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Foreword 
From 1964 to 1979, NASA developed uniform criteria for the design of space vehicles in the 
four following technology areas: 

Chemical Propulsion 

Environment 

Guidance and Control 

Structures 

Individual topics within these technology areas were published in a series of NASA Space 
Vehicle Design Criteria monographs, the NASA SP-8000 document series. A total of forty-four 
NASA design criteria monographs on Structures were developed and include four monographs 
on the design of buckling-critical structures: 

NASA SP-8007: Buckling of Thin-Walled Circular Cylinders, Revised August 
1968 

NASA SP-8019: Buckling of Thin-Walled Truncated Cones, September 1968 

NASA SP-8032: Buckling of Thin-Walled Doubly Curved Shells, August 1969 

NASA SP-8068: Buckling Strength of Structural Plates, June 1971 

These monographs are known throughout the aerospace industry and provide recommendations 
for the design of buckling-critical thin unstiffened plates and shells subjected to various 
combinations of mechanical and pressure loads. In addition to these NASA monographs, two 
prominent NASA reports were published and are commonly used in the design of stiffened 
cylinders:  

NASA TN D-5561: Buckling of Stiffened Cylinders in Axial Compression and 
Bending – A Review of Test Data, 1969 

NASA CR-124075: Isogrid Design Handbook, 1973.  

Recent industry and NASA experience with the development of launch vehicles structures have 
indicated a need for updated monographs for the design of buckling-critical structures that 
account for state-of-the-art structural configurations, material systems, and computational tools. 
This monograph provides an update to NASA SP-8007 and was prepared under the cognizance 
of the NASA Engineering and Safety Center (NESC). It summarizes all significant knowledge 
and experience accumulated from the NESC Shell Buckling Knockdown Factor (SBKF) 
Assessment (NESC Assessment #: 07-010-E) to date for use in the design of buckling-critical 
thin-walled circular cylinders. The lead of the SBKF Assessment and author of this monograph 
was Mark W. Hilburger of NASA Langley Research Center. A number of other individuals 
assited in developing the material and reviewing the drafts. In particular, significant 
contributions to the State of the Art assessment were provided by Dr. Robert P. Thornburgh of 
the Army Research Laboratory. 

The format and terminology used in this monograph is similar to previous versions of NASA SP-
8007 for ease of understanding and implementation. In addition, as with the design 
recommendations contained in the previous versions of NASA SP-8007, this monograph is to be 



iv 

regarded as a guideline to design and not as a NASA requirement, unless specified in formal 
program specifications. Furthermore, it is expected that the guidelines presented in this 
monograph will be updated as appropriate. Designers are advised to stay abreast of updates in the 
state-of-the-art and corresponding design criteria. Comments and recommendations on the 
technical content contained herein are invited and should be forwarded to the attention of the 
Center Chief Engineer, NASA Langley Research Center, Hampton, Virginia, 23681. 

September 2019 
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Nomenclature 
Symbols 
Ncr critical buckling load (Ref. 12) 
Nwc wide column buckling load (Ref. 12) 
R cylinder radius 
t cylinder thickness 
γ classical buckling knockdown factor 
ρx, ρy radii of gyration in axial and circumferential directions 
(R/t)e effective radius to thickness ratio (Ref. 12) 
φ reduction (knockdown factor) (Ref. 12) 
    
Acronyms 
ATP automated tow placement 
ET External Tank 
FEM Finite-element method 
IML inner mold line (inner surface of structure) 
KDF knockdown factor 
LaRC Langley Research Center 
LH2 liquid hydrogen 
LOX liquad oxygen 
MSFC Marshall Space Flight Center 
NESC NASA Engineering and Safety Center 
OML outer mold line (outer surface of structure) 
SBKF Shell Buckling Knockdown Factor 
SLS Space Launch System 
SRB Solid rocket booster 
TA Test article 
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1.0 Introduction 

A structure is said to be unstable under static loading when a relatively small increase in load or 
a small external disturbance will cause the structure to change from one equilibrium 
configuration to another in a process referred to as buckling. For some structures, the buckling 
response is somewhat benign and large changes in shape develop gradually with an increase in 
load. In this case, the postbuckling response is stable and additional load can be applied to the 
structure until the material fails or the structure collapses. These structural response 
characteristics are typically found in the buckling of a flat plate or shallow curved panel. For 
other structures, the buckling response results in a sudden and significant change in the structural 
configuration. In this case, the initial postbuckling response of the structure is unstable and is 
typically accompanied by the development of large-magnitude deformations and a significant 
reduction load carrying capability. These structural response characteristics are typically found in 
the buckling of thin-walled cylindrical shells.  

The primary design problem for light-weight aerospace structures is the prevention of buckling 
that leads to undesirable configurations such as large-magnitude displacements, large changes in 
global stiffness, or collapse. The critical or buckling load of a structure generally depends on its 
geometry, the manner in which it is stiffened, material stiffness properties, boundary conditions, 
and loading. Analytical methods for predicting the buckling load of shell structures were first 
developed in the 1920s to 1960s. However, laboratory experiments on thin-walled cylinders, 
during this same time period, typically yielded buckling loads that were substantially lower than 
the corresponding analytical predictions. This led to the development and use of conservative, 
empirical correlation factors, that have become known as knockdown factors (KDFs), in the 
design of buckling-critical shells. These KDFs were determined by establishing lower bounds to 
test data and published in a series of NASA space vehicle design criteria and reports. [Refs. 1-6]  

The traditional approach for designing a thin-walled buckling-resistant shell is to predict the 
buckling load of the shell using a classical linear buckling analysis and then apply a knockdown 
factor to account for the difference between the predicted buckling load and the actual buckling 
load determined from tests. The linear buckling analysis typically assumes nominal structural 
dimensions and material properties, and simply-supported boundary conditions. This approach to 
shell buckling design has proved satisfactory for most design purposes and remains prominent in 
industry practice, as evidenced by the extensive use of the NASA design criteria. However, it has 
been shown over time that this design approach can result in overly conservative buckling load 
predictions and designs. In addition, the traditional sources of knockdown factors do not include 
data for modern aerospace shell structures constructed using advanced materials and 
manufacturing processes. 

It is now well recognized that small deviations in the nominal shell-wall radius, traditionally 
referred to as initial geometric imperfections, are the primary reason for the discrepancy between 
the analytical predictions and the experimental results.[Refs. 7-9] In addition, unintended 
variations or imperfections in other structural design parameters including, but not limited to, 
shell-wall thickness, stiffener geometry, material stiffness, loading, and boundary conditions can 
also have a significant effect on the buckling response and buckling load. The advent of high-
performance digital computers and advanced nonlinear structural analysis tools enable in-depth 
highly detailed studies of the buckling response of thin-walled buckling-critical shells and the 
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effects of these imperfections are, for the most part, well understood. [Refs. 10, 11] In addition, 
the analysis methods can accurately account for the effects of the initial imperfections, boundary 
conditions, and nonuniform loads and the results from these analyses generally correlate well 
with the experimental results. Based on these analysis tools and physical insight, semi-empirical 
and analysis-based knockdown factors, have become viable alternatives for some of the 
traditional test-based knockdown factors and classical analysis methods. [Refs. 12-14] 

This monograph presents state-of-the-art practices for predicting the buckling of circular 
cylindrical shells subjected to various types of static loading and provides recommended 
procedures that yield conservative estimates of the static buckling load. To this end, a summary 
of the state of the art is presented in Section 2 State of the Art and provides the technical basis for 
the design criteria and recommendations. Next, the design criteria and guidelines for compliance 
are defined in Section 3, Criteria. Finally, recommended practices for the design of buckling-
resistant cylindrical shells are presented in Section 4, Recommended Practices. 

2.0 State of the Art 

Since the publication of NASA SP-8007 in 1965 (revised in 1968), a significant amount of 
research has been conducted on the buckling of thin-walled cylindrical shell structures. This 
research has led to advancements in several critical areas including the theory of shells and shell 
stability, understanding imperfection sensitivity, and high-fidelity structural analysis methods.  

The goal of this section is to provide a brief assessment of the state of the art, identify important 
research developments and current trends, and establish the technological basis for the criteria 
and recommended practices presented in this monograph. In addition, some of the more common 
challenges and pitfalls in the design of buckling-resistant cylinders are identified and discussed. 

2.1 Brief History of Shell Buckling Research and NASA Design Criteria 
Research on shell buckling and the development of design recommendations and methods have 
been well documented in the literature and only a select portion of the critical works are 
presented herein as they pertain to this monograph. A more detailed survey of research on shell 
buckling can be found in Refs. 15-25.  

In the late 1920s, aircraft designs began to incorporate thin-walled load-bearing shell structures. 
This led to the increased study of buckling due to compression loads, and the buckling of circular 
cylindrical shells was a problem of particular interest. During this time, it was observed that 
large discrepancies existed between the theoretical buckling loads and the loads at which shell 
actually buckled during experimental testing. Extensive experimental investigations were 
conducted in an effort to resolve this problem. Not only did cylinders buckle at loads sometimes 
as low as 10 percent of the theoretical values, but significant scatter in the data existed, even 
between nominally identical cylinders tested by the same researcher. Lacking an adequate 
theoretical solution, empirical correlation factors, now more commonly referred to as knockdown 
factors, were established to give engineers a means to predict buckling in their designs. As a 
result, from the mid 1930s to late 1950s, most buckling experiments were intended to provide 
design data rather than insight into the fundamentals of the buckling phenomenon. 

Over time, researchers began to resolve the discrepancy between the theoretical buckling load 
predictions and the corresponding test results. The pioneering work of von Karman and Tsien 
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(1941) [Ref. 7] showed that the initial postbuckling response was unstable and provided the first 
indications of how initial imperfections in the shell geometry could cause the large reductions in 
the buckling load observed in experiments. In 1950, Donnell and Wan [Ref. 8] extended this 
work to include the effects of initial geometric imperfections in the analysis. Their results 
showed that the imperfections in the cylinder act as a perturbation and cause the response to 
deviate from that of the idealized perfect cylinder. As a result, the cylinder exhibits a limit point 
buckling response at a load level that is significantly lower than the corresponding theoretical 
buckling load of the perfect cylinder, as illustrated in Figure 1. However, the analysis of these 
shell structures was not trivial, particularly prior to the emergence of high-performance digital 
computers and numerical methods that occurred in the 1970’s. Simplifications in the analysis 
limited the results to a qualitative demonstration. Consequently, designers continued to use the 
classical buckling equations and applying empirical design factors that they considered 
appropriate. Around the same time, Koiter’s asymptotic theory [Ref. 9] was applied to cylinders 
loaded in axial compression and provided rigorous mathematical proof of the extreme 
imperfection sensitivity. However, this work went relatively unknown until 1967 when it was 
translated from Dutch into English. Koiter’s work went on to form the basis of many semi-
empirical design methods such as that proposed by Almroth et. al [Ref. 12], and basic research 
on the effects of imperfections on the buckling of shells. 

 

 

Figure 1. Effects of imperfections on the load-end-shortening response of a compression-loaded 
monocoque cylinder (recreated from Donnell and Wan [Ref. 8]) 
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In the 1960s, NASA recognized a need to establish uniform design criteria for space vehicles and 
began to issue a series of monographs to be used as design guidelines. Monographs for the 
design of buckling-resistant shells included NASA SP-8007 (Buckling of Thin-Walled Circular 
Cylinders), NASA SP-8019 (Buckling of Thin-Walled Truncated Cones), and NASA SP-8032 
(Buckling of Thin-Walled Doubly Curved Shells) [Refs. 1-3]. These monographs presented 
equations for determining the classical linear buckling load as wells as guidance for determining 
the appropriate knockdown factor to use. In addition to these NASA monographs, two prominent 
NASA reports were published and are commonly used in the design of stiffened cylinders, 
including NASA TN D-5561 (Buckling of Stiffened Cylinders in Axial Compression and 
Bending – A Review of Test Data) and NASA CR-124075 (Isogrid Design Handbook). [Refs. 5, 
6] These monographs and reports remain widely used throughout the aerospace industry. 

Since the publication of the NASA design monographs, a considerable amount of research on the 
buckling of shells has been conducted and focused on three primary areas. The first area of 
research has been focused on identifying and developing an understanding of the key factors or 
influences that govern the buckling response and cause the discrepancy between the theoretical 
buckling predictions and experimentally observed behavior and to extend that understanding to 
the buckling of aerospace-specific structural configurations. The second area of research has 
been on the development of improved computational tools for the analysis of shells. This work 
has included the development of special purpose analytical and semi-analytical codes and finite-
element methods to provide more accurate physical representations of complex as-built (i.e., 
imperfect) structures, as well as developing nonlinear solution methods that can accurately 
predict the highly nonlinear unstable collapse response of shells. In particular, high-fidelity 
finite-element models and nonlinear solution methods have been shown to be very effective at 
predicting the buckling response of both metal and composite shells, provided that careful 
attention is paid to capturing all of the effects that are known to influence the buckling behavior 
[Refs. 10, 11, 26, 27]. In addition, these high-fidelity models enable the study individual effects 
and determine sensitivities. The third area of research has been on the development of new 
design approaches for thin-walled buckling-critical shells. While significant progress has been 
made in all three areas of research, many challenges remain with regard to the incorporation of 
improved knowledge and new design approaches into the design process. A brief summary of the 
progress made in these areas of research is provided next. 

 Buckling of Thin-Walled Cylinders 2.1.1
Considerable progress has been made towards understanding the buckling of thin-walled 
cylinders and to identify key factors that cause the discrepancy between theoretical buckling 
predictions and experimentally observed behavior, described previously. The scope of work 
considered a variety of structural configurations such as metallic and composite, stiffened, 
unstiffened, and sandwich cylinders; loading conditions such as axial compression, torsion, 
bending, internal pressure, external pressure, combined mechanical loads, and lateral loads; 
structural details such as cutouts, and joints; the effects of boundary conditions and nonuniform 
loads; prebuckling deformations; and the effects of geometric imperfections. Key areas of 
progress are highlighted in this section and provide the technical background for the design 
criteria and recommended practices presented in this monograph. 



5 

Geometric Imperfection 
Geometric imperfection has been firmly established to be the primary factor in the reduction of 
buckling loads from the theoretical critical loads predicted by classical linear analysis methods. 
The importance of imperfection in the buckling phenomenon has been recognized since the early 
days of experimental research. However, it was not until much later that researchers started to 
understand the exact mechanism by which imperfection influences the stability of compressed 
shells. The work by Von Karman and Tsien in 1941 [Ref. 7] was the first to offer practical 
insight into this problem. They showed that there are multiple equilibrium positions of various 
post-buckling deformation shapes involving lower loads than those predicted by classical theory. 
Small imperfections can cause the shell to transition from the unbuckled equilibrium state to one 
of these post-buckling states during loading, thus buckling the shell at a load level lower than the 
classical buckling load. This led to later work by Donnell and Wan [Ref. 8] which included 
initial geometric imperfections in the analysis and demonstrated that it was the most likely cause 
of the difference between experimental buckling loads and classical analysis. Koiter’s asymptotic 
theory [Ref. 9] was applied to cylinders loaded in axial compression and provided rigorous 
mathematical proof of the extreme sensitivity to initial geometric imperfections on the buckling 
of these thin-walled shells. 

This work continued to evolve and great emphasis was placed on understanding imperfection 
sensitivity for a wide variety of different practical cylinder constructions and loading conditions. 
These studies were aided by the use of analytical, semi-analytical, and finite-element analysis 
tools that could perform imperfection sensitivity studies by including the effects of eigen-mode 
imperfections. A traditional analysis-based sensitivity study would typically use one or more 
eigen-mode shapes to generate an imperfection pattern and then a range of imperfection 
amplitudes would be assumed to generate an estimate of the imperfection sensitivity. This 
approach has the advantage in that it is simple to implement. However, the eigen-mode 
imperfection shape is not a pattern typically observed in as-built structures and the choice of 
mode shapes and amplitudes to include in the simulated imperfection is somewhat arbitrary. In 
addition, the use of an eigen-mode imperfection can cause a significant reduction in the predicted 
pre-buckling stiffness of the shell which is not seen in actual tests. [Ref. 26] 

Efforts have been made to acquire complete surveys of actual shell geometries and characterize 
initial geometric imperfections. These efforts first began in the late 1960’s by Arbocz and 
Babcock. Investigations were then carried out using these measured imperfections [Refs. 27, 28], 
to determine the critical role imperfection plays in the buckling of cylinders loaded in axial 
compression. This work was expanded to acquire complete imperfection surveys of full-scale 
cylindrical shells manufactured by the aerospace industry. [Ref. 29] The goal was to collect data 
from these imperfection surveys into an imperfection data bank that would allow future 
designers to more accurately predict buckling loads based on the manufacturing method used to 
build the shell structure [Ref. 30]. After measuring the imperfection, the data would be fit with a 
Fourier series representation, thus expressing the imperfection in terms of circumferential waves 
and axial half-waves. Their work revealed a number of common characteristics of the 
imperfection associated with a particular manufacturing process, later referred to as an 
imperfection signature. For example, the imperfection signature of large cylinder manufactured 
from a fixed number of curved panel sections were shown to have three primary Fourier series 
components: an out-of-roundness component (two or three circumferential full-waves), a 
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component with the number of circumferential waves equal to the number of panel sections, and 
components with the circumferential wave number equal to integer multiples of the number of 
panel sections. The magnitude of each of these components varied depending on specifically 
how the cylinder was constructed, but the overall character of the imperfection signature was 
consistent across similarly built cylinders. Further examples are described in detail in Ref. 25. 

Other interesting but lesser known experimental work was conducted on the effects of an initial 
lateral load on the buckling of isotropic cylinders by Ricardo and Okubo et al. [Refs. 31, 32]. 
These works primarily focused on obtaining information on the buckling behavior and 
imperfection sensitivity of a thin-walled cylinders under various loading conditions with the 
objective to better understand the buckling mechanism and process. The lateral load results in a 
known imperfection in the form of a local inward dimple in the cylinder wall. By varying the 
magnitude of the lateral load, imperfection sensitivity characteristics could be investigated. 

Prebuckling Deformations and Stresses 
In general, the classical methods for calculating the critical stress in cylindrical shells assume 
that only uniform membrane stresses are present, and that there is no local bending in the shell 
prior to buckling. In practice however, local bending stresses and deformations are an almost 
unavoidable condition in both experimental tests and flight hardware. In experimental test 
configurations, localized bending usually arises from the support conditions between the shell 
and the load fixture. As a cylindrical shell is compressed axially, the Poisson expansion of the 
shell wall is restrained at the boundary by the support fixture, creating localized bending 
deformation. The magnitude and extent of this bending deformation is dependent on the radius 
and thickness of the cylinder, the shell wall stiffness properties, and the boundary conditions. 
Similar behavior can occur near stiff attachment rings or ring frames, commonly found in 
aerospace shell structures although the character of the response can be slightly different 
depending on the relative stiffness properties of the shell and the stiff ring structures. The 
importance of the effects of prebuckling deformations and stresses on the buckling of circular 
cylindrical shells was extensively investigated in the early sixties [refs. 33-35]. In addition, 
localized prebuckling deformations can occur in the vicinity of stiffness discontinuities in the 
shell, such as, joints, stiffener terminations, and cutouts or abrupt changes in the shell thickness 
and shell-wall mid-surface eccentricities.  

In many cases, the prebuckling deformations and stresses in the shell can act like an imperfection 
and affect the buckling response in a similar manner to initial geometric imperfections. The out-
of-plane deformations grow nonlinearly with increasing load which can result in internal load 
redistribution and can cause the shell to buckle long before the load reaches the classical 
buckling load value. Thus, the classical linear bifurcation analysis might not only over predict 
the buckling load, but also incorrectly predict the buckling mode. In some cases, this nonlinear 
effect has been observed to produce deformations large enough to even prevent instability. The 
consequence of this highly nonlinear behavior is that classical methods and sometimes even 
linear bifurcation buckling analyses may be inappropriate for determining the response of the 
shell. Examples of this are shown in Refs. 36-40.  
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Boundary Conditions and Nonuniform Loading 
In addition to the prebuckling deformations and stresses induced by the constraints from the 
support conditions, changes in the boundary conditions, particularly in-plane, can significantly 
influence the buckling behavior of shells loaded in compression. The out-of-plane boundary 
condition, and length effects, are usually ignored in classical buckling analysis, but more 
rigorous analysis methods require the boundary condition to be specified as either simply 
supported (free rotations) or clamped (zero rotations). For each of these two transverse boundary 
conditions four possible in-plane boundary conditions are usually considered. It was shown by 
Hoff [Ref. 16] and Ohira [Ref. 41] that for very long cylinders the combination of the simply 
supported boundary and the zero shear stress in-plane boundary condition (free circumferential 
displacement) resulted in buckling loads equal to approximately half the classical values. Later 
work by Simitses et al [Ref. 42] showed that the reduction in buckling load of circular cylinders 
caused by geometric imperfection was greatly influenced by the boundary conditions at the ends, 
with some combinations even resulting in relatively imperfection insensitive cylinders.  

Recent research efforts by Hilburger et al. [Refs. 10, 43, 44] have also investigated the effects of 
elastic boundary conditions representative of those found in laboratory-scale and large-scale 
cylinders. These studies were conducted to determine the effects of as-tested boundary 
conditions in an effort to improve test and analysis correlation. These elastic boundary conditions 
primarily affect the rotations and radial displacements near the ends of the shell. In most of the 
limited cases studied, the elastic boundary conditions had a minimal effect on the buckling load 
but often significantly changed the overall character of the prebuckling deformation response and 
in some instances change the location at which buckling initiated in the cylinder.  

Nonuniform loading (a.k.a., loading imperfections) has also been shown to affect the buckling 
response and buckling load of cylinders. Nonuniform loading can come about in an as-built 
structure due to localized manufacturing irregularities or machining tolerances of the interface or 
loading surfaces which can cause deviations from the idealized uniform loading. Geier et al. and 
Zimmermann [Ref. 45, 46] studied nonuniform loading by installing a thin shim layer to apply a 
local load imperfection in experimental tests on composite shells. The nonuniform loading 
caused a local dimple to form in the bending boundary layer of the cylinder. This local dimple 
acted like an initial imperfection and caused the buckling of the cylinder to occur at lower load 
than the corresponding cylinder without the shim. Additional studies by Huhne et al. and 
Kriegesmann et al. looked at the combined effects of geometric and loading imperfections on the 
buckling of compression loaded shells.[Refs. 47, 48] Detailed studies on the effects of as-
measured loading surface imperfections on the response of small-scale and large-scale 
compression-loaded cylinder test articles have been conducted by Hilburger et al. [Refs. 10, 44] 
The results indicated that the as-measured loading surface geometry is periodically distributed 
around the circumference of the cylinder and, by itself, can have a noticeable effect on the 
buckling load and buckling mode. However, in most cases studied, the effect of the loading 
imperfection remained relatively small, i.e., less than 5%,  and the initial shell-wall geometric 
imperfection remained the primary factor in determining the actual buckling load of the cylinder. 

Composite Cylinders 
The high stiffness-to-weight ratios of modern fiber-reinforced composites makes them obvious 
candidates for use in light-weight aerospace shell structures. Like metallic cylinders, composite 
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cylinders can be of stiffened, unstiffened, or sandwich construction. However, the design and 
analysis of composite structures can be more challenging as a result of the large number of 
design parameters associated with the use of composite materials. Composite shells can be 
fabricated in several ways including built-up laminates from unidirectional or woven material, 
filament wound, or advanced tow placement (ATP). These different fabrication methods enable 
considerable flexibility in the design, and in particular can result in highly tailored structures that 
may not only be anisotropic, but also have shell stiffness properties that vary with location. This 
leads to difficulties in applying classical methods for determining critical loads and questions the 
applicability of the traditional design methods and design factors. 

Another byproduct of the manufacturing processes used for composite shells is the irregularity of 
the surface and the stiffness resulting from “building up” the composite material on a tool. 
Filament-wound or ATP composites can exhibit distinct irregularities on the non-tool surface, 
e.g., undulations in the surface contour, depending on the size of fiber tow used, caused by the 
fibers overlapping or gapping. Laminated composite shells tend to have smoother, more uniform 
surfaces, except where adjacent plies meet. Most aerospace shell structures are too large to be 
constructed from a single sheet of composite lamina material. Thus, the manufacturer must either 
butt multiple laminae together or overlap them. The thermal expansion of the tool that occurs 
during curing often causes butt joints to open up, leaving a gap between adjacent plies which 
both reduces local stiffness and adds a local mid-surface eccentricity. Overlapped plies create 
locally thick regions which can act like stiffeners, and also add local eccentricity. The ply gaps 
can be of particular concern, because they have been shown to have a significant effect on the 
nonlinear and buckling response of thin-walled unstiffened composite cylinders in axial 
compression [Refs. 10, 11, 49]. 

Cutouts 
It is common for cylindrical shell structures to have one or more cutouts to allow access to the 
interior of the shell. Cutouts can have a significant influence on the buckling response of the 
shell depending on the size and shape of the cutout and the type of cutout reinforcement 
implemented. [Refs. 50-55] Experimental results from Refs. 50, 52 indicate that sufficiently 
small unreinforced cutouts will have a minimal effect on the buckling response and that other 
imperfections in the shell govern the global buckling response in the shell. However, for larger 
unreinforced cutouts, large-magnitude bending deformations occur near the edges of the cutout 
which leads to a local reduction in effective stiffness and cause stresses to be redistributed away 
from the cutout. This load redistribution and local stiffness reduction can result in a stable local 
buckling response around the cutout or initiate a global collapse, depending on the design. For 
most practical applications, however, some type of reinforcement is typically applied around the 
cutout to control local stresses and deformations. If done correctly, the reinforcement should 
restore the shell to its full load carrying capacity. However, work by Toda and Hilburger suggest 
that local reinforcement concepts can cause buckling to occur adjacent to the reinforcement if an 
abrupt stiffness change exists between the acreage and the reinforcement [Refs. 51, 54, 55]. In 
addition, the prebuckling displacements and stresses in shells with unreinforced or reinforced 
cutouts grow nonlinearly with increasing load which can result in internal load redistribution and 
can cause the shell to buckle long before the load reaches the classical buckling load value, as 
described in a previous section. Thus, linear bifurcation analyses may not always produce a 
conservative buckling load estimate. 
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Joints 
Large cylinders are typically manufactured by welding or mechanically fastening multiple 
curved panel sections into complete cylinders. In some cases, the axial joints between the panel 
sections can cause the development of large-magnitude prebuckling deformations and lead to 
reductions in the buckling load. For example, stiffened cylinders with welded joints can be 
particularly sensitive to this design feature. The relatively thick, unstiffened axial weld land 
regions typically have a higher effective membrane stiffness than the adjacent thin-walled 
stiffened acreage and tend to attract axial load. In addition, the local stiffness discontinuity and 
neutral axis eccentricity between the weld land and the acreage can cause the weld land to 
exhibit significant inward radial prebuckling deformations. Because the weld land region has 
relatively low bending stiffness, as compared to the stiffened acreage, the combination of 
prebuckling deformations and increased axial load can lead to a reduced buckling 
capability.[Ref. 56] Similar behavioral characteristics have been seen in sandwich cylinders in 
which the acreage sandwich structure is tapered down to a monolithic laminate and a 
mechanically fastened lap joint is installed.  

 Analysis Methods 2.1.2
The development of shell theories and computational tools for the analysis of shells have 
provided researchers and engineers with the ability to gain tremendous insight into the buckling 
response of many different types of shell structures. These developments include special-purpose 
analytical and semi-analytical methods, and finite-element analysis capabilities, as well as 
solution methods that can accurately predict the complex nonlinear response of shells. Recent 
developments have focused more on high-fidelity finite-element models and nonlinear solution 
methods and have been shown to be very effective at predicting the buckling response of both 
metal and composite shells, provided that careful attention is paid to capturing all of the effects 
that are known to influence the buckling behavior [Refs. 10, 11, 57]. However, the classical 
analytical and semi-analytical methods still play a critical role in the analysis and design of thin-
walled shells. Summaries of the important works in this area are provided in several references 
[Refs. 21, 27, 58]. A brief summary of methods used in design are presented here.  

The most commonly used linear bifurcation buckling analysis for the design of cylindrical shells 
is based on the Donnell-type shell theory. [Ref. 59] The analysis assumes the shell to be 
geometrically perfect, under a membrane state of stress (i.e., the effects of prebuckling bending 
deformations due to edge restraints are neglected), and simply-supported boundary conditions. 
The governing system of partial differential equations are solved using a double Fourier series 
approximation to reduce the solution to a standard linear eigenvalue problem. This approach 
yields, for instance, the well-known classical solution for isotropic shells, for example, Batdorf, 
[Ref. 60], and Becker and Gerard [Ref. 61]. Other forms of the Donnell-type shell theory can be 
used to analyze perfect and imperfect isotropic and orthotropic stiffened shells, [Ref. 27] making 
this method ideally suited for efficient study of the buckling and imperfection sensitivity of a 
wide range of practical cylindrical shell configurations. 

A semi-analytical approach can be used to develop a more accurate solution to the Donnell-type 
equations by including the effects of boundary conditions and a nonlinear prebuckling state. In 
this case, the solution assumes a Fourier series decomposition in the circumferential direction, 
then the resulting set of ordinary differential equations for the axial direction can be solved 
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numerically by means of the shooting method or the finite difference method. By using this 
approach, the specified boundary conditions and the effect of edge restraint are rigorously 
satisfied. This semi-analytical approach can be used to study the effects of classical boundary 
conditions and elastic boundary conditions and provide more accurate imperfection sensitivity 
results. The semi-analytical methods can also provide valuable results for the development and 
verification of finite-element models. 

Finite-element methods are now very common in the design and analysis of shell structures and 
include two-dimensional (shell elements) and three-dimensional (solid elements) discretization. 
When used correctly, highly accurate solutions can be obtained in which all nonlinear effects and 
initial geometric imperfections are properly accounted for and structural detail features such as 
cutouts, joints, and stiffeners are represented. However, complex finite-element models must be 
carefully assembled to accurately reflect physical loads, geometry and local stiffness of the real 
as-built structure and the modeling assumptions need to be fully understood as the results can be 
very sensitive to a wide range of modeling approaches. Similarly, a variety of solution routines 
(e.g., linear and nonlinear, quasi-static and transient dynamic) are available to predict the 
prebuckling, buckling, and postbuckling response of the shell. Different solution methods and 
their implementation should be well understood, else an erroneous result may be obtained. It is 
not uncommon that the time required to create and validate an accurate finite-element model far 
exceeds the computational time needed to analyze the model.  

One of the drawbacks to using the high-fidelity finite-element analysis methods in the early 
design is the relatively long model development and solution times required as compared to the 
simpler design-level methods. Thus, methods for reducing solution time remain an area of 
interest in an effort to bring increasing design fidelity into earlier stages of the design process. 
For example, reduced basis methods for the nonlinear analysis of shells have been proposed in an 
effort to reduce the number of degrees of freedom in a nonlinear system. These reduced basis 
techniques can be implemented in both analytically and numerically (referred to as reduction 
methods). The Koiter-Newton (K-N) approach has been developed by Liang et al. [Ref. 62] for 
the numerical solution of the buckling of thin-walled shells. The method combines concepts from 
Koiter’s initial post-buckling analysis and Newton arc-length correction methods to obtain a 
solution algorithm that can predict the prebuckling, buckling, and postbuckling equilibrium path 
in a finite-element analysis setting. Similarly, special-purpose analytical and semi-analytical 
tools have been developed that enable rapid design-level analysis for the nonlinear and buckling 
of shells with detail features, such as cutouts, bonded repairs, and discrete stiffeners, and can be 
useful for preliminary design studies. [Refs. 63, 64] The results of these models can also be 
useful in developing and verifying finite-element models and analysis results. 

 Design Approaches 2.1.3
Since the publication of the NASA SP-8007 monograph, other alternate design approaches have 
been proposed, including semi-empirical and analysis-based approaches, and have been 
implemented on a limited basis. Often, these alternate approaches have been used in parallel with 
the traditional empirical design approach and have enabled designers to safely remove some 
design conservatism. A brief summary of the traditional design approach from the NASA SP-
8007 monograph and some of the more common alternate design approaches are described in 
this section.  
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Traditional design approach 
The traditional approach for the preliminary design of a thin-walled buckling-resistant shell, as 
recommended in the NASA SP-8007 (1965, 1968), is to predict the buckling load of the shell 
using a classical linear eigenvalue analysis or approximate closed-form solution and then apply 
an empirical correlation factor, commonly known as a knockdown factor, to account for the 
difference between the predicted buckling load and the actual buckling load determined from 
tests. The classical eigenvalue analysis assumes nominal structural dimensions and material 
properties, a membrane prebuckling stress state, and simply-supported boundary conditions of a 
moderately long circular cylinder (i.e., length effects are neglected).  

NASA SP-8007 includes buckling load calculations and design knockdown factors for a variety 
of cylinder constructions including isotropic and orthotropic, isotropic sandwich, and stiffened 
shells. The loading conditions considered include axial compression, bending, torsion, and 
external and internal pressure. For example, the guidance in NASA SP-8007 for determining the 
buckling knock-down factor	γ	for compression-loaded isotropic cylinders is to use the following 
equation		

 ( )φγ −−−= e1901.01  (1) 
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Equation 1 provides a lower bound to experimental data from about 200 buckling tests on 
isotropic circular cylinders defined by Weingarten et al. [Ref. 65]. Similar equations are provided 
in SP-8007 for other loading conditions 

NASA SP-8007 also provides guidance for the buckling of orthotropic cylinders. The term 
“orthotropic cylinders” is taken to include not only cylinders made of one or more orthotropic 
layers, but also stiffened cylinders with stiffener spacing sufficiently small enough that the 
bending and extensional properties can be approximated by a single orthotropic sheet (sometimes 
referred to as a smeared stiffener approximation). The procedure for calculating the critical 
buckling load for an orthotropic cylinder is more complex due to the large number of parameters 
associated with orthotropic shells. NASA SP-8007 also emphasizes the importance of taking into 
account the stiffener eccentricity, since neglecting the eccentricity typically leads to 
unconservative buckling loads for internally stiffened cylinders in compression. Specifically, 
stiffener eccentricity can result in coupling between bending and extension actions. For 
compression-loaded unstiffened and stiffened orthotropic shells, SP-8007 recommends the use of 
Eqs. (1) and (2), replacing the thickness with the geometric mean of the radii of gyration for the 
axial and circumferential directions,	ρx	and ρy.		
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For axially compressed cylinders with closely spaced moderately large stiffeners, NASA SP-
8007 suggests a buckling knock-down factor of 0.75. This recommendation is based on the 
experimental data from Refs. 66-73. However, this factor is rarely used in practice in favor of a 
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more conservative factor of 0.65 as defined in the NASA TN D-5561 which reviewed data from 
a variety of experimental tests on stiffened cylinders and corresponds to the lowest observed 
buckling load across all of the tests [Refs. 66, 67, 73-76]. 

Another commonly used design document is the Isogrid Design Handbook [Ref. 6]. This 
handbook provides guidance on calculating effective material properties for isogrid-stiffened 
constructions and recommendations on calculating buckling loads for isogrid shells. For very 
lightly stiffened cylinders, it is suggested to calculate the buckling knock-down factor using Eq. 
(1). For moderately or heavily stiffened cylinders the knockdown factor of 0.65 from TN D-5561 
is recommended.  

As the design cycle evolves, finite-element (FEM)-based linear eigenvalue analysis are typically 
used and may include the effects of additional design details such as cutouts, joints, hard-points 
for attachments, discrete stiffeners, and more accurate representations of primary and secondary 
loads. The same knockdown factor from the preliminary design phase is often retained and 
applied to the FEM-based buckling load of the detailed structure.  

Overall, the knockdown-factor-based design approach is a reliable and convenient approach, 
however, it has been shown over time that it can result in overly conservative buckling load 
predictions and designs. The conservatism is likely due to several factors. First, the experimental 
data was gathered between 1928 and 1964, and thus reflects the quality of the manufacturing 
processes used during this time. In addition, the importance of initial geometric imperfections on 
the buckling of the shells was not recognized until circa 1950, and thus may have resulted in a 
large variation in the quality of the test articles and the corresponding test data, as strict controls 
on specimen quality and test set-up were not emphasized. It is interesting to note that much of 
the test data generated later in that time period (1950’s-1960’s), corresponded to higher buckling 
loads, presumably due to the increased attention placed on imperfections and manufacturing 
quality. It is not uncommon for the buckling loads from more recent high-precision test to be 
70% to 90% of the classical value, significantly higher than what would be prescribed by a 
traditional empirical KDF.[Ref. 77] In addition, it has been shown that stiffened cylinders 
typically exhibit reduced imperfection sensitivity as compared to an equivalent monocoque 
cylinder [Ref. 78]. One might also expect that the inclusion of local detail features such as joints, 
cutouts, or discrete loads associated with attachments can reduce the imperfection sensitivity as 
these local details can produce local perturbations in the response that act as imperfections. 

Finally, these guidelines and the knock-down factors in them have not been updated since the 
early 1970’s, thus there is considerable question as to how appropriate they are for the design of 
modern aerospace structures. Of particular concern is the complete absence of any experimental 
data using composite, orthogrid or isogrid shells in the basis for the knock-down factors.  

Semi-empirical design approach 
The traditional design approach remains the most commonly used approach for preliminary 
design, and may remain so for the foreseeable future, due to its ease of use and demonstrated 
reliability. However, several semi-empirical design approaches have also been proposed [Refs. 
79, 80] in an effort to reduce design conservatism and provide a more general approach for the 
design of practical aerospace cylindrical structures. Industry has successfully implemented the 
approach proposed by Almroth et al.79 in the design of many space vehicle applications, most 
notably, in the design of the Space Shuttle External Tank (ET). Their proposed design approach 



13 

was developed in an effort to extended existing empirical design data to more practical cylinder 
designs, such as stiffened, laminated composite, or cylinders stabilized by an elastic core (e.g., 
solid propellant rocket motor). This method is described in detail in Section 4.6. 

The ET design successfully employed this semi-empirical design approach in parallel with 
NASA SP-8007 design recommendations to take advantage of enhancements due to internal 
pressure for both axial and shear loads, and the interaction of combined axial compression, 
bending and shear in the margin of safety calculations. 

Analysis-based design approach 
More recently, improvements in digital computers and finite element analysis codes are enabling 
the development of highly accurate predictions of the buckling response of aerospace shells 
structures. [Refs. 13, 14] The models used to generate these predictions require detailed 
representations of the as-measured initial geometric imperfections, thickness and material 
property variations, and nonuniform loading (i.e., loading imperfections) and elastic boundary 
conditions, as well as any structural detail features such as cutouts, joints, and discrete stiffeners; 
and provide exceptional correlation between the predicted results and the actual buckling loads 
and buckling failure modes. Such analyses have been used to conduct detailed imperfection and 
design sensitivity studies and provide design buckling loads for several modern launch vehicles 
including the Space Shuttle solid rocket booster (SRB) cases and external tank (ET), and the 
Space Launch System (SLS) core stage. [Refs. 81-85] 

For example, the SRB case design process utilized an analysis-based design approach. The 
analysis used a geometrically nonlinear finite element analysis method and included the effects 
of the measured shell geometric imperfection and material properties, and accurate SRB to ET 
interface and field joint representations. The nonlinear analysis results for the SRB hardware was 
correlated with the results from a full-scale buckling test. This design approach led to a reduction 
in structural mass as compared to the overly-conservative traditional knockdown factor approach 
while demonstrating a positive margin of safety. The results of this work also allowed an 
increase in the pre-launch wind speed allowable and a reduction in the probability of a flight 
delay or abort.  

Similarly, the Space Shuttle ET LH2 tank, LOX tank, and interbank thrust panels were analyzed 
using a geometrically nonlinear analysis that included the effects of initial imperfections. Early 
in the ET design effort, a nonlinear FEM analysis of a detailed LH2 tank model with eigenmode 
imperfections was performed with various shell stability computer programs [Refs. 81, 82]. 
Later, a buckling analysis was performed on the LOX tank using STAGS finite element analysis 
code [Ref. 83] and considered both eigenmode and measured geometric imperfection shapes. 
The intertank thrust panels were analyzed using a nonlinear NASTRAN analysis and used linear 
eigenvector shapes as the initial geometric imperfection for the finite element model and 
included a sensitivity analysis with respect to imperfection amplitude [Ref. 84]. In all cases, 
subsequent structural qualification tests indicated safe design margins. 

In general, these works by industry and NASA clearly indicate a desire and willingness to use 
alternative methods. However, the use of these methods require knowledge of or assumptions on 
imperfections and structural details, experience and understanding of buckling and imperfection 
sensitivity and may require testing if there is significant uncertainty or lack of knowledge and 
experience. 
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Other methods and trends 
A broader approach to improving structural design methods was proposed by Nemeth and 
Starnes [Ref. 86]. This work assessed the limitations of the NASA design monographs and 
suggested a path forward for improving the design of buckling-critical shells. Their proposed 
approach separated the critical design parameters (those that are known to affect the buckling 
load) into those that are known and can be modeled in a deterministic manner (e.g. boundary 
conditions) and those that are better represented in a probabilistic manner (e.g. imperfection and 
material variance). They suggest a hybrid approach where the probabilistic uncertainties are 
incorporated into the calculation of improved knock-down factors and applied to accurate 
analytical models. Another issue highlighted in their work was use of a select number of high-
fidelity experiments designed to validate the analysis tools rather than a vast number of 
experiments to characterize the design space. The analysis tools would then be used to perform 
numerical studies to determine shell buckling behavioral trends and design recommendations.  

A key aspect of these aforementioned alternate approaches is to have some preexisting 
knowledge of the characteristic geometric imperfection of the structure. Researchers at Delft 
University and Technion in Israel have long championed the measurement and use of geometric 
imperfection data for the design of buckling-critical shells. To this end, their goal has been the 
establishment of an imperfection data-bank, which would facilitate the understanding of what 
imperfection signatures are common to a particular type of shell and manufacturing process. 
Thus, in the future, a designer would be able to use nonlinear analysis methods since the 
imperfection could be estimated early in the design phase. The imperfection data obtained 
indicated that a given manufacturing process resulted in a repeatable characteristic imperfection 
shape with a some about of variability. This characteristic imperfection shape was eventually 
referred to as an imperfection signature and became the basis for new design criteria based on 
these signatures. [Ref. 13]. In addition, it was recognized that the variability in the imperfection 
could be quantified and used in the development of a probabilistic design approach such as that 
proposed by Arbocz, but that requires a sufficient amount of data to establish a statistically 
meaningful result. Similar signatures have been investigated to a lesser extent for thickness 
variations and loading imperfections, some of which will be presented in this monograph. 

3.0 Criteria 

3.1 General 
Structural components consisting of thin, curved isotropic or composite walls with or without 
stiffening shall be designed such that (1) buckling resulting in collapse of the component will not 
occur due to the application of design loads, and (2) buckling deformations that result from limit 
loads will not be so large as to impair the function of the structure or nearby components or 
produce undesirable changes in stiffness or loading. 

3.2 Guide for Compliance 
Design loads for buckling are considered to be any combination of ground or flight loads that 
cause compressive in-plane stresses, including compression loads that result from temperature 
changes, external pressure, and applied mechanical loads, and any load or combination of loads 
that alleviate buckling. If an ultimate design factor is to be used in the design process, this factor 
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shall be applied only to the loads that cause compression stresses. For example, external pressure 
loads and destabilizing mechanical loads should be increased by the ultimate design factor but 
internal pressure loads should not. 

4 Recommended Practices  

4.1 Scope 

Within the limitations imposed by the state of the art, acceptable procedures for the estimation of 
buckling loads for circular cylindrical shell subjected to various loading conditions are described in this 
section. The important problems are indicated and the source of the procedures and their limitations are 
discussed. Where the recommended procedure is complex and is suitably defined in a readily available 
reference, it is merely outlined. Where practicable, a summary of the procedure is given. 

4.2 Isotropic Unstiffened Cylinders 

Unstiffened isotropic circular cylinders subjected to various loading conditions are considered in this 
section. In the theoretical analysis of cylinders, it is usually necessary to take account of prebuckling 
deformations and stresses [Ref. 34] and end conditions [Refs. 87-89] as they can have a significant 
influence on the buckling response. However, the difference between rigorous solutions for various end 
support conditions can be obscured by the effects of initial geometric imperfections. Furthermore, the 
actual support conditions that exist in aerospace hardware are typically not well defined in the preliminary 
stages of design and the characteristics of the actual geometric imperfection may not be known. It is 
therefore customary to use simplified theoretical calculations that are adjusted by using a correlation or 
knockdown factor to account for the differences between theory and test. 

4.2.1 Axial Compression 
Buckling and collapse coincide for isotropic circular cylinders subjected to axial compression. An 
equation for the buckling load of a simply supported cylinder under axial compression has been derived 
based on Donnell’s shell theory (Ref. 90) and is given by 

 𝑁! =  𝑘!
𝜋!𝐷
𝐿!

 (1) 

where the buckling coefficient 𝑘! is  

 𝑘! = m! 1 + 𝛽! ! +
12
𝜋!

𝛾𝑍 !

m! 1 + 𝛽! ! (2) 

 𝐷 =
𝐸𝑡!

12 1 − 𝜈!
 (3) 

 𝑍 =
𝐿!

𝑅𝑡
1 − 𝜈! (4) 

 𝛽 =
𝑛𝐿
𝑚𝜋𝑅

 (5) 
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The cylinder length, radius, and wall thickness are denoted by L, R, and t; the Young’s modulus and 
Poisson’s ratio are denoted by E, and v; and the number of axial half-waves and circumferential full 
waves of the buckling mode shape are denoted by m, n. The knockdown factor γ  has been added to the 
second term in equation 2 (associated with the cylinder curvature) to account for the differences between 
theoretical buckling loads and loads obtained from tests.1 Minimization of Eq. 2 with respect to m and β 
results in the critical buckling coefficient. For moderately long cylinders, γZ > 2.85, the buckling 
coefficient can be approximated by the following 

 𝑘! =
4 3
𝜋!

𝛾𝑍 (6) 

Substitution of Eq. 6 into Eq.1 results in the familiar equation for the critical axial stress: 

By assuming a value of γ equal to 1.0, one obtains the theoretical buckling equation given in Ref. 90.  

 𝜎! =
𝛾𝐸

3 1 − 𝜈!
𝑡
𝑅

 (7) 

 = 0.605𝛾𝐸
𝑡
𝑅

  (for 𝜈 = 0.3) (8) 

However, on the basis of various experimental data, it is recommended that a knockdown factor γ  less 
than 1.0 be used to account for difference between the predicted buckling load and the actual buckling 
load determined from tests. An empirical factor is recommended from Ref. 65 given by 

 𝛾 = 1 − 0.901 1 − 𝑒!!  (9) 

where  

 𝜙 =
1
16

𝑅
𝑡

 (for 
𝑅
𝑡
< 1500) (10) 

Equation 9 is shown graphically in Fig. 4.1 and provides a good lower bound for most test data (indicated 
by the red open circle symbols) that was compiled from the 1930’s to the 1960’s.  

                                                

 

1 This form of the buckling coefficient first appeared in the SP-8007 1965 and is likely derived from results provided 
in Ref. 91.    
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Figure 4.1 Lower bound design reccomendation for thin-walled isotropic cylinders subjected to axial 
compression. 

Notes: 

1) Donnell’s buckling load predictions given by Eq. 1 cannot predict column buckling or the 
interaction between shell buckling (i.e., general instability) and column buckling [Ref. 92]. In 
particular, the buckling load given by Eq. 1 becomes unconservative for large L/R ratios. If 
designing thin-walled cylindrical struts or long tanks without intermediate ring frames, the 
column buckling failure mode and shell buckling-column buckling interaction should be checked. 
Sanders’ nonlinear shell theory is better suited for the prediction of the theoretical buckling loads 
for long cylinders.  

2) The knockdown factor given by Eq. 5 should be used with caution for cylinders with length-to-
radius ratios greater than 5 since correlation has not been verified by experiment in this range.  

3) It is generally accepted that the knockdown factor equation given by Eq. 9 is very conservative in 
the design of aerospace quality cylinders. Specifically, more recent testing has produced buckling 
loads that are significantly higher than the lower bound design curve given by Eq. 9. These higher 
loads are most likely a result of greater quality control associated with the fabrication and testing 
of these structures and thus minimizing the effects of initial geometric imperfections and loading 
nonuniformities. Alternate methods for defining less conservative knockdown factors are 
presented in Sections 4.6 and 4.7. 

 

When geometry and material properties are such that the computed buckling stresses are in the plastic 
range, the value of the Young’s modulus E in Eqs. 3, 7, and 8 should be replaced by the value 𝜂E where 
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 𝜂 =
𝐸!"#𝐸!"#
𝐸

 (11) 

 

 

 

where 𝐸!"# and  𝐸!"# are the secant and tangent modulus of the material. Equation 11 is an approximation 
of the plasticity factors given in Refs. 91 and 93 and applies to moderately long cylinders. For extremely 
short cylinders, the appropriate plasticity factor as given in Ref 94, is given by: 

 𝜂 =
𝐸!"#
𝐸

 (12) 

For cylinders with a length between those for which Eqs. 11 and 12 apply, it is assumed that linear 
interpolation between Eqs. 11 and 12 would provide satisfactory results. 

4.2.2 Bending 
 

Buckling and collapse coincide for isotropic cylinders subjected to bending. It has been shown [Ref. 95] 
that the predicted maximum buckling axial stress due to pure bending for a finite length simply supported 
cylinder was approximately equal to that for uniform axial compression. Thus, the procedures given for 
compression-loaded isotropic cylinders may be used to obtain the critical maximum stress for isotropic 
cylinders in bending except that a correlation factor specific for the bending load condition should be 
used. The critical bending moment can be approximated by the following 

 

 𝑀 = 𝜋𝑅!𝑁! = 𝑘!
𝜋!𝐷𝑅!

𝐿!
 (13) 

The knockdown factor for cylinders in bending is taken on the basis of Ref. 96 as 

 

 𝛾 = 1 − 0.731 1 − 𝑒!!  (14) 

where  

 𝜙 =
1
16

𝑅
𝑡

  (for 
𝑅
𝑡
< 1500) (15) 

This equation should be used with caution for R/t > 1500 because experimental data are not available in 
this range. Although the theoretical critical stress is assumed to be the same for axial compression and 
bending, the correlation factor for bending is greater than that for compression due to the reduced 
imperfection sensitivity exhibited by cylinders in bending. For sufficiently long shells, it has been shown 
that an interaction between the bifurcation buckling mode and the Braizer effect (cross-section 
ovalization) can occur, leading to lower buckling loads. [Ref 97] Thus, Braizer buckling should be 
checked. 
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4.2.3 External Pressure 
The term lateral pressure corresponds to an external pressure which acts only on the curved walls of the 
cylinders and not on the ends (e.g., bulkheads). The circumferential stress in the cylinder wall is given by 

 

 𝑁! = 𝜎!𝑡 = 𝑝𝑅 (16) 

  

The term hydrostatic pressure corresponds to an external pressure which acts on both the curved walls 
and the ends of the cylinder. In this case, the circumferential and axial stresses in the shell wall are given 
by 

 

 𝑁! = 𝜎!𝑡 = 𝑝𝑅 (17a) 

  

 𝑁! = 𝜎!𝑡 =
𝑝𝑅
2

 (17b) 

Except for sufficiently short cylinders, the critical pressures for the two different types of loads are not 
significantly different (γZ > 100). An approximate equation for the buckling of cylinders subjected to 
lateral pressure is given in Ref. 90 as  

 𝑁! = 𝑘!
𝜋!𝐷
𝐿!

 (18) 

where 

 𝑘! =
𝑝𝑅𝐿!

𝜋!𝐷
=

1
𝛽!

1 + 𝛽! ! +
12
𝜋!

𝛾!𝑍!

1 + 𝛽! !  (19) 

 

The equation for buckling of cylinders subjected to hydrostatic pressure is obtained by replacing the 𝑘! in 
Eq. 18 by 𝑘! and the factor 𝛽! before the bracketed expression in Eq 19 is replaced by (𝛽!+ ½). That is 

 𝑁! = 𝑘!
𝜋!𝐷
𝐿!

 (20) 

where 

 𝑘! =
𝑝𝑅𝐿!

𝜋!𝐷
=

1
𝛽! + 1/2

1 + 𝛽! ! +
12
𝜋!

𝛾!𝑍!

1 + 𝛽! !  (21) 

The term 𝛾! has been added to Eqs. 19 and 21 as a correction for the difference between theory and test. 
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The minimum values of 𝑘! for lateral pressure and 𝑘! for hydrostatic pressure are obtained by allowing 
the buckle aspect ratio β to vary continuously. For  𝛾𝑍 > 100, 𝑘! and 𝑘! is given by the Equation (from 
Ref. 90):  

 𝑘! = 𝑘! = 1.04 𝛾𝑍 (22) 

  

The critical pressure is given by 

 

 
𝑝!" =

0.855

1 − 𝜈!
!
!

 
𝐸 𝛾

𝑅
𝑡

!
! 𝐿
𝑅

 
(23) 

For 𝜈 = 0.3, Eq 23, simplifies to 

 
𝑝!" = 0.926 

𝐸 𝛾

𝑅
𝑡

!
! 𝐿
𝑅

 
(24) 

 

The family of curves at high values of 𝛾𝑍 (𝛾𝑍 > 4000) in Fig. 4.2, which are dependent on the radius-
thickness ratio of the cylinder, and which correspond to buckling of the cylinder into an oval shape (n = 
2), are derived from Ref. 98 pg. 478 as 

 𝑘! = 𝑘! =
3
𝜋!

 
𝛾𝑍

𝑅
𝑡 1 − 𝜈!

 (25) 

 

 𝑝!" =
𝛾𝐸

4 1 − 𝜈!
 
𝑡
𝑅

!
 (26) 
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Figure 4.2 Buckling coefficients for simply supported isotropic circular cylinders subjected to external 
pressure. 
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By assuming a value of γ equal to 1.0, one obtains the theoretical buckling equation given in Ref. 91. 
However, on the basis of various experimental data, it is recommended that a knockdown factor γ  less 
than 1.0 be used to account for difference between the predicted buckling load and the actual buckling 
load determined from tests.  

It has been shown analytically (e.g., Refs. 87, 99, 100) that restraint of the cylinder ends against 
longitudinal movement can increase the theoretical buckling pressure by as much as 50%.  Rotational 
constraints on the edges only affected the buckling load of relatively short cylinders. These results 
indicate that the effects of the boundary conditions should be assessed carefully. 

Experimental data for cylinders which buckle with more than two circumferential waves 𝛾𝑍 <

11.8 !
!

!
1 − 𝜈!  show considerable scatter about the theoretical values given by Eq. 14 (see Ref. 

101). There are several sources to the observed scatter. The end restraint of the test specimens were not 
always considered in detail in the analysis of the test data. Lower buckling loads may also be reported in 
the test data when isolated buckles appear in cylinders with large R/t or small L/R before pressure is 
reached at which a global buckle pattern appears around the entire circumference. The definition of the 
buckling for these cases is a matter of individual judgement and may vary in different tests by different 
investigators.  For cylinders subjected to hydrostatic pressure, the induced axial compression load and 
imperfection sensitivity characteristics may also have a significant influence on the buckling response. 
Later work by Yamaki [Ref.20] indicated significantly better correlation between test and analysis due to 
improved testing methods and specimen fabrication. However, because some of the test loads from 
previous testing are as much as 25% below the theoretical results, a conservative correlation factor of  

 𝛾 = 0.75 (27) 

is recommended for use with Eqs. 22-24. 

For long cylinders that buckle into an oval shape, there is less of a discrepancy between theory and 
experiment (Ref. 102), and a correlation factor of  

 𝛾 = 0.90 (28) 

is recommended for use with Eqs. 25 and 26. 

For relatively short cylinders under lateral pressure (𝛾𝑍 < 5) the plasticity factor for long, simply 
supported plates in axial compression may be used. It is obtained from Ref. 94 as  

 𝜂 =
𝐸!"#
𝐸

1
2
+
1
2

1
4
+
3
4
𝐸!"#
𝐸!"#

 (29) 

For 100 < 𝛾𝑍 < 11.8 !
!

!
1 − 𝜈! , the approximate plasticity factor is obtained from Eq 12 of Ref. 102 

as   

 𝜂 =
𝐸!"#
𝐸

𝐸!"#
𝐸!"#

!
! 1
4
+
3
4
𝐸!"#
𝐸!"#

 (30) 
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And for 𝛾𝑍 > 11.8 !
!

!
1 − 𝜈!  the approximate plasticity factor is obtained from equation (59) of Ref. 

91 as 

 𝜂 =
𝐸!"#
𝐸

1
4
+
3
4
𝐸!"#
𝐸!"#

 (31) 

 

No plasticity factor is available for the range 5 < 𝛾𝑍 < 100; satisfactory results may, however, be achieved 
by linear interpolation with the parameter Z between the values of 𝜂 given by Eqs. 29 and 30. 

Plasticity factors for the biaxial stress state of hydrostatic pressure are unavailable. For lack of better 
information, the plasticity factors given by Eqs. 29 and 31 may be used. 

4.2.4 Torsion 
Buckling and collapse of unstiffened cylinders subjected to torsion generally coincide. The theoretical 
buckling coefficient for cylinders in torsion 𝑘!" can be obtained from Fig. 4.3, which is taken from Ref. 
90. For very short cylinders the value of the critical shear-stress coefficient approaches the value of a flat 
plate in shear equal to 5.34 when the edges are simply supported. The straight-line portion of the curve is 
given by 

 𝑘!" =
𝑁!"𝐿!

𝜋!𝐷
= 0.85 𝛾𝑍

!
! (32) 

and applies for 50 < 𝛾𝑍 < 78 !
!

!
1 − 𝜈! .  
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Figure 4.3 Buckling coefficients for simply supported isotropic circular cylinders subjected to torsion. 

 

𝑁!" is the applied torsion load per unit length around the circumference of the cylinder. The correlation 
factor 𝛾 has been included to account for the differences between theory and test. Eq. 25 can be expressed 
as torsion stress 𝜏!" 

 𝜏!" =  
𝑁!"
𝑡

 =
0.747𝛾

!
!𝐸

𝑅
𝑡

!
! 𝐿
𝑅

!
!
 (33) 

To approximate the lower bound to most buckling data provided in Ref. 90, the value 

 

 𝛾
!
! = 0.67 (34) 

is recommended for moderately long cylinders. 

For very long cylinders, 𝛾𝑍 > 78 !
!

!
1 − 𝜈! , the cylinder buckles into a mode shape with two 

circumferential waves (n = 2). The critical buckling stress given by equation 11-27 in Ref. 98 is 
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 𝜏!" =
𝛾𝐸

3 2 1 − 𝜈!
!
!

𝑡
𝑅

!
!
 (35) 

and corresponds to a buckling coefficient  

 
𝑘!" =

2 2 𝛾𝑍

𝜋! 𝑅
𝑡

!
!
1 − 𝜈!

!
!

 
(36) 

where γ = 0.80 is recommended for very long cylinders. 

Plasticity may be taken into account by applying the plasticity factor from Ref. 102 in the above 
equations 

 𝜂 =
𝐸!"#
𝐸

 (37) 

The quantity 𝐸!"# is obtained from a uniaxial stress-strain curve at a normal stress equal to twice the 
critical shear stress. Eq. 37 applies to cylinders of all lengths. 

4.2.5 Combined Loads 
Typical load combinations encountered in practice are treated here. Generally, the recommended practice 
to account for combinations of two or more loading conditions that may cause buckling is to assume that 
the sum of the various critical load ratios is equal to unity. However, for some load cases, it has been 
shown theoretically and experimentally that this assumption can be somewhat conservative (e.g., 
combined compression and torsion and combined bending and torsion) [Refs. 20 and 91]. Alternate 
approaches used to account for the effects of combined loads can yield more accurate and less 
conservative buckling load estimates, however, it is advised that these alternate approaches be 
substantiated by test or validated buckling load predictions. 

4.2.5.1 Combined Axial Compression and Bending 
The recommended interaction equation for combined axial compression and bending is 

 𝑅! + 𝑅! = 1 (38) 

where the quantities 𝑅! and 𝑅! are the compressive and bending load or stress ratios given by 

 𝑅! =
𝑃
𝑃!"

 (39) 

and 

 𝑅! =
𝑀
𝑀!"

 (40) 

P and M are the applied compressive load and applied bending load, respectively. 𝑃!" and 𝑀!"  are the 
allowable loads or stresses derived from Eq. 1 for axial compression and Eq. 13 for cylinders in bending, 
respectively. 
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4.2.5.2 Combined Axial Compression and External Pressure 
The recommended interaction equation for combined axial compression and bending is 

 𝑅! + 𝑅! = 1 (41) 

The quantities 𝑅! and 𝑅! are the compressive and hydrostatic- or lateral-pressure load or stress ratios.  

 𝑅! =
𝑝
𝑝!"

 (42) 

p is the applied pressure load and 𝑝!" is the allowable load given in Section 4.2.3 for cylinders subjected 
to external pressure. 

4.2.5.3 Combined Axial Compression and Torsion 
For cylindrical shells subjected to combined axial compression and torsion, the analytical interaction 
curve is a function of Z. The experimental test data suggests the use of a straight-line interaction equation 

 𝑅! + 𝑅! = 1 (43) 

The quantities 𝑅! and 𝑅! are the compressive and torsion load or stress ratios, respectively.  

 𝑅! =
𝜏
𝜏!"

 (44) 

𝜏 is the applied torque load and 𝜏!" is the allowable load or stress given in Section 4.2.4 for cylinders 
subjected to torsion. 

4.2.5.4 Combined Axial Compression and Internal Pressure 
Buckling and collapse typically coincide for cylinders subjected to combined internal pressure and axial 
compression. The internal pressure increases the buckling load of the cylinder in the following ways: 

1. The total axial compressive load must be greater than the tensile pressurization load in the shell 
wall 𝑝𝜋𝑅! before buckling can occur. 

2. The destabilizing effect of initial imperfections is reduced.  
3. The circumferential tensile stress induced by the pressurization inhibits the formation of the 

classical diamond-shaped buckling pattern, and, at sufficiently high pressures, the cylinder 
buckles into the classical axisymmetric mode at approximately the classical buckling stress. 

 

Lower bound curves giving the increase in buckling load as a function of internal pressure, based on the 
results for Mylar cylinders, are given in Ref. 103 for various radius-to-thickness ratios. Because these 
curves are unsubstantiated at present for other materials, the more conservative values given in Ref. 104 
are recommended for design use. It is therefore recommended that the total load for buckling, unless 
substantiated by test, be obtained by the addition of the pressurization load 𝑝𝜋𝑅!, the buckling load for 
the unpressurized cylinder [Eqs. (4) and (5)], and an increase in the buckling load cause by the 
pressurization; that is 

 𝑃!"!"" = 2𝜋𝐸𝑡!  
𝛾

3 1 − 𝜈!
+ Δ𝛾 + 𝑝𝜋𝑅! (45) 

 



27 

where Δ𝛾 is obtained from Fig. 4.4. For 𝜈 = 0.3, Eq. (45) simplifies to 

 

 𝑃!"#$$ = 2𝜋𝐸𝑡! 0.6𝛾 + Δ𝛾 + 𝑝𝜋𝑅! (46) 

 

The Δ𝛾 curve provided in Fig. 4.4 should only be used with the equations presented here. Application of 
data from Fig. 4.4 to other untested cylinder configurations or use with other less conservative 
knockdown factors could result in unconservative designs.  

4.2.5.5 Combined Bending and Internal Pressure 
For cylinders subjected to combined internal pressure and bending, collapse loads are considerably higher 
than buckling loads (Refs. 105 -107), with the increase being substantially more than the tension stress 
induced by the pressurization. For example, for the true membrane cylinder, i.e., a cylinder with very thin 
walls R/t = 6000 (Ref. 108), the collapse load (𝑀 = 𝑝𝜋𝑅!) is twice the initial buckling load. The 
theoretical collapse load is, however, unattainable unless large undesirable deformations are present. It is 
therefore recommended that the collapse moment for pressurized cylinders be obtained by adding the 
moment-carrying capability of a pressurized membrane cylinder (taken for design purposes as 80% of the 
theoretical value), the collapse moment for the unpressurized cylinder [Eqs. (4) and (9)], and an increase 
in the critical moment caused by pressurization. Then 

 𝑀!"#$$ = 𝜋𝑅𝐸𝑡!  
𝛾

3 1 − 𝜈!
+ Δ𝛾 + 0.8 𝑝𝜋𝑅! (47) 

where Δ𝛾 is obtained from Fig. 4.4. For 𝜈 = 0.3, Eq. 47 simplifies to 
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 𝑀!"#$$ = 𝜋𝑅𝐸𝑡! 0.6𝛾 + Δ𝛾 + 0.8 𝑝𝜋𝑅! (48) 

  

Figure 4.4 Increase in axial buckling knockdown factor (correlation coefficient) for cylinders due to 
internal pressure. 

4.2.5.6 Combined Axial Compression, Bending, and Internal Pressure 
For internally pressurized cylinders subjected to combined axial compression and bending, Eq. (30) is 
recommended for use in combination with Eqs. (33) or (34) and (35) or (36) 

4.3 Orthotropic Cylinders 

The term orthotropic cylinders covers a wide variety of cylinder configurations. In the strictest sense, it 
denotes cylinders made of a single orthotropic material or of multiple orthotropic layers. It also denotes 
stiffened cylinders for which the stiffener geometry and spacing is such that the cylinder can be 
approximated by a fictitious layer whose orthotropic bending and extensional properties include those of 
the individual stiffening element averaged or smeared out over representative widths or areas. Generally 
the directions of the axes of orthotropy are taken to coincide with the longitudinal and circumferential 
directions of the cylinder. 

The buckling behavior of various types of orthotropic cylinders may be described by a single theory, the 
elements of which are equations of equilibrium for the buckled structure, and stress-strain relations. For 
cylinders of a single orthotropic layer, it is generally permissible to neglect coupling between membrane 
stresses and bending strains, and between moment resultants and extensional strains. The theory is then 
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similar to that for isotropic cylinders. For stiffened cylinders or for cylinders having multiple orthotropic 
layers, however, the neglect of coupling terms can lead to significant errors.  

For example, cylinders that have stiffeners on the inner surface or on the outer surface will exhibit 
bending-extension coupling due to the eccentricity of the stiffeners relative to the mid-surface of the 
cylinder wall. In addition, the character of the coupling will be different depending on the orientation of 
the stiffeners and if the stiffeners are on the inside or the outside, and can have a significant influence on 
the buckling response if the cylinder.[Refs. 109 - 113] In particular, the eccentricity effect is very 
pronounced for axially-stiffened cylinders in compression. Similarly, laminated composite cylinders can 
exhibit various types of elastic coupling even if the laminate is balanced and symmetric. [Ref. 114].  

In stiffened cylinders, other failure modes should also be investigated including local skin buckling 
between stiffeners, as well as stiffener buckling and stiffener crippling. In addition, the adequacy of the 
smeared stiffener theory should be investigated if the spacing of the stiffeners becomes sufficiently large, 
or if geometrically nonlinear prebuckling deformations are anticipated. (Ref. 25 Sections 13.1.3-13.1.6) 

4.3.1 Axial Compression 
 

An equation for the buckling of orthotropic cylinders in compression (Ref. 115) is given by: 

 

 𝑁! =
𝐿
𝑚𝜋

!

𝐴!! 𝐴!" 𝐴!"
𝐴!" 𝐴!! 𝐴!"
𝐴!" 𝐴!" 𝐴!!
𝐴!! 𝐴!"
𝐴!" 𝐴!!

 𝑓𝑜𝑟 𝑛 ≥ 4 
(49) 

 

 

or 

 𝑁!
𝑚𝜋
𝐿

!
= 𝐴!! + 𝐴!"

𝐴!"𝐴!" − 𝐴!!𝐴!"
𝐴!!𝐴!! − 𝐴!"!

+ 𝐴!"
𝐴!"𝐴!" − 𝐴!"𝐴!!
𝐴!!𝐴!! − 𝐴!"!

 (50) 

where 

 

 𝐴!! = 𝐸!
𝑚𝜋
𝐿

!
+ 𝐺!"

𝑛
𝑅

!
 (51) 

 

 𝐴!! = 𝐸!
𝑛
𝑅

!
+ 𝐺!"

𝑚𝜋
𝐿

!
 (52) 
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 𝐴!! = 𝐷!
𝑚𝜋
𝐿

!
+ 𝐷!"

𝑚𝜋
𝐿

! 𝑛
𝑅

!

+ 𝐷!
𝑛
𝑅

!
+
𝐸!
𝑅!

+
2𝐶!
𝑅

𝑛
𝑅

!

+
2𝐶!"
𝑅

𝑚𝜋
𝐿

!
 (53) 

 

 𝐴!" = 𝐴!" = 𝐸!" + 𝐺!"  
𝑚𝜋
𝐿

 
𝑛
𝑅

 (54) 

 

 𝐴!" = 𝐴!" = 𝐶!" + 2𝐾!"
𝑚𝜋
𝐿

! 𝑛
𝑅
+
𝐸!
𝑅

 
𝑛
𝑅
+ 𝐶!

𝑛
𝑅

!
 (55) 

 

 𝐴!" = 𝐴!" =
𝐸!"
𝑅

 
𝑚𝜋
𝐿
+ 𝐶!

𝑚𝜋
𝐿

!
+ 𝐶!" + 2𝐾!"

𝑚𝜋
𝐿

𝑛
𝑅

!
 (56) 

 

Values of the stiffnesses 𝐸!, 𝐸!", 𝐸!, 𝐺!", 𝐷!, 𝐷!", 𝐷!, 𝐶!, 𝐶!", 𝐶!, and 𝐾!", for various types of 
construction are given in Section 4.3.6. Prebuckling deformations are not taken into account in the 
derivation of the equation. The cylinder edges are assumed to be simply supported, that is the 
displacements w = 0 and the rotations about the tangent rv = free.  These conditions are assumed to be 
representative of rings that are rigid in their own plane but offer no resistance to rotation or bending out of 
their plane. For ring-stiffened corrugated cylinders, a similar but not identical theory is given in Refs. 66 
and 116. For given cylinder and stiffener dimensions, the values of m and n (the number of axial 
halfwaves and circumferential full-waves, respectively) to be used are those which minimize the buckling 
load 𝑁!. 

The large number of parameters in Eq. (37) does not permit a complete treatment of results to be shown. 
However, some generalizations can be made and references provided. For combinations of parameters 
representative of stiffened shells, calculations indicate that external stiffening, whether rings or stringers 
or both, can be more effective than internally stiffened cylinders for axial compression. Generally, 
calculations neglecting stiffener eccentricity yield unconservative values of the buckling load of internally 
stiffened cylinders and conservative values of the buckling load for externally stiffened cylinders [Ref. 
117]. In addition, boundary conditions and loading can have a significant effect on these trends [Ref. 
118]. An extensive investigation of the variation of the buckling load with various stiffener parameters is 
reported in Refs. 78 and 109. In general, the experimental data [Refs. 66 to 73 and 118-123], for cylinders 
with closely spaced, moderately large stiffeners are in reasonably good agreement with the theoretical 
results for the range of parameters investigated. 

However, some experimental buckling loads have been shown to be as low as 65% of the predicted 
classical buckling load. Thus, it is recommended that the buckling loads for a uniform cylinder with 
closely spaced, moderately large stiffeners calculated from Eq. 37 be multiplied by a factor of 0.65.2 

                                                

 

2 Note: NASA SP-8007, 1968 [Ref. 1] suggested a knockdown factor equal to 0.75, however, for conservatism a 
knockdown factor of 0.65 is recommended based on the results presented in Ref 5. Less conservative analysis-based 
factors can be derived based on an approach outlined in Sec 4.7 
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[Refs. 5 and 6] Correlation coefficients covering the transition from unstiffened cylinders to cylinders 
with closely space stiffeners have not been fully investigated and may require investigation via detailed 
analysis and or experimental testing. While theory and experiment [Ref. 72] indicate that restraint against 
edge rotation and longitudinal movement can significantly increase the buckling load, not enough is 
known about the edge restraint of actual cylinders to warrant taking advantage of these effects unless 
substantiated by tests. 

For layered or unstiffened orthotropic cylinders, the available test data has increased substantially since 
the previous version of the SP-8007 was written and the results indicate higher buckling loads as 
compared to older isotropic data and the lower bound design curve of Eq. 5. Filament-wound cylinders 
[Refs. 124-127], laminated composite cylinders [Refs. 10-11, 128-133], and stiffened composite cylinder 
[Ref. 134] However, due to the tremendous number of possible design variables and structural 
configurations, no new empirical guidelines have been developed based on this data. Thus, the correlation 
factor γ is taken to be of the same form as for the isotropic cylinders [Eq. 5] with the thickness t replaced 
by the geometric mean of the radii of gyration for the axial and circumferential directions. Thus 

 𝛾 = 1 − 0.901 1 − 𝑒!!  (57) 

where  

 𝜙 =
1

29.8
  

𝑅

𝐷!𝐷!
𝐸!𝐸!

!

 

 !!

 (58) 

As discussed in Section 4.2, more recent testing has produced buckling loads that are significantly higher 
than the lower bound design curve given by Eq. 5. It is not uncommon to obtain experimental buckling 
loads for uniform cylinders of 70-90% of the theoretical predictions. These higher loads are most likely a 
result of greater quality control associated with the fabrication and testing of these structures and thus 
minimizing the effects of initial geometric imperfections and loading nonuniformities. However, given 
the sever imperfection sensitivity of compression-loaded thin-walled cylinders, the design factors 
provided herein should be used unless alternate values can be justified.  Alternate methods, including 
semi-empirical and high-fidelity analysis-based methods, for determining less conservative knockdown 
factors are presented in Sections 4.6 and 4.7. 

4.3.2 Bending 
Theoretical and experimental results for stiffened cylinders in bending can be found in (Refs. 74-76, 116, 
136-139) The results indicate that the critical maximum load per unit circumference of a stiffened 
cylinder in bending can exceed the critical unit load in axial compression. However, in the absence of an 
extensive investigation, it is recommended that the critical maximum load per unit circumference of a 
uniform cylinder with closely spaced stiffeners be taken as equal to the critical load in axial compression, 
which is calculated from Eq. (37) multiplied by a factor γ = 0.72, which is slight greater than the factor 
for compression loaded cylinders due to the reduced imperfection sensitivity. In addition, as with 
compression-loaded stiffened cylinders, local skin buckling can also occur prior to global buckling as in 
the case of widely spaced stiffeners and should be checked. 

For layered or unstiffened orthotropic cylinders, it is recommended that the correlation factor  
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 𝛾 = 1 − 0.731 1 − 𝑒!!  (59) 

be used where 

 𝜙 =
1

29.8
  

𝑅

𝐷!𝐷!
𝐸!𝐸!

!

 

 !!

 (60) 

4.3.3 External Pressure 
The counterpart of Eq. 37 for orthotropic cylinders under lateral pressure is given by 

 𝑝 =
𝑅
𝑛!

𝐴!! 𝐴!" 𝐴!"
𝐴!" 𝐴!! 𝐴!"
𝐴!" 𝐴!" 𝐴!!
𝐴!! 𝐴!"
𝐴!" 𝐴!!

 
(61) 

 

For hydrostatic pressure, the quantity 𝑛! in Eq. 61 is replaced by 

 𝑛! +
1
2

 
𝑚𝜋𝑅
𝐿

!
 (62) 

 

In the case of lateral pressure, m is equal to unity while n must be varied to yield a minimum value of the 
critical pressure, but not less than 2. In the case of hydrostatic pressure, the value of m should be varied 
along with n. For long cylinders, Eq. 61 is replaced by 

 
𝑝 =

3 𝐷! −
𝐶!

!

𝐸!
𝑅!

 
(63) 

 

If the coupling coefficients can be neglected (i.e., are equal to or close to zero valued), the critical 
buckling pressure can be approximated by: 

 𝑝 ≈
5.513

𝐿𝑅
!
!

𝐷!
! 𝐸!𝐸! − 𝐸!"

!

𝐸!

!
!

 (64) 
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for the case of 

 𝐷!
𝐷!

!
! 𝐸!𝐸! − 𝐸!"

!

12 𝐸!𝐷!

!
! 𝐿!

𝑅
 > 500 (65) 

 

Equation (61) has been investigated primarily for isotropic cylinders with ring stiffeners (Refs. 140 to 
142). For closely spaced ring stiffening, Refs. 140 and 141 show that the effectiveness of inside or outside 
rings depends on the cylinder and ring geometries. Generally, for cylinders with values of Z less than 100, 
outside rings are more effective, while for value of Z greater than 500, the reverse is true. As the ring 
geometry varies, the effectiveness of the outside stiffening tends to increase as the stiffness of the rings 
relative to the cylinder increases. Somewhat lower buckling pressures are given by the more complex but 
more accurate theory of Ref. 143; however, the differences are not so significant as to warrant its use. 

The experimental results for ring-stiffened cylinders described in Refs. 144-147 are in reasonably good 
agreement with the theoretical results of Eq. (49). For cylinders of all types, it is recommended that the 
buckling pressure calculated from Eq. 49 be multiplied by a factor of 0.75, as has been recommended for 
unstiffened isotropic cylinders of moderate length. 

4.3.4 Torsion 
Buckling of orthotropic cylinders in torsion has been treated in Refs. 61, 148, and 149. If coupling effects 
are negligible, the critical torsion load for moderately long cylinders can be estimated based on the 
equations provided in Ref. 61. A more convenient form for the critical buckling torque can be derived for 
Ref. 61 and give by 

 𝑇!" ≈ 21.75 𝐷!
!
!
𝐸!𝐸! − 𝐸!"

!

𝐸!

!
!

 
𝑅
!
!

𝐿
!
!

 (66) 

for the case of 

  𝐷!
 𝐷!

!
! 𝐸!𝐸! − 𝐸!"

!

12 𝐸!𝐷!

!
!

 
𝐿!

𝑅
≳ 500 (67) 

 

Reference 149, however, indicates that coupling effects can be quite important for cylinders stiffened with 
closely space rings. For long cylinders, internal rings are generally more effective than outside rings; for 
short cylinders, the reverse is true. In the absence of general formulas or graphs for the range of practical 
parameters, the equations in Ref. 147 should be solved for each specific case considered. 

The limited test data of Ref. 150 for relatively short stiffeners, are in good agreement with theoretical 
predictions but are insufficient to provide an adequate test of the theory for more practical designs. It is 
therefore recommended that theoretical critical torsion load 𝑇!" be multiplied by a factor of 0.67 for 
moderately long cylinders. 
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4.3.5 Combined Loads 
On the basis of theory [Refs. 116, 135, and 139] and limited test data [Refs. 66 and 116], interaction 
equations found in Section 4.2.5 for isotropic cylinders are recommended.  

However, as discussed in Section 4.2.5, it has been shown theoretically and experimentally that this 
assumption can be somewhat conservative (e.g., combined compression and torsion and combined 
bending and torsion) [Refs. 20, 91]. Alternate approaches used to account for the effects of combined 
loads can yield more accurate and less conservative buckling load estimates, however, it is advised that 
these alternate approaches be substantiated by test or validated buckling load predictions. 

4.3.6 Elastic Constants 
Equations for the elastic constants for commonly used cylinder wall constructions are provided in this 
section, including: 

• Stiffened Multilayered Orthotropic Cylinders 
• Isotropic Cylinders with Rings and Stringers 
• Isotropic Isogrid-Stiffened Cylinders 
• Ring-Stiffened Corrugated Cylinders 

 
Equations for determining elastic constants for other stiffener patterns and structural configurations are 
presented in Nemeth, including Hexagonal stiffener pattern, Kagome stiffener pattern, and sandwich 
plates with nonidentical anisotropic facesheets. [Ref. 151] 

4.3.6.1 Stiffened Multilayered Orthotropic Cylinders 
Commonly used expressions for the elastic constants for multilayered cylinders with isotropic rings and 
stringers are: 

 𝐸! =
𝐸!

1 − 𝜈!𝜈! !
𝑡! +

𝐸!𝐴!
𝑏

!

!!!

 (68) 

 

 𝐸! =
𝐸!

1 − 𝜈!𝜈! !
𝑡! +

𝐸!𝐴!
𝑑

!

!!!

 (69) 

 

 𝐸!" =
𝜈!𝐸!

1 − 𝜈!𝜈! !
𝑡! =

𝜈!𝐸!
1 − 𝜈!𝜈! !

𝑡!

!

!!!

!

!!!

 (70) 

 

 𝐺!" = 𝐺!" !
𝑡!

!

!!!

 (71) 
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 𝐷! =
𝐸!

1 − 𝜈!𝜈! !

1
12
𝑡!! + 𝑡!𝑧!! +

𝐸!𝐼!
𝑏

+ 𝑧!!
!

!!!

𝐸!𝐴!
𝑏

 (72) 

 

 𝐷! =
𝐸!

1 − 𝜈!𝜈! !

1
12
𝑡!! + 𝑡!𝑧!! +

𝐸!𝐼!
𝑑

+ 𝑧!!
!

!!!

𝐸!𝐴!
𝑑

 (73) 

 

 𝐷!" = 4𝐺!" +
𝜈!𝐸!

1 − 𝜈!𝜈!
+

𝜈!𝐸!
1 − 𝜈!𝜈! !

1
12
𝑡!! + 𝑡!𝑧!! +

𝐺!𝐽!
𝑏

+
!

!!!

𝐺!𝐽!
𝑑

 (74) 

 

 𝐶! =
𝐸!

1 − 𝜈!𝜈! !
𝑡!𝑧! + 𝑧!

𝐸!𝐴!
𝑏

!

!!!

 (75) 

 

 𝐶! =
𝐸!

1 − 𝜈!𝜈! !
𝑡!𝑧! + 𝑧!

𝐸!𝐴!
𝑑

!

!!!

 (76) 

 

 𝐶!" =
𝜈!𝐸!

1 − 𝜈!𝜈! !
𝑡!𝑧! =

𝜈!𝐸!
1 − 𝜈!𝜈! !

𝑡!𝑧!

!

!!!

!

!!!

 (77) 

 

 𝐾!" = 𝐺!" !
 𝑡!𝑧!

!

!!!

 (78) 

 

E, G, v, denote the Young’s modulus, shear modulus, and Poisson’s ratio of the skin and stiffener 
materials. The subscripts x and y are associated with the skin properties and correspond to the axial and 
circumferential coordinates of the cylinder, and the subscripts s and r refer to the stringer and ring 
stiffeners. The subscript k refers to the kth layer of an N-layer cylinder wall. The thickness of the kth layer 
is denoted by 𝑡! and the location of the layer midsurface relative to the wall reference surface is defined 
as 𝑧!, and is positive valued for layers radially outside of the reference surface (see Fig. 4.5). The 
reference surface is typically taken to be associated with the mid-surface of the laminate, however, this is 
not a requirement. Individual stiffener area, and torsional moment of inertia are denoted by A, I, and J. 
The moments of inertia of the axial and circumferential stiffeners are calculated relative to the reference-
surface of the skin. Circumferential and axial stiffener spacing is denoted by b and d, respectively, and the 
corresponding stiffener eccentricities, 𝑧!, 𝑧!, are defined as the distances between the shell-wall reference 
surface and the stiffener centroid, as shown in Fig. 4.6. 
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Figure 4.5. Multilayered orthotropic cylindrical shell wall geometry. 
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Figure 4.6. Ring and stringer stiffened shell wall geometry. 

 

4.3.6.2 Isotropic Cylinders with Rings and Stringers 
For an isotropic cylinder with rings and stringers and a reference surface at the mid-surface of the skin, 
Eqs. 56 to 66 reduce to 

 𝐸! =
𝐸 𝑡

1 − 𝜈!
+
𝐸! 𝐴!
𝑏!

 (79) 

 

 𝐸! =
𝐸 𝑡

1 − 𝜈!
+
𝐸!  𝐴!
𝑏!

 (80) 

 

 𝐸!" =
𝜈 𝐸 𝑡
1 − 𝜈!

 (81) 

 

 𝐺!" =
𝐸 𝑡

2 1 + 𝜈
 (82) 

 

 𝐶! = 𝑧!
𝐸! 𝐴!
𝑏!

 (83) 

 

 𝐶! = 𝑧!
𝐸!  𝐴!
𝑏!

 (84) 

 

 𝐶!" = 𝐾!" = 0 (85) 

 

 𝐷! =
𝐸 𝑡!

12(1 − 𝜈!)
+
𝐸! 𝐼!
𝑏!

 (86) 

 

 𝐷! =
𝐸 𝑡!

12(1 − 𝜈!)
+
𝐸!  𝐼!
𝑏!

 (87) 
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 𝐷!" =
𝜈𝐸 𝑡!

6(1 − 𝜈!)
+

𝐸 𝑡!

6(1 + 𝜈)
+
𝐺! 𝐽!
𝑏!

+
𝐺!  𝐽!
𝑏!

 (88) 

 

4.3.6.3 Isotropic Isogrid-Stiffened Cylinders  
A derivation of stiffness parameters for a general orthogonal stiffener pattern with diagonal stiffener 
elements is presented in Ref. 151. From that, stiffness parameters for the traditional waffle grid pattern 
can be derived. In addition, a common stiffener pattern, somewhat related to the waffle pattern, consisting 
of equilateral triangle pattern, commonly referred to as an isogrid stiffener pattern can also be derived as 
shown in Fig. 4.7. 

The stiffnesses for isogrid-stiffened isotropic cylinders are given by 
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𝐸 𝑡
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𝑎
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 𝐷!" =
𝜈 𝐸 𝑡!

6(1 − 𝜈!)
+

𝐸 𝑡!

6(1 + 𝜈)
+
3 3
2𝑎

𝐸 𝐼! +
3
2𝑎

𝐺 𝐽! (95) 

 

where a is the stiffener length 
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Figure 4.7. Isogrid geometry definition. (Note: The figure shows fillet details commonly found in integrally 
stiffened metallic designs. The effects of the fillets are neglected in these stiffness calculations) 

4.3.6.4 Ring-Stiffened Corrugated Cylinders 
The following equations are commonly used to calculate the elastic constants for ring-stiffened 
corrugated cylinders. [Ref. 75] These properties assume that each segment of the corrugation has the 
length p. The corrugated shell geometry definition is given in Fig. 4.8. 

 

 𝐸! = 𝐸𝑡 (96) 

 

 𝑡 =
2 𝑡!

1 + cos 𝜃
 (97) 

 

 𝐸! =
𝐸!  𝐴!
𝑏!

 (98) 

 

 𝐺!" = 𝐺𝑡!
𝑡!
𝑡

 (99) 
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a
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 𝐷! = 𝐸𝐼 (100) 

 

 𝐼 =
𝑡!  𝑝!

3
sin! 𝜃 
1 + cos 𝜃

 (101) 

 

 𝐷! =
𝐸!  𝐼!
𝑏!

+ 𝑧!!
𝐸!  𝐴!
𝑏!

 (102) 

 

 𝐷!" =
𝐺!  𝐽!
𝑏!

 (103) 

 

 𝐶! = 𝑧!
𝐸!  𝐴!
𝑏!

 (104) 

 

 𝐸!" = 𝐶! = 𝐶!" = 𝐾!" = 0 (105) 

 

 

Figure 4.8. Corrugated shell geometry definition. 

4.3.7 Integrally-Stiffened Cylinders with Axial Welds  
Analysis-based buckling knockdown factors were generated for selected orthogrid-stiffened and 

isogrid-stiffened metallic cylinders with axial welds. The cylinder designs considered were representative 
of large-scale cylinders for a specific range of design parameters. The cylinder design details and KDF 
development assumptions are presented in the subsections that follow. The information provided will help 
guide the appropriate application of the KDFs and design recommendations and identify their limitations. 
Extension of the KDFs and design recommendations to other cylinders, outside the range for which these 
KDFs were originally intended, may be possible if sufficient technical rational is developed through 
additional detailed analyses and testing to show applicability. The knockdown factor development 
approach used to generate the KDFs is described in Section 4.7.  

Cylinder configuration 
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The cylinder configuration used to develop the KDFs was limited to a single diameter, length, and 
fabrication approach that was representative of a large-scale launch vehicle cylinder section. The 
following cylinder dimensions and design and modeling assumptions were used in the development of the 
KDF data (the cylinder configuration is illustrated in Fig. 9) : 

1. OML diameter D = 330 in. 
2. Cylinder length L = 330 in., (L/D = 1.0).  
3. The cylinder is composed of eight (8) integrally-stiffened, 48-in-radius curved-panel segments 

that were joined together along axial weld lands  
a. Orthogrid (Fig. 10) and isogrid (Fig. 11) stiffener patterns  
b. Internal stiffeners with rectangular cross-section 

4. The cylinder is supported by a stiff ring-frame at the upper and lower end that constrained 
radial and tangential displacements at the ends and can be approximated by assuming simply-
supported boundary conditions in the KDF calculations. 

5. The material is isotropic and linear-elastic. 
6. The cylinder is subjected to axial compression load or combined axial compression and 

internal pressure. 
 

 The orthogrid and isogrid stiffener patterns and design variables are shown in Figs. 4.10 and 4.11 
and the range of parameter values considered are provided in Tables 4.1 and 4.2. The cylinder radius to 
effective thickness ratio R/teff and stiffener efficiency parameter, teff/ta are also presented. teff/ta = 1.0 
corresponds to an unstiffened monocoque cylinder. The effective thickness, teff, and the effective 
membrane thickness ta, are defined as 

 
𝑡!"" =

144𝐷!!𝐷!!
𝐴!!𝐴!!

!
 (106) 

 

 
𝑡! =

(𝐴!!𝐴!! − 𝐴!"! )(1 − 𝜈!)
𝐸

 (107) 

 
where A11, A12, A22 are orthotropic membrane stiffnesses, D11 and D22 are orthotropic bending stiffnesses, 
E is Young’s modulus, and ν is Poisson’s ratio. 
 
Two different weld land designs were considered. The first design includes a transition region in which 
the axial and circumferential stiffeners gradually taper down into the monocoque weld land region and the 
skin thickness is increased from t to tt, shown in Fig. 4.12a. The value of tt is midway between the skin 
thickness t and the weld land thickness tw. This type of design is referred to as a tapered stiffener design. 
The second weld land and transition regions have many of the same features as the first, however, the 
circumferential stiffeners in the second design do not gradually taper down into the monocoque weld land 
region, rather the stiffeners terminate at an axial stiffener adjacent to the weld land shown in Fig. 4.12b. 
This type of design is referred to as a picture frame design.  Minimum and maximum values of the weld 
land design variables are listed in Table 4.3.  
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Figure 4.9. Cylinder configuration. 

 

 
Figure 4.10. Orthogrid geometry definition. 
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Figure 4.11. Isogrid geometry definition. 

 

 
Table 4.1. Orthogrid design parameters – minimum and maximum values 

Design  

variable 

Minimum value 

in. 

Maximum value 

in. 

t 0.100 0.375 

H 1.115 3.695 

br 12.00 18.11 

tr 0.125 0.340 

bs 5.00 9.00 

ts 0.125 0.400 

R/teff 46.0 335.0 

teff/ta 2.12 12.72 

 

t H

a

b
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Table 4.2. Isogrid design parameters – minimum and maximum values 

Design  

variable 

Minimum value 

in. 

Maximum value 

in. 

t 0.100 0.300 

H 1.100 2.700 

a 7.5 16.5 

b 0.110 0.300 

R/teff 72.8 199.25 

teff/ta 5.63 10.14 

 

 

 

a) Typical acreage and weld land design with a tapered stiffener transition. 

 

b) Typical acreage and weld land design with a “picture frame” stiffener transition. 
Figure 4.12. Weld land geometry definition (shown in shown in the flat condition used for machining). 
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Table 4.3. Weld land design variables  

Design  

variable 

Values 

ww 2.000 in. - 2.500 in. 

tw 0.350 in. - 0.650 in. 

wt 

1.115 in. – 3.750 in. (orthogrid/taperd) 

5.0 in. – 9.0 in. (orthogrid/picture frame) 

0.800 in. – 2.600 in. (isogrid/tapered) 

6.495 in. – 14.289 in. (isogrid/picture 
frame) 

tt 𝑡! + 𝑡
2

 

 

KDF Assumptions 

 Initial shell-wall geometric imperfections and nonuniform loading due to interface/loading surface 
irregularities (referred to herein as loading imperfections) can have a significant effect on the buckling of 
thin-walled compression-loaded cylinders. In addition, axial welds and weld land features used to 
construct large-scale cylinders, can lead to as much as a 30% reduction in the buckling load of the 
cylinder and cause undesirable large-magnitude prebuckling radial deformations in the cylinder wall. 
[Ref. 56] Similarly, local skin pockets and stiffener flexibility can interact with global deformations and 
lead to lower buckling loads. With these and other affects in mind, the following KDF assumptions are 
defined: 

1. Geometric imperfections:  
a. It is assumed that the initial geometric imperfections have the same overall character 

and amplitude (or better) as those defined by the imperfection signature given in Figs. 
4.13 and 4.14.  

b. This imperfection signature is specific to cylinders manufactured by welding multiple 
curve panels sections together using a conventional friction-stir welding process 
which reduces the severity of local distortions and residual stresses. 

c. It is assumed that well-established aerospace-quality panel machining, forming, and 
welding procedures are used and will produce the same or better imperfection 
distributions and amplitudes. This should be verified before use.  

2. Nonuniform loading due to interface tolerances (loading imperfection):  
a. It is assumed that state-of-the-art manufacturing and assembly processes will result in 

limited geometric nonuniformities at the interfaces between the cylinder and adjacent 
structure that can result in nonuniform loading in the cylinder. 

b. It is assumed (based on previous measurements) that the geometric nonuniformities at 
each end of the cylinder exhibit a smoothly-varying periodic distribution as shown in 
Fig. 4.15; have arbitrary circumferential orientation; and have and amplitude 
𝛿 ≤ 0.1 Δ!", where Δ!" is the critical end-shortening displacement of the cylinder 
predicted from a linear buckling analysis. 
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c. It is assumed that aerospace-quality machining and assembly procedures (e.g., 
shimming) will produce the same or better imperfection distributions and amplitudes. 
This should be verified before use. 

3. Axial weld lands:  
a. Two different weld land designs with different dimensions are considered as described 

previously (see Fig. 4.12 and Table 4.3) 
b. It is assumed that these weld land designs will result in the largest reduction in 

buckling load as they do not include local stiffness tailoring that is often added to help 
mitigate buckling at the weld land.  

4. Skin pocket and stiffener details:  
a. It is assumed that skin pocket buckling and stiffener buckling/crippling failure modes 

will be addressed by using separate failure mode calculations 
b. The effects of skin and stiffener flexibility and local skin buckling on the global 

buckling response is accounted for in the KDF formulation 
c. The effects of radius fillets between the skin and stiffeners are neglected (e.g., see 

Figs. 4.10 and 4.11) 
d. It is assumed that the skin pocket thickness adjacent to the axial and circumferential 

weld lands follow the geometry definitions given in Fig. 4.12.  
5. Stiffener pattern:  

a. Different orthogrid and isogrid stiffener patterns are considered. 
b. It is assumed that the stiffener patterns are uniform throughout each panel section and 

uniform from panel to panel 
c. Different KDFs are provided for orthogrid-stiffened and isogrid-stiffened cylinders 

6. Residual stresses: 
a. Residual stresses due to panel machining, forming and panel friction stir welding are 

neglected.   
i. Assumed that the panels have undergone stress-relief procedures including 

heat treating and artificial aging to minimize residual stresses. 
ii. Limited parametric studies indicate that potential residual stresses due to 

panel forming and friction stir welding have a negligible effect on the 
predicted global buckling load and buckling mode for large-scale cylinders 
considered here. The applicability of these results and assumptions to other 
cylinder configurations and manufacturing processes should be verified. 

b. Stresses that result from joining the cylinder with adjacent structure during assembly, 
via bolted joints, are accounted for in nonuniform loading as described in item 2. 

7. Thickness variations:  
a. Thickness variations due to manufacturing tolerances are not accounted for in the 

KDFs 
b. It is assumed that machined panel geometries have relatively uniform dimensions, i.e., 

thickness, height, and width only vary slightly and do not result in abrupt thickness 
changes that could cause local bending deformations due to a load path eccentricity. 

c. Thickness tolerances can be accounted for by assuming design minimum values in all 
buckling load calculations, including classical calculations and FE-based calculations, 
unless actual measured thickness values are available. However, if actual as-built 
thickness measurements are available, then an average thickness can be used. 

8. Material property variations:  
a. Material property variations are not accounted for in the KDFs. 
b. Material property variations shall be accounted for by assuming design minimum 

values in all buckling load calculations, including classical calculations and FE-based 
calculations, unless actual material value properties are available.  
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9. Uncertainty in applied loads:  
a. Uncertainty in applied loads are not accounted for in the KDFs.  
b. Load uncertainty shall be accounted for by using appropriate design safety factors for 

limit and ultimate loads as defined by program requirements. 
10. Cylinder length and boundary conditions: 

a. The cylinder design of interest may be a single cylinder or may consist of multiple 
cylinders attached together with intermediate ring-frames to create a longer cylinder. 
However, cylinder buckling and column buckling interaction should be checked for 
long cylinders (e.g., L/D > 4.0). 

b. If stiff ring-frames are not used between adjacent cylinder sections, the effects of the 
unstiffened circumferential joint should be investigated.152, 153 

c. The KDFs developed should be conservative for shorter cylinders L/D < 1.0 since 
cylinders typically become less imperfection sensitive as they become shorter and 
approach the solution for a compression-loaded infinitely-long flat plate.  
 

Characteristic Imperfections 

The KDFs are applicable if all the KDF assumptions are met including the characteristic imperfections. 
The imperfections are defined next. 

Shell-wall geometric imperfection: An imperfection signature for a large-scale 330-in.-diameter, 265-in.-
long metallic launch vehicle tank cylinder section is presented in Fig. 4.13. This cylinder was constructed 
from 8 curved panels that were welded together using a conventional friction stir welding process to form 
a complete cylinder. It is assumed that well-established aerospace-quality panel machining, forming, 
stress-relieving, and welding procedures are used and will produce the same or better imperfection 
distributions and amplitudes. This should be verified before use. 

The axial weld locations are marked with dashed vertical lines in the contour plot. The imperfection 
signature is characterized by distinct inward radial imperfections at the axial weld lands of approximately 
-0.90 inches and smaller magnitude variations in the acreage of the cylinder.  

 

Figure 4.13. Imperfection signature for a full-scale metallic cylinder with eight axial weld lands. 

The imperfection signature can be represented by a two-dimensional Fourier series given by  

 

imp, in.
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𝑖𝑚𝑝 = 𝑐𝑜𝑠

𝑚𝜋𝑥
𝐿

𝐴!"cos (𝑛𝜋𝜃) + 𝐵!"sin (𝑛𝜋𝜃)
!"

!!!

!"

!!!

 (108) 

 

where L is the cylinder length; x and θ are the axial and circumferential coordinates; and m and n are 
integers corresponding to the number of axial half-waves and circumferential full-waves, respectively. 
The coefficient distribution for the imperfection signature shown in Fig. 4.13 is presented in Fig. 4.14. 
The largest magnitude component of the imperfection is associated with the m = 0, n = 8, coefficients and 
correspond to the large magnitude inward imperfection at the eight weld lands. In addition, noticeable 
contributions to the imperfection are associated with  n equal to integer multiples of eight,  n = 16, 24, 32, 
and 40. Other contributions to the imperfection are associated with long-wave-length circumferential 
modes, n = 2 and 3 (i.e., ovalization and triovalization, respectively). Axial half-waves of m > 4 were 
omitted from the plot for clarity but are relatively small magnitude, i.e., Xmn < 0.01.  

 
Figure 4.14. Fourier series coefficient distribution for imperfection signature given in Fig. 13. 

 

Loading imperfection: Measured interface surface geometry of large-scale cylinders (i.e., R ≥ 48 ft.) 
exhibit a periodic variation around the circumference and is approximated by a sine function. Most 
measurements indicate a 2-full-wave imperfection shape (see blue curve in Fig. 4.15). However, some 
imperfections include an additional shorter wave-length component which can be approximated by 
assuming a 3-full-wave imperfection shape as given by the red curve in Fig. 4.15. The alignment (i.e., the 
phase shift) of the imperfection shape on the top end relative to the bottom end of the cylinder is assumed 
to be random, but is likely a characteristic of a particular machining facility. It is further assumed that the 
top and bottom imperfection can either consist of 2 full waves or 3 full waves. The amplitude of the 
measured imperfections obtained from numerous large-scale cylinders with metallic interface rings are 
consistently δ < 0.010 in. 
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Figure 4.15. Assumed loading surface imperfection shapes. 

4.3.7.1 Design recommendations for orthogrid-stiffened cylinders subjected to uniform 
axial compression 

A design buckling load 𝑃!" can be calculated for preliminary or detailed design using the following 
relationships: 

For conceptual or preliminary design in which the classical buckling load 𝑃!" is used, 

 𝑃!" = 𝛤!𝛤!𝑃!" (109) 

and for detailed design in which an FEM-based eigenvalue load 𝑃!"# is used, 

 𝑃!" = 𝛤!𝑃!"# (110) 

𝑃!" is the buckling load predicted from a classical linear bifurcation buckling analyses of an idealized 
geometrically perfect orthogrid-stiffened cylinder such as that given in Section 4.3, or equivalent. 𝑃!"# is 
predicted linear bifurcation buckling load (eigen load) from a detailed FE model that includes all 
structural details including discrete stiffeners, weld lands (see Section 4.7.1 on model development)  

The factor 𝛤! is represented by the tri-linear curve and provides a good  approximation to the predicted 
buckling load data 𝑃!"#/𝑃!" as a function of a stiffener efficiency parameter, 𝑡!""/𝑡!, in Figure 4.16 
(predicted data represented by the blue data points). 𝑡!""/𝑡! = 1.0 corresponds to an unstiffened 
monocoque cylinder.  

The data in Fig. 4.16 indicate that the buckling loads of the cylinders decrease as the stiffener efficiency 
increases, and is divided into three distinct regions. For 1 ≤ 𝑡!""/𝑡! ≤ 3.2, 𝛤! = 1.0 and corresponds to 
designs with essentially no sensitivity to the as-modeled discrete weld land and stiffener features when 

q, degrees

d, in.



50 

compared to the classical solution. Buckling in these cylinders is characterized by uniform global 
buckling that can initiate in the weld lands or in the stiffened acreage. As the stiffener efficiency increases 
from 3.2 to 8.75, 𝛤! monotonically decreases to an approximate lower-bound of 0.78. In this region of the 
design space, the axial weld lands have an increasingly larger influence on the buckling load of the 
cylinder. In addition, local pocket buckling and stiffener flexibility also begin to influence the prebuckling 
and buckling response for 7.0 < 𝑡!""/𝑡! < 8.75. Finally, for 𝑡!""/𝑡! > 8.75, 𝛤! is assumed to have a 
constant value of 0.78. The buckling response for this range of 𝑡!""/𝑡! is characterized by widespread 
skin buckling prior to buckling of the weld lands. 

 

Figure 4.16. 
!!"#
!!"

 and 𝛤! versus 𝑡!""/𝑡! for orthogrid-stiffened cylinders with axial weld lands. 

The following equations define 𝛤! as a function of 𝑡!""/𝑡!  

 

 𝛤! = 1.0 1 ≤ 𝑡!""/𝑡! ≤ 3.2 (111a) 

 𝛤! = 1 - 0.0396 teff/ta 3.2 ≤ 𝑡!""/𝑡!  ≤ 8.75 (111b) 

 𝛤! = 0.78 𝑡!""/𝑡! > 8.75 (111c) 

The factor 𝛤! defined for this particular class of cylinder is composed of two factors 𝛤!(𝑔) and 𝛤!(𝑙) that 
account for the effects of geometric imperfections (denoted by (g)) and loading imperfections (denoted by 
(l)), respectively, and is expressed as 

 𝛤! = 𝛤! 𝑔  𝛤!(𝑙) (112) 

A series of recommended design curves for 𝛤! 𝑔  are presented in Fig. 4.17. The curves provide an 
approximate relationship for the predicted normalized buckling load data 𝑃!"(𝑔)/𝑃!"# as a function of 
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cylinder radius-to-effective-thickness ratio 𝑅/𝑡!""  for three different classes of initial geometric 
imperfections, Class I – Class III. The Class III imperfection was based on the imperfection signature 
from a previous generation cylinder manufacturing process, corresponding to the data shown in Fig. 4.13, 
and has the largest imperfection amplitude. The Class II and Class I imperfections are assumed to have 
the same characteristic shape as the Class III imperfection signature but with successively smaller 
amplitudes of 75% and 50% of the Class III amplitude, respectively. The Class I imperfection is 
representative of imperfections that have been demonstrated from current state-of-the-art manufacturing 
process.  

Heavily stiffened cylinders (i.e., cylinders with 𝑅/𝑡!""   of approximately 43 to 66) are primarily weld 
land buckling sensitive and are relatively insensitive to imperfection amplitude. The buckling response is 
strongly influenced by large-magnitude prebuckling radial deformations of the weld lands that lead to the 
overall buckling of the cylinder. This region of the design space can be approximated  by the solid black 
line for all classes of imperfection. As 𝑅/𝑡!""  increases, the cylinders become more sensitive to the initial 
geometric imperfections and the imperfection amplitude, as indicated by the three different curves for the 
three classes of imperfection. 

 

 

Figure 4.17. 
!!"(!)
!!"#

 (data points) and 𝛤! 𝑔  (curves) versus 𝑅/𝑡!""  for orthogrid-stiffened cylinders with axial weld 

lands. 
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The equations for 𝛤! 𝑔  follow 

𝑅/𝑡!"" Equation Imperfection 
class 

 

43 - 66 𝛤! 𝑔 = 1.215 − 0.0084
𝑅
𝑡!""

 All (113a) 

53.2 - 350 𝛤! 𝑔 = 0.867 − 0.0159
𝑅
𝑡!""

+ 0.000340
𝑅
𝑡!""

 Class I (113b) 

60.6 - 350 𝛤! 𝑔 = 0.899 − 0.0286
𝑅
𝑡!""

+ 0.000623
𝑅
𝑡!""

 Class II (113c) 

66 - 350 𝛤! 𝑔 = 0.898 − 0.0355
𝑅
𝑡!""

+ 0.000806
𝑅
𝑡!""

 Class III (113d) 

 

A design curve for 𝛤! 𝑙  is presented in Fig. 4.18. The curve provides an approximate relationship for the 
predicted normalized buckling load data 𝑃!"(𝑔, 𝑙)/𝑃!"(𝑔) , denoted by the blue circle symbols, as a 
function of normalized end-imperfection amplitude 𝛿/Δ!". 

 

 

Figure 4.18. 
!!"(!,!)
!!"(!)

 (data points) and 𝛤! 𝑙  (curve) versus 𝛿/Δ!" for orthogrid-stiffened cylinders with  

axial weld lands. 

Normalized loading imperfection amplitude. d/Dcr

!"#(%,')
!"#(%)
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The equation for 𝛤! 𝑙  is given by 

 
𝛤! 𝑙 = 1 − #𝑒𝑛𝑑𝑠 ∗ 0.9

𝛿
Δ!"

 
(114) 

where #ends is the number of loading/interface surfaces on the cylinder that can have loading 
imperfections. #ends = 0, 1, 2. For example, a single cylinder with interfaces at both ends, #ends = 2. For 
a two-cylinder stack with an intermediate ring frame separating the two cylinders, each cylinder will have 
#ends = 1. For a cylinder in the interior of a multi-cylinder stack (a stack of three cylinders or more), 
#ends = 0. It is recommended that values 𝛿/Δ!" > 0.1 be avoided as they have been shown to induce large 
localized prebuckling deformations that can cause significant reductions in buckling load. 

4.3.7.2 Combined axial compression and internal pressure 
Internal pressure can reduce the imperfection sensitivity of compression-loaded thin-walled cylinders. 

A factor has been derived for orthogrid-stiffened cylinders that accounts for the reduced imperfection 
sensitivity due to internal pressure. Analysis results indicated that 𝛤! was relatively insensitive to the 
effects of internal pressure for the cylinder designs and pressure levels considered, and thus 𝛤! remained 
unaltered. In contrast, the analysis results showed that 𝛤! was very sensitive to internal pressures. Thus, an 
additional term 𝛥𝛤 is added to Eq. 109 to account for the change in 𝛤! due to the internal pressure load 
and gives a preliminary design equation 

 𝑃!" = 𝛤! 𝛤! + 𝛥𝛤(1 − 𝛤!) 𝑃!"
!"#$$ (115) 

Similarly, for the detailed design of cylinders with internal pressure, Eq. 110 becomes 

 𝑃!" = 𝛤! + 𝛥𝛤(1 − 𝛤!) 𝑃!"#
!"#$$ (116) 

Predicted 𝛥𝛤 data is plotted as a function of 𝑅/𝑡!""   along with approximate design curves for four 
different internal pressure levels in Fig. 4.19. The limited numerical results appear independent of the 
class of imperfection, i.e., imperfection amplitude, and are only dependent on the internal pressure load 
for 𝑅/𝑡!""   > 105. This result is illustrated in Fig. 117 for cylinders with an internal pressure of 2 psi 
where the red data is associated with a Class III imperfection and the blue data is associated with a Class I 
imperfection. An approximate relationship for ΔΓ  as a function of internal pressure for this range of R/teff 
is given by  

 𝛥𝛤 = 0.829 − 0.810𝑒 !!.!"#!  (117) 

Equation 117 approaches an maximum value of 0.829 based on the data available in Fig. 4.19. However, 
it is expected that the true maximum is closer to 1.0. For 48 < 𝑅/𝑡!""  < 105, 𝛥𝛤 is dependent on the 
internal pressure level and 𝑅/𝑡!"". A functional relationship between 𝛥𝛤 ,  𝑅/𝑡!"", and internal pressure 
has not been identified for this range of 𝑅/𝑡!"". 
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Figure 4.19. 𝛥𝛤 (bi-linear curves) and analysis data versus 𝑅/𝑡!"" for 1 psi, 2 psi, 4 psi, and 10 psi internal 
pressure. 

4.3.7.3 Isogrid cylinders subjected to uniform axial compression 

A design buckling load 𝑃!" can be calculated for isogrid-stiffened cylinders with axial weld lands by 
using the same approach defined for orthogrid-stiffened cylinders in Section 4.3.7.1, Eqs. 109 and 110. 

Predicted 𝑃!"#/𝑃!" data for selected isogrid configurations indicated similar behavior as that exhibited by 
the orthogrid-stiffened cylinders presented in Section 4.3.7.1. Thus, the same factor 𝛤! represented by the 
tri-linear curve in Fig. 4.16 is recommended. However, only data for isogrid stiffened cylinders with 5.63 
<  teff/ta < 10.14 was produced.  

A series of recommended design curves for 𝛤! 𝑔  are presented in Fig. 4.20 for isogrid-stiffened 
cylinders. The curves provide an approximate relationship for the predicted normalized buckling load data 
𝑃!"(𝑔)/𝑃!"# as a function of cylinder radius-to-effective-thickness ratio, 𝑅/𝑡!"" for three different classes 
of initial geometric imperfections, Class I – Class III. The Class III imperfection was based on the 
imperfection signature from a previous generation cylinder manufacturing process, corresponding to the 
data shown in Fig. 4.13, and has the largest imperfection amplitude. The Class II and Class I 
imperfections are assumed to have the same characteristics as the Class III imperfection signature but 
with successively smaller amplitudes of 75% and 50% of the Class III amplitude, respectively. The Class 
I imperfection is representative of imperfections that result from the current state-of-the-art manufacturing 
process.  

The response of heavily stiffened cylinders (i.e., cylinders with 𝑅/𝑡!!! of approximately 74 to 86) are 
primarily associated with weld land buckling and exhibit some imperfection sensitivity. As 𝑅/𝑡!"" 
increases, the cylinders become more sensitive to the initial geometric imperfections and buckling can 
initiate at the weld lands or in the acreage. 

R/teff

∆"

10 psi
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Figure 4.20. 
!!"
!!"#

 (data points) and 𝛤! 𝑔  (curves) versus 𝑅/𝑡!"" for isogrid-stiffened cylinders with axial weld 

lands. 
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The equations for 𝛤! 𝑔  for the curves in Fig. 4.20 follow 

𝑅/𝑡!"" Equation Imperfection 
class 

 

74 - 87 𝛤! 𝑔 = 1.27 − 0.0074 
𝑅
𝑡!""

 

Class III 

(118a) 

87 - 300 𝛤! 𝑔 = 0.95 − 0.75 1 − 𝑒
!!.!" !

!!""
 (118b) 

74 - 87 𝛤! 𝑔 = 1.26 − 0.0065
𝑅
𝑡!""

 

Class II 

(118c) 

87 - 300 𝛤! 𝑔 = 0.98 − 0.667 1 − 𝑒
!!.!" !

!!""
 (118d) 

74 - 87 𝛤! 𝑔 = 1.188 − 0.0047
𝑅
𝑡!""

 

Class I 

(118e) 

87 - 300 𝛤! 𝑔 = 1.03 − 0.583 1 − 𝑒
!!.!" !

!!""
 (118f) 

 

Analysis results for isogrid-stiffened cylinders indicate similar sensitivity to loading imperfections as was 
observed for the orthogrid-stiffened cylinders presented in Section 4.3.7.1. Thus, 𝛤! 𝑙  given in Fig. 4.18 
and Eq. 114 are recommended for isogrid-stiffened cylinders along with the same design 
recommendations. 

 

4.3.8 Other design considerations 
4.3.8.1 Local skin buckling 
In some stiffened cylinder designs, the skin may buckle before the global buckling and collapse of the 
cylinder. A buckled skin is less stiff than an unbuckled skin. The decreased stiffness can be calculated by 
methods similar to those presented in Refs. 69, 76, and 152 and incorporated in the global buckling 
calculation. In some designs, local bending associated with the bending boundary layer response at the 
end of the cylinder or local bending near stiffness discontinuities can cause premature skin buckling. This 
type of local skin buckling is typically identified in the detailed design phase by using geometrically 
nonlinear analyses of detailed finite-element models. Mass allowances typically cover any additional 
reinforcement required to mitigate this buckling response if necessary. In other cases, local skin buckling 
may be intentionally allowed so that skin thicknesses may be reduced in an effort to reduce weight. The 
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effects of skin buckling have been included in the knockdown factor calculations, thus, no additional 
design factor is required.  

4.3.8.2 Effects of the smeared stiffener approximation 
In general, the smeared stiffener theory is often adequate in the preliminary design of cylinders, that is the 
discreteness of the stiffeners usually have a negligible effect on the predicted linear bifurcation buckling 
load if the stiffeners are closely spaced. However, some cases have been identified where the stiffeners 
can exhibit large-magnitude out-of-plane deformations (i.e., rolling) and loss of stiffness when the 
cylinder undergoes large radial displacements. Such situations may arise in the prebuckling range of 
loading of the cylinder near cutouts, joints, or other stiffness discontinuities in the cylinder. The loss of 
effective stiffness of the stiffener can then lead to an overall and significant loss of stiffness in the 
cylinder at lower applied load levels. Thus the effects of discrete stiffeners on the buckling response must 
be assessed. (See Section 13.1.6 of Ref. 25. 

4.4 Isotropic Sandwich Cylinders 

The term isotropic sandwich designates a layered construction formed by two thin face sheets separated 
by a thicker core. Generally, the thin face sheets provide the majority of the bending stiffness of the 
construction. The core separates the face sheets and provides the transverse shear stiffness of the 
sandwich construction. 

Sandwich construction should be checked for two possible modes of instability failure: (1) general 
instability i.e., global buckling, where the shell fails with the core and face sheets acting together, and (2) 
local instability failure taking the form of face sheet dimpling or wrinkling. See Fig. 4.21. 

 

Figure 4.21 Types of failure in sandwich shells. 

If the isotropic sandwich cylinder has thin face sheets, and the core has relatively low bending stiffness, 
then for unequal thickness face sheets, the bending stiffness is given by 

 
𝐷! =

𝐸𝑡!𝑡!ℎ!

(1 − 𝜈!)(𝑡!+𝑡!)
 

(119) 

and for equal thickness face sheets by 
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𝐷! =

𝐸𝑡!ℎ!

2(1 − 𝜈!)
 

(120) 

The extensional stiffness for unequal thickness face sheets is given by  

 𝐵! =
𝐸

(1 − 𝜈!)
(𝑡!+𝑡!) 

(121) 

And for equal thickness face sheets 

 
𝐵! =

2𝐸𝑡!
(1 − 𝜈!)

 
(122) 

The transverse shear stiffness for an isotropic core and unequal thickness face sheets is given by  

 
𝐷! = 𝐺!"

ℎ!

ℎ − (𝑡!+𝑡!)2

 
(123) 

and for equal thickness face sheets by 

 
𝐷! = 𝐺!"

ℎ!

ℎ − 𝑡!
 

(124) 

The stiffnesses of other types of sandwich construction are given in Refs. 151, and 153-155. 

4.4.1 Axial Compression 
Investigations of buckling behavior of isotropic sandwich cylinders in axial compression are reported in 
Ref. 156 and 157. Design information from these references are given in Figs. 4.22 and 4.23. Figure 4.22 
is the more convenient of the two figures; it is applicable to all but very short cylinders 𝛾𝑍 <  𝜋!/(1 +
R). R is the shear flexibility coefficient given by 

 
R =

𝜋!𝐷!
𝐿!𝐷!

 
(124) 

 Figures 4.22 and 4.23 are based on the small-deflection buckling theory and should be used in 
conjunction with the knockdown factor of Fig. 4.24 to calculate buckling loads. Figure 4.24 is based on 
Eq. 57, given for orthotropic cylinders. For the present application, the parameter 𝜙 becomes 

This procedure is consistent with the procedures given earlier for other types of construction when 
shearing of the core does not contribute significantly to the buckling deformations; that is, when 𝑁!/𝐷! 
of Fig. 4.23 is small. As shearing deformations become more pronounced, the correction resulting from 

 

𝜙 =
2

29.8
𝑅
ℎ

 

(125) 



59 

the application of the factor  𝛾, as prescribed above, decreases and becomes zero corresponding to 
buckling from a weak core [(𝑁!/𝐷!) >  2]. 

 

Figure 4.22 Buckling coefficients for simply supported isotropic sandwich circular cylinders subjected to 
axial compression, 𝐺!"/𝐺!" = 1.0. 
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Figure 4.23 (fig 10) Buckling of moderately long, simply supported, isotropic sandwich circular cylinders 
subjected to axial compression. 

 

Figure 4.24 (fig 11) Knockdown factors for isotropic sandwich circular cylinders subjected to axial 
compression. 
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A weight-strength study based on Fig. 4.23 and published values for shear stiffness of honeycomb cores 
[Ref. 158] indicate that unusually lightweight cores are more desirable than heavier cores. Until adequate 
test data are obtained to substantiate this, designs should be limited to sandwiches with heavy cores 
(𝛿 > 0.03). Sandwich plates with light honeycomb cores are susceptible to additional modes of 
deformation, and failure may results from intracell buckling, face-sheet wrinkling, or an interaction of one 
or both of these modes with a global cylinder buckling mode. In addition, small buckle-like deformations 
have been known to occur in actual structures long before the theoretical buckling load is reached. (See, 
for example, Ref. 108. p. 217) This behavior requires that the structure be capable of resisting internal 
moments and shears in addition to the directly applied loads. In the case of sandwich cylinders, the 
moments and shears may cause buckling or shear failure of the core. 

The only known method for preventing these core failures is to use a relatively heavy core which have 
considerable strength in crushing and shear. Some guidance as to how heavy the cores should be can 
perhaps be gleaned from the bending tests that have been made on multi-web beams. The internal 
structure of these beams is subjected to the same types of loads as the cores of loaded sandwich plates. 
Reference 159 indicates that honeycomb cores with a density ratio of 𝛿 = 0.03 should be adequate to 
prevent core failure. Large margins against failure in intracell buckling and wrinkling can be obtained 
with rather heavy cores  (𝛿 > 0.03) with little or no weight penalty. Moreover, when heavy cores are 
used, approximate equations are adequate for predicting failures in the intracell buckling and face-sheet 
wrinkling modes. The following may be used for this purpose. For intercell buckling (Refs. 155 and 160): 

where S is the core cell size and characterized as the diameter of the largest inscribed circle 

E and 𝐸!"# are the elastic and tangent modulii of the face-sheet material. If initial face-sheet dimpling is 
to be checked, the following equation should be used: 

The sandwich will still carry the load if initial dimpling occurs. Critical wrinkling stresses are predicted 
by Refs. 108 and 155. 

were 𝐸! is the modulus of the core in the direction perpendicular to the core and 𝐺!" is the transverse 
shear modulus of the core in the x-z plane. If biaxial compressive stresses are applied to the sandwich, 
then the coefficients of the equations must be reduced by the factor 1 + 𝑓! !!/! [Ref. 161] where 

 
𝜎! = 2.5𝐸!

𝑡
𝑆

!
 

(126) 

 𝐸! =
4𝐸𝐸!"#
𝐸 + 𝐸!"#

! 
(127) 

 
𝜎! = 2.2𝐸!

𝑡
𝑆

!
 

(128) 

 𝜎! = 0.50 𝐸!"#𝐸!𝐺!" !/! (129) 
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Wrinkling and intracell buckling equations which consider strength of bond, strength of foundation, and 
initial waviness of the face-sheets are given in Refs. 155, 162, and 163. 

The plasticity correction factor given in Eqs. 11 and 12 for isotropic cylinders in axial compression may 
also be applied to isotropic sandwich cylinders. The factor is applicable to sandwich cylinders with stiff 
cores and becomes somewhat conservative as the shear stiffness of the core is decreased (Ref. 159).  

4.4.2 Bending 
The buckling equations given in Section 4.2.1 for circular cylinders in axial compression may be 
used for cylinders in bending, provided the knockdown factor 𝛾 is taken from Fig. 4.25. The 
knockdown factor curve in Figure 4.25 is based on Eq. 59, given earlier for orthotropic cylinders 
in bending. 

 

Figure 4.25. Knockdown factors for isotropic sandwich cylindrical shell subjected to bending. 

4.4.3 Lateral Pressure 
A plot of buckling coefficient 𝑘! as a function of 𝛾𝑍 , based on data given in Ref. 164, is given 
in Fig. 4.26. The straight-line portion of the curve in Fig 4.26 for a sandwihc cylinder with rigid 
core (R = 0) is given by the equation  

 
𝑓 =

minimum principal compressive strain in face-sheets
maximum principal compressive strain in face-sheets

 
(130) 
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There are no eqperimental data to substantiate Fig. 4.26; experience with isotropic cylinders, 
however, suggests that a knockdown factor 𝛾 = 0.56 should be used with this figure. 

 

Figure 4.26. Buckling coeeficeints for isotropic sandwich circular cylinders 

subjected to lateral pressure and 𝐺!" 𝐺!" = 1.0. 

Here, as with sandwich cylinders in axial compression or bending, designs should be limited to 
sandwich cylinders for which the density ratio 𝛿 > 0.03 or greater, unless the design is substantiated 
by tests. 

The plasticity factors for isotropic cylinders subjected to external pressure, expressed by Eqs. 29-
31, may be used for isotropic sandwich cylinders subjected to lateral pressure. 

4.4.4 Torsion 
Isotropic snadiwch cylinders in torsion hve not received the same attention as cylinders in 
compression. Rigid- and weak-core cases are reasonably well defined. While the transition 
between between rigid and weak core is not well defined, it is probably sufficient for design 
purposes. Information on the transition region is given in Refs. 153 and 164, the latter of which 
was used to construct the plot shown in Fig. 4.27, which applies to sandwich cylinders with core 

exhibiting isotropic shear behavior 𝐺!" 𝐺!" = 1.0. the curves in this figure are discontinuous at 

the value of 𝛾𝑍 where the buckling coefficient 𝑘!" become equal to 1/𝑅, associated with a 

 
𝑘! =

𝑁!𝐿!

𝜋!𝐷!
= 0.56 𝛾𝑍 

(131) 
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change in buckling mode at that point. Reference 153 does not support this observation, but it 
does not cover a sufficiently wide range of geometric proportions necessary in the constrution of 
the curves in Fig. 4.27. In addition, Ref. 153 indicates that there was some scatter in the 
calculated results used to construct the charts in that reference. In the ranges where comparisons 
between the data of Ref. 156 and 164 could be made, only relatively small discrepancies were 
noticed. The straigh-line portion of the curve in Fig. 4.27 for a rigid core (R = 0) is given by the 
equation 

Experimental data are not available to substantiate Fig 14 for most sandwich cylinders. 
Experience with isotropic cylinders suggests that a knockdown factor 𝛾 = 0.586 should be used 
wih this figure. Here, as with sandwich cylinders in axial compression or bending, designs 
should be limited to sandwich cylinders for which the density ratio 𝛿 > 0.03 or greater, unless the 
design is substantiated by tests. 

The plasticity factor for isotropic cylinders subjected to torsion, expressed by Eq 37, may be 
used for isotropic sandwich cylinders subjected to torsion. 

 

Figure 4.27. Buckling coeeficeints for isotropic sandwich circular cylinders 

subjected to torsion and 𝐺!" 𝐺!" = 1.0. 

 
𝑘!" =

𝑁!"𝐿!

𝜋!𝐷!
= 0.34 𝛾𝑍 !

! 
(132) 
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4.5 Cylinders with an Elastic Core 

The term  cylinder with an elastic core  refers to a thin-walled cylindrical shell that encloses an elastic 
material that can be either solid or have a hole in its center. This type of cylinder closely approximates a 
propellant-filled missile or solid rocket motor. The propellant is typically of a viscoelastic material and 
therefore is train-rate sensitive. The core modulus should be obtained from tension or compression test of 
the core material simulating its expected strain rate. 

Although there are some analytical data for orthotropic shells (Ref. 165), design curves are given only for 
isotropic shells and cores. He invers problem of a cushion or foam material on the outside of the cylinder 
is analyzed in Ref. 166. Not enough data are available, however, to recommend design curves for this 
problem. 

4.5.1 Axial Compression 
The buckling of cylindrical shells with an elastic core in axial compression is presented in Ref. 167. 
Analytical results obtained from this reference are shown graphically in Fig 4.28. For small values of 𝜙! 

 

 
𝜎!
𝜎!
≈ 1 + 𝜙! (133) 

where  

 

 𝜎! =
𝛾𝐸

3 1 − 𝜈!
 (134) 

and 

 𝜙! =
12 1 − 𝜈!!

4 1 − 𝜈!!
 
𝐸!
𝐸

 
𝑅
𝑡

!
!
 (135) 

 

This approximation is accurate for 𝜙!< ½. For larger values of 𝜙!, say 𝜙!> 3, 

 

 
𝜎!
𝜎!
≈
3
2
𝜙!

!
! (136) 

 

The experimental data provided in Ref. 167 suggest that the correlation factor γ in Eq. 134 can be taken as 
that for isotropic cylinders in compression 
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 𝛾 = 1 − 0.901 1 − 𝑒!!  (137) 

where  

 𝜙 =
1
16

𝑅
𝑡

 (for 
𝑅
𝑡
< 1500) (138) 

 
Figure 4.28. Compressive buckling stress versus core stiffness parameter. 

4.5.2 External Pressure 
Analytical curves for lateral pressure are presented in Ref. 167. A plot of 𝑘!" versus 𝜋𝑅/𝐿 for R/t = 100, 
200, 500, and 1000 is shown graphically in Fig. 4.29. The parameter 𝑘!" is expressed by 

 

 𝑘!" =
𝑝𝑅!

𝐷
 (139) 

These curves are to be used for finite length cylinders loaded by lateral pressure. However, some 
cylinders are long enough for the critical pressure to be independent of length (Fig. 4.29); the single curve 
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shown in Fig 4.30 can then be used. The straight-line portion of the curve can be approximated by the 
equation 

 

 
𝑘!"

1 + 𝐸!𝑅
𝐸𝑡 1 − 𝜈!

= 3 𝜙!
!
! (140) 

where   

 𝜙! =
3 1 − 𝜈!

1 − 𝜈!!
𝐸!
𝐸

 
𝑅
𝑡

!
 (141) 
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Figure 4.29. Variation of buckling pressure coefficient with length and modulus ratio (𝜈 = 0.3, 𝜈! = 0.5). 
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Figure 4.30. Buckling pressure coefficients for long cylinder with a solid core. 

4.5.3 Torsion 
The buckling behavior of cylindrical shells with an elastic core subjected to a torsion load is presented in 
Ref. 168 and is shown graphically in Fig. 4.31. 

For small values for 𝜙!, 𝜙! < 7, the analytical results can be approximated by 

 

 

𝜏
𝜏!"

= 1 + 0.16 𝜙! (142) 

where 

 𝜙! =
𝐸!
𝐸

 
𝐿
𝑅

𝑅
𝑡

!
 (143) 

 

And 𝜏!"  is torsional buckling stress given by Eq. 33, with the correlation factor γ equal to unity. When 𝜙! 
is > 10, the analytical results follow the curve 
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𝜏
𝜏!"

= 1 + 0.25 𝜙!
!
! (144) 

 

Experimental data are not available for this loading condition. The experimental points obtained for 
cylinders with elastic core for axial compression and external pressure, however, show better correlation 
with theory than the corresponding hollow cylinders. Hence, conservative design curves can be obtained 
by calculating 𝜏!" in Eqs. 108 and 110 with the correlation and plasticity factors for isotropic cylinders of 
equations 28 and 29. 

 

Figure 4.31. Torsional buckling coefficients for cylinders with an elastic core. 

4.5.4 Combined Axial Compression and External Pressure 
Interaction curves for cylinders with an elastic core subjected to combined axial compression and lateral 
pressure are shown in Fig. 4.32. These curves were obtained analytically in Ref 167 and indicate that for 
sufficiently stiff core, the critical axial stress is insensitive to the lateral pressure and, similarly,  the 
critical lateral pressure is insensitive to the axial compression. However, until more experimental data 
become available, the use of a straight-line interaction curve is recommended for conservative design. 
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Figure 4.32. Interaction curves for cylinders with an elastic core (R/t = 300). 

4.5.5 Other Design Features 
4.5.5.1 Joints 
Little information is available in the open literature on the design of joints in buckling-critical cylinders. 
However, a detailed study on the effects of axial weld lands, and to a lesser extent, circumferential weld 
lands have been conducted for large-scale cylinders such as those discussed in Section 4.3.7. [Refs. 56, 
169, 170]. Results in Ref. 56 indicate that axial weld lands in large-scale compression-loaded orthogrid-
stiffened cylinders, such as those shown in Figs. 4.12, can lead to a significant reduction in the buckling 
load, on the order of 25% or more. The general conclusion from the study was that the weld land region 
has relatively high membrane stiffness compared to the stiffened acreage, typically composed of thin skin 
and tall stiffeners. However, with very low bending resistance, the weld land buckles at much lower load 
levels than the stiffened acreage. In addition, more recent results indicate that the weld lands exhibit large 
magnitude radially inward prebuckling displacements that further exacerbate the weld land buckling 
response. If possible, a stiffness-neutral joint design should be sought. Local bending stiffness can be 
increased by adding additional stiffeners adjacent to the weld land. Increasing the weld land thickness 
typically does not help improve the buckling load, and in fact, has been shown to reduce the buckling load 
further.  

4.5.5.2 Cutouts – TBD 
It is common for cylindrical shell structures to have one or more cutouts to allow access to the 
interior of the shell. Cutouts can have a significant influence on the buckling response of the 
shell depending on the size and shape of the cutout and the type of cutout reinforcement 
implemented. [Refs. 50-55] Experimental results from Refs. 50, 52 indicate that sufficiently 
small unreinforced cutouts will have a minimal effect on the buckling response and that other 
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imperfections in the shell govern the global buckling response in the shell. However, for larger 
unreinforced cutouts, large-magnitude bending deformations occur near the edges of the cutout 
which leads to a local reduction in effective stiffness and cause stresses to be redistributed away 
from the cutout. This load redistribution and local stiffness reduction can result in a stable local 
buckling response around the cutout or initiate a global collapse, depending on the design. For 
most practical applications, however, some type of reinforcement is typically applied around the 
cutout to control local stresses and deformations. If done correctly, the reinforcement should 
restore the shell to its full load carrying capacity. However, work by Toda and Hilburger suggest 
that local reinforcement concepts can cause buckling to occur adjacent to the reinforcement if an 
abrupt stiffness change exists between the acreage and the reinforcement [Refs. 51, 54, 55]. In 
addition, the prebuckling displacements and stresses in shells with unreinforced or reinforced 
cutouts grow nonlinearly with increasing load which can result in internal load redistribution and 
can cause the shell to buckle long before the load reaches the classical buckling load value, as 
described in a previous section. Thus, linear bifurcation analyses may not always produce a 
conservative buckling load estimate. 

4.5.5.3 Design of Rings 
Little information is available in the open literature on the design of rings for cylinders not intended to be 
subject to general instability failures. The criterion from Ref. 171 is frequently cited as applicable to 
cylinders subjected to bending or compression loads. Unfortunately, this criterion is empirical and is 
based on data from test cylinders with configurations that may not be relevant to the design of modern 
vehicles. A few checks made on cylinders in use have indicated that the criterion is usually conservative, 
but this may not be so in certain cases. See Refs. 116 and 172. 

A less direct procedure for designing rings may be used. It consists of calculating the global buckling 
response (i.e., general instability), which involves failure of the rings and cylinder, as well as calculation 
of the buckling response of the cylinder between the rings (inter-ring buckling). Both calculations are 
made for several ring configurations. The buckling loads are then plotted against ring weight, and the ring 
design and weight necessary to produce the desired mode can be determined. It is likely that there may be 
some interaction between failure modes; thus, somewhat heavier rings than those indicated by the 
calculations should be used. These interactions should be assessed by using a geometrically nonlinear 
analysis and validated through suitable testing as necessary. 

This method of designing rings is, of course, applicable to all types of loading and to all types of wall 
construction. It also has the advantage of giving the designer some feeling for the influence of the various 
factors which determine the ring weight. 

A review of Refs. 172 and 173, which present general linear analyses of ring-stiffened isotropic cylinders 
in torsion and of orthotropic cylinders in compression, indicates that the recommended procedure gives 
the same result as general theory for all cylinders except those with a single ring dividing the cylinder into 
two equal-length bays. 

4.6 Semi-Empirical Design Approach 

In 1970, Almroth et al. proposed a semi-empirical design approach for compression-loaded cylindrical 
shells in an attempt to incorporate new knowledge, that had been acquired from the 1940’s - 1960’s, into 
the design process.[Ref. 12] In particular, Almroth and others had acknowledged that research efforts in 
that time period had led to a good understanding of the basic reasons for the poor correlation between the 
theoretical buckling loads and the corresponding test loads but that results from that research had “not 
been utilized to devise better methods for practical analysis.” Furthermore, for orthotropic/composite 
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shells, stiffened shells, and other practical cylinder configurations, the number if design parameters 
becomes so large that a purely empirical design approach becomes infeasible. Thus, a semi-empirical 
design approach was developed by Almroth et. al based on Koiter’s theory in combination with a wide-
column buckling analysis by Peterson and Dow[Ref. 174]. This approach has been used successfully in 
the design of several launch vehicles over the years. A brief summary of this semi-empirical design 
approach is presented in this section. 

Assumptions 

This semi-empirical design approach assumes that initial geometric imperfections in the shell wall are the 
primary reason for the discrepancy between theory and test and that the initial imperfection is 
axisymmetric (and often results in the larges reduction in buckling load). Additionally, it is assumed that 
both the Koiter method and the wide-column buckling approach produce conservative estimates of the 
buckling load and that the higher of the two predictions is to be used as the design buckling load. 

Approach 

For a given cylindrical shell, an equivalent monocoque cylinder is defined in terms of an effective radius-
to-thickness ratio, (R/t)e, where  

 
𝑅
𝑡 !

= 256 𝜙! (145) 

where 𝜙 is defined in Eq. 58. 

Next, the empirical knockdown factor that corresponds to the (R/t)e can be calculated using Eq. 9 or Eq. 
14 for cylinders subjected to axial compression or bending, respectively. The amplitude µ of an 
axisymmetric imperfection that would result in this knockdown factor γ can then be determined based on 
the curve presented by Koiter[9], see the lowest curve shown in Fig. 4.32. An equation for µ as a function 
of γ is given by 

 
𝜇 = 8.232 − 84.988𝛾 + 400.897𝛾! − 1060.739𝛾! + 1665.240𝛾!

− 1539.817𝛾! + 774.762𝛾! − 163.586𝛾! 
(146) 
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Figure 4.32.  

It is then assumed that the given cylinder under consideration has the same imperfection amplitude µ and 
the corresponding buckling load can be found analytically, as is done in Almroth et. al.  

Almroth found however, that this approach had limitations (was overly conservative) when applied to 
core-filled cylinders and short stringer-stiffened (i.e., axially stiff) cylinders and that the wide-column 
buckling load predictions as proposed by Peterson and Dow were more applicable. Thus, it is 
recommended that the wide column buckling load also be calculated and compared to the semi-empirical 
approach, with the larger of the two values being used as the design buckling load. 

4.7 Analysis-Based Design 

Analysis-based KDFs can be a viable replacement for some of the empirical and semi-empirical KDFs 
defined in Sections 4.2 through 4.6, (for example see Section 4.3.7). Improved nonlinear structural 
analysis tools, improved theories of elastic stability and imperfection sensitivity in shell structures, and 
advanced testing and measurement technologies are enabling the development and validation of high-
fidelity buckling predictions of thin-walled shell structures. If suitably developed, these buckling 
predictions can be used in place of physical tests and provide a more accurate and less conservative 
estimate of the actual buckling load. However, thorough model development and validation is required to 
ensure that the model adequately and correctly represents the physics of the structural response, and can 
be a significant effort.  Recommended procedures and considerations for developing and validating finite-
element-based high-fidelity models and design factors are presented in this section. These recommended 
procedures are not a replacement for sound engineering judgement and experience. These recommended 
procedures can be modified as needed if supported by technical rational and/or by physical testing. 

NOTE: It is assumed, herein, that the finite-element method is to be used to develop the high-fidelity 
models, and thus all discussion is related to the development, validation, and implementation of models 
based on the finite-element method. However, this does not preclude the use of other modeling techniques 
if they provide similar levels of fidelity. 
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4.7.1 Model Development 
It is assumed that the state of the art finite-element modeling approach is to be used in the 
development of high-fidelity models and buckling load predictions. However, this is not a strict 
requirement. Other analysis methods are permitted as long as they produce similar levels of 
prediction fidelity as described in this section. 

4.7.1.1 Objectives 
To develop a high-fidelity model of the buckling response of a thin-walled cylinder subjected to 
combined mechanical, pressure and thermal loads. The model shall accurately predict all relevant 
structural response characteristics up to and including the buckling of the cylinder. For example, effective 
stiffness (i.e., load versus end-displacement response), prebuckling and buckling displacement and strain 
response, buckling mode, and the buckling load.  

The accuracy of the model is naturally limited by how well the structural details are known, e.g., 
geometry, material properties, and loading and boundary conditions, and how well the details are 
represented in the model. Thus, the development of a high-fidelity model will require a substantial 
amount of information on the cylinder and thorough model development and validation. The model 
development is presented in the following subsections. Suggested model validation methods and metrics 
are discussed in Section 4.7.2. 

4.7.1.2 Structural idealization 
Structural idealization is the process of converting the physical design into a mathematical representation. 
Details that can significantly influence the buckling response, stiffness, loads and load paths, and local 
and global deformations should be assessed carefully. Some examples of common modeling details and 
considerations are listed here.  

• For the majority of thin-walled unstiffened and stiffened cylinders considered in this monograph, 
2D shell elements are sufficient to accurately model the elastic cylinder buckling response.  

• It is almost always required that discrete stiffeners and other flexible structural components that 
contribute to or influence the overall structural behavior need to be modeled explicitly.  

o Smeared stiffener theory is often not adequate for the development of a high-fidelity 
model as the flexibility of the individual stiffener and skin elements can significantly 
influence the prebuckling and buckling response.  

o Modeling stiffeners and other detail features explicitly enable accurate predictions of the 
interaction between local and global effects 

o Local detail features such as fillets are often ignored in lower-fidelity design-level 
models, however, they may contribute additional stiffness necessary to accurately model 
local or global displacement and stiffness responses, especially if the fillet radius is large 
relative to other structural element dimensions. See examples and modeling strategies in 
Ref. 44.  

• Material overlap at 2D shell element intersections should be minimized as it adds additional local 
stiffness and mass.  

• Shell wall mid-surface offsets should be incorporated into the model to represent any mid-surface 
eccentricities such as those associated with local reinforcements or thickness changes. 

o Can cause local bending, load redistribution, and premature buckling  
• Stiffness discontinuities such as cutouts, structural joints, or large load-bearing secondary 

structures should be modeled.  



76 

o Proper modeling of joint stiffness may require additional subcomponent test or detailed 
models to assess the adequacy of modeling approach especially for bolted joints, 
attachements, and interfaces.  

o Bolted or riveted connections can be modeled as smeared or discrete connections. 
However, if used, the adequacy of the smeared modeling approach should be assessed 
and may require detailed subcomponent models or tests if inter-rivet or inter-bolt 
buckling, flexibility, or movement is expected.  

• Adjacent structure can be simulated using lower fidelity models as long as they produce an 
adequate representation of load paths and interface flexibility, including membrane and bending 
flexability.  

 

It is recommended that a hierarchical approach be taken in the model development. A basic uniform 
cylinder should be modeled and analyzed first, and the results compared to known closed-form solutions. 
From here, additional structural details can be added knowing that the foundational model is adequate and 
the analyst has some basis for comparison when more complex details and loading conditions are added 
to the model. If there is some uncertainty in the structural details, then it is strongly recommended that a 
sensitivity study be conducted to determine the effects of these uncertainties and provide bounds to the 
predicted response. 

4.7.1.3 Discretization  
Discretization refers to the finite-element meshing. The discretization process includes choosing element 
type, element shape, element distribution, etc. A list of common discretization considerations are as 
follows 

• The majority of thin-walled cylinder buckling problems can be treated using standard linear or 
quadratic quadrilateral shell elements.  

o Elements with transverse shear capability are often necessary for sandwich cylinders or 
cylinders that may exhibit localized out-of-plane deformations, for example, short wave 
length displacement responses near cutouts and other significant stiffness discontinuities 
or cylinders with discrete stiffeners that may exhibit local rotations relative to the 
cylinder skin.  

o Triangular shell elements may also be used but in the past have been shown to possess 
some undesirable characteristics due to shear locking. In particular, higher-order 
triangular elements can be used to minimize the effects of shear locking.  

• For sandwich cylinders with relatively thick core and a high degree of transverse shear flexibility, 
standard 2D shell elements with transverse shear flexibility might not be adequate.  

o These models may require the use of other element types such as special-purpose 
sandwich elements, or a combination of 2D and 3D elements to model face sheets and 
core material. 

Ultimately, the choice of elements and spatial distribution necessary for a high-fidelity buckling 
simulation should be determined and justified through a systematic study. Closed-form solutions should 
be used in the early stages of model development when possible. Additionally, it should be understood 
that a large-scale detailed finite element model does not equate to a high-fidelity finite element model. 
The former implies a large number of finite elements. The latter implies that the mathematical model 
adequately and correctly represents the physics of the systems for its intended purpose. 
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4.7.1.4 Material properties  
The material properties and material model selected is a function of the material form and the anticipated 
structural response of the cylinder. The basis of the material model, the required material data for input, 
and the limitations of the material model need to be understood.  

For elastic buckling simulations of metallic cylinders, linear elastic isotropic material properties are often 
assumed and are typically adequate. However, there are certain high-performance alloys that exhibit bi-
modulus properties, that is, different tension and compression moduli. The effects of bi-modulus 
materials on the buckling response will be a function of the loading conditions and the relative difference 
between the tension and compression moduli. If the prebuckling response of the cylinder results in local 
stresses that approach the yield strength of the material, then an elastoplastic or elastic perfectly plastic 
material model may be required to account for local material yielding and load redistribution.  

Cylinders constructed from laminated composite materials such as graphite-epoxy have been shown to 
exhibit nonlinear elastic prebuckling stiffness behavior. The nonlinearity can be a result of matrix 
nonlinearity, as seen in angle-ply laminates, or fiber nonlinearity.[Refs. 175, 176] These nonlinearities 
can be accounted for by using a nonlinear elastic material model with data determined from coupon 
testing. Laminated composite structures can also possess orthotropic or anisotropic stiffness properties 
that depend on the laminate stacking sequence and can be particularly important to the buckling and 
imperfection sensitivity of thin-walled cylinders, as described in Section 4.6.  

High-fidelity model development will typically require coupon test data obtained from witness panels or 
tag-ends from the tested cylinder in order to provide the most accurate set of material properties and to 
verify the adequacy of the material model. If this data is not available, then a sensitivity study should be 
conducted to bound the predicted response characteristics. 

4.7.1.5 Boundary conditions  
In general, models will either assume an analytical definition of the boundary conditions (e.g., classical 
clamped or simple support) or explicit modeling of the interface/boundary conditions and adjacent 
structure. In a design setting, conservative analytical boundary conditions are often utilized and are 
appropriate. However, for most high-fidelity buckling simulations such as those used for the development 
of analysis-based design factors, the modeling of the actual adjacent structure is often necessary to 
properly account for structure to structure interactions that may influence load introduction, interface 
flexibility (e.g., bolted, bonded, or potted joints), and overall system kinematics. [Ref. 44] In addition, 
modeling approaches that can simulate nonuniform loading due to geometric imperfections at the 
interfaces (i.e., interface surface geometry variations due to manufacturing tolerances that results in gaps 
between the interfaces) may need to be implemented. It is also conceivable that joints that have contacting 
surfaces that can open and close as a function of loading may also require the use of contact elements. 
Nonuniform loading due to loading surface imperfections will discussed in more detail in a later in 
Section 4.7.1.7. 

4.7.1.6 Loading conditions  
Modeling test loading conditions are typically straightforward as long as the test interfaces and loading 
structure are understood, characterized, and modeled adequately. As discussed previously, most high-
fidelity models will include models of the boundary conditions and adjacent structure, and in the case of a 
structural test, representations of the load fixtures and discrete load application points should be available 
for load application. However, if additional secondary loads are applied directly to the cylinder, e.g., 
lateral loads to simulate internal payloads, or external booster loads, then the representation of these point 
loads and local affects should be addressed. 
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Modeling complex flight loading conditions that include vehicle accelerations, aerodynamic pressure, 
thermal loads, and cryogenic fuel slosh loads are altogether different as they are associated with surface 
load distributions and body forces. As such, care must be taken in applying these distributed loads onto a 
discretized model.[Ref. 40]  

In both cases, test loading conditions and flight loading conditions, problems involving load sequencing 
for combined loads, deformation dependent loading (follower loads), and quasi-static versus transient-
dynamic and time-dependent loading, may also arise.  

4.7.1.7 Initial imperfections and loading nonuniformities 
Initial geometric and thickness imperfections (i.e., manufacturing-process-induced variations in the 
geometry) and loading nonuniformities due to interface surface geometry variations can have a significant 
influence on the buckling response of thin-walled cylinders. Efforts have been made to characterize these 
imperfections and nonuniformities in order to establish characteristic imperfection signatures that are 
associated with different cylinder manufacturing processes. With this information established, high-
fidelity buckling analyses and robust design criteria can be developed. Several important imperfection 
types are described next. 

Initial geometric and thickness imperfections 

The outer mold line (OML) and inner mold line (IML) geometry of cylinder can be measured routinely by 
using commercially available geometry measurement systems such as structured light scanners, laser 
trackers, or coordinate measurement machines (CMM). These data can then be used to characterize the 
as-built geometric imperfection and thickness imperfection of the cylinder. The geometric imperfection 
corresponds to the difference between the measured OML or IML surface geometry and an ideal circular 
cylinder. Similarly, the as-built thickness is obtained by subtracting the measured IML radius from the 
measured OML radius. 

A typical measured geometric imperfection of a large-scale metallic launch vehicle tank cylinder section 
is presented as a contour plot in Fig. 4.33. The color contours indicate the difference between the as-built 
geometry and the idealized perfect circular cylinder. Inward radial imperfections are denoted by negative 
contour values and outward radial imperfections are denoted by positive contour values. This cylinder 
was constructed from 8 curved panels that were friction stir welded together to form a complete cylinder. 
The axial welds are marked with dashed vertical lines in the contour plot. The measured imperfection 
exhibits distinct inward imperfections at the axial weld lands of approximately -0.90 inches and smaller 
magnitude variations in the acreage of the cylinder.  
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Figure 4.33. Geometric imperfection for a large-scale metallic cylinder with eight axial weld lands. 

The measured imperfection data can be represented by a two-dimensional Fourier series given by  

 𝑖𝑚𝑝 = 𝑐𝑜𝑠
𝑚𝜋𝑥
𝐿

𝐴!"cos (𝑛𝜋𝜃) + 𝐵!"sin (𝑛𝜋𝜃)
!

!!!

!

!!!

 (147) 

where L is the cylinder length; x and θ are the axial and circumferential coordinates; and m and n are 
integers corresponding to the number of axial half-waves and circumferential full-waves, respectively. 
Using a representation of this type enables convenient analysis and comparison of imperfection 
distributions from different cylinders and different manufacturing processes. For example, the coefficient 
distribution for the measured imperfection shape from Fig. 4.33 is presented in Fig. 4.34. The largest 
magnitude component of the imperfection is associated with the m = 0, n = 8, coefficients and correspond 
to the large magnitude inward imperfection at the eight weld lands. In addition, noticeable contributions 
to the imperfection are associated with  n equal to integer multiples of eight,  n = 16, 24, 32, and 40. Other 
contributions to the imperfection are associated with long-wave-length circumferential modes, n = 2 and n 
= 3. Axial half-waves of m > 4 were omitted from the plot for clarity. Other mathematical representations 
can be used as needed. 

imp, in.
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Figure 4.34. Coefficient distribution of Fourier series representation of measured imperfection given in Fig. 17. 

OML and IML geometry measurements for a large-scale sandwich cylinder test article were obtained and 
used to calculate the as-built thickness distribution for the cylinder. [Ref. 176] In Fig. 4.35, it is seen that 
the top and bottom of the cylinder have the greatest thickness and are associated with structural padups on 
each end, indicated by the orange and red contours. The global thickness-variation pattern in the acreage 
of the cylinder, indicated by the blue/green contours appears to be correlated primarily to the core layout, 
and the use of rectangular core sheets with slightly different thicknesses. In addition, horizontal, vertical, 
and angled features appear in the contour pattern and are likely associated with gaps and overlaps 
between adjacent lamina plies that can occur during the manufacturing process. Similarly, measured 
thickness of laboratory-scale laminated composite cylinders can also be found in Refs. 11 and 49. 

 

Figure 4.35. measured thickness distribution of a sandwich cylinder test article. 
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Loading surface imperfections can lead to loading nonuniformities, changes in behavior, and reduce the 
buckling load of thin-walled cylinders. [Refs. 11, 44 and 49]. Loading surface or interface surface 
geometry should be characterized through detailed measurement. Example loading surface geometry 
measurement results are presented in Fig. 4.36 for an 8-ft-diameter cylinder test article. Fig. 4.36a and 
4.36b show contours of top and bottom attachment ring interface surface imperfections, deviations of the 
measured geometry from best-fit planes uimp. Data traces are extracted from the contour data at a fixed 
radius of 48.0 inches and are shown in Fig. 4.36c. The results indicate long-wavelength imperfections 
around the circumference of the cylinder, with two full waves on the bottom ring and approximately three 
full waves on the top ring. These results appear to be typical for cylinders that are machined using a 
rotating turn-table type machining approach.  
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a) Top Attachment ring 

 

b) Bottom Attachment ring 

 

c) Extracted top and bottom attachment ring imperfection data (curve-fitting was used to fill in missing 
data from imperfection measurement) 

Figure 4.36. Measured attachment ring interface surface imperfections. 

4.7.1.8 Analysis Approach  
A sequence of analyses is recommended when first developing a model. First, a linear elastic stress 
analysis of the finite element model should be performed to verify the overall performance and quality of 
the model, including stiffness, displacement response, and internal stress and strain distributions. Next, a 
linear bifurcation buckling analysis of the cylinder should be conducted. The solution for the bifurcation 
buckling of cylinders is typically characterized by the existence of multiple buckling or eigen-modes at or 
in the vicinity of the critical buckling load value. Thus, it is suggested that multiple eigen-modes be 
obtained during the analysis as there may be a variety of different local and global modes shapes. In 
addition, this clustering of eigen modes can lead to numerical solution difficulties and thus convergence 
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of the solution should be carefully assessed and solution convergence tolerances may need to be adjusted. 
Eigenvalue analyses can provide additional insight into the state of the finite element model even when an 
eigenvalue analysis is not required. The eigenvectors (or mode shapes) can give an indication of the 
anticipated deformation patterns that may be expected and the adequacy of the finite element mesh to 
represent those patterns. Consideration should be given to these items: 

• Convergence criteria for the eigenvalue analysis 
• Solution procedure for extracting the eigenpairs (is the solution space sufficiently spanned to 

represent the deformation states?) 
• Influence of finite element meshing (can short-wavelength mode shapes be represented by the 

given finite element mesh?) 
 

Finally, because cylinder buckling is inherently a highly nonlinear response problem, a geometrically 
nonlinear quasi-static and/or transient dynamic analyses should be performed to obtain a high-fidelity 
prediction of the buckling response of the cylinder. Further mesh refinement study maybe necessary at 
this point if the predicted deformations and stresses are significantly different from those predicted by the 
linear static and linear eigenvalue analyses. Typically, the prebuckling response is quasi-linear up to the 
buckling load and a quasi-static Newton-Raphson or Riks arc-length procedure can be used. The transient 
buckling response and initial post-buckling response is best predicted by using transient dynamic analysis 
solution routine. This dynamic analysis can be either explicit or implicit. Quasi-static Newton-Raphson or 
Riks arc-length methods typically fail in predicting the buckling response of the cylinder due to the highly 
complex transient mode jumping phenomena that accompanies the buckling response [Ref. 177]. 

Specific solution controls for nonlinear solution procedures include: 

• Convergence metrics (change in residuals, change in displacement increments, change in energy) 
• Specified convergence tolerance – too small and no solution is obtained; too large and the 

solution will “drift” from solution equilibrium 
• Solution control procedure (load control, displacement control, arc-length control) 
• Solution damping (too much solution damping may produce unrealistic erroneous predictions) 
• Nonlinear solution algorithm (Newton-Raphson procedure, modified Newton-Raphson 

procedure, quasi-Newton procedures) 
• Number of negative roots in the tangent stiffness matrix decomposition (more than the number of 

Lagrange-multiplier constraints?) 
 

Default values for these and other solution parameters should be assessed and solution sensitivities should 
be understood. 

Note: In some cylinder buckling analyses (e.g., symmetric, geometrically perfect cylinder model that 
exhibit minimal prebuckling nonlinear behavior), it is not uncommon for the quasi-static solution to 
obtain equilibrium solutions on the primary equilibrium path at load levels above the critical buckling 
load. These solutions are mathematically feasible but physically unstable. An unstable equilibrium 
solution can be identified when negative roots appear in the tangent stiffness matrix (or the number of 
negative roots becomes great than the number of Lagrange constraints). In other instances, erroneous 
solutions can be obtained when using default solution parameters and specifically, artificial solution 
damping, common to commercial codes, used to help traverse unstable equilibrium paths. One should be 
skeptical of any global buckling solution that is obtained when artificial damping is used in the solution 
procedure. 
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4.7.1.9 Identify and quantify sources of error and uncertainty 
Sources of uncertainty and assumptions should be identified to help determine the limitations and risks 
associated with the modeling and analysis results. Common sources of uncertainty include geometry, 
material properties, part-to-part variability in material properties and geometry due to manufacturing 
processes variability, statistical basis of material properties, distribution and magnitude of mechanical 
and/or thermal loading, and boundary conditions.  

Similarly, assumptions are made in the process of developing the model based on the known information 
and modeling needs. Sensitivity studies should be conducted to assess the effects uncertainties and 
modeling assumptions. Understanding the response sensitivities can help guide testing requirements and 
data collection and identify model development and refinement needs. 

4.7.2 Model Validation 
In general, model validation requirements are dictated by modeling needs. For the development of high-
fidelity cylinder buckling predictions, key response characteristics and metrics include:  

• Prebuckling stiffness, characterized by axial load versus end-displacement, moment versus end-
rotation, etc. (characteristic global displacement versus applied load) 

• Prebuckling and buckling displacement response (axial, circumferential, radial) 
o Load versus point displacements 
o Full-field displacement distributions 

• Prebuckling strains (axial and circumferential) 
o Load versus point strain 
o Full-field strain distributions 

• Buckling load  
 

Required accuracy of the analysis predictions is determined by individual project needs. High-fidelity 
models have been shown to routinely produce results to within ±5% of measured. Prebuckling stiffnesses 
and prebuckling displacement response are expected to correlate with experimental measurements 
reasonably well (e.g., ±2%). Overall character of the full-field prebuckling and buckling displacement 
response should also correlate well. In particular, the character and location of the initiation of buckling 
should be similar to that observed in test, thus, indicating that the physics of the buckling response is well 
represented.  Because of cylinders extreme sensitivity to variations in geometry, load distribution, and 
boundary conditions, slight variations in the as-tested cylinder configuration can and often will shift the 
buckling initiation location. Thus, an analysis-based sensitivity study can be used to bound the test results 
and provide additional confidence in the analysis model. Local or point strain measurements are often the 
most difficult to correlate due to local gradients that can result from local bending, slight variations in 
loading, and variations in the as-built versus as-modeled geometry and material properties. Thus, the 
overall character of the strain response an amplitudes should be assessed for correlation. 

Validation testing and data requirements follow directly from the model validation needs, such as those 
listed above. Comprehensive instrumentation and measurement techniques will be necessary during 
validation testing in order to obtain required data to correlate with analysis predictions. A combination of 
displacement and strains sensors should be used to measure displacements and strains at key locations on 
the cylinder test article and any adjacent load introduction structure. In addition, full-field digital image 
correlation (DIC) type techniques are needed to characterize prebuckling and buckling displacement 
response over as much of the cylinder as possible. Other instrumentation such as fiber-optic strain sensors 
and acoustic emissions sensors can also be used. Several successful validation test programs on the 
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buckling of large-scale integrally-stiffened metallic cylinders are documented in Refs. 44 and 178 and 
include detailed information on the testing approach.  

Typical measured data needed for high-fidelity model validation and measurement considerations 
include: 

• Effective stiffness characterized by load versus displacement response curves. 
o Obtain displacement measurements directly from cylinder. 
o Do not rely solely on load actuator displacement measurements as they may be 

influenced by flexibility of the attachments and adjacent loading structure. 
• Prebuckling and buckling displacement response 

o Point measurements by using DCDTs/LVDT type instrumentation or equivalent; 
provides data for direct correlation to predicted results; provides data to verify accuracy 
of 3-D DIC-based measurements 

o 3-D DIC techniques to measure full-field displacement response; low-speed systems used 
to characterize quasi-static response, high-speed systems used to characterize buckling 
initiation and transient collapse response 

• Load introduction - characterize uniformity of load 
o back-to-back strain sensors applied to cylinder test article near ends to characterize load 

introduction, membrane and bending response 
o back-to-back strain sensors in adjacent load introduction structure to characterize 

behavior 
o 3-D DIC measurements of cylinder interface region characterize load introduction and 

identify any anomalous behavior 
• Boundary flexibility 

o all degrees of freedom at the boundary may need to be monitored 
o can be characterized by using a combination of displacement and strain sensors and 3-D 

DIC, including sensors used for load introduction characterization 
• As-built vs. as-installed /as-tested  geometry and interface conditions 

o installation of test article into test facility may result in slight change in geometry and 
induce an initial pre-stress due to fit-up tolerances 

! mis-match in radius and circularity 
! interface surface flatness 

o characterize change in geometry by using 3-D DIC or other high-resolution geometry 
measurement techniques 

o characterize pre-stress by recording strain data during installation process and changes in 
test article geometry via 3-D DIC 

• Manufacturing  
o residual stresses and variations in material properties may occur during manufacturing. 

The extent of these manufacturing effects and their importance should be assessed as part 
of the manufacturing process development. Analysis-based sensitivity studies should be 
used to determine their importance on the buckling of the cylinder 
 

4.7.3 Knockdown Factor Development Approach 
A typical vehicle design approach includes several phases, the conceptual/preliminary design phase and 
the detailed design phase. Other design approaches may be used, but it is assumed that all will follow a 
similar multi-phased approach that also includes increasing levels of analysis model and design fidelity. 
The conceptual/preliminary design phase is performed in the beginning of the design process to determine 
overall structural sizing and mass estimates, and to perform basic material and configuration trades. 
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Buckling load predictions are based on classical closed-form buckling analyses of idealized geometrically 
perfect cylinders with smeared stiffener properties (i.e., the stiffener properties are approximated by a 
fictitious layer with properties based on the bending and extensional properties of the individual stiffeners 
averaged out over the representative stiffener spacing). The detailed design phase begins after some of the 
basic design decisions have been made such as structural concept, material type, manufacturing approach, 
and geometry. In this phase, the buckling load predictions are often based on detailed finite-element 
models of a geometrically-perfect structure and will begin to include many of the relevant detail features 
such as stiffeners, joints, cutouts, attachments, and skin thickness tailoring. In both phases of the design, 
however, it is assumed that a buckling knockdown factor (KDF) is needed to account for the differences 
between the predicted buckling load results (classical solution or idealized FE model) and the expected 
buckling load of the as-built cylinder.  

Development Approach 

An approach for developing analysis-based KDFs for thin-walled cylinders is described next. The KDFs 
development approach will lead to a hierarchical set of factors that can account for a variety of individual 
effects such as initial geometric imperfections, nonuniform loading/interface tolerances, joints, internal 
pressure, stiffeners, geometric nonlinearities, etc. Thus, since the different effects can be treated 
individually, different KDFs can be chosen based on the fidelity of the analysis used in the design process 
(e.g., classical solution versus FE-based linear eigen analysis), the quality of the cylinder (i.e., 
imperfection amplitude), loading conditions, and structural details present.  

Following from the traditional KDF definition found in Sections 4.2-4.6, an analysis-based KDF, 𝛤, is 
defined as 

 𝛤 =
𝑃!"
𝑃!"

 (148) 

where 𝑃!" is the predicted buckling load from an experimentally-validated, high-fidelity finite-element 
model, as described in Section 4.7.1, and represents the expected buckling load for an as-built cylinder 
design of interest. 𝑃!" is the buckling load predicted from a classical linear bifurcation buckling analyses 
of an idealized geometrically perfect cylinder such as that given in Sections 4.2-4.6.  

It is convenient to rewrite the KDF defined in Eqs. 148 as 

 𝛤 = 𝛤!𝛤! (149) 

where 

 
𝛤! =

𝑃!"#
𝑃!"

 (150) 

and 

 𝛤! =
𝑃!"
𝑃!"#

 (151) 

𝑃!"# is predicted using a linear bifurcation buckling analysis from a detailed FE model. The FE model 
used in this analysis should be based on an idealized version of the high-fidelity model used to predict 𝑃!" , 
i.e., geometrically perfect, uniform loading, classical simply-supported boundary conditions. 
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The definition of 𝛤! given by Eq. 150 is relatively straightforward and can be regarded as a first-order 
approximation of the effects of structural details on the buckling load of the cylinder. A series of design 
data or curves can be generated that account for the effects of a variety of structural details of interest 
such as cutouts, joints, or discreate stiffeners (e.g., see Fig. 4.16). Similarly, 𝛤! given by Eq. 151, is used 
to account for the effects of geometrically and materially nonlinear behavior as well as geometric 
imperfections, nonuniform loading, elastic boundary conditions, and other structural details and 
behavioral characteristics that are included in the high-fidelity buckling load prediction, 𝑃!".  

𝛤! and 𝛤! can be further subdivided as necessary to characterize the effects of individual features and 
response characteristics, as long as mathematical consistency is maintained or conservatism is 
demonstrated. For example, it may be advantageous to define 𝛤! as follows: 

 
𝛤! =

𝑃!"(𝑔)
𝑃!"#

𝑃!"(𝑔, 𝑙)
𝑃!"(𝑔)

 (152) 

where 𝑃!" 𝑔  corresponds to the buckling load of cylinder with only geometric imperfections, indicated 
by the 𝑔 , and  𝑃!"(𝑔, 𝑙) corresponds to the buckling load of a cylinder with geometric and loading 
imperfections indicated by 𝑔, 𝑙 . Equation 152 can be rewritten as 

 𝛤! = 𝛤!(𝑔)𝛤!(𝑙) (153) 

where 

 
𝛤!(𝑔) =

𝑃!"(𝑔)
𝑃!"#

 (154) 

and 

 
𝛤!(𝑙) =

𝑃!"(𝑔, 𝑙)
𝑃!"(𝑔)

 (155) 

In this way, a hierarchical set of KDFs can be defined that can be implemented in a mathematically 
consistent manner as the fidelity of the design process and corresponding analysis models improve. In 
addition, different effects can be separated into different factors that can be added or removed from the 
design process as needed.  Thus, a design buckling load 𝑃!" can be calculated for preliminary and detailed 
design using the following relationships: 

For conceptual/preliminary design where 𝑃!" is calculated, 

 𝑃!" = 𝛤!𝛤!𝑃!" (156) 

and for detailed design where 𝑃!"# is calculated, 

 𝑃!" = 𝛤!𝑃!"# (157) 

where 𝛤! and 𝛤! are developed for a specific structural configuration. 
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