOWN FEASIB.
NOT FEASIBLE

NOT FEASIBLE

FOR EACH LOAD SET ....
(IQUICK; NO. OF CRITICAL MARGINS)

> 1 2 3 4 5

(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;

ALMOST FEASIBLE (1;
FEASIBLE
FEASIBLE

FEASIBLE

(1;
(1;
(1;

0)
0)
0)
0)
0)
0)
0)
0)
0)
1)
1)
2)

1)
1)
1)
1)

1)

(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;

0)
0)
0)
0)
0)
0)

0)
0)
1)
1)
0)
2)

1)
1)
1)
1)

1)

(0;
(0;
(0;
(0;
(0;
(0;

(0;
(0;
(0;
(0;
(0;
(0;

(0;
(0;
(0;
(0;

(0;

0)
0)
0)
0)
0)
0)

0)
0)
0)
0)
0)
0)

0)
0)
0)
0)

0)

-PANDJ
(0;
(0;
(0;
(0;
(0;
(0;

-PANDJ
(0;
(0;
(0;
(0;
(0;
(0;

-PANDAwjrx

VOPT
0)
0)
0)
0)
0)
0)
U)PT
0)
0)
0)
0)
0)
0)

r̂  /~mrn

(0; 0)
(0;
(0;
(0;

-PANDAwrj.

0)
0)
0)

ft rMirn

(0; 0)

(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)

(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)

(0; 0)
(0; 0)
(0; 0)
(0; 0)

(0; 0)

VALUES OF DESIGN VARIABLES CORRESPONDING TO BEST FEASIBLE DESIGN
VAR. STR/ SEG. LAYER CURRENT
NO. RNG NO. NO.
1 SKN 1 1
2 SKN 1 1
3 SKN 1 2
4 SKN 1 2

VALUE DEFINITION
1.509E-01 T(l }(SKN):thickness for layer index 1
5.775E+01 ANG(1 )(SKN):winding angle (deg.) for layer 1
1.509E-01 T(2 )(SKN):thickness for layer index 2
-5.775E+01 ANG(2 )(SKN):winding angle (deg.) for layer 2

CORRESPONDING VALUE OF THE OBJECTIVE FUNCTION:
VAR. STR/ SEG. LAYER CURRENT
NO. RNG NO. NO. VALUE DEFINITION

0 0 1.896E+03 WEIGHT OF THE ENTIRE PANEL
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Table 7
Revised Section of the PROMPT.DAT file that provides prompts and "help" paragraphs for the PANDA2 user for
what type of stiffener to add to the panel. The revised PROMPT.DAT now includes the choice of isogrid stiffeners.

110.1 Identify type of stiffener along LI (N, T, J, R, A, C, G)
110.2

LI is the length of the panel normal to the plane of the screen.
For choice "G" (isoGrid) LI is irrelevant.

N = no stiffeners along Ll at all
T = T-shaped cross section
J = J-shaped cross section (or angle with flange away from skin)
R = rectangular cross section (blade stiffener)
A = hat-shaped or trapezoidal cross section (enclosing area)
C = Truss-core sandwich construction (added July 1989)
G = isoGrid (added September 1992). With isoGrid the stiffeners

can be T-shaped, J-shaped, or rectangular (blade).

Table 8
Another revised Section of the PROMPT.DAT file that provides prompts and "help" paragraphs for the PANDA2
user for the isogrid configuration.

102.0
You have chosen the ISOGRID option for type of stiffener.
For this type of stiffener only the IQUICK=1 (PANDA-type
closed form analysis) is available. No local postbuckling is
permitted. If you are comparing the relative merits of the
ISOGRID configuration with the more conventional stringer,ring
configurations, make sure to base all your comparisons on
the IQUICK = 1 mode of analysis. Otherwise you may reach
the wrong conclusion about which configuration is best.

NOTE: With the ISOGRID option it is assumed by PANDA2 that
there is no base of width b2 under the stiffener. You
are asked to provide input data only for the web and
the outstanding flange, if any. The cross section
dimensions, layups, material, and temperature of all
three sets of stiffeners in the isogrid are assumed
to be identical.

ANOTHER NOTE: With the ISOGRID option the stiffener spacing b
is the height of the equilateral triangle formed
by the panel skin between stiffeners, NOT the
dimension of one side of the equilateral triangle.

103.1 Identify type of isogrid stiffener cross section (T, J, R)
103.2

With the Isogrid configuration, only T-shaped, J-shaped, or
rectangular (blade) cross sections are available.

104.1 Choose orientation (ISOANG = 1 or 2) of isogrid
104.2

ISOANG = 1 means that one stiffener runs in the circumferential
direction (parallel to the plane of the screen -
in the y direction or L2 direction, called "90-degree"
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stiffener, or stiffener no. 3 in the output.).
The other two stiffeners are at +30 deg. and -30 deg.
with respect to the axial direction.
Stiffener no. 1 is the +30-degree stiffener;
Stiffener no. 2 is the -30-degree stiffener;
Stiffener no. 3 is the 90-degree (circumf) stiffener.

ISOANG = 2 means that one stiffener runs in the axial direction
(normal to the plane of the screen - in the x
direction or LI direction, called "0-degree"
stiffener, or stiffener no. 3 in the output).
The ot^her two stiffeners are at +60 deg. and -60 deg.
with respect to the axial direction.
Stiffener no. 1 is the +60-degree stiffener;
Stiffener no. 2 is the -60-degree stiffener;
Stiffener no. 3 is the 0-degree (axial) stiffener.

Table 9
Input for the hydrostatically compressed isogrid and ring stiffened cylindrical shell, "two-material" model, (input
file, ISOCYL2.BEG, for the BEGIN processor;

N
35

29.53
G
T

1
1

0.5000000
0.2000000

N
10000
N

1
N

1
Y

0.1000000
0
1

N
N

1
N

0.5000000E
0
1

N
N

1
N

0.5000000E-

-01

A,
(T,

$ Do you want a tutorial session and tutorial output?
$ Panel length normal to the plane of the screen, LI
$ Panel length in the plane of the screen, L2
$ Identify type of stiffener along LI (N, T, J, R
$ Identify type of isogrid stiffener cross section
$ Choose orientation (ISOANG = 1 or 2) of isogrid
$ stiffener spacing, b
$ height of stiffener (type H for sketch), h
$ width of outstanding flange of stiffener, w
$ Is the isogrid cocured with the skin?
$ What force/(axial length) will cause web peel-off?
$ Is the next group of layers to be a "default group" ?
$ number of layers in the next group in Segment no.( 1)
$ Can winding (layup) angles ever be decision variables?
$ layer index (1,2,...), for layer no.( 1)
$ Is this a new layer type?
$ thickness for layer index no.( 1)
$ winding angle (deg.) for layer index no.( 1)
$ material index (1,2,...) for layer index no.( 1)
$ Any more layers or groups of layers in Segment no.( 1)
$ Is the next group of layers to be a "default group" ?
$ number of layers in the next group in Segment no.( 3)
$ Can winding (layup) angles ever be decision variables?
$ layer index (1,2,...), for layer no.( 1)
$ Is this a new layer type?
$ thickness for layer index no.( 2)
$ winding angle (deg.) for layer index no.( 2)
$ material index (1,2,...) for layer index no.( 2)
$ Any more layers or groups of layers in Segment no.( 3)
$ Is the next group of layers to be a "default group" ?
$ number of layers in the next group in Segment no.( 4)
$ Can winding (layup) angles ever be decision variables?
$ layer index (1,2,...), for layer no.( 1)
$ Is this a new layer type?

01 $ thickness for layer index no.( 3)
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N

10
0
1
1

N
N

N

0.1000000
0
2

N
N

1
N

0.1000000
0
2

N
1

Y
9.400000

N
Y

0.1640000E+08
0.3100000
6260000.

0
0

N
Y

108000.0
0.1600000

N
Y

0.1640000E+08
0.3100000
6260000.

0
0

$ winding angle (deg.) for layer index no.( 3)
$ material index (1,2,...) for layer index no.( 3)
$ Any more layers or groups of layers in Segment no.( 4)
$ choose external (0) or internal (1) isogrid stiffeners
$ Identify type of stiffener along L2 (N, T, J, R, A)
$ stiffener spacing, b
$ width of ring base, b2 (zero is allowed)
$ height of stiffener (type H for sketch), h
$ width of outstanding flange of stiffener, w
$ Are the rings cocured with the skin?
$ Is the next group of layers to be a "default group" ?
$ number of layers in the next group in Segment no.( 3)
$ Can winding (layup) angles ever be decision variables?
$ layer index (1,2,...), for layer no.( 1)
$ Is this a new layer type?
$ thickness for layer index no.( 4)
$ winding angle (deg.) for layer index no.( 4)
$ material index (1,2,...) for layer index no.( 4)
$ Any more layers or groups of layers in Segment no.( 3)
$ Is the next group of layers to be a "default group* ?
$ number of layers in the next group in Segment no.( 4)
$ Can winding (layup) angles ever be decision variables?
$ layer index (1,2,...), for layer no.( 1)
$ Is this a new layer type?
$ thickness for layer index no.( 5)
$ winding angle (deg.) for layer index no.( 5)
$ material index (1,2,...) for layer index no.( 5)
$ Any more layers or groups of layers in Segment no.( 4)
$ choose external (0) or internal (1) rings
$ Is the panel curved in the plane of the screen?
$ Radius of curvature (cyl. rad.) in the plane of screen, R
$ Is panel curved normal to plane of screen? (answer N)
$ Is this material isotropic (Y or N)?
$ Young's modulus, E( 1)
$ Poisson's ratio, NU( 1)
$ transverse shear modulus, G13( 1)
$ Thermal expansion coeff., ALPHA( 1)
$ residual stress temperature (positive),TEMPTUR( 1)
$ Want to supply a stress-strain "curve" for this mat'l? (N)
$ Want to specify maximum effective stress ?
$ Maximum allowable effective stress in material type( 1)
$ weight density (greater than 0!) of material type( 1)
$ Is lamina cracking permitted along fibers (type H(elp))?
$ Is this material isotropic (Y or N)?
$ Young's modulus, E( 2)
$ Poisson's ratio, NU( 2)
$ transverse shear modulus, G13( 2)
$ Thermal expansion coeff., ALPHA( 2)'
$ residual stress temperature (positive),TEMPTUR( 2)

Table 10
Input for the hydrostatically compressed isogrid and ring stiffened cylindrical shell, (input file, ISOCYL2.DEC, for
the DECIDE processor).

N $ Do you want a tutorial session and tutorial output?
Y $ Want to use default for thickness decision variables?
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N
Y

0.4000

0.50E-01
1

Y
4

0.20E-01
0.5000

Y

1 $ Lowest layer index (r.h.screen) for default decision variable
3 $ Highest layer index for default decision variable
$ Any more ranges of layer types for default dec. var.?

4 $ Lowest layer index (r.h.screen) for default decision variable
5 $ Highest layer index for default decision variable
$ Any more ranges of layer types for default dec. var.?

0.1000
1.200

Y

0.1000
2.000

N
Y

0.3333
N
N
N
Y
N

2
0

10
0.8000

0.8000

13
0.4000

N
N
Y
Y

N)

8 $
5
20

10 $

11 $

N)

N)

N)

N)

N)

N)

$ Any more decision variables (Y or
$ Choose a decision variable (1,2,3,
$ Lower bound of variable no.( 1)
$ Upper bound of variable no.( 1)
$ Any more decision variables (Y or
$ Choose a decision variable (1,2,3,
$ Lower bound of variable no.( 3)
$ Upper bound of variable no.( 3)
$ Any more decision variables (Y or
$ Choose a decision variable (1,2,3,
$ Lower bound of variable no.( 4)
$ Upper bound of variable no.( 4)
$ Any more decision variables (Y or
Choose a decision variable (1,2,3,

$ Lower bound of variable no.( 8)
$ Upper bound of variable no.( 8)
$ Any more decision variables (Y or
Choose a decision variable (1,2,3,

$ Lower bound of variable no.(10)
$ Upper bound of variable no.(10)
$ Any more decision variables (Y or
Choose a decision variable (1,2,3,

$ Lower bound of variable no.(11)
$ Upper bound of variable no.(11)
$ Any more decision variables (Y or
$ Any linked variables (Y or N) ?
$ Choose a linked variable (1,2,3,...)
$ To which variable is this variable linked?
$ Assign a value to the linking coefficient, C(j)
$ Any other decision variables in the linking expression?
$ Any constant CO in the linking expression?
$ Any more linked variables (Y or N) ?
$ Any inequality relations among variables? (type H)
$ Want to see an example of how to calculate CO, Cl, Dl,.,
$ Identify the type of inequality expression (1 or 2)
$ Give a value to the constant, CO
$ Choose a variable from the list above (1, 2, 3,...)

a value for the coefficient, Cl
a value for the power, Dl

$ Any more terms in the expression: CO +Cl*vl**Dl
$ Choose a variable from the list above (1, 2, 3,.

a value for the coefficient, Cn
a value for the power, Dn

Any more terms in the expression: CO +Cl*vl**Dl
Choose a variable from the list above (1, 2, 3,.
Choose a value for the coefficient, Cn
Choose a value for the power, Dn

$ Any more terms in the expression: CO +Cl*vl**Dl +C2*v2**D2 +.
$ Are there any more inequality expressions?
$ Any escape variables (Y or N) ?
$ Want to have escape variables chosen by default?

153
American Institute of Aeronautics and Astronautics

Choose
Choose

Choose
Choose

+C2*v2**D2
.)

+C2*v2**D2
. . -)



Table 11
Input file for the hydrostatically compressed isogrid and ring stiffened cylindrical shell to be optimized, (input file,
ISOCYL2.OPT, for the MAINSETUP/PANDAOPT processors).

N
-7050

-14100
0

N
0
0

Y
1

1.3333
1.100
1.100

1
1

N
0
0
0

1500
Y
Y

0
N
N

0
0.0
0.0

0.IE-06
1

N
Y
N
N
N
N
N
N

0

Y
N
N

1
2

N
5
1

1
1.0

N

$ Do you want a tutorial session and tutorial output?
$ Resultant (e.g. Ib/in) normal to the plane of screen, Nx( 1)
$ Resultant (e.g. Ib/in) in the plane of the screen, Ny( 1)
$ In-plane shear in load set A, Nxy( 1)
$ Does the axial load vary in the L2 direction?
$ Applied axial moment resultant (e.g. in-Ib/in), Mx( 1)
$ Applied hoop moment resultant (e.g. in-Ib/in), My( 1)
$ Want to include effect of transverse shear deformation?
$ IQUICK = quick analysis indicator (0 or 1)
$ Factor of safety for general instability, FSGEN{ 1)
$ Factor of safety for panel (between rings) instability, FSPAN( 1)
$ Minimum load factor for local buckling (Type H for HELP), FSLOC( 1)
$ Minimum load factor for stringer buckling (Type H), FSBSTR( 1)
$ Factor of safety for stress, FSSTR( 1)
$ Do you want wide-column buckling to constrain the design?
$ Resultant (e.g. Ib/in) normal to the plane of screen, NxO( 1)
$ Resultant (e.g. Ib/in) in the plane of the screen, NyO( 1)
$ Axial load applied along the (0=neutral plane), (l=panel skin)
$ Uniform applied pressure [positive upward. See H(elp)], p( 1)
$ Is the pressure part of Load Set A (Generally answer Y)?
$ Is the pressure hydrostatic (Type H for "HELP")?
$ Choose in-plane immovable (IFREE=0) or movable (IFREE=1) b.c.(
$ Are you feeling well today (type H)?
$ Is there a maximum allowable deflection due to pressure?
$ Out-of-roundness, Wimpgl=(Max.diameter-Min.diam)/4, Wimpgl( 1)
$ Initial buckling modal general imperfection amplitude, Wimpg2(
$ Initial buckling modal inter-ring imperfection amplitude,Wpan(
$ Initial local imperfection amplitude (must be positive), Wloc (
$ Maximum allowable average axial strain (type H for HELP)( 1)
$ Is there any thermal "loading" in this load set (Y/N)?
$ Do you want a "complete" analysis (type H for "Help")?
$ Want to provide another load set ?
$ Do you want to impose minimum TOTAL thickness of any segment?
$ Do you want to impose maximum TOTAL thickness of any segment?
$ Do you want to impose minimum TOTAL thickness of any segment?
$ Do you want to impose maximum TOTAL thickness of any segment?
$ Use reduced effective stiffness in panel skin (H(elp), Y or N)?
$ NPRINT= output index (0=good, l=ok, 2=more, 3=too much)
$ Index for type of shell theory, ISAND

$ Does the postbuckling axial wavelength of local buckles change?
$ Want to suppress general buckling mode with many axial waves?
$ Do you want to double-check PANDA-type eigenvalues [type (H)elp]?
$ Choose (0=transverse inextensional; l=transverse extensional)
$ Choose type of analysis (1 or 2 or 3 or 4 or 5)
$ Do you want to prevent secondary buckling (mode jumping)?
$ How many design iterations permitted in this run (5 to 25)?
$ MAXMAR. Plot only those margins less than MAXMAR (Type H)
$ Do you want to reset total iterations to zero (Type H)?
$ Index for objective (l=min. weight, 2=min. distortion)
$ FMARG (Skip load case with min. margin greater than FMARG)

0

1)

1)
1)
1)
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Table 12
Last part of the output file, ISOCYL2.OPP, for the hydrostatically compressed isogrid and ring stiffened cylindrical
shell, "two-material" model.

ITERA
TION
NO.

1 3
2 3
3 3
4 3
5 3
6 3

7 3
8 2
9 2
10 2
11 2
12 2

13 2
14 2
15 2
16 2
17 2
18 2

19 2
20 2
21 2
22 2
23 2

24 2

SUMMARY

WEIGHT
OF

PANEL

.7208E+01

.3000E+01

.2085E+01

.1610E+01

.0978E+01

.0464E+01

.0464E+01

.9120E+01

.7964E+01

.7413E+01

.7127E+01

.6906E+01

.6906E+01

.6469E+01

.6208E+01

.6171E+01

.6329E+01

.6220E+01

.6220E+01

.6218E+01

.6217E+01

.6393E+01

.6451E+01

.6451E+01

OF STATE OF THE DESIGN WITH EACH ITERATION

FOR
(IQUICK;

LOAD SET NO.-> 1
DESIGN IS. . .

\

FEASIBLE
ALMOST FEASIBLE
ALMOST FEASIBLE

FEASIBLE
FEASIBLE
FEASIBLE

FEASIBLE
FEASIBLE
FEASIBLE
FEASIBLE
FEASIBLE
FEASIBLE

FEASIBLE
FEASIBLE
FEASIBLE

ALMOST FEASIBLE
FEASIBLE
FEASIBLE

FEASIBLE
ALMOST FEASIBLE

(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;
(1;

ALMOST FEASIBLE (1;
FEASIBLE
FEASIBLE

FEASIBLE

(1;
(1;
(1;

2)
4)
6)
6)
6)
7)

6)
6)
8)
10)
10)
15)

11)
14)
13)
12)
12)
16)

12)
12)
12)
12)
12)

12)

(0
(0
(0
(0
(0
(0

(0
(0
(0
(0
(0
(0

(0
(0
(0
(0
(0
(0

(0
(0
(0
(0
(0

EACH
NO.
2

; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)
; 0)

; 0)
; 0)
; 0)
; 0)
; 0)

LOAD SET ....
OF CRITICAL MARGINS)

3 4 5

(0;
(0;
(0;
(0;
(0;
(0;

(0;
(0;
(0;
(0;
(0;
(0;

(0;
(0;
(0;
(0;
(0;
(0;

(0;
(0;
(0;
(0;
(0;

0)
0)
0)
0)
0)
0)

0)
0)
0)
0)
0)
0)

0)
0)
0)
0)
0)
0)

0)
0)
0)
0)
0)

(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)

-PANDAOPT
(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)

-PANDAOPT
(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)

-PANDAOPT
(0; 0)
(0; 0)
(0; 0)
(0; 0)
(0; 0)

-PANDAOPT
< ——— OPTIMUM DESIGN IN

(0;
(0;
(0;
(0;
(0;
(0;

(0;
(0;
(0;
(0;
(0;
(0;

(0;
(0;
(0;
(0;
(0;
(0;

(0;
(0;
(0;
(0;
(0;

THIS

0)
0)
0)
0)
0)
0)

0)
0)
0)
0)
0)
0)

0)
0)
0)
0)
0)
0)

0)
0)
0)
0)
0)

CASE
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Table 13
Part of the output file, ISOCYL2.OPM, for the optimized hydrostatically compressed isogrid and ring stiffened
cylindrical shell, "two-material" model. (The output is generated by a PANDAOPT run with the "fixed design"
analysis type, ITYPE = 2).

ITERATION NO., LOAD SET NO., SUBCASE NO. = 0 1 1 PANEL MIDLENGTH

MARGINS FOR CURRENT DESIGN: LOAD
MAR. STR/ SEG. CRITICAL CURRENT
NO. RNG NO. MARGIN? VALUE
1 0 Y 3.045E-02
2 ISO 3 1.798E+00
3 ISO
4 ISO
5 ISO
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

ITERATION

3
3
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

NO.,

1.668E+00
Y

Y

1.
1.
1.
4.

281E-02
689E+00
032E-03
033E-01

6.769E-01
Y

Y

Y

Y
Y

6
4

-8.
9.
2.
4
9
4

375E-03
814E-01
723E-04
070E-01
067E-02
.636E+02
OOOE-05
750E-03

6.775E-01
Y

Y

LOAD

MARGINS FOR CURRENT
MAR. STR/
NO. RNG
1
2
3 ISO
4 ISO
5 ISO
6 ISO
7
8
9 RNG

10 RNG
11
12
13
14
15
16
17
18
19
20
21
22
23

SEG
NO.
0
0
3
3
3
4
0
0
3
4
0
0
0
0
0
0
0
0
0
0
0
0

2.467E-03
4

-8.
9.

814E-01
723E-04
070E-01

CASE NO. 1, SUBCASE NO. 1

DEFINITION
effect, stress: matl=l , SKN, seg=2 , at n=6 , layer=l ,z=0.0445 ;-MID
buckling margin for isogrdl web . Local halfwaves=3 . MID. F.S.
buckling margin for isogrd2 web . Local halfwaves=3
buckling margin for isogrd3 web . Local halfwaves=3
buckling margin for isogrd3 flange. Local halfwaves=3
buckling of isogrd3 segs. 3+4 together. M=3 ; C=0. ;
buckling of isogrd3 stiffener no. J=3 ; panel MID.; M=l
buck. (DONL) simp-support smear isogrd;M=l ; N=5 ; slope=0.
buck. (DONL) simp-support general buck;M=l ; N=2 ; slope=0.
buck. (DONL) rolling only of isogrid3 ;M=1 ; N=0 ; slope=0.
buck. (DONL) ISOGRID : web buckling;M=3 ; N=l ; slope=0.
buck. (DONL) RINGS: web buckling;M=27 ; N=l ; slope=0.
Local triangular skin buckling load factor -1 ; F.S.=1
(Max. allowable average axial strain) / (average axial strain)
0.3333 * (Stringer spacing, b)/ (Stringer base width, b2) - 1
1.- [0.+0.8*VAR(10)**(1.)+0.8*VAR(5)**(1.)+0.4*VAR(13) **(!.)]
buck. (SAND) simp-support smear isogrd;M=l ; N=5 ; slope=0.
buck. (SAND) simp-support general buck;M=l ; N=2 ; slope=0.
buck. (SAND) rolling only of isogrid3 ;M=1 ; N=0 ; slope=0.
buck. (SAND) ISOGRID : web buckling ;M= 3 ; N=l ; slope=0.
buck. (SAND) RINGS: web buckling;M=27 ; N=l ; slope=0.

MID.
MID.
MID.
MID.

1
- 1

F
F
F
F
F
F
F
F
F
F

F
F

F
F
F
F
F

S.
S.
S.
S
S
.S
.S
.S
S
.S

S
S

.S

.S

.S
S
.S

;FS=1.=1.=1.=1.=1.=1.=1.=1.=1.=1.=1.=1.
=1.=1.
=1..=1=1.
=1.
=1.

4
2
1
3333
6

1
3333
6

SET NO., SUBCASE NO. = 0 1 2 AT RINGS

DESIGN: LOAD CASE NO. 1, SUBCASE NO. 2
CRITICAL CURRENT
MARGIN?

Y
Y

1
8
3.
3.
1.
1.
1
3.
5.
4.
1.

VALUE
.645E-02
.131E-03
788E-01
480E-01
747E-01
477E+00
781E-01
958E-01
435E-01
068E+00
339E+00

4.974E-01
Y
Y

3.085E-02
3.302E-02
3.
5.
1.
6

389E-01
310E-01
883E-01
.304E+02

4.974E-01
Y
Y

3.
3
3.

0 5.

085E-02
302E-02
389E-01

DEFINITION
effect, stress: matl=l , ISO, seg=4 .allnodes, layer=l ,z=-0
effect, stress: matl=2 , RNG, seg=4 .allnodes, layer=l ,z=-0
buckling margin for isogrdl web . Local halfwaves=3
buckling margin for isogrd2 web . Local halfwaves=3
buckling margin for isogrd3 web . Local halfwaves=3
buckling margin for isogrd2 flange. Local halfwaves=3
buckling of isogrd2 segs. 3+4 together. M=3 ; C=0. ;
buckling of isogrd2 stiffener no. J=2 ; panel RNGS; M=l
buckling margin for ring seg.3 . Local halfwaves=26 ,
buckling margin for ring seg.4 . Local halfwaves=26 .
buckling of ring segs. 3+4 together. M=20 ; C=0. ;
buck. (DONL) rolling only of isogrid2 ;M=1 N=0 slope=0.
buck. (DONL) rolling only of rings; M=0 N=l slope=0.
buck. (DONL) rolling only axisym.rings;M=0 N=0 slope=0.
buck. (DONL) ISOGRID : web buckling;M=4 N=l slope=0.
buck. (DONL) RINGS: web buckling;M=20 N=l slope=0.
Local triangular skin buckling load factor -1 ; F.S.=1
(Max. allowable average axial strain) / (average axi 1 strain)
buck. (SAND) rolling only of isogrid2 ;M=1 N=0 slope=0.
buck. (SAND) rolling only of rings; M=0 N=l slope=0.
buck. (SAND) rolling only axisym. rings ;M=0 N=0 slope=0.
buck. (SAND) ISOGRID : web buckling;M=4 N=l slope=0.

.0168

.0462
RNGS
RNGS
RNGS
RNGS
RNGS

RNGS
RNGS
RNGS

.1
- 1

310E-01 buck. (SAND) RINGS: web buckling; M=20 N=l slope=0.

-RNGS;FS=1.
-RNGS;FS=1.
F
F
F
F
F
F
F
F
F
F
F
F
F
F

F
F
F
F
F
F

.S
S
.S
S
.S
.S
S
.S
.S
.S
.S
.S
S
.S

S
.S
.S,s
.S
.S

=1.=1.=1.=1.=1.=1.=1.=1.=1.=1.=1.=1.=1.=1.
=1.=1.=1.=1.=1.=1.

4
2

4
6
6
6

6
6
6
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Table 13 continued
VAR.
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13

DEC.
VAR.
Y
N
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y

CURRENT
VAR.
NO.

STR/
RNG

SUMMARY OF INFORMATION FROM OPTIMIZATION ANALYSIS
ESCAPE LINK. LINKED LINKING LOWER CURRENT
VAR.
N
N
N
N
Y
Y
Y
N
N
N
N
Y
Y

VALUE
SEG.
NO.
0

VAR.
N
Y
N
N
N
N
N
N
N
N
N
N
N

OF THE
LAYER
NO.
0 2

TO CONSTANT
0
1
0
0
0
0
0
0
0
0
0
0
0

OBJECTIVE
CURRENT
VALUE

.645E+01

O.OOEtOO
3.33E-01
O.OOEtOO
O.OOEtOO
O.OOEtOO
O.OOEtOO
O.OOEtOO
O.OOE+00
O.OOEtOO
O.OOEtOO
O.OOEtOO
O.OOEVOO
O.OOEtOO

FUNCTION:

BOUND VALUE
4
0
5
2
2
2
2
5
0
5
1
2
2

.OOE-01 2

.OOEtOO 6,

.OOE-02 6.

.OOE-02 3

.OOE-02 8

.OOE-02 2

.OOE-02 3

.OOEtOO 5

.OOEtOO 0

.OOE-01 1

.OOE-01 7

.OOE-02 6

.OOE-02 9

.0616EtOO

.8713E-01

.7177E-01

.3937E-01

.8982E-02

.7693E-02

.3657E-02

.OOOOEtOO

.OOOOEtOO
,1089EtOO
.4654E-01
.0823E-02
.2347E-02

UPPER DEFINITION
BOUND
3
0.
1.
5
1
1
1
2
0
1
2
1
1

.OOEtOO

.OOEtOO
OOEtOO
.OOE-01
.OOEtOl
.OOEtOl
.OOEtOl
.OOEtOl
.OOEtOO
.20EtOO
.OOEtOO
.OOEtOl
.OOEtOl

B(ISO) :stiffener spacing, b: ISO seg=NA, layer=NA
B2(ISO) :width of stringer base, b2: ISO seg=2 , laye
H(ISO) :height of stiffener (type H for sketch), h:
W(ISO):width of outstanding flange of stiffener, w:

T(l ) (ISO): thickness for layer index no. (1 ): ISO seg=l
T(2 ) (ISO) : thickness for layer index no. (2 ): ISO seg=3
T(3 ) (ISO) : thickness for layer index no. (3 ): ISO seg=4

B(RNG) :stiffener spacing, b: RNG seg=NA, layer=NA
B2(RNG) :width of ring base, b2 (zero is allowed): RN
H(RNG) :height of stiffener (type H for sketch), h:
W(RNG) :width of outstanding flange of stiffener, w:

T(4 ) (RNG) : thickness for layer index no. (4 ): RNG seg=3
T(5 ) (RNG) : thickness for layer index no. (5 ): RNG seg=4

DEFINITION
WEIGHT OF THE ENTIRE PANEL
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Seg. 3 -->

O WEIGHT OF THE ENTIRE PANEL

LLJ

O
LU

Seg. 3 -->

AS A/ \e 4/ \/ • \g- g/ \ /\ / l\ \ e/ / \
\ / \ \2 S/ / \
\ / \ /I/ \V Seg. !--> V ' V

O WEIGHT OF THE ENTIRE PANEL

50 100 150 200
DESIGN ITERATIONS

250 50 100 150 200
DESIGN ITERATIONS

250 300

Fig. 7 Weight of the truss-core panel during 3rd execution of SUPEROPT. Fig. 8 Weight of the truss-core panel during 4th execution of SUPEROPT.
5 PANDAOPTs per AUTOCHANGE were used. 3 PANDAOPTs per AUTOCHANGE were used, which is insufficient.



Seg. 3 -->
\
\ y
\ /
\ /
\ /
\ /V Seg

<- ---

AS A
' \e 4/ \• \g- g/ \l\ \ e/ / \ ,

\ \2 S/ / \ /\ /I/ \ /. l--> v ' V
b ----->

----- ---<-upper sxin
/ " middle surface

/ 1
/ 1' h =(skin-middle-surfI to-skin-middle-

1 surface height)
V

----- ---<-lower skin
middle surface

(a)
A single module consists of Seg. 1 through Seg. 4.Seg. 4 has the same wall construction as Seg. 2.

. Original truss-core sandwich cross section
configuration (See Ref. [5])

05
IV)

Truss-core sandwich wall construction
with extra segments of width b2...,

< b2 > - - - - Seg. 3 - - - ->

/-Seg6>\S /
/ \e 4// - \g. g// l\ \ e/ // \ \2 s/ /

/ \ /I// --- Seg. !----> \<Seg5-/ '
< b2 >

.«------- ----<-upper sKin
\ " middle surface
\ 1\ 1\ h-(skin-middle-surf .
\ | to-skin-middle-
\ | surface height)\ v

middle surface

(b)
-----> *Y* coordinate direction

A single module consists of Seg. 1 through Seg. 6.
Seg. 4 has the same wall construction as Seg. 2.
Seg. 5 has wall construction - Seg. 1.
Seg. 6 has wall construction - Seg. 3.

New truss-core sandwich cross sectionconfiguration. Note that as of now the
configuration is somewhat limited in thatSeg. 5 must have the same wall as Seg. 1 and
Seg. 6 must have the same wall as Seg. 3.

CO
IT
LLJ

LU

DC
a.zgcoLUQ

,0

4 T(1 )(STR):thickness for layer index no.(1): SKN seg-1 , layer. 1
< b2 > ---- Seg. 3 ---->

50 100 150 200
DESIGN ITERATIONS

250 300

Fig. 9 (a) Original truss-core cross section geoaetry; (b) Hew alternative
geometry permitted in PAHDA2.

Fig. 10 W a l l thickness variation during execution of SUPEROPT for a flat
truss-core sandwich panel with the new cross section geonetry shown in
Fig. 9(b). The panel is loaded by combined axial conpression, in-plane
shear, and normal pressure.



O 1 B(STR):pitch of truss core, b: seg-NA, layer-NA
A 2 B2(STR):width over which truss core contacts each face sheet, b2
+ 3 H(STR):height of truss, h: WEB seg=2, layer=NA

A 2.1.1 local wide-column buckling mode, discrete model
x 4.1.1 effect, stress: matl=1 ; MID.
o 5 .1.1 buck(DONL)simp-support general buck; MIDLENGTH
v 6 .1.1 0.45 '(Str. spacing, b)/(Str. base width, b2)
8 7.1.1 buck(DONL) STRINGERS: upper skin; MIDLENGTH
* 8.1.1 (Str. base width, b2)/(0.2 *(Str. spacing, b))
» 9.1.1 buck(SAND)simp-support general buck; MIDLENGTH
ffl 10.1.1 buck(SAND) STRINGERS: upperskin; MIDLENGTH
z 11.1.1 effect, stress: matJ-1 ; -MID.

50 100 150 200
DESIGN ITERATIONS

250 300 90 50 100 150 200
DESIGN ITERATIONS

250 300

Fig. 11 Pitch, contact width, and height variation during execution of
SUPEROPT for truss-core panel with new cross section geometry.

Fig. 12 Margins corresponding to conditions at the midlength of the
truss-core panel during execution of SUPEROPT.



en

O WEIGHT OF THE ENTIRE PANEL
< b2 > ---- Seg. 3 ---->

/-Seg6>\S
' V/ • \g/ i\ \/ \ x

/
/ --- Seg. 1----:

<---------- b ----

•»/
g/

e/ /
\2 S/ /\ /I/
> \<Seg5-/ '

< b2 >
^

\
\
\
\
\
\

)

x 4.1.2effect, stress: matl-1 ; ENDS
o 5.1.2 effect, stress: matl-1 ; -ENDS
V 6.1.2 buck(DONL) STRINGERS: web buckling; PANEL END
H 7.1.2 buck(DONL) STRINGERS: upper skin; PANEL END

50 100 150 200
DESIGN ITERATIONS

250 300 50 100 150 200
DESIGN ITERATIONS

250 300

Fig. 13 Weight of panel during execution of SUPEROPT for truss-core panel
with new cross section geometry.

F^9- " Mar9ins corresponding to condition, at the axi.lly loaded ends of
the truss-core panel during execution of SUPEROPT.
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CDO)

x10",

7.1.1 Normalized average axial total stiff: Ctanl 1/CS(1,1)
8.1.1 Normalized average hoop total stiff: Ctan22/CS(2,2)
9.1.1 Normalized average shear total stiff: Ctan33/CS(3,3)

cocc
O
<XLUCO
LU

CL q - Seg. 3 ---->
/-Seg6>\S /
/ \e 4/
/ - \g. g// l\ \ e/ /

/ \ \2 S/ /
/ \ /I/--- Seg. !----> \<Seg5-/ '

b2

-800 -700 -600 -200 -100

O 1 .1.1 Local buckling: discrete model
A 2.1.1 local wide-column buckling mode, discrete model
+• 3.1.1 Local buckling: Koiter theory.
x 4.1.1 effect, stress: matl=1 ; MID.
B 7.1.1 effect, stress: matl.1 ; -MID.
Z 11.1.1 buck(DONL)simp-support general buck; MIDLENGTH
ffl 12.1.1 buck(DONL) STRINGERS: web buckling; MIDLENGTH
8 13.1.1 buck(DONL) STRINGERS: upperskin; MIDLENGTH
• 15.1.10.45 *(Str. spacing, b)/(Str. base width, b2)

co
?O
DC

Oto 3LU 9Q

-500 -400 -300
AXIAL LOAD, NX

Fig. 17 Change in effective stiffness of the optimized truss-core panel
as the load components. NX, Nxy, and p, are increased proportionally into
the local postbuckling regime.

'8.5

•a n n Eh"

9.0 9.5 10.0
DESIGN VARIABLE

10.5 11.0
x10"

Fig. 18 Margins corresponding to conditions at the raid length of the
optimized truss-core panel as functions of truss-core pitch, B(STR). for
the panel with the new truss-core cross section geometry. Very low
cross-wise transverse shear stiffness when B(STR) corresponds to nearly
vertical webs cause the design to become deeply unfeasible in that local
design neighborhood.



Buckling load ratio; Knockdown factors

» •— n
o = 3*< ea "o
r— 01

• o cr
r- r* O
f— -•• O

Q. M =« a «-i 3 -aM ao -•• oi 2 »tr < .—

Q. =ro <•
8 •* S

s s.
03 O

oT ro

2.0 2.5 3.0

Knockdown factors
3.5 4.0 4.5 5.0

x^
o

6.0-
CO
c
-I
»

f— 3 «

IT Q. M -*a a —
U -1 rt- >

rt- o a
- 1 3« -a a.-•• ~^to a »
3 W 3M «Q- » » - • • * —-i o a

3 -o
r* «7

»< o
o S

I ?_ o z
*— « o-•• >

r*- NJ
»



o>
oo

O WEIGHT OF THE ENTIRE PANEL

X10'

6 8 10
DESIGN ITERATIONS

12 14

x10",

CO q
QC oJ
LU

cc

1 T(1 )(SKN):thickness for layer index no.(1 ): STR seg=1 , layer=1
3 T(2 )(SKN):thickness for layer index no.(2): STR seg=1 , layer=2

g
CO
LU m
Q -

0
JL.

12 14 16

Fig. 21 Optimization of 4- layered angle ply inperfect composite
cylindrical shell subjected to two combinations of axial compression and
in-plane shear: Shell weight vs design iterations.
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Fig. 22 Optimization of 4-layered angle ply imperfect composite
cylindrical shell subjected to two combinations of axial compression and
in-plane shear: Ply thickness vs design iterations.
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model scale- 0.2916E+01
PA. 1.02248E+00 PB- O.OOOOOE+00 PX- O.OOOOOE+00
step 17 displacement deformed geometry
nonlinear collapse
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Fig. 29 Deformed shape corresponding to the highest Load factor,
PA = 1.0225, reached in the nonlinear collapse analysis, results of
which are shown in Fig. 27.

Fig. 30 Post-collapse deforned shape corresponding to the last load step
reached in the nonlinear collapse analysis, results of which ar« shown in
Fig. 27.
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O WEIGHT OF THE ENTIRE PANEL

model scale- 0.2916E+01
PA. 1.15494E+00 PB- O.OOOOOE+00 PX- O.OOOOOE+00
step 25 displacement deformed geometry
nonlinear collapse
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8y -25.00
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Fig. 33 Deformed shape corresponding to the highest load factor, PA =
1.155, reached in the nonlinear collapse analysis, results of which are
shown in Fig. 31.
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Fig. 34 Simply supported isosceles triangle for which local buckling
of the isogrid-stiffened panel must be calculated.

Fig. 35 Optimization of hydrostatically coopressed isogrid and ring
stiffened perfect cylindrical shell: Shell weight vs design iterations.
These results are frow the "two-materials" model. Geometric constraint on
ring height is: 1.25 > H(RNG) + T(1) + 0.5*T(5).
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O 1.1.2 effect, stress: matl-1 .aHnodes; -RNOS
A 2.1.2 effect, stress: matl-2 .allnodes; -RNGS
+ 3.1.2 Buckling of isogrid stlffenerAT RINGS
X 4.1.2buck(DONL)rollingonlyof rings; AIRINGS
O 5.12 buck(DONL)rolHng only axfsym.rings; AT RINGS
V 6.1.2buck(SAND)roiHngonlyof rings; AT RINGS
8 7.1.2 buck(SAND)rofling only axisym.rings; AT RINGS
K 8.1.2 buckling: IsogrdZ sags. 3+4. AT RINGS
» 9.1.2 budding: ring seg.3. AT RINGS
ffi 10.12 buck(OONL)rolling only of isogrktt; AT RINGS
a 11.1.2buck(DONL) RINGS: web buckling; AT RINGS
ffl 12.1.2 budding: isogrdl web. AT RINGS
8 13.1.2 buckling: isogrd2 web. AT RINGS
0 14.1.2 buckling: isogrdS web. AT RINGS
• 15.1.2 buck(DONL) ISOGRID : web budding; AT RINGS
O 16.1.2 local buckling of triangular skin
a 17.12 buck(SAND)rolling only of Isogrid2; AT RINGS
• 18.1.2 buck(SAND) ISOGRID : web budding; AT RINGS
D 19.1.2 buck(SAND) RINGS: web buckling; AT RINGS O WEIGHT OF THE ENTIRE PANEL
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Fig. 40 Optimization of hydrostatically compressed isogrid and ring
stiffened perfect cylindrical shell: Margins corresponding to condition*
at rings vs design iterations.

Fig. 41 Optimization of hydrostatically conpressed isogrid and ring
stiffened perfect cylindrical shell: Shell weight vs design iterations.
These results are for the "one-material" node I.
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