
STructural A nalysis of General Shells

Lockheed-Martin Advanced Technology Center

ANALYSIS OPTIONS

• static

- geometrically linear or nonlinear
- linear elasticity or plasticity
- buckling
 - bifurcation based upon either
 - a linear or a nonlinear stress state

• branch on bifurcation

- from a primary solution path to a secondary solution path
- vibration
 - based upon either a linear or a nonlinear stress state
- transient
 - geometrically linear or nonlinear
 - linear elasticity or plasticity

SOLUTION STRATEGIES

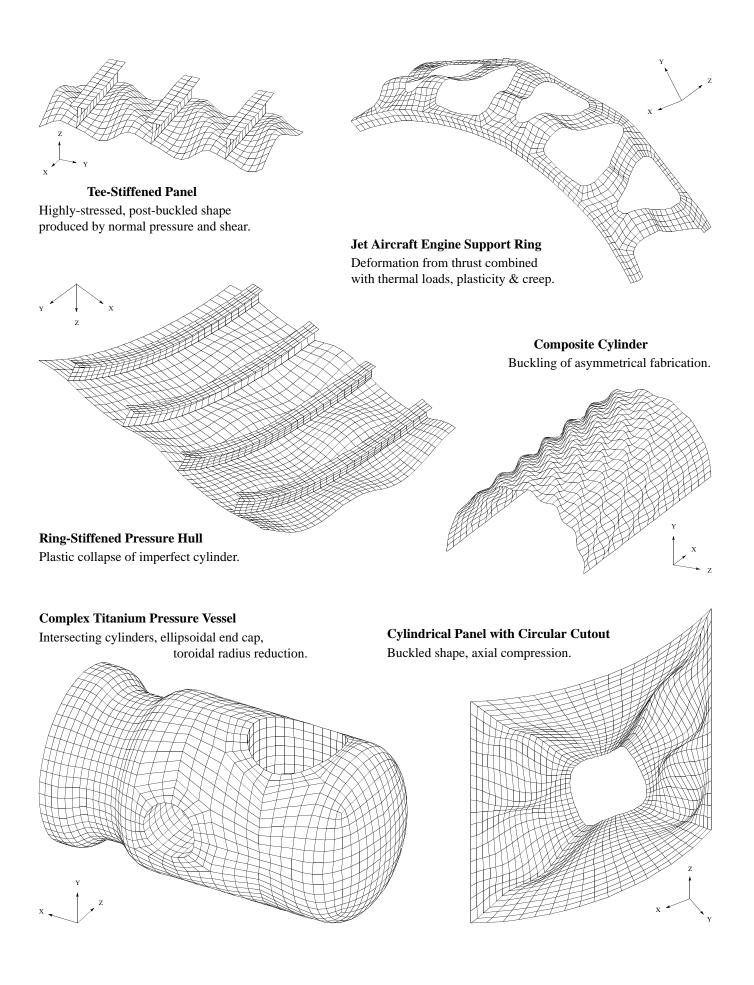
- load/displacement control
- Riks arc-length technique
 - traversal of limit points into post-buckling regimes
- equivalence transformation
 - switch from the primary solution path to a secondary solution path
- restart
 - from any previous solution
 - switch analysis option;
 e.g., from static to transient
 - change loads, boundary conditions

BOUNDARY CONDITIONS

- standard B.C. types
 - simple, (anti)symmetry, fixed, etc.
- specified displacements
- displacement constraints
 - SPC—single-point constraints
 - MPC—multi-point constraints; linear and nonlinear
 - Lagrange constraints—linear equations
- initial conditions
 - initial displ./velocity for transient analysis

ELEMENTS

- shells
 - 3-node thin triangle
 - 4-node thin quadrilateral
 - 9-node thick quadrilateral
 - transition elements for mesh refinement
- beams
 - 2-node Timoshenko beam
- nonlinear spring
 - general, velocity-dependent, force-displacement behavior
- special elements
 - hyperelastic fastener element
 - moving-plane boundary
- contact elements
 - general point/surface contact
 - surface/surface pad contact
- solid elements


FABRICATION

• shell walls

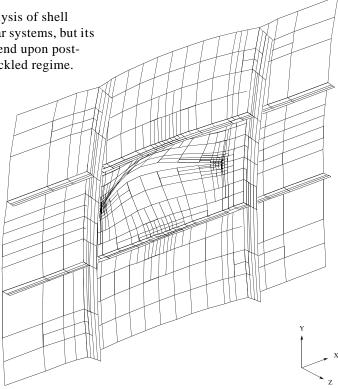
- laminate composite
- corrugation-stiffened
- general-stiffness matrix
- smeared stiffeners
- beam cross sections
 - cross-section properties
 - sub-element properties
 - rectangular sub-elements
 - general-stiffness matrix
- materials
 - linear elastic
 - elastic/plastic with strain hardening
 - orthotropic properties
 - power-law creep

LOADS

- mechanical loads
 - point loads, line loads, surface traction
 - 'live' pressure—remains normal to the deformed surface
- thermal loads
 - arbitrary temperature distribution throughout structure

Lockheed-Martin Advanced Technology Center

		MODEL GENERATION & RESULTS PRESENTATION
•	shell units	 substructures defined using a large catalog of quadric surfaces automatic generation, discretization, and assembly of substructures complex models built with minimal user input
•	element units	 arbitrary assemblages of nodes and elements most useful for inputting model data from a preprocessor
•	STAPL	 <i>STAGS PLotting program</i>—post-processer for generating model plots and plots showing displacement, stress and other results obtained by STAGS
•	STAR	 STAGS Access Routines—high-level read/write database access facilitates user-development of translators
•	PATRAN	- forward & backward PATRAN translators (utilizing STAR) included


STAGS is a finite element program for general-purpose analysis of shell structures. *STAGS* can be applied efficiently to routine linear systems, but its forte is the analysis of complex, nonlinear systems that depend upon postbuckling strength and require analysis well into the post-buckled regime. *STAGS* is routinely

used for pre- and post-test verification of complex systems — especially those that are sensitive to initial geometric imperfections, which can be defined in *STAGS* with ease and flexibility.

STAGS has been under continuous development since the 1960's by Lockheed's Research and Development Division and Lockheed-Martin's Advanced Technology Center, whose goals have always been to achieve the best shellstability code available anywhere.

STAGS has a world-wide distribution and is used extensively throughout government, industry and academia. Current *STAGS* research topics include crack-growth simulation and adaptive mesh refinement, illustrated in the pressurized aircraft fuselage model shown at the right.

MACHINES

INFORMATION & ORDERS

UNIX Workstations	Sun	COSMIC
ertin to orabilitions	DEC	NASA's Software Technology Transfer Center
	SGI	The University of Georgia
	IBM	382 East Broad St.
	HP	Athens, GA 30602-4272 USA
Supercomputer	CRAY	Phone: 706-542-3265
Supercomputer		Fax: 706-542-4807
PC, Macintosh—under de	evelopment	service@cossack.cosmic.uga.edu