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INTRODUCTION 

The research conducted during the last three years has greatly enhanced the power of the 
STAGS family of programs. Members of this family include STAGS-Cl [l] and RRSYS 

As a result of improvements implemented during these last three years, it is now possible 
to address the full collapse of a structural system, up to and beyond critical points where 
its resistance to  the applied loads vanishes or suddenly changes. This also includes the 
important class of problems where a multiplicity of solutions exists a t  a given point (bifur- 
cation), and where until now no solution could be obtained along any alternate (secondary) 
load path with any standard production finite-element code. 

Formerly, when rotations for any part of a collapsing structure exceeded the small rotation 
regime (< lo'), finite elements in that region of the structure displayed unpredictable 
behavior that  arose out of a violation of the basic assumptions concerning deformations 
within the individual elements. All elements in STAGS suffered to some degree, with the 
more economical elements (like the SH410 shell element [3]) locking almost completely as 
rotations grew. Now, the latest version of STAGS-C1 includes an element-independent 
corotational formulation for all static nonlinear collapse analyses that virtually eliminates 
all problems related to large-rotations for small strain problems. 

Some of the remaining improvements to STAGS-C1 include a postprocessor that generates 
secondary solution data (strains, stresses, and resultants) from previously-saved primary 

nates the need for saving bulky secondary data that may or may not later be needed 
for printout or display (e.g. STAPL). A new data translator formats primary solution 
data created on one type of machine (such as a CDC or CRAY) for simple transfer to 
another machine (like a VAX/VMS) for local, interactive, and inexpensive postprocessing 
or solution restart. 

These improvements, including those in RRSYS and the Riks algorithm added to STAGS- 
C1 have transformed the STAGS codes into a unique capability for solving difficult 
nonlinear collapse problems typical of optimized structural components fabricated with 
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I data (displacements, velocities, eigenvectors, plastic strains). This postprocessor elimi- 
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This report concentrates on three key categories where most of the work during this con- 
tract period was performed. 

The three categories are: 
I 
I 

1. Development of an element-independent corotational procedure, its introduction 
into STAGS, and an evaluation of its performance. 

Development of the Thurston Transformation Processor (TP), its introduction into 
STAGS-C1, and a demonstration of performance. 

Specific enhancements to the RRSYS reduced basis program and completion of 
necessary documentation. 

I 
I 2. 

3. 
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Each of these categories is discussed in this report in a section that summarizes the work. 
This report is supported by extensive and detailed documentation of theory, program 
construction, program usage, and test cases to be found in the following referenced sources: 

I 
I 

Technical papers published in the literature, of which four are derived from this 
contract, Refs. 14-71 I 

1. Technical reports and manuals. 

2. 

A final section summarizes recent miscellaneous improvements to the STAGS-C1 that, 
taken together, greatly enhance the utility of the program. 

I 
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SECTION 1-An Element,-Independent Large Rotation Algorithm 

It is well known that most finite elements either lock (stiffen) or display spurious behavior 
in the presence of large rotations. It was principally for this reason that the SH411 shell 
element 13) was originally introduced: the much more economical SH410 element locks when 
rotations exceed approximately 10". While the higher order SH411 increases accuracy, it 
also increases cost substantially. In addition, results may be unpredictable because solution 
convergence may not be monotonic. Convergence in the presence of large rotations is not 
guaranteed for some of the more economical shell elements irrespective of the grid size. 
The problem arises from using rotations as fundamental freedoms to specify the displace- 
ment field of the elements. Rotations are used in shell elements to establish the curvature 
of the reference surface from which approximations to the bending strains are derived. Tra- 
ditionally, these rotations are treated as vector quantities, which is true only when they 
are small. When rotations are large, the final deformed position of the element depends 
on the order in which the rotation components are imposed. That position cannot be 
uniquely determined with vector quantities. For finite rotations, membrane and bending 
contributions to the strains are no longer easily combined, and the resulting interpolation 
difficulties lead to locking or spurious behavior. 
Fortunately, for most structures composed of thin sections, strains remain moderate even 
when the rotations are large. The major contribution to the total rotations arises from 
local rigid body motion that can be accounted for before strains are calculated within the 
finite elements. 
The new large rotation algorithm addresses those cases in which strains remain small but 
rotations can be arbitrary. The success of the algorithm derives from the fact that  the rigid- 
body contribution for each finite element is removed before any displacement information is 
required for the calculation of strain. The rotational freedoms which were formerly treated 
as vectors have been replaced by triads (three mutually perpendicular unit vectors) rigidly 
attached to each node, and a unique and efficient means of updating these triads with the 
increments of increasing displacement has been developed. Because the local rigid body 
motion is treated independently of the element formulation, all elements in STAGS were 
upgraded a t  one time; this is a pleasant contrast to the original task specifying that only 
one element (we had suggested the Ahmad SH440) be made corotational. 
The element-independent large rotation formulation is detailed in reference 161. Several 
test cases are included that demonstrate how well the method works for problems that  
have caused much difficulty in the past. For this reason the present report will concentrate 
on some of the specifics of the STAGS-Cl implementation, followed by some spectacular 
demonstrations of performance in highly nonlinear problems. 

Sect ion 1.1-S TAGS Implement at ion and Data Organization 

The subprograms that perform the operations described in 161 were written as independent 
modules that  need only a minimum of data. The position of each of these modules follows 
closely the pattern described in Figs. 1, 2, and 3. Each subprogam requires the con- 
struction of a subroutine (or shelf) that  extracts the necessary data and ensures a proper 
interface between the kernel and existing STAGS software. 
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The only modifications to STAGS1 were to the input routines (to flag for the non-default 
non-corotational runs), and to the computation of the initial element reference frame Eo 
as shown in Fig. 4.  All element. frames follow the prescription in [GI, with the selec- 
tion of the local y axis as the 1-4 edge projection to facilitate the description of cones 
and cylinders (this guarantees that the element system follows the generators for cones 
and cylinders, simplifying the material description for these cases). For the eight node 
serendipity (Ahmad) element, the corner nodes define the element frame. It is fortuitous 
that  for beams and triangles, the local element frame already in existence is identical to 
the choice in [6]. The local element frame Eo and the local element coordinates X ,  for the 
undeformed system are saved with the element prevariational data for transfer to STAGS2. 
The initial nodal triads that form the reference for the rotational degrees of freedom are 
saved as separate nodal quantities and transferred likewise to STAGS2. They turn out to 
be identical to that transformation required to  convert displacements a t  each node from 
the branch computational coordinate system to global coordinates. 
Considering the benefits gained, the alterations to STAGS2 are relatively straightforward. 
The reduction to deformational translations udef specified by the relation 

ufef = Er(u, + X,) - X ,  

requires the total displacements u,, the undeformed global coordinates X,, the local el- 
ement undeformed coordinates X , ,  and the number of nodes in the element that  have 
“full” (as opposed to “deviational”) freedoms. The local element frame Ek is calculated 
in place and saved for subsequent steps. Local rotations are calculated from the relations 
(see explanation in [6]) 

Di = ETaSkEo (1.2) 

and 

Here h2 is the skew-symmetric matrix of local rotations needed by the elements. Eqs. (1.2) 
and (1.3) require the additional presence of the initial nodal triad So, the updated element 
frame E k  just calculated, and the quantity A s k  that  represents the rotation of the nodal 
triad as the structure deforms. In STAGS2 a pseudovector with the nonsingular (2sin g) 
normalization was chosen to  represent Ask;  a complete description of the pseudovectors 
used in STAGS is found in Ref. 161. 

The remaining task was to settle on an optimum sequence of updating operations necessary 
to  keep nodal triads and local element reference frames current. A particular sequence is 
shown in Fig. 1. Initially, the element frame was updated only after a converged solution 
was obtained. Subsequently we found, however, that  a more consistent and accurate 
solution is obtained when both the nodal triads and the element frames are updated during 
each iteration (inner loop in Fig. l) ,  so that both UPSTR and EK are called immediately 
after new displacements are accumulated. This includes a call to  UPSTR and EK (see Fig. 
1) after the extrapolated displacements are calculated and before iterations begin. 
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Section 1.2-Verification 

A demonstration of the performance of the element-independent large rotation algorithm 
for several interesting cases is found in Ref. [6]. These include the beam bent by an end 
moment, the classical elastica problem, the symmetric collapse of an arch, and collapse of 
a hinged cylindrical shell. In every case, solutions that  previously were either incorrect or 
converged very slowly with respect to grid refinement became accurate to the order of the 
residual error for very coarse meshes when the new algorithm was turned on. 

The SH411 element (the equivalent beam element is B211 131) was designed to cure the 
large rotation problem for cases where the directions of the rotations remain constant. In 
this case, the rotations do behave like vectors. The example shown in Fig. 5 demonstrates 
graphically that the element fails when rotations become large. The problem involves a 
deep arch clamped at one end and pinned at the other and loaded at its apex. The arch was 
modeled with 20 equally-spaced shell elements. One can see from Figs. 5 and 6 that  both 
the SH410 and SH411 fail as soon as rotations become large. As is usually the case, the 
SH410 locked almost immediately, while the SH411 dropped below the converged solution 
calculated by A. Noor [SI. This example is interesting because even the corotational SH410 
element locks eventually. One must note, however, that  over a space of only seven elements 
the arch bends into a 3/4 circle. Local rotations inside those elements exceed 30". For such 
large local rotations, the approximation of a rotation angle for a slope (tan 0) breaks down. 
A finer discretization or the use of the higher-order SH411 element provides an accurate 
solution along the entire load path. 

Follower loads are already taken into account by referencing these loads to the updated 
element reference frame, small corrections being provided by the local element deflections. 
Our last example demonstrates the effectiveness of the method for follower loads. We 
have chosen an infinite cylinder subjected to inward hydrostatic pressure for which the 
collapse behaviour is known. Our model consists of one quarter of the ring shown in Fig. 
7,  with symmetry boundaries along all four edges. The mode n = 2 was triggered by a 1% 
point load at 0" and 90". The response shown in the figure clearly illustrates the difference 
between the non-corotational and corotational SH410 and SH411 shell elements. Just  as in 
the previous cases, the SH410 element is too stiff, and the underintegrated SH411 element 
too soft; in contrast, the corotational versions of both elements agree with the expected 
results. The  deflected shape shown in Fig. 7 is plotted to scale, and represents the last 
point for the corotational SH410 element on the load-deflection plot. 
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Section 1.3-Imperfection Theory 

Imperfections are introduced into STAGS by assuming that the strain energy is a function 
of the difference between the strain produced by the displacement field "U of the imper- 
fections alone and that produced by the combined displacement field Ou + u, where u is 
any new deflection of the structure as a result of loading: 

Ac = ~ ( O U  + U )  - c('u). 
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Green's expression for the strain components c , ~  is 

where the standard comma notation is used for derivatives of displacements with respect 
to the coordinate directions for each of the indicated components (subscripts i and j). By 
straightforward algebraic manipulation the difference A ~ i j  = cij(u + O U )  - ~i j ("u)  reduces 
to 

The only new contribution is from the second term. 

As is described extensively in [6), strains in the corotational procedure are referred to the 
convected undeformed configuration, so that the local deformatzonal displacements which 
participate in the strain energy are the difference between the total displacements and 
displacements arising from a rigid rotation of the element frame (see Ref. [6] for details). 
Thus the strain expression in Eq. 1.6 becomes 

where udef replaces u. The quantity Ac becomes 

The components of strain are now referred to the updated convected local coordinates 
in a local element frame which includes the imperfections. The expression for the local 
displacements becomes (Eq. 1.1) 

Udef = Er(u, + Ou, + X,)  - ET(Ou, + X , ) ,  (1.10) 

where the subscript g indicates that the displacements u, the imperfection displacements 
"u, and the undeformed nodal coordinates X are all evaluated in the global coordinate 
system. Notice that the local nodal undeformed coordinates 

X I  = ET(Ou, + X,) 

include the imperfections in two ways: 

(1) Directly by adding to the undeformed coordinates (in effect, deformed geometry). 
(2) Indirectly because ET is evaluated using the imperfections as displacements, in 

X I  are thus the total undeformed coordinates (initial + imperfection) in the local element 
frame. 

contrast to the quantity Eo. 
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The deformational rotations are evaluated using Eqs. 1.2 and 1.3 and converted into a. 
vector of small rotations. The only modifications needed for structures containing imper- 
fections is that all the quantities must be referenced to  the imperfect state, just as with 
the translational displacements: 

D; = E T A S ~ E , ,  (1.11) 

where EI and Ek are the initial and final element frames (both containing the imper- 
fections) a.nd AS,, is the rotfateion of tjhe surface coordinates required to take the system 
from the initial state I (containing the imperfections) to the final state k (containing im- 
perfections and displacements). D; is the matrix of small rotations from which the local 
rotations are extracted (see Ref 161 for further details). 

What remains to be calculated are the ‘udef needed for Eq. 1.10. Eqs. 1.1, 1.2, and 1.3 
are used as before, except that this time the initial configuration is the perfect geometry, 
and the displacements are the imperfections expressed as a displacement vector of nodal 
quantities. Eq. 1.10 becomes 

(1.12) 

where this time the “deformed” element frame EI contains the imperfections, and the 
“undeformed” element frame Eo does not. The rotations arising from the imperfections 
are obtained from the formula 

D; = E T A S ~ E ~  (1.13) 

containing the imperfection rotations AS,  (in global coordinates). Once these local deflec- 
tions and rotations have been extracted, the initial strain quantities Ouif3f are interpolated 
to  the integration points, stored, and used subsequently in evaluating the strains during 
the solution process. 

It can be verified that the terms in Eq. 1.9 are very small for all but the coarsest grid 
spacing because most of the imperfection has already been removed by the rigid-body 
translations and rotations that make up the initial element frame E, and initial local 
element coordinates X I .  Numerous test cases indicate that the solution does not change 
significantly if, on the one hand, the imperfections are introduced as initial geometry, or, 
on the other hand, they are introduced into the strains using Eq. 1.7 (1.9 for corotational 
runs). For noncorotational applications, users are given the choice of either the initial 
strain approach (Eq. 1.7) or initial geometry. For corotational applications, only the 
initial geometry option is available; however, if the more refined implementation described 
in this section is desired, it can be included at some future time. 

Sect ion 1.4-Execut ion 

All nonlinear collapse runs with STAGS-C1 (INDIC = 3) are corotational unless the user 
specifies that  he wishes to  run the cases the old way. A solution is non-corotational if 
ICOR (STAGS Input Record B-1) is set to unity. 
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If IWIMP (Input Record M-5) is positive, the trigonometric imperfection amplitudes 
specified on Record M-6 are added to the initial geometry when the corotational (default) 
theory is used. In-plane components of the imperfection field are included in this super- 
position, a modification that applies to  all classes of STAGS runs. For non-corotational 
runs, the imperfections are entered into the strains as before. For those users who formerly 
wrote a WIMP user subroutine (IWIMP 7 -1)) a new subroutine DIMP has been added 
that must be called in place of WIMP for all corotational runs. The user must set IWIMP 
to -2 and include DIMP, as described in Section 4. The IWIMP=-2 option was provided 
to  allow the user t o  alter the initial geometry for non-corotational runs as well. 

Section 1.5-Suggestions for Future Research 

The corotational theory developed under this contract is complete and self-contained as 
implemented in STAGS-Cl. All subprograms are written in standard FORTRAN-77, and 
are general enough to be portable to  other environments with no substantive changes. 
One of the fundamental assumptions of the corotational theory is that  each element is 
invariant to infinitesimal (as opposed to  finite) rigid rotations. Although the computation 
of the internal forces remains valid, infinitesimal invariance is essential during calculation 
of the tangent stiffness for modified or full Newton iteration algorithms. For some flat ele- 
ments, such invariance may be lost when a n  attempt is made to configure a doubly-curved 
surface. It turns out that  it may be possible to remove the contribution of infinitesimal 
rigid motion to  the tangent, stiffness for some elements, thus relieving the old problem of 
warping. We believe that some of the recently observed irregularities (irregular conver- 
gence, non-quadratic convergence when using a full Newton iteration) seen with the SH410 
corotational element, stem directly from these finite element defects. 

It has recently been demonstrated [9] that  some newly-developed nine-node elements dis- 
play superior behavior compared to  that for a grid of four-node elements with the same 
number of freedonis. It may be necessary to explore better ways of choosing the local 
element frame so that the average surface can be more accurately represented than with 
the current choice of corner nodes. Fortunately, the software is general enough to  allow for 
an  arbitrary selection for nodes (such as the midside nodes) to define En and E k .  The best 
possible frame must be selected: For a given number of freedoms there are only one fourth 
the number of local element frames in the nine-node element model than in the four-node 
element model with an equivalent grid. 

The reader may have noticed that no mention has been made of transient analysis 
(INDIC=6) in STAGS. Although the corotational theory has not ye t  been implemented for 
this class of runs, this could be done very simply with the existing corotational software. 
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SECTION 2-Thurston Transformation Processor (TP) 

General purpose finite element codes in use today for nonlinear structural analysis are 
slow to converge or fail to converge near limit points or bifurcation points. The Thurston 
Transformation Processor (TP) is an adaptation of Newton's method that improves con- 
vergence near critical points where the linear form of Newton's method is ineffective. By 
critical points, we mean both limit points and bifurcation points. 

TP fills an important gap in the nonlinear solution process. Whereas the recently- 
implemented Riks solution algorithm is of some help in traversing simple limit points, 
TP enables rapid convergence in the vicinity of both limit and bifurcation points, includ- 
ing those analyses involving multiple bifurcation. When fully developed, TP will give 
the user the freedom to continue on any alternate solution path, taking full account of 
the interaction of multiple bifurcation modes in critical neighborhoods of load-deflection 
space. 

The theory underlying TP has recently been presented at the AIAA/ASME/ASCE/AHS 
26th Structures, Structural Dynamics, and Mat,erial Conference (SDM) [7] .  Further de- 
tail, including some of the particulars of the STAGS-C1 implementation can be found in 
Appendix 1. 

Section 2.1-Highlights of the Theory 

, 

Implementation of the Thurston Transformation Method (TP) is described in Ref. [ 71. 
TP's purpose is to separate the incremental equilibrium equations into two parts. The first 
part is almost singular, reflecting behaviour of a structure close to a bifurcation or limit 
point. The second part is non-singular. This separation is done by a sequence of carefully 
selected operations. First, we apply an equivalence transformation to the incremental 
equilibrium equations in order to  replace some of the original displacement freedoms by 
the amplitudes of potential bifurcation modes. Subsequently, we subdivide the resulting 
equations into two smaller equation systems. The first of these is decoupled from the 
rest of the equations and contains as unknowns only the modal amplitudes and the load 
factors. It is nearly singular, highly nonlinear and must be solved by special means. It is 
this set of equations that describes the interaction between different modes in the vicinity 
of a bifurcation point. The second set of equations describes the coupling between the 
modal amplitudes, the load factor and the remaining displacement freedoms. This set is 
numerically well-conditioned and can be treated by standard equation solution techniques, 
e.g. The Thurston Transformation 
Method thus gives a comprehensive and consistent description of structural behaviour 
close to critical points. Not only does it avoid the convergence problems encountered by 
other methods, but it is the first method permitting an evaluation of modal interaction for 
general structures in an explicit, efficient and comprehensible manner. 

by true or modified Newton iteration procedures. 
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Sec t.ion 2.2-STAG S Implement at ion 

TP was implemented in STAGS-C1 in stages, as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

Modifications to the solver to  handle multiple right hand sides. 

Modifications to the eigenvalue package to handle restart (in fact, to be called 
anywhere desired). 

Extension of the capabilities of the 2-system routines (described in Appendix 1). 
This includes a full set of vector operations and control of restart (Section A1.2.3). 

Construction of the control module BPPCON to process user input data. 

Introduction of the equivalence transformation and construction of the reduced 
equation system, taking into account the higher-order terms in the modal ampli- 
tudes. The implementation of the equivalence transformation was brought about 
by the single control routine BPP. BPP requires only standard STAGS:! modules 
and the augmented Z-system routines. 

Modifications to the output routines for display of the outcome of key TP functions 
during the progress of a run. 

The  vector and matrix nomenclature is also found in Appendix 1, followed by principal 
variable names. A complete list of 2-system calls is also included. 

Section 2.3-Verification 

Two examples found in [7] demonstrate the function of TP in STAGS-Cl. The first case 
in (71 is a shallow spherical cap under hydrostatic pressure, an example of a difficult limit 
point analysis. Not shown in the figure is an equivalent STAGS-C1 analysis with the Riks 
continuation parameter algorithm. Although identical results were obtained, the Riks 
solution required almost 30 times as many load steps as TP, with a tight clustering of 
points near the limit point (see Fig. 1 in [7] ) .  The second example, fully documented in 
171, demonstrates how TP works in a case in which a continuation method such as Riks’ 
cannot work. 

The  only example we have of a multi-mode solution is shown in Fig. 8 and 9. The solution 
was obtained with an experimental version of TP not yet completed in STAGS-Cl, with 
the help of a grid search algorithm used to  determine modal amplitudes from the reduced 
equation system containing the higher-order terms. The example consists of a cylindrical 
panel under axial compression with geometry and boundary conditions shown shown in 
Figure 8. The finite element model of this structure had 148 computational freedoms. 

A bifurcation analysis with linear prestress showed that the first five bifurcation load factors 
are 0.697, 0.882, 0.915, 0.937 and 0.961, i.e. the lowest eigenvalue is relatively isolated, 
whereas the others are clustered. An attempt was made to reach a secondary load branch 
starting from the neighborhood of the second eigenvalue and proceeding in the direction 
e2 of the corresponding eigenmode. Two bifurcation modes were used in the equivalence 
transformation, namely the modes associated with the second and third eigenvalues. The 
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initial step employed to reach the first shifted point was chosen to be 0.2e2 (see Figure 8, 
point PI ) . 
At this point, the Thurston method was exercised without, however, obtaining convergence 
after a restart in the basic equation system. As a consequence, another specialized step 
using TP (hereafter referred to  as a Thurston s t e p )  was taken in the direction of e2 ( P 2 ) .  

The solutions for the modal amplitude increments obtained from the reduced equation 
system at this point are shown in Figure 9. The solid lines display the loci of all solutions in 
the plane spanned by the amplitude increments with the load factor PA being a parameter 
along the curves. It is interesting to note that there are two classes of solutions represented 
by the two disjoint solution branches. Hypothetically, the two classes are associated with 
the pair of secondary load branches in the direction of the bifurcation modes used in the 
equivalence transformation. Using the solution at point A in Figure 9 convergence was 
obtained after a restart in the basic equation system, although the converged solution 
seemed to  contain not only one eigenmodc, but rather a mixture of the two. Evidently, 
since the reduced equation system has many solutions one has the choice of selecting 
other points from which to restart the solution of the basic equation system. Also, one 
might restart from a point on the second branch of the reduced solutions with possible 
convergence to another secondary load branch of the structure. 
The broken lines in Figure 9 show the loci of the solutions on the reduced solution space 
after yet another Thurston step (P3). It is noteworthy that in this case, starting from 
solution point B, no convergence was obtained in the basic equation system. 

It is clear from this example how complicated it is to analyze the modal interaction problem, 
and how far one was able to proceed with only an experimental version of TP. 

Section 2.4-STAGS TP Execution 

A series of new input records are needed for the control of TP. Each of these records 
is digested during the solution phase (STAGS2). Therefore, the total user input to  the 
program comes in two parts: 

1. Input to  STAGSl. This input block defines the model. It is completely unchanged 
from an ordinary model definition with the nonlinear static option turned on (INDIC 

Input to TP. TP replaces STAGS2 and contains all necessary functions for a static, 
nonlinear analysis (including corotation and the Riks algorithm). 

= 3) .  
2. 

The new input records TP-1, TP-2, and TP-3 contain the same data  as the STAGSl 
records A-1, C-1, and D-1, respectively. Data in the new records override the STAGSl 
input records. This has the advantage that multiple solutions with differing load strategies 
can be run with the same STAGSl data. The next three records control the operation of 
TP as follows: 

TP-4 This record is used to select either TP or the Riks algorithm, and when selecting TP, 
to specify the type of modal analysis desired and which mode to use for the shifted 
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point,. If NPATH is 0, TP will attempt to continue the solution along the current 
load path, just as would be done in an ordinary STAGS solution. If NPATH is 1 ,  a 
Thurston step will be attempted, and additional data from this record will be used. 
NEV specifies the number of bifurcation solutions to  calculate. NEQ specifies the 
number of modes to be used in the Thurston Equivalence Transformation. NSOL 
describes the particular action of TP, accounting for multiple modes. For NSOL 
1, it is assumed that only one mode is active, and a Thurston step is attempted 
using this mode for the shifted point. For NSOL = 0, the modal coefficient matrix 
is saved and the TP run is terminated. For NSOL = - I ,  the modal solutions are 
read in (Record TP-6), and a full multimode Thurston solution step is attempted. 
IE denotes the mode number to be selected in computing the shifted point. 

This record specifies the value of 
Thurston step for a multimode TP solution. STEP is the independent variable of 
the solution, replacing load increments (in the case of load control), or continuation 
parameter increments (for a Riks solution). STEP multiplies the normalized mode 
IE (from the previous record). PASTP (Record TP-2) serves the same function for 
a TP analysis using a single mode or for the standard load control or Riks analyses. 
DELTA is some small number to be used in a numerical differentiation algorithm 
for determining the coefficients of the reduced equation system. 

TP-6 The data on this record specify the relative values of the modal amplitudes for 
a multimode TP analysis (NEQ > 1). Load factors PA, PB, and the QFAK are 
determined from the reduced nonlinear equations specified by the modal amplitude 
coefficient matrix saved on TAPE31. 

TP-5 Read TP-5 and TP-6 only if NPATH = 2. 

The reduced space equations are solved by a separate grid search program using the co- 
efficient data on TAPE31. Currently, however, a multimode TP execution has only been 
attempted using the experimental version; this option awaits debug and testing in STAGS- 
c1. 

Section 2.5-Current Status and Suggestions for Further Work 

At  the time of this Report, TP is fully operational in STAGS-CI for all cases where the 
specification of one bifurcation or collapse mode suffices to remove the singularity in the 
tangent stiffness in the vicinity of the critical point. For a multimode case, only the test 
version has been tried. 

A new effort has already begun to fill in the gaps in TP following the theory in Ref. [7]. 
The nonlinear equations in the modal amplitudes will be augmented with other terms. 
The links between STAGS-C1, TP, and the grid search algorithm for solving the nonlinear 
reduced equation system will be checked out and improved. Improved methods for solving 
the reduced equation system will be investigated. Additional improvements will be made 
as experience with difficult nonlinear collapse and bifurcation analyses dictates. 
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SECTION 3-RRSYS 

I 

The development of RRSYS that began six years ago was spawned by the need for faster 
and more powerful analysis tools. Despite significant, progress in both software and hard- 
ware technology, the solution to many problems remains out of reach for the analyst, 
chiefly due to the significant cost of performing large structural analyses. Since compu- 
tational effort is strongly influenced by the number of unknowns in the equation system 
describing the deformation or the motion of a structure, it seemed attractive to explore 
methods for reducing the number of freedoms characterizing the state of a structure. An- 
other factor critically influencing computing time is the strategy employed for arriving at a 
solution, particularly in the case of structures with pronounced nonlinear behaviour. The 
analysis of nonlinear structural phenomena cannot be handled by cookbook-type recipe 
procedures. In order to arrive at an accurate answer with reasonable computing costs, 
the analyst needs years of experience that provide intuition and a thorough understanding 
of the physical processes involved. Hence, there is a strong need for automated problem- 
adaptive methods that select solution strategies adequate to deal with complex structural 
behaviour encountered in the course of an analysis. 
RRSYS contributes to the solution of the problems of excessive computer time and un- 
reliable strategy. On the one hand, it implements the reduced basis technique by the 
use of global functions, leading to a significant reduction in the number of unknowns and 
hence the associated solution times. On the other hand, both the conditions under which 
the reduced solution space is constructed and the strategy which is used for solving the 
ensuing equations are automatically adapted to  the behaviour of a particular structure. 
The default solution strategy built into RRSYS usually results in cost savings by a factor 
of three to  five for a typical collapse analysis. RRSYS suggests to  the analyst how to  
choose important parameters affecting the computational effort, thus removing much of 
initial guesswork involved in finding a solution strategy suitable for a particular case. Op- 
tions exist for changing the strategy parameters, permitting the analyst further to improve 
solution efficiency once he has gained insight into the behaviour of a structure. 

RRSYS can be used for the analysis of shell structures of arbitrary design and configuration. 

Section 3.1-Recent Improvements to RRSYS 

During the previous contract period the essential program modules implementing the re- 
duced basis technique and adaptive solution strategy were written and joined together to 
form the RRSYS program assemblage. Considerable effort was devoted to making the sys- 
tem reliable and error tolerant. Much thought was also given to  devising a useful default 
strategy of the adaptive solution mechanism applicable to a wide range of problems. 

The work done on RRSYS during the present contract period consisted partly of improve- 
ments made to  the system and partly of writing a comprehensive manual [Z] describing 
the function of the system. The manual describes the components of RRSYS. The design 
of the underlying data structure and methods of access to it are also described. 

Improvements to  RRSYS include streamlining the code to raise its efficiency. A modular 
system like RRSYS always carries a certain overhead for data  transfer and communication 

13 



between modules. Anything that can be done to trim these administrative processes raises 
computational efficiency. The restart procedure was modified and redundant functions 
such as UNMERGE have been eliminated. The module RRLIM for performing collapse 
analyses in the reduced solution space has been completely rewritten in order to improve 
t,he efficiency and accuracy of limit point searches. 

Results obtained with RRSYS applied to the collapse of shallow cylindrical shells under 
combined loading were presented at the PVP conference 1984 in San Antonio, Texas [ 5 ] .  

To aid analysts in using RRSYS, a Systems Reference Manual [2] was written. The manual 
explains in detail the function and use of each processor. It also describes the input data 
required by the modules and gives instructions for their use, both as independent processors 
and as part of the whole RRSYS complex. The output produced by various modules is 
explained via examples. A comprehensive description is given of the data structure used 
in RRSYS. This description will facilitate the addition of new modules by programmers 
other than the original developers. 

Section 3.2-Current Status 

In summary, RRSYS is fully operational for static collapse analyses. It is applicable 
to cases with complex structural behaviour because of its automated problem adaptive 
solution strategy. The use of RRSYS for the investigation of transient response, on the 
other hand, still requires user interaction. A theory of how to make the solution strategy 
problem-adaptive does not exist for dynamic analyses of general structural configurations. 
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SECTION 4-SUMMARY OF IMPROVEMENTS TO THE STAGS FAMILY 

I 

Numerous improvements to the STAGS family of codes have been implemented during the 
period of performance of this Contract, the most important of which are covered in the 
previous sections. Included here is a summary of additional improvements and a guide 
to  the “1985 Changes to the 1983 STAGS-Cl Manual” (hereafter called “1985 Changes”) 
recently released to COSMIC with t h e  1985 STAGS-Cl program. The improvements 
covered here reflect the total STAGS effort, a part of which was supported outside of this 
contract t 
The “1985 Changes” is included here as Appendix 2. This guide comes in three parts as 
follows: 

1. 

2. 

A summary of STAGS improvements. 

Corrections to entries in specified records of the STAGS1 input block, including 
user subroutines. 

Corrections and additions to the STAGS-C1 manual text. These changes reflect the 
increased capabilities recently introduced. 

3. 

Section 4.1-POSTP and UNFFMT-FMTUNF 

A postprocessor POSTP has been written for the recovery of secondary solutions (i.e., 
stresses, strains, resultants) with use of the solution vectors that  are saved in the Solution 
Data file (SOD) produced by a STAGS-C1 execution (STAGS2). The description and use 
of this postprocessor constitutes section 5.0 in the STAGS Manual [ 11. POSTP uses simple 
input to direct printing of either primary or secondary solution data at specified load or 
time steps. POSTP also produces new SOD files containing the recovered secondary data 
for STAPL plot postprocessing. It is therefore never necessary to save bulky secondary 
data  during the initial analysis with STAGS-C1; all such data  is efficiently re-created with 
POSTP. 

The pair of data translators IJNFFMT-FMTUNF serve to convert SOD primary data from 
the machine (binary) representation into ASCII form for transport to other machines. This 
increases flexibility when STAGS, POSTP, and STAPL are resident on more than one 
type of machine, because the primary analysis can be done on one type of machine, with 
postprocessing or restarts to be performed on another computer. A detailed description 
of these translators is found in the Appendix 2. 

Section 4.2-Imperfec t ions as Perturbed Geometry 

The option of introducing imperfections as modifications to the initial geometry was pro- 
vided when STAGS became corotational (Section 1.3). At the same time, imperfection 

t Some of this work, including the implementation of the Riks solution algorithm, was sup- 
ported by the David Taylor Naval Ship Research and Development Center (DTNSRDC). 
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I components in the in-plane directions were introduced. The modifications to the input are 
found in Appendix 2 (page 44). 

I Section 4.3-Displacement Load Histories 

The user has the option of writing a program for extracting displacement and load histories 
specified as input to STAGS2. More on this can be found in Appendix 2 (page 40). 
Construction of a sample data extraction program using the history data is found in 
Appendix 3. A connection has been est,ablished t80 a NICE/GAL [lo-111 compatible data 
library and used to  create many of the history plots found in this Report and related 
documents. 

I , 
I 
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APPENDIX 1-THURSTON TRANSFORMATION PROCESSOR (TP) 

Section Al.l-Bifurcation Point Procediire 

Original equation system: 
F = KoW ( A l . l )  

Permute in anticipation of equivalence transformation: 

F = K w  (A1.2) 

Introduce transformation: 
w = Tp (Al .3)  

Transformed equation system: 

T ~ F  = T ~ K W  = T ~ K T ~  (A1.3.1) 

Introducing: 
4 = T ~ F  

s = T ~ K T  

leads to: 

4 = SP 

(A1.4) 

(A1.5) 

From the particular choice of the transformation matrix T, it follows that the transformed 
stiffness matrix has the structure: 

A B  

' = [ B T  Cl 

where the matrices A, B and C can be evaluated explicitly: 

A = L ~ K L  

B = L ~ K R  

c = R ~ K R  

where L and R follow below: 
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(A1.6) 

(A1.7) 

(Al .8 .1)  



and 

(A 1.8.2) 

Here R is a rectangular matrix of m eigenvectors and nm = r - m. 

In preparation of the partitioning process, the conventions are introduced: 

+ =  [;I, c 1 =  [;] (A1.9) 

Using equations A1.6 and A1.9, the equation system Eq. A1.5 can be written as follows: 

f - A v + B q  

p = BTv + Cq 

By elimination: 
v = A-'(f - Bq) 

p = BTA-l(f - Bq) + Cq 

= BTA-'f + (C - BTA-'B)q 

From this follows the solution for both q and v: 

p - BTA-'f = (C - BTA-'B)q 

v = A-'(f - Bq) 

Steps in finding a solution: 

1 .  
2. 
3. 
4 .  
5. 
6. 
7.  
8. 

Permute right hand side: 
Project right hand side: 
Decompose right hand side: 
Solve Eq. A l . l l . l :  
Compute v from Eq. A1.11.2' 
Assemble to  form p ,  Eq. A1.9 
Transform with Eq. A1.3 
Pe rfo r m revers e per mutation 

yields F 
yields + 
yields f and p 
yields q 
yields v 
yields p 
yields w 
yields w 

(A1.lO) 

( A l . l l . l )  

( A  1.1 1.2) 
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Section Al.1.1-Solution Close to a Bifurcation Point 

Equilibrium equation close to a bifurcation point may be writt,en in the following form: 

P F 1 Fo + K ~ w  + H(6w) (A1.12) 

where: 

P 
F 
H 

is the external force vector. 

is the vector of internal forces (equals first variation of strain energy). 

is a vector containing all higher order terms (ie. the effects which are not included 
in the linear terms expressed by Kbw). 

It is assumed that the freedoms in Eq. A1.12 are already reordered in anticipation of the 
equivalence transformation. 

In Eq. A1.12, Fo is the first variation at  the pole of the expansion and 6w are displacement 
increments with respect to that pole. 

Note that  H can be computed numerically from Eq. A1.12 by considering the first variation 
at, a number of points close to  the pole. 

Step 1: Apply coordinate transformation, change basis vectors as proposed b y  Gaylen 
Thurston with his equivalence transformation. Then break down the equation system into 
two separate equation systems. 

T ~ P  = T ~ F  

= T ~ F "  + T ~ K ~ W  + T ~ H  

= T ~ F ~  + T ~ K T ~ ~  + T ~ H  

Using previous terminology: 

4 = T ~ F  

s = T ~ K T  

(A1.14) 

( A l .  15.1) 

( A  1.15.2) 

and introducing: 
n =  TTP ( A1 .15.3) 

( A1 .15.4) h = TTH(6w) 

Eq. A1.14 transforms into: 
n =  4" + S6p + h ( A l .  16) 

To prepare for the partitioning process, the definitions given by Eq. A1.9 are introduced: 

4 =  [I], c r =  [;] 
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Defining in addition: 
TU 

=l . 

Eq. A1.16 can be rewritten as follows in 

7 r =  [ (A1 .17) 

the form of two separate equation systems: 

(A1 .18) 

Since H and thus h are functions of all freedoms involved, these systems are coupled. 
However, in the vicinity of a bifurcation point it may be assumed that at  least h, is a 
function of the modal variables only. This permits 6v to be expressed uniquely by the 
modal variables (Eq. A1.18). By partitioning, 6v can therefore be eliminated from the 
ensuing equation system. Hence, we end up with a very small system in the modal variables 
only, from which 6 q  can be determined by any available means. 

Basic assumptions: 

(A 1.19) 

By this assumption from Eq A1.18.1 

6~ = A-'(K, - f o  - B6q - h,) (A1.20) 

where the expression of the right side is now a function of 6q only. While h, is not 
explicitly known, it can a t  least be numerically computed and then be approximated by 
an analytical expression. 

Introducing Eq. A1.20 into Eq. A1.18 one obtains an equation system for the 6qi only: 

* i  PO + BTA-'(7r, - fo  - B6q - h,) + C6q + hl (A1.21) 

Moving all terms which are potentially functions of the 6qi to one side, constant terms to 
the other, Eq. A1.21 can be written in the form: 

- po - BTA-'(7r, - fo) = C6q- BTA-'B6q + hi - BTA-'h, 

As slightly rewritten for convenience: 

T I -  po - BTA-'(7r, - fo)  = (C - BTA-'B)6q + hi - BTA-'h, ( A  1.22) 

This is the reduced equation system which must be solved. To make a solution possible, 
the term 

hl - BTA-'h, (A1.23) 
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is expanded into a polynomial of 6q j .  Since the loads are assumed to be linearly dependent 
on the load factor PA,  the left hand side can be written in the form: 

(Al .24)  

Step 2. Solve reduced equations. 

Step 3 .  

Step 4. 

Back substitution to  fine 6v, bp 

Transform and permute to find 6w, 6W 

Eq. A1.22 can then be solved for any convenient combination of unknowns. 
1 

I 

4 
I 
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Sect ion A1.2-TP Computer Implementa t ion  

The procedure described in section A l . l  has been implemented for the STAGS programs in 
subroutine TP.  Because of the inherent complexity of this procedure, it has been considered 
essential to develop the program in a concise and clear manner which would also facilitate 
future changes. Accordingly, the matrix and vector operations are all executed by calls 
to a set of routines, called the Z-system. These routines have been designed so that the 
arguments contain precisely the minimum information which is required to  specify some 
step in the procedure. The use of the Z-system first requires the establishment of vector 
and matrix files and their identifying symbols. This initialization step is performed in 
subroutine INTP. The symbol definition list (analogous to the nomenclature section of a 
journal article) is given in section A1.2.1 and A1.2.2. A list of the Z-system operations for 
quick reference is provided in section A1.2.3. More detail concerning each routine is given 
in a comment section in the subroutine itself. 

Sect ion A1.2.1-Description of m a t r i x  and vec to r  files 

File 

A 
B 
RTAl  
DR 
DX 
E 
FORCA 
FORCB 
HU 
K 
R 
RO 
SKY 
X 
xo 
x1 
xx 

Description 

Assembled/factored stiffness matrix (n,, n,) 
= KE; (n,,m) matrix 
B ~ A - ' ;  (rn,n,) matrix 
= K6x; vector (linear part of first variation) 
Displacement increment 
Set of m eigenvectors 
External force vector (system A) 
External force vector (system B) 
Set of vectors of higher order residual terms 
Element stiffness matrix file 
Residual force vector 
Residual vector (first variation) for xo 
Sky-line vector (semi- bandwidt h) 
Displacement vector 
Displacement vector for iteration (XO) 

Converged solution for last step (ISTEP-1) 
Set of increments for perturbed vectors 
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Section Al.2.2-Description of variables used. 

Va ria b I e D e s  c ript  io n 

DNORM 
EPSD 
EPSL 
ISEC 
ISTEP 
HL 
IE 

M 
N 
XPOLY 
PA 
PB 
QFAK 
RNORM 
STEP 

Euclidean norm of displacement vector 
Convergence criteria for displacement error 
Convergence criteria for residual error 
Maximum number of seconds permitted in execution 
Load step number 
-= hi - BTA-'h, 
Number of eigenvector used for step from bifurcation 
point or from other solution (Normally the largest 
(component is chosen) 
Number of eigenvectors used 
Number of freedoms of system vector 
Number of perturbed solutions for polynomial 
Tnitial load factor (system A )  
Initial load factor (system B) 
Modal amplitudes solved for in reduced equation 
Euclidean norm of residual force vector 
Length of step from X1 along eigenvector 

Section A1.2 .3  -Description of Z-system operations on vectors and matrices. 

Subrout ine  Ope  rat ion 

Z A D D ( V 1 , S 1, V 2, S2 ,V 3 
ZASS(SKY,KI ,K2,S,A) 
ZDOT( Vl,V2,S) 
ZFACT(A,V) 
ZFIX(Vl,V2) 
ZGET(V,N,ID,SS) 
ZM AX (V ,S ,I) 
ZMOVE(Vl,V2) 
ZM ULT (V 1 ,V2 ,V3) 
ZMXVEC(K,Vl ,V2,N) 
ZP RIN T ( V , I  STEP, PA, P B) 
ZPUT( V,N: ID ,SS) 
ZR A ND (V ,I) 

ZSET( V,S) 
ZSMUL(F,S) 

iV3] -SI * [Vl]+S2* [V2] +S3*[V3] 
j,4] == -4ssembled matrices [ K l ]  +S* [ K2] 
S=iV1].iV2] 
[A]= Factored form of [A]-Diag[V] 
If [Vl],=O, then jV2J1=0. i= l ,N 
SS(I)=iV]ID(q I=I ,N 
S=[V!,, where ;SI is max elt in V 
[ V2] = [ V l ]  
[ V3], = ivl], * [ V2], 
[V2(I)]=iK]*[Vl (I)] 1=1 ,N 
Print [VI in displacement vector form 

[VI= Random vector in range: 
1=0 between {O., 1.) 
I=-1 between { - l., 1.) 
[V],=S i=l ,N 
IF], = S * [ F] , 

[V]ID(I)=SS(I) I=I,N 

i= l ,N 
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ZSOLVE (A I N . V> 
ZVARl(Vl.ILIN,IPLAST,ISTEP, 

PA .PB ,V2> 

ZVAR2(ILIN.ISTAB.V,IPLAST. 
ISTEP,PA,PB,K.SKY) 

Operation 
- - - - _ _ _ _ -  

[AI* [V(I>l=[V(I>l I=l,N 
[V21= First variation of [Vl] 
ILIN IPLAST 
0 - Linear No plasticity 
1 - Non-linear Plasticity 
[Kl= Second variation of [VI 
[SKY]= Skyline vector for [K] 
ILIN IPLAST 
0 - Linear No plasticity 
1 - Non-linear Plasticity 
ISTAB=O - [K]=Total stiffn. matrix 
ISTAB=l - [k] =Stability matrix 

I Scalars used in Z-system calls are always in the highest 
precision used in the program. 

I 

I Symbols used in the summary of Z-system functions are: 

I 
S 
ss 
I I 

I ID 
[AI 
[Fl 
[Kl 
[SKY I 

I 

I 
I 
1 [VI 

Scalar 
Scalar array 
Integer 
Integer array 
Assembled stiffness matrix 
Any type of file 
Elenent stiffness file 
Skyline vector (semi-bandwidth in integers) 
Vector file (or set of vector files) 
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APPENDIX 2 

1985 Changes to 1983 STAGS-Cl Manual 

PREFACE 

The 1985 STAGSC-1 release contains many new features that extend the power of the 
program significantly. The most important improvements are as follows: 

1. 

2. 

3. 

4.  

Large Rotations. STAGS nonlinear collapse analyses are no longer restricted 
to moderate rotations. All collapse runs (INDIC=3, Record B-1) default to  the 
large rotation corotational formulation unless specifically overridden by the user. 
Presently, bifurcation, vibration, and transient analyses are not affected. 

Negative Load Increments. Users of the STAGS nonlinear collapse options have 
much greater control of the load incrementation procedure than was previously 
possible. The solution can be forced to  stop at user-specified load factors contained 
in a list for all nonlinear collapse and bifurcation runs. There are two types of 
negative load increment runs: 

a. Riks, or path-length incrementation, where the independent load variable is 
a measure of the arc length along the current load path, and where the load 
step is calculated as a dependent variable. (The Riks capability was added 
to  STAGS-C1 in 1983.) 

All other run types, where loads are specific functions under strict user con- 
trol. 

For runs of the first type (Riks), the user can restart an analysis at any point, and 
he can reverse the direction of the run if desired. The INDIC =4 option has been 
extended to include Riks runs of all types, as explained later in this Appendix. For 
non-Riks runs under load control, the user can also restart at load level and reverse 
the direction at any time. 

b. 

Nonlinear Mount Elements. Mount elements have been added to  STAGS. As 
the name implies, mounts have been designed to simulate points of attachment 
either between units of a given structure, or attachments to ground. Mounts are 
generalized nonlinear springs with rigid links, the force of which can be any piecewise 
linear function of relative spring displacement or velocity. Thus dampers or rubber 
mounts can be simulated with the new 110 STAGS mount element. A concise 
description of the theory and input is included in Ref. [12]. 

Creep and Isotropic Hardening Plasticity. A power-law creep algorithm has 
been added to STAGS. Isotropic strain hardening plasticity has been enhanced, 
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5. 

6. 

7 .  

8. 

9. 

including the option of a tangent stiffness for more rapid convergence. 
documentation can be found in Ref. 1131. 

Further 

Explicit Central Difference Time Integration. The explicit time integration 
option ( IMPL=l ,  Record E-2) has been generalized by the addition of the STINT- 
CD central difference integrator. An important new feature is the ability to let 
the program select the largest possible stable time increment as a function of run 
parameters. A short documentation of the STINT-CD option is included in Ref. 

1141. 

Timoshenko Beam Element. A modification to  STAGS beam elements (B210) 
has been made to account for transverse shear deformations. The theory and input 
modifications are explained in the same document as for STINT-CD (Ref. [14]) 

Displacement and Load Histories. The user has the option of writing a program 
for extracting displacement and load histories specified as input to  STAGS2. The 
data are stored on an auxiliary Fortran unit, and entry points are provided for the 
user to extract the values and process the results. This capability is available only 
for Riks nonlinear collapse runs and STINT-CD explicit transient time integrations 
for CDC and VAX-VMS machines. 

Imperfections as Perturbed Geometry. For large rotation runs, trigonomet- 
ric imperfections are now added to  the input geometry, in effect generating a new 
starting model containing the desired imperfections. For those who desire to cal- 
culate imperfections with a user-written subroutine, a new subroutine DIMP has 
been added for perturbing the initial geometry. The DIMP subroutine, to be de- 
scribed subsequently, replaces WTMP for large rotation runs. DIMP is available for 
all classes of runs. 

Conversion of Solution Data File. The solution data  file (often called SOD, al- 
ways accessed as Fortran unit 22) cannot be transported from one type of computer 
to another because, for reasons of efficiency, it is unformatted (binary). A translator 
has been created that converts the SOD file into a formatted ASCII “FSD” file that  
can be copied from one type of machine to  another. A back translator reconverts 
the formatted data  into the original SOD data  structure for use in POSTP, STAPL, 
or a STAGS restart. Thus it is now easy to  generate SOD data  with STAGS on a 
huge “number cruncher” machine (such as CDC or CRAY), convert the data to  the 
FSD format, copy the ASCII over to a satellite interactively-oriented machine such 
as a VAX for reconversion to the SOD format for postprocessing and plots. Use of 
the translator is described in a subsequent section. 

I 

i 

I 
, 

I 
I 
1 

I 

, 
4 

4 

10. Numerous Bug and Documentation Fixes. Much of what follows reflects 
careful study and collective experience using the STAGS manual. The corrections 
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that are described are designed to  tide the user over until a completely new release 
of the manual is available (by late 1986). 

I The corrections follow in three groups, beginning with a record-by-record account of im- 
portant changes to  the ST.4GSl input and user-written subroutines. Following this table, 
there is a list of the most relevant changes to the manual text, indexed by the affected 
page number of the ST-AGS-C1 Irser’s Manual (Ref. 111); this list covers the most essential 
soiirces of confusion. The last part consists of sections pertaining to the new features 
rnentioned above, including the required input to STAGS. 

4 1  



CHANGES TO INPUT A N D  USER. ROUTINES 

Page no. 

3.7 

3.7.1 

3.7.1 

3-10 

3-1 1 
3-1 1 
3-1 1 

3-1 1 

3-17 

3-19 

3-20 

3-26 

Record 

B- 1 

B-2 

B-3 

c- 1 

c-1 
c-1 
C- 1 

C-1 

D-2 

E- 1 

E- 1 

F-2 

Entry Variable 

10 

7 

5 

4 
5 
6 

9 

1 

6 

8 

4 

ICOR 

NIMPFS 

NTMT 

STLD (2) 
STEP(2)  
FA CM (2) 

TXSTF 

NCLUST 

BETA 

THOLD 

NSKEW 

Description 

I 
O-Corotational procedure is used \ 

l-Non-corotational procedure is used I 

Must be 0 if IWIMPfO 
(Record M-5, p3.71) 

tRefer to “110 Mount Element,” Ref. /I2] .  

*Refer to section entitled Negative Load Increments. 

”See Ref. /I31 
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Number of tables for mount 
elements (nonlinear springs)t 

Negative load increments 
have been added$ 

For a creep analysis 
( ICREEP=l ,  Record 1-1), load 
system B data is replaced by 
creep time data: initial time, 
time increment, and final 
creep time, respectively* 

Cannot be used in conjunction 
with subroutine UCONST 

One cluster per run: 
set  NCLUST to unity. 

Damping factor p must 
be zero for explicit integration 

Not used for explicit integration 

Do not use (set NSKEW=O) 



Page no. 

3-29 
3-29 

3-30.2 

3-31 
3-3 1 

3-34 

3-34.1 
3-34.1 
3-34.1 
3-34.1 

1-4 
3-34.1 
3-34.1 
3-34.1 
3-34.2 

3-58 

Record 

G-2 
G-2 

H- 1 

I- 1 
I- 1 

I- 3 

I-3A 
I-3A 
1-3A 
I-3A 

Mount 
I-4a 
1-4 b 
I - 4 ~  
I-4d 

M- 1 

Entry 

2 
3 

2 

2 
5 

1 
2 
3 
4 

Record 

2 

Vu r ia bl e 

IRl  
IC1 

NSPRI 

NESP 
ICREEP 

ACO 
BCO 
EXPM 
EXPN 

IGLOBE 

tRefer to “110 Mount Element,” Ref. 1121. 

$See Ref. 1131 

Desc rapt ion 

If IRl=O, then lR2 must be 0 
If IC1=0, then IC2 must  be 0 

Number of mount elementst 

NESP cannot be greater than 10 
O-no creep 
l-creep 

If ICREEP>O (Record I-l) ,  

NTMT-number of mounts 
(Record B-3) 

l f  NTMT>O, go to  I-4a 

go to I-3A 

Creep constant A ,  
creep constant B ,  
creep exponent rn, and 
creep exponent n for the 

relation TC = A ( a / B ) m f n . $  

Mount element table 
informat ion 

I-4a through I-4d are 
new records t 

4-Location of unit origin (zg, yg, zg)  
(one translation record and 
one rotation record) 

5-Location of corner point #1 
(one translation record and 
one rotation record) 
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Page no. Record Entry Variable Des c rapt ion 

3-60 
3-65 

M-2A 
M-2A 

IGLOBE=4 or 5, go to M4-D 
For ISHELL111, the formula should 
be X' = arctan( 

Special Shell Unit Record (new) 
(global position coordinates) 

I 
1 

tan X )  

3.71 M-4 D 

3.71 
3.71 
3.71 

M-4 D 1 XG 
M-4D 2 YG 
M-4 D 3 ZG 

3.71 M-4E Special Shell Unit Record (new) I 
I 

(Eulerian rotation) I 

3.71 
3.71 
3.71 

M-4 E 1 XGDOT 
M-4 E 2 YGDOT 
M-4E 3 ZGDOT 

3.71 M- 5 2 IWIMP Must be zero if NIMPFS 
(record B-2) is non-zero. 
Set to -2 if perturbed 
initial geometry is desired, 
and subroutine DIMP must be 
used. 
0-e 1 as t i c behavior on 1 y. 
1-plasticity included. 
2-deformation theory. 

3.71 M-5 2 IWIMP 

3.71 M-5 6 IPLAS 

3- 73 
3-73 

M-6 
M-6 6 ID 

wo is the imperfection amplitude 
1-u imperfection 
2-v imperfection 
3 or 0-w imperfection 

3-84 0-1A 5 IPLAS 0-elastic behavior only. 
1-plasticity included. 
2-deformation theory. 

3-87 0-2A 6 IPLAS 0-elastic behavior only. 
1-plas ticity included. 
2-deformation theory. 
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Page no. 

3-87.2 

3-97 

Record 

0 - 3  

Q-3 

Entry 

2 

Variable 

LT 

Description 

Skew stiffeners do not work. 

The statement: (Irrelevant for 
initial conditions .....) should be 
replaced by: (For initial conditions, 
i.e., velocities and displacements 
at time T=O, set LT to -1). 

3- 109 

3-1 11 

T- I 

T-2 

Discard and replace by 
Mount Element Recordt 

10 IPLAS 0-elastic behavior only. 
1-plas t ici ty included. 
2-deformation theory. 

3-112 T-3 9 IPLAS 0-elast ic behavior only. 
1-plasticity included. 
2-deformation theory. 

3-113 T-4 10 IPLAS 0-elastic behavior only. 
1-plasticity included. 
2-deformation theory. 
0-Enforce penalty 
1-Relax penalty 

3-113 T-4 12 IPENL 

5-3 

5-3 

PL-3 

PL-3 

KPLOT 

IDISCO 

2-(Solution contours) plot 
one unit a t  a time only 
Option -1 refers to 
KPLOT = 1, not 2. 

1 

3 
t 

5- 3 PL-3 IUNIT Delete the word “shell” 
wherever it occurs. 

2 

Replace Meaningful only for: 
with For: 
Add (iv) otherwise, set MOSY=O. 

5-4 PL-3 7 MOSY 

tRefer t o  “110 Mount Element,” Ref. 1141. 
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Page no. 

4- 7 

4-33 

4-37 

4-42 

4-42 

Rout in  e 

UGRID 

UCONST 

UPRESS 

QUAD 

QUAD 

Entry Variable Description 

Remove the statement: 
IF (IUNIT.NE.1) RETURN 

3 W) Remove first description of IX: 
the second description supersedes it. 

Replace PRESS=. . . . . 
with PRESS= (FLO (1) -FLO (3) * 

COS(YR))*FL0(2)*PA 

11 INTEG The variable INTEG should 

12 IPENL IPENL should occupy 
occupy position 1 1 ,  not 6. 

position 12, not 7.  
The order of the variables 
in QUAD is: N1, N2, N3, N4, 
KQUAD, IWALL, ZETA, ECZ, 
ILIN, IPLAS, INTEG, 
IPENL. IPENL has same 
meaning as record T-4. 

Note also that all references to SPRING elements (p6-13 and p6-20) are superseded by the 
mount element documentation [ 141. 
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CHAXGES TO hl24X1'.4L TEXT 

Page 3-1 2 

Page 3-15 

Page 3-22 

Page 3-28 

Page 3.71 

Page 3.77 

First sentence on page should  contain reference to C-1, not C-2 (in paren- 
theses). 

Delete "as presently formulated. it is likely to cause difficulties with live 
loading". near bottom of page. 

Please refer to Ref. I13 for more dociirnentation on the new enhanced auto- 
matic explicit time integrator. 
The following test replaces the de<( ription of the G-2 record in the manual: 

This rccord is included 0 1 1 1 ~  if partial  comparibility bet\teen displacements 
af specified nodes is drfined. .YP.1TS :, 0 (B-2) 
If G-2 records are used to  connect shell units, lGLOBE (-11-1) must be 0, 3. 
1. or 5 .  

1 . ; h ~ l l  tinit displacement component is identified by unit number, row, col- 
iiiiin. and component (direction) numbers. A displacement component in the 
cIfJment unit is identified by node number ( IRl ) ,  a zero for ICl ,  and a value 
fur the direction (103). Each G-2 record provides P items defining a pair of 
tliyplacernent components. 

Since no transformations are preformed, the nodes referred to should not lie 
OIJ a toiindarv line involved in a shell unit connection (G-1) unless the two 
shell units have the same orientation with respect to the global coordinates. 
If a roM or column is set equal to zero, the comyatibilit-y condition applies 
to an entire column or rou, respectively. 

In contrast to shell unit connections ( G I .  S I S T S  > 0 Record B-Z), or 
boundary conditions ( P  records). the partial consrraints are not restricted 
to boundary lines. 

A new user subroutine DIMP has been added which is flagged by setting 
I\YI\!tP to -2. DIMP must replace WIMP for corotational collapse analyses. 
If I\+'I\.IP > 0, then the correct perturbed initial geometry is automati- 
cally introduced with the trigonometric imperfections when using corota- 
tional theory. Failure to  use DIMP instead of WIMP will void imperfections 
for corotational collapse runs. 

The logic a t  the bottom of the page for determining the next record to be 
read should be replaced by the following: 

N N X  = -1. go to N-4 
N N X  > 0 ,  go to N - 2  
N N X  = 0 ,  N N Y  = -1. go to N-7 

NNX = 0 ,  N N Y  > 0 .  go t o  N - 5  
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KELT = 0, go to N-9 
KELT > 0 ,  IRREG = 1. go to N-8 

IRREG = 0 * 

*Follow instruction at end of N-9B. 

Page 3-82.4 

Page 3-89 

Page3-106 

Page 4-16 

Numbers in column headed by KELT should end in 2, not 3. 

All references to Record C-1 should be changed to  Record F-1. 

In the fourth paragraph, IUS : 0 should be replaced by IUS > 0. 

Add Subroutine Dimp, as follows: 

SUBROUTINE DIMP (IUNIT,X,Y,VV) 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

DIMP requires the user provide output in the array VV. 
Imperfections in VV are added to the initial geometry as follows: 

VV(1) - -  U, to be added to X coordinate (in-plane) 
VV(2) - -  V. to be added to Y coordinate (in-plane) 
VV(3) - -  W, to be added to the radial (transverse) direction. 

INPUTS 

IUNIT - -  Shell Unit 
X - -  Axial shell coordinate 
Y - -  Hoop shell coordinate (degrees) 

OUTPUT 

VV - -  Array of three displacements to be added to initial 
geometry. All displacements must be in units of length 

DIMENSION VV(3) 

Example User Input for a trigonometric representation of 
perturbed geometry for a cylinder of length 15. radius 25. 
User programming replaces example: 

SPAN=15. 
PI=3.14159 
RADIUS=25. 
WMAX= .Ol 
WX=WMAX*(PI/SPAN)*COS(PI*X/SPAN)*SIN(PI*Y/i80.) 
WY=WMAX*SIN(PI*X/SPAN)~~PI/RADIUS~~COS(PI*Y/l80.~ 
VV(l)=WX**2*SPAN/2. 
VV(2)=WY**2*RADIUS/2. 
VV(3)=WMAX*SIN(PI*X/SPAN)*SIN(PI*Y/180.) 
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I 

i 

C 
C End Example 
C 

RETURN 
END 

Page 4-45 Input parameter“K” should read ISYS and have same meaning as in Record 
Q-2. ISYS must never be changed in user subroutines. X and Y are arrays 
containing the coordinates of all nodes (row and column intersections) in the 
shell unit IUNIT; users must set all pertinent loads for IUNIT at one time. 

The description of GROUP E should contain “NSMRS>O” instead of 
“NSMRS=O”. The same applies to the NSMRS=O, p. 4-58; replace by 
NSMRS>O. 

P p  4-57,4-58 Dimensions in the common blocks /WALL]/ and /WALL2/ must be in- 
creased from 30 to  50. 

Page 4-64 In example subroutine, increase dimensions from 30 to 50. 

Page 4-66 Use WIMP only for analyses containing small rotations, and with the coro- 
tation in STAGS turned off (by setting ICOR to 1, Record B-1). DIMP 
replaces WIMP for all other cases, and also can be used for noncorotational 
runs. Flag for DIMP (perturbation of initial geometry) by setting IWIMP 
to -2, Record M-5. (Note that a t  present, corotation is automatically turned 
off for bifurcation, vibration, and transient analyses.) 

Page 4-55 

NEGATIVE LOAD INCREMENTS 

STAGS now has the added ability to back out of a nonlinear solution to locate bifurcation 
points, or to  calculate residual deflection for nonlinear material problems, adding greatly 
to the overall flexibility the user has when attacking difficult nonlinear problems. The 
input in STAGS1 has been modified as follows: 

Record C-1 

STLD(1) 

STEP(1) 

Starting load step. Can be positive or negative. 

Signed load increment. If it is positive, the increment will be added to STLD; 
if negative, the absolute value of STEP will be subtracted from STLD. In an 
initial Riks run (NSTRAT=-1, Record D-l ) ,  the solution will be executed 
under load control for the first load step, and the path length parameter 
DETA will be adjusted according to  the solution behavior for subsequent 
steps. The absolute value of STEP is added or subtracted from the initial 
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load value as with load control. For restart runs, if load control is used, STEP 
will be used the same way as for initial runs. For Riks runs, however, STEP 
will be an initial estimate for the path length parameter, giving the user 
greater control of his restart. Valucs of DETA used in previous iterations 
are always printed with the iteration output. If a negative value of STEP is 
chosen, the Riks procedure is autorriatically instructed to go in t h e  rever~e  
direct ion. 

The signed final load value at which the analysis will be terminated. For load 
control runs, termination will be handled according to  the sign of STEP: if 
STEP is greater than zero, the solution is terminated when the load exceeds 
FACM; if less than zero, the solution is terminated when the load is less than 
FACM. For Riks runs, the termination criterion is determined by the sign 
of the difference FACM-STLD: if it is greater than zero, the solution stops 
when the load exceeds FACM; if it is less than zero, the solution stops when 
the load is less than FACM. 

In a Riks run, the parameters for the B load are interpreted in the same manner as the 
A load, except that  when the B load reaches its final value, only its incrementation is 
terminated; the run continues until the criteria for the A system are satisfied. All other 
parameters on the C-1 record are unchanged. 

Note that a Riks restart is always begun with the user providing a positive STEP unless 
he wants to reverse the path at that  point. Even if the solution appears to  be reversing, 
or if a new restart is desired during a reverse, a positive input value for STEP is required. 

For INDIC=4, both the RIKS and load control strategies work in either forward or reverse 
direction; it is important, however, that the user choose his list of load factors for which 
solution points are required in the proper order. For example, in an ordinary load control 
case, t h e  load values are to be selected in ascending order. In a reverse load control case, the 
load list will be in descending order. For Riks runs, the list must be chosen as an expected 
sequence of load factors predicted to occur along the load path. Such a choice may become 
complicated for strongly nonlinear Riks cases, as can be seen from the load-deflection trace 
in Figure 10. 

FACM( 1) 

STAGS SOLUTION DATA TRANSLATOR 

Now that high speed networks connect machines from different vendors, it is often de- 
sirable to perform the bulk of the STAGS “number crunching’’ on huge, batch-oriented 
computers such as CRAY or CDC, leaving postprocessing of all kinds to smaller, more ac- 
cessible machines such as a VAX or a workstation. The principal impediment for STAGS 
has been that the solution data  file, often referred to as “SOD” (Fortran unit 22) is written 
in machine binary and cannot be easily transported across vendor lines. This is why the 
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program I-XFFMT has been written. UNFFMT automatically converts all displacements, 
eigenvectors, corotational data, plastic strain histories, and velocities to  a Fortran format- 
ted file with a very simple and transparent data structure. In contrast to the binary file, 
this ASCII file is easily transported with resident machine utilities across the network (or 
by tape) to the interactive destination machine. There, the companion program FMTUNF 
reconverts the data back into the original SOD format for use in postprocessing, graphics, 
or a new STAGS restart. All secondary data (strains, stresses, resultants and the like) are 
efficiently re-created with a STAGS1 and POSTP execution. UNFFMT and FMTUNF 
never need any input data; the only requirement is access to the SOD file by fortran unit 
22. The formatted “FSD” data is produced and read on unit 23. Specifics for a given 
machine are contained in the documentation with the STAGS-C1 source program tapes. 
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APPENDIX 3 

INSTRUCTIONS FOR WRITING A 
DISPLACEMENT HISTORY 

DATA RETRIEVAL SUBROUTINE 

History plots of selected displacements can be generated from data 
placed on Fortran files STAGS.PLT (VAX-VMS), or STGPLT (CDC). with 
very simple data provided on unit FOR075 (VAX-VMS). or the primary 
input unit (CDC). as follows: 

RECORD 1 - -  CASE TITLE 

RECORD 2 - -  NDSPS - Number of displacements, up to ten, f o r  
which histories are desired. 

RECORD 3 to NDSPS+2 (NDSPS records): 

IUNIT,IDU,IROW,ICOL 

where 

IUNIT - - -  Shell unit no. 
IDU --- Freedom type (1 thru 6 for u,v,w,Ru.Rv.Rw) 
IROW - - - Row number for node in question 
ICOL - - -  Column number for node in question 

t 

For collapse or explicit integration runs. STAGS will save data 
with the titles XXXX.LOAD. XXXX.DIS1, . . . ,  XXXX.DS10. where XXXX 
represents the first four letters taken from the case title 
(Record 1). Data structure is explained below. 

A description follows of all the operations that involve the creation 
and retrieval of history data. 
the REOPEN and READ operations to be performed on data already 
saved by STAGS. 

Users need only be concerned with 

SUMMARY OF OPERATIONS WITH 
HISTORY DATA 

PDATA has four entry points f o r  the separate functions needed 
to create PLOT data sets. These functions are: 
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1 (1) Open DATA library and initialize all the data blocks needed. 

( 2 )  Write fixed-length records on to a given data set with 
a given index. 

(3) 

(4) 

Close out library and flush any buffers (after last write) 

Reopen library in preparation for data retrieval 

(5) Read previously-stored record by data set name back into 
a user workspace. 

First function--OPEN data sets (STAGS does this automatically). 

Entry PDATA must be called only once during an execution. 
The user must provide the name of a new external file 
on which the library will reside. He must provide a single 
name which describes in some way the run underway which will 
compose the first part of all data set names, four characters or 
less. He must pass a character array (four characters or less 
per data set) containing unique names to form the second part 
of the data set names desired. The program will then open the 
library, write headers for each data set, and store the contents 
from a real user array. 
to the data sets is done by specifying the index to the table, 
which is the same as the index to the array of names passed. 

Data is retrieved by specifying the two data set names and the 
user array to receive the data. 

Subsequent references for writing data 

INPUTS -- 

LIB - integer referring to the library. Should be one greater 
than the number of libraries already in use. This number 
is almost always set to unity. 

VNAME - Name of VAX (machine dependent) file where data is to reside. 

FNAME - First part of data set name common to all data sets. 

NMS - Number of data sets desired. 

NAMES - Character array (4 character words) of length at least 
NMS containing a unique list of names forming the second 
part of the data set name. data set names will look like 
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FNAME.DNAMES(1). . . .  where of course the contents of FNAME 
and DNAMES are used. 

NSZE - Max length of a record expected for largest 
write operation. This variable is used only for error 
checking. Set to size of DIMENSION of array being written. 

The output is a set of FORTRAN data set sequence numbers stored 
in ITBL. (Placed in common to insure data is preserved during 

run) 

Second function--WRITE data sets (STAGS does this for you). 

Entry WDATA is called each time a record is to be written on 
a given data set. 
same for all records, and now a max of 500 words and 10 records 
are allowed. The user must provide a single precision array of 
real data which are to be written on to a specified data set. 
Upon exit these numbers will be stored in the data set. 

The number of words per record must be the 

INPUTS : 

INDX - Data set index. This is the index of the data set name 
in the list DNAMES above. 

NPTS - Number of data points to be written. 

DATA - Array of data points. 

1 

Third function--CLOSE out library (STAGS does this) 

The single statement CALL CDATA closes out library after last 
write operation. Must be called only once. 

Fourth function--REOPEN data file (user must do this subsequent 
to STAGS run) 

After file has been closed and data needs to be read back, a 
file is reopened by a call 

CALL REOPEN(LIB,VNAME) 
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where VNAME is the same as in the call to PDATA (OPEN), and 
LIB is an associated unit number (usually set to unity). 
(For CDC, STAGS has chosen VNAME to be STGPLT, local file, CDC, 
or STAGS.PLT, VAX-VMS permanent file.) 

Fifth function--READ data set by data set name 

Previously-stored data is brought back by referencing each set 
of data by the two names as specified in the call to PDATA. 
The proper number of user data are then returned to the user 
workspace, provided the data set has been written. If the data 
cannot be found, an error flag is set for user disposition. 
The entry point name is RDATA: 

CALL RDATA 

INPUTS : 

Nl - -  (Character) First part of data set name (4 characters or 
less) 

N2 - -  (Character) Second part of data set name (4  chrs. or less) 

DATA - -  User array to receive data. 

OUTPUT 

DATA -- Contents of user array DATA are replaced with contents 
of data set (IJ1,NZ). 

ISTAT - -  Status variable: if ISTAT>O, data set was found, and 
ISTAT words (single precision) were returned into DATA. 
If ISTAT = 0. data set name was found, but no data was 
written. If ISTATCO, no data set with the name pair 
{N 1. N2) was found . 

For the STAGS histories here, the first part of the name is 
taken from the case name, and the second name is LOAD, DIS1, DIS2, 
etc. An example: Suppose case name is PRESSURE VESSEL TEST, and 
the user wants the third displacement. 
then be CALL RDATA (*PRESs,'DIS3'.ARRAY,N) with N values of data being 
sent (single precision real) to ARRAY. 
the user to process the data in ARRAY for plotting. 

The call to RDATA will 

It is the responsibility of 

EXAMPLE RUN (VAX-VMS) 
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Command file: 

! 
! (regular stags2 command procedure) 
! 
$ASSIGN CASE.IN2 FOR075 
$RUN STAGS2.EXE 

Contents of file CASE.IN2 

PRESSURE VESSEL TEST 
4 
1 1 1 1 $ U-displacement 
1 5 1 3 $ W-displacement 
1 5 2 3 $ Adjacent W displacement 
1 5 3 4 $ Ru at column 4 

Example subroutine 

Subroutine GETDATA 
DIMENSION DDATA(30).LOADS(30) 
REAL DDATA,LOADS 
CALL REOPEN ( 1 , ’ STAGS. PLT ’ ) 
CALL RDATA(’PRES’.*DISl’,DDATA.N) 
CALL RDATA ( ‘PRES ’ , ’ LOAD ’ , LOADS, N) 
IF (N . LE. 0) CALL ERROR 

CALL TO SOME USER PLOT ROUTINE, CALLED “PLOT” HERE 

CALL PLOT(’First load case’.DDATA,’Displacements (in)’, 
&LOAD.’Load Factor, p/E’,N) 

Repeat above sequence for other displacements, etc. 

RETURN 
END 

EXAMPLE RUN (CDC) 

Runstream: 
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Comment. 
Comment. Regular STAGS runstream up to STAGS2. card image 
Comment. 
DEFINE,STGPLT=PLOTDATA. (Any name will do.) 
STAGS2. 
h+EORhh (End-of-record card image) 
This is the input to STAGS1 

. and so on. . . 
s *EOR* * 
PRESSURE VESSEL TEST 
4 
1 1 1 1 $ U-displacement 
1 5 1 3 $ W-displacement 
1 5 2 3 
1 5 3 4 $ Ru at column 4 
**EOF** (End-of-file card image) 

$ Adjacent W displacement 

SAMPLE SUBROUTINE EXECUTION 

FTN5,B=LGO. 
LDSET,PRESET=ZERO,LIB=LIB2/LIBU. (STAGS2 and STAGSU libraries) 
NOGO.RUNIT 
ATTACH,STGPLT=PLOTDATA. 
RUNIT. 
* *EOR* * 

PROGRAM MAIN (INPUT,OUTPUT,TAPE5=INPUT.TAPEG=OUTPUT) 
C 
C any user operations, including plot initialization,etc. 
C 

CALL GETDATA 
STOP 
END 
Subroutine GETDATA 
DIMENSION DDATA(30).LOADS(30) 
REAL DDATA,LOADS 
CALL REOPEN ( 1 , * STGPLT ’ ) 
CALL RDATA(*PRES’,’DISl*,DDATA,N) 
CALL RDATA(*PRESp.’LOAD’.LOADS,N) 
IF (N . LE. 0 )  CALL ERROR 

C 
C CALL TO SOME USER PLOT ROUTINE, CALLED “PLOT” HERE 
C 

CALL PLOT(’First load case’,DDATA.’Displacements (in)’. 
&LOAD.’Load Factor, p/E’.N) 

C 
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C Repeat above sequence for other displacements, etc 
C 

I 
i RETURN 
I END 

*EOR* I 

any inputs to user program 
* *EOF* * 

, 
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