
STAGS User Manual

Charles C. Rankin
Rhombus Consultants Group, Inc., Palo Alto, California

William A. Loden
Resolutions, Cupertino, California

Francis A. Brogan

Harold D. Cabiness

NASA/CR–2009–000000

April 2009

Y

X

Z

STAGS User Manual

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320

STAGS User Manual

Charles C. Rankin
Rhombus Consultants Group, Inc., Palo Alto, California

William A. Loden
Resolutions, Cupertino, California

Francis A. Brogan

Harold D. Cabiness

NASA/CR–2009–000000

April 2009

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681–2199

Prepared for Langley Research Center
under Contract NAS1-XXXXX

Y

X

Z

Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive
Hanover, MD 21076–1320
(301) 621–0390

National Technical Information Service (NTIS)
5285 Port Royal Road

Springfield, VA 22161–2171
(703) 605–6000

Preface

This User Manual is the largest of three reference documents for the current version (version
5.0) of the STAGS (STructural Analysis of General Shells) structural analysis program. The
primary purposes of this document are (a) to describe the basic capabilities and features of the
STAGS program and the most important post-analysis processors that can be used with it, and (b)
to describe the input requirements for and the output generated by each of these programs. The
other two reference documents for the current version of STAGS are the STAGS Elements
Manual and the STAGS Test Cases Manual.

This document is an extensively updated version of large portions of the STAGS User Manual
that was released when version 4.0 of the STAGS program was “frozen” in May of 2001. Many
of the updates in this document describe new capabilities that have been introduced into STAGS

since that date—new analysis features, 18-node sandwich elements, higher-level features of user-
developed elements, and superelements, for example. Other updates in this document correct
some of the errors and omissions that found (or failed to find) their way into earlier descriptions
of older STAGS capabilities.

The first version of this User Manual document was released when version 2.0 of the STAGS

program was released in June of 1994. That document was revised repeatedly until mid-1997,
when it was “frozen” for version 2.4 of STAGS program. The STAGS 2.4 User Manual was
revised repeatedly from mid-1997 through May of 2001, as STAGS 2.4 evolved into STAGS 3.0
and then into STAGS 4.0. This document is our “best shot” at describing STAGS 5.0.

Early versions of this User Manual were written for off-line use as printed documents. The
current version of this document still has a very strong “printed reference” orientation; but the
publication and distribution of this document in Adobe’s PDF format give it additional, platform-
independent, on-line utilities that the earlier versions lacked. PDF versions of this document, the
STAGS Elements Manual document and the STAGS Test Cases Manual document can be read
and printed with Adobe’s Acrobat Reader application—which is widely-available, easy-to-use
and free.
STAGS 5.0 User Manual April, 2009 i

Preface
It is appropriate to digress briefly here to tell the reader that the STAGS program has a long and
illustrious history. The STAGS program started out and in many important respects is still on the
cutting edge of structural analysis technology. The earliest versions of what became the STAGS

program (in the mid- to late-1960’s) were energy-based, finite difference codes that were
designed to perform linear and nonlinear analyses of single-unit and multi-celled thin shell
structures—principally (but not exclusively) for structures of interest to the aerospace and
military communities. The earliest versions of STAGS were research-oriented, special-purpose
programs that were developed on and designed to exploit the high-speed, large-problem
computational capabilities of the CDC-6000-series mainframe computer systems that were the
cream of the crop in the computer world during that time frame. During the early 1970’s, STAGS

was “generalized” (to treat shell and other configurations that cannot easily be generated
analytically) and converted into a research-oriented, general-purpose finite element program.
During that decade and well into the second lustrum of the next, development of STAGS was
centered on and designed to exploit the higher-speed, larger-problem capabilities of the CDC
7600 and the CRAY XMP, YMP and TS mainframe systems that were the performance
champions of that era.

The 1.0 version of STAGS was an (early 1970’s) evolutional extension of the special-purpose,
research-oriented STAGS C-1 program). STAGS 2.0 was an (early 1980’s) evolutional extension
of STAGS 1.0. STAGS 2.0 evolved into STAGS 2.1, 2.2, 2.3, 2.4, 3.0, 3.5 and 4.0 over the next
decade or so (from the mid-1980’s to the midpoint of 2002). The most recent (current) version
of the program is STAGS 5.0.

The computer world has changed significantly over the last two decades, and STAGS has changed
with it. “Omnia mutantur, nos et mutamur in illis.” Large, powerful mainframe systems
were challenged by and eventually yielded to smaller (but still powerful) mainframe alternatives
(the Convex and Stardent systems, in particular). These in turn were challenged by and yielded
to still-smaller (and increasingly powerful) desktop workstation systems (by DEC, HP, IBM,
SGI and SUN, principally). Versions of STAGS were developed for, and have been and continue
to be effectively used on all of those machines. The shift from huge to smaller and smaller
computer systems continues—with today’s desktop workstations being strongly challenged by
today’s increasingly more powerful (and affordable) “personal” computer systems. Over the last
several years, STAGS 4.0 and 5.0 have been transported to and are now being utilized effectively
on many Linux, Windows and Macintosh-based personal computer systems.

Returning from that digression to the main theme of this Preface, we note again that the earliest
versions of STAGS were research-oriented, special-purpose programs that evolved from there into
the user-oriented, general-purpose STAGS system that we have today. The primary efforts in
developing STAGS during the early and middle years (from the late 1960’s to the early 1990’s)
ii April, 2009 STAGS 5.0 User Manual

Preface
were very strongly focused on implementation of stat-of-the-art computer and innovative
analysis technologies, with little energy (or funding) remaining for generating usable, up-to-date
documentation. During those years, the STAGS User Manual was a thin, terse document that was
updated from time to time (energy and funding permitting) to keep pace (as well as it could) with
the program as it evolved. This was “tolerated” during those years because STAGS was viewed
then as a cutting-edge tool that could be used most effectively by a relatively small number of
computationally sophisticated researchers and analysts. This “once but no longer tolerable”
documentation situation changed significantly when STAGS 1.0 evolved into STAGS 2.0, and the
much-improved User Manual for STAGS 2.0 was developed to fill this need. Significant efforts
have been made to update and improve that breakthrough User Manual to stay as up-to-date
and as close as possible with STAGS and its companion programs during their evolutions from
there to and including today’s STAGS 5.0 system.

It is also appropriate to note here that compatibility with STAGS C-1 was a major design
consideration in the development of STAGS 1.0 and STAGS 2.0—and that maximization of
compatibility with the most recent versions of STAGS has been a continuing consideration with
each successive version of the program. With each new program capability and feature, however,
changes to model-definition and solution-control input data have been inevitable. Strong efforts
have been made to minimize those changes and keep them evolutional rather than revolutionary.

Input-data requirements for model definition and solution control are described in detail in
Chapters 5 through 11 of this document and are summarized in one-line-per-record memory
joggers in Appendix B. Input requirements for utilizing user-written subroutines in model-
definition and analysis operations are described in Chapter 12. The basic approach that STAGS

supports for implementing and utilizing user-defined elements is described in Chapter 13.

Users of earlier versions of the STAGS program and of the post-analysis processors that can be
used in conjuction with STAGS should check the appropriate documentation very carefully to
determine changes that are necessary before attempting to use any existing input files or
attempting to employ user-written subroutines with version 5.0 of STAGS. We strongly suggest
that, to determine where input changes are necessary and to discover new program capabilities
and input features that make STAGS 5.0 easier to use and faster, users of earlier versions of the
STAGS program should compare this document with the earlier documentation before using
STAGS 5.0.

This User Manual is a reference document with a lot of gory detail in it. It is most appropriately
used off-line, in its printed form; but it is also accessible and can be used on-line via Acrobat
Reader. The STAGS Elements Manual contains more detailed descriptions of many (but not all)
of the standard “spring” elements, “beam” elements, triangular and quadrilateral shell elements,
STAGS 5.0 User Manual April, 2009 iii

Preface
solid elements, shell/solid sandwich elements and “contact” elements that are implemented in
STAGS 5.0 and its post-analysis processors. The STAGS Elements Manual also contains
detailed descriptions of the input and interface requirements for implementing and utilizing
user-developed elements in STAGS 5.0. The STAGS Test Cases Manual contains capsule
descriptions of STAGS’ basic and special-purpose capabilities and in-depth descriptions of a
number of illustrative and instructive test cases that are of interest to new and experienced
STAGS users. The STAGS Test Cases Manual is an interesting and a very promising “work in
progress.”

We also recommend the STAR Reference Manual as another valuable off-line companion to this
User Manual and its other input/output-oriented companions. The STAR Reference Manual
documents the STAGS Access Routines (STAR)—a library of FORTRAN routines that gives the
user access to the STAGS Virtual Database (VDB). Major features of STAGS 5.0, STAR and VDB
combine to give more sophisticated STAGS users high-level read/write access to model and
solution data—facilitating the development of software for interfacing STAGS with other
computational tools (such as graphical pre-/post-processors).

STAGS 5.0 is the most recent result of an ambitious project to enhance and rewrite large portions
of the STAGS software and documentation. Development of STAGS and its companion programs
continued under the leadership of Dr. Charles C. Rankin at the Lockheed–Martin Advanced
Technology Center in Palo Alto, California—until his retirement from that company in April of
2003. Development of STAGS and its companion programs continues under his leadership now
at the Rhombus Consultants Group in Mountain View, California. Additional code and
documentation releases are anticipated in the future as more improvements are made.

Using this Document and its Companion Documents

Basic conventions used throughout this document for input-record descriptions are described in
Chapter 5. Methods for navigating within the printed version of this document are described
there and in the Table of Contents. The same record-description conventions and navigation
methods used in this document are also used in the companion STAGS Test Cases Manual.

The most important navigation decisions that the analyst who is trying to use STAGS must make
are usually related to the question “what is the next input requirement that must be satisfied?”
These questions are answered by the “where to go from here” information that is at the end of
each input-record description. For the example that is described in Chapter 5, the “where to go
from here” information looks like this:
iv April, 2009 STAGS 5.0 User Manual

Preface
NESP (I-1) number of points on the curve

if (NESP > 0) then go to I-3
else follow instructions at end of I-3a

The symbol, here, tells the user that important navigation information follows.

The key parts of this navigation information are in FORTRAN-like statements that tell the user
which model-definition or solution-control record to consider next. More often than not, the next
record depends on the value of one or more parameters on the current record and/or on previous
records. Each parameter that was specified on a previous record is listed before the if-then-else
constructs—the record identified by its alphanumeric index (I-1, in this example) in parentheses.
The next record that the analyst must consider is identified by the pseudo-code that follows. In
this example, the analyst is directed to the I-3 record if he/she gave a positive value to NESP on
the most recent I-1 record, or to the navigation instructions at the end of the I-3a record if NESP

was not positive.

The analyst who is using Acrobat Reader to view this document and/or its companion documents
can transfer immediately to any page in the document being viewed with the “bookmark” facility
that the Acrobat Reader application provides—and can also move around freely within that
document using any of Reader’s other navigation and text-searching facilities.

σ ε,()
STAGS 5.0 User Manual April, 2009 v

Table of Contents

Preface i

1 Introduction
1.1 About this Manual . 1-1
1.2 About STAGS . 1-1

2 Installation and Execution
2.1 STAGS Directory Structure (all platforms) . 2-3
2.2 UNIX-Based Systems . 2-6

Basic UNIX System Requirements . 2-6
Installation of STAGS on a UNIX System . 2-6
Execution of STAGS on a UNIX System. 2-10

2.3 Linux-Based Systems. 2-17
Basic Linux System Requirements . 2-17
Installation of STAGS on a Linux System . 2-17
Execution of STAGS on a Linux System . 2-20

2.4 Macintosh-Based Systems . 2-26
Basic Macintosh System Requirements . 2-26
Installation of STAGS on a Macintosh system . 2-26
Execution of STAGS on a Macintosh System . 2-29

2.5 Windows-Based Systems. 2-35
Basic Windows System Requirements . 2-35
Installation of STAGS on a Windows System . 2-35
Execution of STAGS on a Windows System . 2-35

2.6 Installation Verification . 2-36
STAGS 5.0 User Manual April, 2009 vii

Table of Contents
3 Getting Started

3.1 Infinite Cylinder Under Hydrostatic Pressure . 3-2
3.2 Linear Bifurcation Buckling . 3-4
3.3 Large-Deflection Analysis of an Imperfect Cylinder . 3-6
3.4 Restarting a Nonlinear Analysis . 3-8
3.5 File Systems . 3-8
3.6 Input Files . 3-10

Linear buckling analysis . 3-11
Start nonlinear analysis . 3-12
Restart nonlinear analysis . 3-12

3.7 Test problems. 3-13

4 Fundamentals

4.1 Coordinate Systems . 4-1
4.2 Shell Unit . 4-8
4.3 The Element Unit . 4-10
4.4 Assembled Structures. 4-10
4.5 Boundary Conditions . 4-10
4.6 Loads . 4-11
4.7 Summary of Modeling Techniques . 4-13

5 Model Input

5.1 Conventions Used in Input-Record Descriptions. 5-2
Record ID and title . 5-2
Discussion . 5-2
Data summary . 5-2
Data description. 5-2
Where to go from here . 5-3

5.2 Example Input-Record Description . 5-3
Record ID and title: . 5-3
Discussion: . 5-3
Data summary: . 5-4
Data description: . 5-4
Where to go from here: . 5-4

5.3 Input Format Conventions . 5-4
5.4 Summary and Control Parameters . 5-6
5.5 Discretization and Connectivity Summary . 5-22
5.6 Data Tables . 5-57
5.7 References for Chapter 5 . 5-146
viii April, 2009 STAGS 5.0 User Manual

Table of Contents
6 Model Input—Shell Units

6.1 Geometry . 6-2
6.2 Discretization . 6-32
6.3 Discrete Stiffeners . 6-49
6.4 Boundary Conditions . 6-57
6.5 Loads . 6-64
6.6 Least-Squares Distributed Line Loads. 6-81
6.7 Output Control . 6-88

7 Model Input—Element Units (1)

7.1 User Points . 7-2
7.2 Line-to-Line–Contact Specifications . 7-16

8 Model Input—Element Units (2)

8.1 Definition of “Spring” Elements via the Edef Protocol . 8-1
8.2 Definition of “Beam” Elements via the Edef Protocol . 8-9
8.3 Definition of Triangle Elements via the Edef Protocol . 8-14
8.4 Definition of “Quadrilateral” Elements via the Edef Protocol 8-17
8.5 Definition of “Other” Elements via the Edef Protocol . 8-25

Contact elements . 8-28
Sandwich elements . 8-43
Solid elements . 8-103

9 Model Input—Element Units (3)

9.1 Definition of “Spring” Elements via the Ecom Protocol 9-7
9.2 Definition of “Beam” Elements via the Ecom Protocol 9-16
9.3 Definition of Triangular Elements via the Ecom Protocol 9-21
9.4 Definition of Quad Elements via the Ecom Protocol. 9-32
9.5 Definition of Contact Elements via the Ecom Protocol . 9-61
9.6 Definition of Sandwich Elements via the Ecom Protocol 9-73
9.7 Definition of Solid Elements via the Ecom Protocol . 9-131
9.8 Definition and Utilization of User Elements . 9-163

The User–element definition process . 9-163
Utilization of User element(s) in STAGS . 9-171

10 Model Input—Element Units (4)

10.1 Element unit loadings. 10-1
10.2 Output Control . 10-14
10.3 Linear-Stiffness Contributions . 10-19
STAGS 5.0 User Manual April, 2009 ix

Table of Contents
11 Solution Input
11.1 Solution Options . 11-1
11.2 Summary and Control Parameters . 11-4
11.3 The Equivalence Transformation Bifurcation Processor (ET) 11-36

Simple branch switching . 11-37

12 User-Written Subroutines
12.1 Input/Output Data Conventions . 12-4
12.2 Subroutine Specifications . 12-7
12.3 Example Problem. 12-66

13 User–Defined Elements
13.1 Introduction . 13-1
13.2 User Element Definition Directives . 13-3
13.3 User Property Set Definition Directives . 13-6
13.4 User Element Model–Definition Routines. 13-9

Top–level model–definition routines . 13-9
13.5 User Element Model–Analysis Routines . 13-15
13.6 User Element Post-Processing Routines . 13-20
13.7 FORTRAN– and C–Language Utility Routines. 13-27
13.8 Uniform Beam Example . 13-33

Model- and User-element definition operations . 13-35
User Element Definition Routines . 13-40
User beam pre-variation definition routine—UelPvDef900. 13-42
User beam internal force vector definition routine—UelFiDef900 13-45
User beam material stiffness matrix definition routine—UelKmDef900 13-49
User beam strain vector definition routine—UelStrainDef900 13-53
User beam stress vector definition routine—UelStressDef900 13-57
User beam strain printing definition routine—UelPrintStrainDef900 13-62
Beam stress printing definition routine—UelPrintStressDef900 13-65
Analysis and Results . 13-67
x April, 2009 STAGS 5.0 User Manual

Table of Contents
14 The Element Library
14.1 Organization. 14-1
14.2 Algorithm for Determining the Element Frame. 14-2
14.3 “Spring” Elements . 14-5

E110 Mount element . 14-6
E120 Rigid link element . 14-7
E121 Soft link element . 14-7
E130 Generalized fastener element. 14-8

14.4 “Beam” Elements . 14-12
E210 Beam element . 14-13
E250 Planar boundary condition element . 14-14

14.5 Shell and Mesh-Transition Shell Elements . 14-19
E320 Triangular shell element . 14-20
E330 Triangular shell element . 14-21
E410 4–Node quadrilateral shell element . 14-22
E411 4–Node quadrilateral shell element . 14-23
E480 9–Node quadrilateral shell element . 14-24
E510 and E710 Quadrilateral mesh-transition shell elements 14-25
E330 Triangular mesh-transition shell elements. 14-34

14.6 Sandwich and Mesh-Transition Sandwich Elements. 14-36
E830 6–Node sandwich element. 14-36
E840 8–Node sandwich element. 14-44
E849 18–Node sandwich element. 14-45
E845 and E847 mesh-transition sandwich elements. 14-46

14.7 Solid Elements . 14-47
E881 8-Node ANS solid element . 14-47
E882 18-Node solid element . 14-48
E883 27-Node solid element. 14-49
E885 20-Node displacement-based solid element . 14-50

14.8 Contact Elements . 14-51
E810 Pad contact element . 14-51
E820 General contact element . 14-54
E822 Line contact element . 14-63
STAGS 5.0 User Manual April, 2009 xi

Table of Contents
15 Analysis Techniques
15.1 Modeling Strategy . 15-1
15.2 Solution Strategy . 15-6

Linear static analysis . 15-9
Eigenvalue analysis . 15-9
Nonlinear static analysis . 15-11
Transient analysis . 15-17

15.3 Progressive Failure Solution Strategy . 15-21
Modeling . 15-21
Choosing solution strategy parameters . 15-22
Maintaining equilibrium . 15-25
Recommended guidelines . 15-27

16 Interpretation of Results
16.1 Shell Results. 16-1
16.2 Beam Results . 16-8
16.3 Evaluating Solution Quality. 16-12
16.4 Interpreting Diagnostic Messages . 16-12
16.5 Overcoming Difficulties . 16-12

Linear static analysis . 16-13
Eigenvalue analysis . 16-14
Nonlinear static analysis . 16-15
Transient analysis . 16-17

17 Input/Output Files
17.1 Description of I/O Files . 17-1
17.2 Summary of I/O File Requirements . 17-9

s1—Model processor. 17-9
s2—Solution processor . 17-9
STAPL—Plotting processor . 17-9
stp—STAGS translator/postprocessor . 17-9

A Appendices

A STAGS Input Record Catalog
xii April, 2009 STAGS 5.0 User Manual

Table of Contents
B STAPL Input

Introduction . B-1
Input file . B-1
Execution and input requirements. B-2
Output files . B-3
Examples . B-18

C PITRANS Input

Introduction . C-1
Prerequisites . C-1
Execution of the program . C-1
Input requirements and output files. C-2
Example # 1. C-8
Example # 2. C-10
Input records (for interview- and batch-mode operations) C-12
Example # 3. C-24

K STAGS Shell Surface Differential Geometry

Definition of Basic Differential Geometry Terms . K-1
Bending Numbers for Arbitrary Shell . K-2

L Design Parameter Derivatives

Displacement gradients . L-1
Strain gradients . L-3
Strain gradients with corotation . L-5
Gradient computation in STAGS . L-5
The GradC Program . L-6
Using the GradC Program. L-15
Computation of a C Matrix . L-16
Computation of a C Matrix Material Partial Derivative L-17
Computation of a C Matrix Thickness Partial Derivative. L-17
Computation of a C Matrix Angle Partial Derivative L-18

X PAT2S

Introduction . X-1
Input File . X-1
Execution. X-1
Output Files . X-3
User Instruction File Format . X-3
User Instruction File Records . X-5
STAGS 5.0 User Manual April, 2009 xiii

1
1
1 1

Introduction

1.1 About this Manual

The “Preface” to this User Manual contains important information about input-data differences
between version 5.0 of STAGS and previous versions of the program. The “Using This
Documentation” section between the “Preface” and the “Table of Contents” describes methods
for navigating within this document and within its companion Elements and Test Cases
documents. Some of the key topics covered in this Manual are highlighted in the following
Table:

1.2 About STAGS

STAGS is fundamentally a finite element code for general-purpose analysis of shell structures of
arbitrary shape and complexity, with additional capabilities for analysis of solids and other types
of structural configurations. Shells to be analyzed by STAGS may be thin or thick, unstiffened or
stiffened, with stiffeners modeled either as beams or as shells. The availability of numerous wall-
fabrication and stiffener-cross-section options combined with a variety of material models
permits tremendous flexibility in modeling a wide spectrum of construction types. Analysis
capabilities include stress, stability, vibration, and transient analyses, with both material and
geometric nonlinearities permissible.

STAGS has a long and distinguished history—starting in the late 1960’s in the Lockheed Missiles
and Space Company’s Research and Development Division (R&DD) as a company-sponsored
research code to study the stability of shells, and continuing to the present at Lockheed-Martin’s
Advanced Technology Center. The primary goal of the STAGS group at Lockheed and at
Lockheed-Martin has always been to achieve the best shell stability code available anywhere.
Research with and development of STAGS has been under continuous sponsorship from U.S.
government agencies and Lockheed’s Independent Research program from the beginning.
STAGS 5.0 User Manual April, 2009 1-1

Introduction About STAGS
Today, STAGS has a world-wide distribution and is used extensively throughout government,
industry and academia.

Analysis and structure types

STAGS has the following analysis capabilities:

STAGS 5.0—Selected Topics

Topic Reference

Installation and execution Chapter 2 “Installation and Execution”

Tutorial Chapter 3 “Getting Started”

Coordinate systems Section 4.1 “Coordinate Systems”

Input data Chapter 5 “Model Input”
Chapter 6 “Model Input—Shell Units”
Chapter 7 “Model Input—Element Units (1)”
Chapter 8 “Model Input—Element Units (2)”
Chapter 9 “Model Input—Element Units (3)”
Chapter 10 “Model Input—Element Units (4)”
Chapter 11 “Solution Input”
Appendix B “STAPL Input”
Appendix L “Design Parameter Derivatives”

User-written subroutines Chapter 12 “User-Written Subroutines”

User-defined elements Chapter 13 “User–Defined Elements”

Input and output files Chapter 17 “Input/Output Files”

Developing an interface between
STAGS and a pre- or post-processor

STAR Reference Manual
1-2 April, 2009 STAGS 5.0 User Manual

About STAGS Introduction
• linear elastic stress analysis

• geometrically nonlinear elastic stress analysis

• geometrically linear inelastic stress analysis

• geometrically nonlinear inelastic stress analysis

• linear bifurcation buckling analysis based upon either a linear
or a nonlinear stress state

• branch on bifurcation from a primary path to a secondary solution path

• linear vibration analysis based upon either a linear or a nonlinear stress state

• transient response analysis, elastic or inelastic, geometrically linear or nonlinear

STAGS is used extensively throughout the aerospace, shipbuilding and other industries for
analysis of panels, pressure vessels, and general shell structures. While it can be efficiently
applied to routine linear systems, STAGS’ forte is the analysis of complex, nonlinear systems that
depend on post-buckling strength and require analysis well into the post-buckled regime. STAGS

is routinely used for pre- and post-test verifications of complex systems—especially those that
are sensitive to initial geometric imperfections, which can be defined in STAGS with ease and
flexibility.

STAGS has been used by NASA for Space Shuttle and Aging Aircraft analyses. It was used to
perform a buckling analysis of the pear-shaped orbiter fuselage, and it was used for analysis of
the solid rocket booster during the redesign activities following the Challenger event. It has been
used for analysis of advanced aircraft, such as the High Speed Civil Transport (HSCT), and is
currently being used for analyses of crack propagationss, delaminations, and other phenomena
that occur in aging aircraft structures.

STAGS has played a major role in pressure-hull design of U.S. Navy submarines, and it has been
coupled with USA (Underwater Shock Analysis) in the USA-STAGS code for the shock-load
analysis of submarine structures.

STAGS has been used for analysis of nuclear reactor containment vessels, strategic missiles, and
advanced solid rocket motor cases. It is also used for the analysis of almost every structure
designed in the Lockheed’s RDD for cryogenic coolers, space experiments, and satellite systems
such as antennas, mirrors, and telescopes.

Following is a summary of some of the structure types for which STAGS is applicable:
STAGS 5.0 User Manual April, 2009 1-3

Introduction About STAGS
• panels • cryogenic coolers

• pressure vessels • reactor containment vessels

• aircraft • solid rocket motor cases

• spacecraft • satellite systems

• offshore oil platforms • space experiments

• ships • strategic missiles

• submarines • general shell structures

STAGS’ capabilities for solution of difficult, nonlinear shell problems are typified by Figure 1.1
through Figure 1.4, which show examples of some of the kinds of problems for which STAGS is
applicable.

Figure 1.1 Section of a tee-stiffened panel. Above: undeformed shape. Below: highly-
stressed, post-buckled shape due to normal pressure and shear.

Y

Z

X

Y

Z

X

1-4 April, 2009 STAGS 5.0 User Manual

About STAGS Introduction
Solution algorithms

Solution control in STAGS is quite sophisticated, ranging from simple load control to the
advanced Riks arc-length parameter technique that enables traversal of limit points into the post-
buckling regime, to equivalence transformation methods to obtain solutions during mode-
jumping behavior that may occur in bifurcation and post-buckling response. For arc-length
algorithms, the solution can be directed to stop at maximum load, or to go into a negative
direction for determination of permanent set. Two load systems with different histories can be
defined at the same time and can be controlled separately during the solution process.

STAGS solutions can be saved according to user instructions for restart or for postprocessing. The
state at termination is always saved for future use. Flexible restart procedures permit switching
from one strategy to another during an analysis; this includes a shift from static to transient, or
from transient to static with modified boundary conditions and loadings.

Figure 1.2 Cylindrical panel with circular cutout. Left: undeformed shape.
Right: buckled shape due to axial compression.

X

Y

Z

X

Y

Z

STAGS 5.0 User Manual April, 2009 1-5

Introduction About STAGS
STAGS provides solutions to the generalized eigenvalue problem for buckling and vibration from
a linear or nonlinear stress state. A robust solution algorithm allows for efficient shifting to the
neighborhood of eigenvector-eigenvalue pairs sought.

Figure 1.3 One-quadrant model of a jet aircraft engine support ring. Above:
undeformed shape. Below: deformation due to a severe thermal
gradient, plasticity, and creep.

X

Y

Z

X

Y

Z

1-6 April, 2009 STAGS 5.0 User Manual

About STAGS Introduction
An element-independent, large rotation algorithm is in place, allowing for analysis of structures
undergoing arbitrary displacements and moderate strains, with no artificial stiffening due to large
rotations. Not only are all elements objective to arbitrary rigid-body motion, but the first and
second variations of the strain energy are consistent, resulting in quadratic convergence for true-
Newton iteration sequences.

STAGS can also treat some types of structural contact problems—with very efficient element-on-
element (Hertzian) PAD-type contact elements when the contact region is known a priori, with
more general point/surface contact elements when the contact region is not known a priori and/
or when element-on-element contact is not expected and/or slippage occurs, and with line and
line-interaction contact elements.

Modeling

Quadratic surfaces can be modeled automatically in STAGS, with minimal user input, as
individual substructures, called shell units. An important feature here is that the analytic
geometry is represented exactly—there is no need to be concerned with accuracy limitations
imposed by parametric representation, such as that typically found in modern finite-element
modeling software. These shell units can be generated and interconnected along edges, along

Figure 1.4 Complex titanium pressure vessel. Left: undeformed shape. Right:
plastic collapse analysis under hydrostatic pressure.

Y

Z

X
Y

Z

X

STAGS 5.0 User Manual April, 2009 1-7

Introduction About STAGS
internal grid lines, or in more general ways, with provisions in the program for treating either
partial or complete compatibility. Using these techniques, complex structures can be assembled.
In addition to these automatically-generated shell units describing quadratic surfaces, element
units may be defined as arbitrary assemblages of nodes and elements. Element units may be
used to complement a structure that is made up of STAGS-generated shell units and/or to form a
self-contained structural model generated by STAGS and/or by other programs.

Material, wall & stiffener properties

A variety of material models is available, including both plasticity and creep. This, with
numerous wall-fabrication and stiffener-cross-section options, permits tremendous flexibility in
modeling a wide spectrum of construction types. STAGS handles isotropic and anisotropic
materials, including composites consisting of up to 100 layers of arbitrary orientation. Four
plasticity models are available, including the often used isotropic strain hardening, White-
Besseling (mechanical sublayer model), kinematic strain hardening, and deformation theory.
Progressive failure analysis models are available for laminated composite structures using five
common failure criteria and material degradation models. Easily defined standard wall types
include orthotropic laminate, fiber-wound, and corrugation-stiffened. Additional generality is
provided by the option for direct input of stiffnesses relating stress and moment resultants to
surface strains and curvatures. Stiffener cross sections may be built-up from subelements
described either by explicit geometry or by geometric properties. Smeared stiffeners are also an
option.

Loads

Two independent load sets, each composed from simple parts that are easily specified with
minimal input, define a spatial variation of loading. Any number of prescribed displacements,
point loads, line loads, surface tractions, thermal loads, and “live” pressure loads (hydrostatic
pressure that remains normal to the shell surface throughout large deformations) can be
combined in this manner to make a load set. Inertial loadings can be specified for the structure
as well. For transient analysis, the user may select from a menu of convenient loading histories;
or he/she may specify a completely-general temporal variation via a user-written subroutine.

Boundary conditions

Boundary conditions (BCs) may be imposed either by reference to certain standard conditions or
by the use of single-point and multi-point constraints. Simple support, symmetry, antisymmetry,
1-8 April, 2009 STAGS 5.0 User Manual

About STAGS Introduction
clamped, or user-defined BCs can be specified on a shell unit edge. Single-point constraints
which allow individual freedoms to be free, fixed, or a prescribed nonzero value may be applied
to grid lines and surfaces in shell units. A useful feature for buckling analysis allows these
constraints to differ for the prestress and eigenvalue analyses. Lagrangian constraint equations
containing up to 100 terms may be easily defined to impose multi-point constraints. Advanced
features include a “moving-plane” boundary permitting arbitrary motion of a boundary while
requiring all nodes on the boundary to remain coplanar.

Element library

STAGS has a variety of finite elements that are suitable for the analysis of stiffened plates, shells,
and solids.

Simple 4-node quadrilateral plate elements with a cubic lateral displacement field provide a very
effective and efficient building block for the description of complex post-buckling thin-shell
response. A linear or quadratic membrane interpolation can be selected. For thicker shells in
which transverse shear deformation is important, STAGS provides the Assumed Natural Strain
(ANS) 9-node element which has proven to be a sturdy performer for complex structures. A
2-node beam element that is compatible with the 4-node quadrilateral plate element is provided
to simulate stiffeners and beam assemblies. For irregular geometries, Clough-Tocher triangular
plates can be combined automatically to make quadrilaterals. In addition to these standard shell
elements, there are two mesh-transition shell elements that can be used very effectively with
shell structures in which there are transitions from finer to coarser grids. One of these is used
along an edge that has 2N shell elements on one side and N shell elements along the other (with
two elements on the first side paired with a single element on the second). The other is used at
junctures where two (or three) finely-meshed shell regions meet a coarsely-meshed region at a
single point. Each of these elements is capable of describing large-displacement, moderate-strain
response because the element-independent large rotation algorithm, described previously,
functions with all types of finite elements.

STAGS has four standard solid elements that are suitable for treating thick shells and 3-D solid
structures. The simplest of these elements—the 8-node brick—can be used very effectively in
structural regions that have minimal geometric and material variations and that experience
reasonably uniform or slowly varying responses. The other three solid elements—which have 18,
20 and 27 nodes—are suitable for structural regions in which geometric, material and structural
characteristics and responses are nonuniform in any or all of these domains.

STAGS has a two standard elements that are suitable for treating sandwich shell structures. The
simpler of these elements—the 8-node sandwich—uses two 4-node quadrilateral shell elements
to model the upper and lower surfaces (one each) and one or more 8-node bricks to model the
STAGS 5.0 User Manual April, 2009 1-9

Introduction About STAGS
solid core between the upper and lower surfaces of the element. This hybrid element can be used
most effectively in structural regions that have minimal geometric and material variations and
that experience reasonably uniform or slowly varying responses. The more refined—18-node
sandwich—element uses two 9-node quadrilateral shell elements to model the upper and lower
surfaces and one or more 18-node solid elements to model the core. This element is must useful
in structural regions where geometric, material and structural characteristics and responses are
more complex. In addition to these two standard sandwich elements, there are two mesh-
transition sandwich elements that can be used very effectively with structures in which there are
transitions from finer to coarser sandwich-element grids. One of these is used along an edge that
has 2N sandwich elements on one side and N sandwich elements along the other (with two
elements on the first side paired with a single element on the second). The other is used at
junctures where two (or three) finely-meshed sandwich regions meet a coarsely-meshed
sandwich region at a single point.

In addition to these standard and hybrid finite elements, STAGS provides several types of
specialized elements. For transition from a finer to a coarser grid, there is a line-constraint
element that enforces edge compatibility of the fine mesh with the coarse mesh. The nonlinear
mount element is a generalized spring with a user-input force-displacement-velocity profile that
can serve as a connector, with offset, between any two nodes in the system. By a suitable choice
of input, the user can model very complex mount response, including nonlinear damping. Other
specialized elements are involved in the moving-plane boundary condition described previously.

Initial geometric imperfections

Initial imperfections can be defined automatically in a variety of ways, permitting imperfection-
sensitivity studies to be performed with minimal effort. This can be an invaluable aid in
numerous situations, such as when analyzing a weight-critical design where there is uncertainty
about knockdown factors for buckling, and/or for determining allowable manufacturing
tolerances. Imperfections can be generated from linear combinations of previously-computed
buckling modes; from a trigonometric expansion using a simple input of mode numbers, shell-
surface locations, and amplitudes; or from user-written subroutines. A special random
imperfection capability allows for randomly-generated amplitudes with specified standard
deviation and mean values. Combinations of buckling modes and trigonometric data are
permitted. A higher-order definition of the imperfection waveform is used in element
computations.
1-10 April, 2009 STAGS 5.0 User Manual

About STAGS Introduction
User-written subroutines

The option of using user-written subroutines is a very powerful feature of STAGS. User-written
subroutines can be used in very basic ways as elegant alternatives to lengthy input decks, or in
more sophisticated ways to extend the generality of the code. Users can easily define arbitrary
functional relationships, such as spatially-varying geometric and constitutive properties in a wall
fabrication, or general time-varying pressure loads. Nearly all aspects of model definition, from
the most basic to extremely complex ones, can be performed via user-written subroutines. See
Chapter 12 for more about this feature.

User-defined elements

The current version of STAGS gives the user the very powerful capability to install and employ
User-defined elements. See Chapter 13 for more about this feature.
STAGS 5.0 User Manual April, 2009 1-11

2
2
2 2

Installation and Execution

Methods for installation, maintenance and execution of STAGS programs on various computer
platforms are described in this chapter. Before getting into that, however, a few words about how
the STAGS program system is organized and about how this chapter is organized are in order.

One important thing to note here is that the STAGS program system “looks” the same (i.e., it has
the same software components and is organized in the directory structure) on all of the (UNIX,
Linux, Macintosh and Windows-based) computer platforms on which it operates. The directory
structure that STAGS uses on all of these platforms is described in Section 2.1 of this chapter.
The “administrator” who installs STAGS on any given machine should read Section 2.1 because
he (or she) must understand this directory structure and operate within it. Anyone who uses
STAGS on any installation needs to understand this directory structure, too. This is especially true
for users who want or need to construct and execute customized versions of STAGS processors
utilizing user-written subroutines, user-defined elements, or any other non-standard components.

Methods for installing, maintaining and executing STAGS are discussed next. Computer
requirements, installation procedures, maintenance methods and execution procedures for STAGS

are generally computer-system and computing-environment dependent. These four subjects are
discussed in a separate section of this chapter for each of the currently supported platforms:

In each of these four platform-specific sections, there are three subsections: the first contains a
concise summery of the basic system requirements (operating systems supported, free disk space
needed, utilities and compilers needed, etc.) for installing and executing STAGS programs on the

Platform Section

UNIX 2.2 “UNIX-Based Systems” on page 2-6
Linux 2.3 “Linux-Based Systems” on page 2-17

Macintosh 2.4 “Macintosh-Based Systems” on page 2-26
Windows 2.5 “Windows-Based Systems” on page 2-35
STAGS 5.0 User Manual April 2009 2-1

Installation and Execution
platform in question; the second has important information that the administrator who installs
STAGS on that platform needs; and the third has vital information that anyone who executes
STAGS programs on that platform needs. STAGS administrators should read the “Basic... System
Requirements” and the “Installation...” subsections for the platform onto which STAGS is to be
installed. All users should read the “Execution...” part of the section for the platform on which
STAGS is to be executed.

The final section of this chapter (“Installation Verification” on page 2-36) contains information
that the STAGS administrator needs to validate the installation and performance of STAGS on any
of these platforms. This information may be of interest and value to other STAGS users, as well.
2-2 April 2009 STAGS 5.0 User Manual

STAGS Directory Structure (all platforms) Installation and Execution
2.1 STAGS Directory Structure (all platforms)

The most important components of the STAGS directory structure (on all platforms) are shown

schematically in Figure 2.1:

Figure 2.1 STAGS directory structure (all platforms)

cu

es1

gcp

gsu

mains

mem

s1

s2

stapl

star

su

stp

vss

make
bin

prc

cu

es1

gcp

gsu

mains

mem

s1

s2

stapl

star

su

stp

include

src

makefile.cu

makefile.es1

makefile.gcp

makefile.gsu

makefile.mains

makefile.mem

makefile.s1

makefile.s2

makefile.stapl

makefile.star

makefile.su

makefile.all

makefile.bin

makefile.touch

makefile.user

makefile.scopy

makefile.xytrans

s1*

s2*

stapl*

scopy*

xytrans*

makefile@

clean

initialize

makestags

makeuser

stags

$STAGSHOME makefile@
include@

READ_ME.STAGS

pitrans*

pat2s*

testcases
STAGS 5.0 User Manual April 2009 2-3

Installation and Execution STAGS Directory Structure (all platforms)
Symbols, conventions and meanings of graphic and text elements in Figure 2.1 are explained in
Figure 2.2:

With one exception, each (yellow) $STAGSHOME/lib library directory contains three files:

makefile@ this is a soft link to the makefile (makefile.lib, in the “make” directory)
that is actually used to build the desired library file lib.a for this
particular library directory; only one of these soft links (for the cu
library) is shown (as a blue, arrow-tipped line) in Figure 2.1

src@ this is a soft link to the (green) subdirectory (src/lib) that contains the
FORTRAN or C-language source code that is required to build the library
file for this particular library directory; only one of these soft links (for
the cu library) is shown (as a blue, arrow-tipped line) in Figure 2.1

lib.a this is the desired library file for this particular library directory

The sole exception to this pattern is the $STAGSHOME/vss library directory. Source code for the
vss equation solver is proprietary and is not typically distributed with the STAGS program, so the
$STAGSHOME/vss library directory only contains the pre-built library file vss.a for the platform
to be used.

When STAGS is installed correctly, the $STAGSHOME/bin directory (see Figure 2.1) contains
seven executable STAGS processors (s1, s2, stapl, scopy, xytrans, pitrans and pat2s) and one
soft-link file (makefile). The makefile soft link (a blue, arrow-tipped line, in Figure 2.1)

Figure 2.2 Symbols used in the STAGS directory diagram.

lib

dir

file1
file2*

file3@

library directory

source or script directory

bin object directory

.

.

. } contents of directory, where

soft link

is a typical source or script file

is a typical executable file

is a typical soft-link file

file1

file2*

file3@
{

2-4 April 2009 STAGS 5.0 User Manual

STAGS Directory Structure (all platforms) Installation and Execution
“points” to the $STAGSHOME/make/makefile.all: this is a makefile script that is used to “make”
all of the libraries and programs in the STAGS system.

When STAGS is installed correctly, the $STAGSHOME/prc directory contains a number of script
and other files that are used to establish a standardized STAGS environment, to run STAGS

programs, and to manage STAGS resources and STAGS-related user files. These processors, links,
scripts and files are discussed in the following subsections.
STAGS 5.0 User Manual April 2009 2-5

Installation and Execution UNIX-Based Systems
2.2 UNIX-Based Systems

2.2.1 Basic UNIX System Requirements

Basic system requirements that must be met to install STAGS on a UNIX system are summarized
in the following table and text:

Compilers required FORTRAN & C-languages

Other system requirements that must be met (and should be comfortably exceeded) to execute
STAGS programs on a UNIX system are summarized in the following table:

Processor speed requirements 300 MHz

Memory requirements 256 MB

Storage requirements 512 MB

2.2.2 Installation of STAGS on a UNIX System

On a UNIX system, one must be running the C-Shell to install STAGS. If the C-Shell is not your
default shell, you must change to csh to perform the installation.

Machine Type OS Disk Space

DEC Alpha workstation ?? ??
HP 32-bit architecture workstation HP-UX 80 MB
HP 64-bit architecture & code, 4-byte integers HP-UX 80 MB
HP 64-bit architecture & code, 8-byte integers HP-UX 80 MB

IBM RS_6000 workstation ?? ??
SGI 32-bit IRIS workstation ?? 140 MB
SGI 64-bit architecture, 32-bit object code ?? 140 MB
SGI 64-bit architecture & code, 4-byte integers ?? 140 MB
SGI 64-bit architecture & code, 8-byte integers ?? 140 MB

SUN SUN-4 / SPARC workstation Solaris 85 MB
SUN SPARC workstation SunOS 85 MB
2-6 April 2009 STAGS 5.0 User Manual

UNIX-Based Systems Installation and Execution
Installing STAGS on a UNIX system

UNIX versions of STAGS are typically distributed on CDs or via “ftp” as compressed tar or gzip-
formatted archive files. The first step in installing STAGS on a UNIX system is to transfer the
contents of the distribution media onto the computer system to be used.

When STAGS is distributed as a compressed tar archive file, the name of the file is typically
stags_{type}.tar.Z, where {type} is an abbreviation for the type of machine onto
which STAGS is to be installed. In this case,

1) Move the compressed tar file to the directory in which you want the stags directory
to reside (into /usr/local, for example).

2) Issue the following command, to decompress the compressed tar file and construct
the desired stags directory:

% zcat stags_{type}.tar | tar xvf -

When STAGS is distributed as a gzip-formatted archive file, the name of the file is typically
stags_{type}.tgz, where {type} is an abbreviation for the type of machine onto which
STAGS is to be installed. In this case,

1) Move the gzip-compressed archive file to the directory in which you want the stags
directory to reside (into /usr/local, for example).

2) Issue the following command, to unzip the compressed archive file into its tar-
formatted form:

% gunzip stags_{type}.tgz

3) Issue the following command, to unwrap the tar-formatted file and construct the
desired stags directory:

% tar xf stags_{type}.tar

Having unloaded (and decompressed) the archive file, you should then have a new subdirectory,
named stags, that is installed in the current working directory. This directory is referred to as
$STAGSHOME in the file directory diagram that is shown in Figure 2.1. Continue the installation
process by executing the RUN.ME.FIRST script from the new stags subdirectory, as follows:

% cd stags

% RUN.ME.FIRST

The RUN.ME.FIRST script modifies certain STAGS files to complete the installation, then it
commits suicide by deleting itself. Installation is now complete. Before STAGS can be executed,
however, it is necessary to perform an initialization step that establishes a number of command
aliases and environmental variables that are needed to operate on and with STAGS programs.
STAGS 5.0 User Manual April 2009 2-7

Installation and Execution UNIX-Based Systems
Initializing STAGS on a UNIX system

Issue the following command once per login session prior to changing or running STAGS:

% source $STAGSHOME/prc/initialize

where $STAGSHOME is the complete path name to the stags directory structure that is shown in
Figure 2.1. The $STAGSHOME/prc/initialize procedure establishes a number of command aliases
and environmental variables that are necessary to operate on and/or to execute the STAGS

programs. For example, $STAGSHOME is defined as an environmental variable that contains the
path name of the stags directory.

It is strongly recommended that each STAGS user inspect the $STAGSHOME/prc/initialize file to
see the aliases and variables that it creates, and install this command (or define an alias for it) in
his or her .login file.

Making STAGS on a UNIX system (as and if necessary)

For UNIX installations, STAGS is typically distributed with source code and with object libraries
and executables, for specific machine architectures. Normally, it is not necessary for the
administrator who installs STAGS or for the typical STAGS user to “make” STAGS programs. In
unusual circumstances—such as when inconsistencies exist between the environment used to
create the STAGS distribution software and the environment on the user’s machine—it may be
necessary for the administrator (and/or for the user) to do so. The computationally-sophisticated
user may elect to recompile and re-link STAGS components to take advantage of high-
performance compilation and/or optimization features that may be available on his or her
machine.

To make STAGS, simply execute the UNIX make command from the $STAGSHOME directory.
To make specific libraries or executables, issue the following command from any directory:

% makestags [target]

See the file $STAGSHOME/prc/makestags for a list of valid targets. To remake the star library,
for example, execute the command:

% makestags star.a

Invocation of the makestags command, with no arguments, will make all of STAGS. It is
equivalent to executing the make command from $STAGSHOME.
2-8 April 2009 STAGS 5.0 User Manual

UNIX-Based Systems Installation and Execution
Coping with installation errors (as and if necessary)

Some common causes of installation difficulties include insufficient disk space, lack of write
permission in the selected directory, attempting to perform installation from a shell other than
the C-shell, nonexistence of UNIX commands that are required for the installation procedure,
and installer boneheadedness. If installation is not successful, identify and correct the problem;
then delete the entire $STAGSHOME directory and start over again at the 2.2.2 “Installation of
STAGS on a UNIX System” point.

Verifying that STAGS operates correctly

Correct operation of STAGS can be verified by running the small suite of test cases in the
$STAGSHOME/testcases directory and examining selected portions of the output. Basic concepts
and procedures for executing STAGS processors on UNIX systems are described in the following
subsection—which the administrator who installs STAGS and anyone who uses it on such a
system must master. A first-level operation verification procedure for STAGS is discussed in
Section 2.6 (at the end of this chapter).
STAGS 5.0 User Manual April 2009 2-9

Installation and Execution UNIX-Based Systems
2.2.3 Execution of STAGS on a UNIX System

Before we address this subject, it is important for the reader to understand that there are two
basic types of executable STAGS programs:

• default executables these are the standard versions of the STAGS processors (s1, s2,
stapl, scopy and xytrans) that are supplied with the program
and used for most applications; these executables are stored in
the $STAGSHOME/bin directory

• custom executables these are application-dependent versions of s1, s2, stapl,
scopy and/or xytrans—which are typically created by linking
with user-written subroutines and/or user-defined elements
and are typically stored in user-controlled directories.

On UNIX systems, the $STAGSHOME/prc directory contains a number of procedure files that
facilitate the execution and construction of STAGS programs. These procedure files (scripts) are
described in the $STAGSHOME/README file. The most important of these (in the “execution”
department) is the stags procedure—which is typically used to run

• s1 STAGS’ model processor
• s2 STAGS’ solution processor
• stapl STAGS’ plotting post-processor
• scopy STAGS’ file-copy processor
• pitrans STAGS’ translator/post-processor
• xytrans STAGS’ post-processor to generate data for XY plots

to construct a STAGS model, to perform one or more analyses with it, to perform pre- and/or
post-analysis plotting operations, and to do other things with data on STAGS I/O files.* The most
important of these procedures (in the “construction” department) is makeuser—which is used to
“make” custom versions of STAGS processors when it is necessary to do so. The remainder of
this subsection is devoted to descriptions of these two procedures:

stags: On UNIX systems, one typically “runs” the STAGS program(s) by invoking
the $STAGSHOME/prc/stags procedure; this is typically done via the stags
alias, which is constructed by $STAGSHOME/prc/initialize when the user
initializes STAGS prior to exercising it; the stags procedure can be used to
run STAGS with default and/or with custom STAGS executables.

See “Executing STAGS with stags (UNIX)” on page 2-12 for information
about the stags procedure, and “Initializing STAGS on a UNIX system” on
page 2-8 for more information about the initialization process.

* See Chapter 17 “Input/Output Files” for documentation on STAGS I/O files.
2-10 April 2009 STAGS 5.0 User Manual

UNIX-Based Systems Installation and Execution
makeuser Custom, user-owned versions of executable STAGS processors may be created
with the $STAGSHOME/prc/makeuser procedure, which is generally executed
via the makeuser alias that $STAGSHOME/prc/initialize defines when the
user initializes STAGS prior to exercising it; custom executables must be
created and executed when user-written subroutines and/or user-defined
elements are employed.

See “Creating custom STAGS executables with makeuser (UNIX)” on page
2-14 for more information about the makeuser procedure.

See “Initializing STAGS on a UNIX system” on page 2-8 for information
about the initialization process.

See Chapter 12 “User-Written Subroutines” for more information about user-
written subroutines, and Chapter 13 “User–Defined Elements” for more
information about user-defined elements.

Users can also create special-purpose versions of STAGS code, since source
code is distributed with the program; this type of advanced use is outside the
scope of this document, but the sophisticated analyst may find occasion to
customize STAGS for specific applications.
STAGS 5.0 User Manual April 2009 2-11

Installation and Execution UNIX-Based Systems
Executing STAGS with stags (UNIX)

Synopsis

stags [options] casename [options]

Options

-b – run STAGS in background; the default nice value is 10.
-n [nice_value] – set nice value for non-queued jobs; if option -n is selected,

but a nice value is not supplied, the default is 10.
-sm – send email message upon termination of background jobs;

default is send no email; queued jobs always send email
upon termination.

-q – submit STAGS job to NQS (Network Queuing System) queue.
-t seconds – set time-limit for queued job to seconds; the default is 900.

-1 [s1_executable] – run s1; a user-specified s1 executable is optionally defined.
-2 [s2_executable] – run s2; a user-specified s2 executable is optionally defined.

-rh [remote_hostname] – copy files from specified hostname into local $TMPDIR for execution and
then put the results back on the remote host upon completion.
remote_hostname must appear in user’s ~/.netrc file; primarily intended
for use on highly-impacted systems such as CRAYs.

-rd [remote_directory] – directory on remote machine from which to copy input data files and to which
to copy output files; valid only when remote_hostname is specified;
default is ~.

Examples

• run the default s1 and s2 executables interactively or in the foreground
% stags casename
If neither -1 nor -2 is present, then both s1 and s2 will be run in succession, using the default
executables.

• run a custom version of s2 with the default version of s1
% stags -1 -2 [s2_executable] casename

• run a custom version of s1 with the default version of s2
% stags -2 -1 [s1_executable] casename

• run default s1 and custom s2 in background, then send email upon completion
% stags -b -1 -2 ~/my_s2 -sm mycase

• run custom s2 in the background, then send mail upon completion
% stags -b -sm -2 ~/my_s2 mycase

• run s1 in the foreground
% stags mycase -1
2-12 April 2009 STAGS 5.0 User Manual

UNIX-Based Systems Installation and Execution
Note that options -1/-2 appear after mycase in the above/below examples. Any argument
following -1 or -2 must be either a valid STAGS executable (custom or default) or another
option (i.e., an argument beginning with a -).

• run s2 in the foreground

% stags mycase -2

• NQS queuing system

% stags -q -t 1000 mycase

The above command will submit the STAGS job using mycase as input to the queue that
runs jobs for at least 1000 seconds. Both the default s1 and s2 will be executed.

• remote get & put of I/O files

% stags -rh trinity.rdd -rd work/stags mycase -q

On some machines (often CRAYs), available user disk space may be at a premium; users may
wish to store input and output data on their local machines and instruct STAGS to get the
input files and put the output files using ftp; the above command will fetch input files for
mycase from directory ~/work/stags on remote host trinity.rdd, submit the job
to the NQS queue of the current host computer, and copy the output files back to
trinity.rdd; diagnostics will always be emailed when using the remote host option
because the “mycase.log” file always gets left behind on the executing machine; users should
be aware that previous generations of output files are not retained when using this option; the
warning that the input files cannot be found on the current host may be ignored.
STAGS 5.0 User Manual April 2009 2-13

Installation and Execution UNIX-Based Systems
Creating custom STAGS executables with makeuser (UNIX)

Synopsis

makeuser [-g] [-l userlib.a] [target]

Options

-g – compile .F files with standard debug option

-cpp “cppflags” – where cppflags are valid cpp options; user-entered cppflags are both prepended
and appended to the default cppflags; the user-entered cppflags are prepended
so that, if given, alternate include-file directories can be searched before the
standard include-file directories; the user-entered cppflags are also appended so
that default cpp definitions can be reset by the user; the user-entered cppflags do
not replace the default cppflags because STAGS code will not compile correctly
without certain default cpp definitions that the user is likely to forget to include.

Example: -cpp “-D_debug_”

-fc “fcflags” – where user-entered fcflags (FORTRAN compiler options) replace the default
compiler options for all modes of compilation: no optimization, partial
optimization, full optimization, and debug; on most machines, users should
remember to include the “-c” flag if they exercise this option.

Example: -fc “-c -g -O2”

-cc “ccflags” – where user-entered ccflags (C compiler options) replace the default compiler
options.

Example: -cc “-c -g -O2”

-ld “linkflags” – where user-entered linkflags (linker options) replace the default linker options.

Example: -ld “-M -Bstatic”

-l userlib.a – link library userlib.a when target is made; more than one library can be linked
using additional “-l” arguments.

target is a target in $STAGSHOME/make/makefile.user. Valid targets are:

• s1 creates a custom version of s1, the STAGS model processor

• s2 creates a custom version of s2, the STAGS solution processor

• scopy creates a custom version of scopy, a STAGS data postprocessor

• pitrans creates a custom version of pitrans, a STAGS translator/postprocessor

• xytrans creates a custom version of xytrans, a STAGS xy-plot-data translator

• clean removes custom object and executable files from the current
working directory

If no target is specified, then makeuser attempts to make all STAGS executables, placing
them in the current working directory (see Table 2.1).
2-14 April 2009 STAGS 5.0 User Manual

UNIX-Based Systems Installation and Execution
Each user-written subroutine must be in a .F source file. Routines called by user-written
subroutines, if any, can be in .c files, .F files, and/or in .a library files; do not duplicate any
STAGS names.

The makeuser procedure compiles source files (.F, .c, and .h, as appropriate) in the current
working directory and links these files ahead of the standard STAGS libraries. If user libraries are
included, they will be linked after any source files in the current directory but before any STAGS

libraries.

The makeuser procedure operates exclusively on files that are in the current working directory
($cwd) and has no effect on the $STAGSHOME file system or on any other file system.

Table 2.1 makeuser target summary

 target action

 s1 All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the s1 program files in user.a are extracted and linked ahead of all other libraries
to create the us1 executable.

 s2 All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the s2 program files in user.a are extracted and linked ahead of all other libraries
to create the us2 executable.

stapl All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the stapl program files in user.a are extracted and linked ahead of all other
libraries to create the ustapl executable.

 scopy
pitrans
xytrans

All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the files in user.a are extracted and linked ahead of all other libraries to create
the scopy, pitrans and xytrans executables.

 clean Any of the following files which exist in the current working directory are removed:
 __*
*.o
any STAGS executable
user.a
STAGS 5.0 User Manual April 2009 2-15

Installation and Execution UNIX-Based Systems
CAUTION: Existing .o files are erased by makeuser. These may be placed in a .a
library file, which may be linked with the “-l” option.

makeuser attempts to “force link” any object modules produced from source files, and some
linkers will abort if asked to force link a name that is not referenced.; this vexation can be
avoided by ensuring that $cwd includes only those source files containing program modules
whose names are referenced by the target.

Examples

Suppose the current working directory contains the following files:

-rw-r--r-- 1 stags 12833 Jan 12 10:30 mylib1.a
-rw-r--r-- 1 stags 78294 Jan 12 10:30 mylib2.a
-rw-r--r-- 1 stags 1242 Jan 12 10:30 user2.F
-rw-r--r-- 1 stags 7231 Jan 12 10:30 user1.F

• create a custom version of s2, incorporating user1.F and user2.F
% makeuser s2

• create a custom version of s2—with user1.F and user2.F compiled for symbolic debugging
% makeuser -g s2

• create a custom version of s2—linking in mylib1.a and mylib2.a, in addition to user1.F and
user2.F
% makeuser -l mylib1.a -l mylib2.a s2

• create a custom version of s2—linking in mylib1.a and mylib2.a, together with user1.F and
user2.F compiled for symbolic debugging;
% makeuser -g -l mylib1.a -l mylib2.a s2

In all of these examples, makeuser will produce a user.a user–library file and a us2 user–
executable file. Since no .c files and no .h files exist in the current directory, makeuser will also
create dummy files dummyc.c and dummyi.h.
2-16 April 2009 STAGS 5.0 User Manual

Linux-Based Systems Installation and Execution
2.3 Linux-Based Systems

PRELIMINARY:

The good news here is that STAGS can be installed easily and can be executed effectively on
various flavors of Linux-based machines. The bad news here is that this seriously underfunded
section of Chapter 2 is still “under construction” and is somewhat incomplete, right now. While
this is the case, we recommend that anyone who experiences difficulties in installing and
executing STAGS on a Linux-based system contact contact Dr. Charles C. Rankin, at

Rhombus Consultants Group
2565 Leghorn Street
Mountain View, CA 94043

or Dr. Frank C. Weiler, at

Lockheed-Martin Missiles & Space Co., Inc.
ATC Org. L9-21; Bldg. 204
3251 Hanover Street
Palo Alto, CA 94304

2.3.1 Basic Linux System Requirements

Basic system requirements that must be met to install STAGS on a Linux system are summarized
in the following:

Minimum disk space required 85 MB

System utilities required fpp & fsplit (supplied)

Compilers required gcc & g77

System requirements that must be met (and should be comfortably exceeded) to execute STAGS

programs on a Linux system are summarized in the following table:

Processor speed requirements 300 MHz

Memory requirements 256 MB

Storage requirements 512 MB

2.3.2 Installation of STAGS on a Linux System

STAGS is conveniently installed on Linux systems while operating within the framework of a C-
Shell environment.
STAGS 5.0 User Manual April 2009 2-17

Installation and Execution Linux-Based Systems
Installing STAGS on a Linux system

Linux versions of STAGS are typically distributed on CDs or via “ftp” as a pair of gzip-
compressed archive files—the primary distribution file (stags_linux.tgz) and a secondary
(but necessary) utility file (ftp_split.tgz). Installation of STAGS on a Linux system is
typically a six-step process:

1) Establish the root directory into which STAGS is to be installed (the /home/stags
directory, for example)—creating it as and if necessary; make this directory the
current working directory.

2) Copy the two STAGS distribution files from their distribution medium into this
working directory.

3) Extract STAGS from the stags_linux.tgz file and the fpp and fsplit utilities
from the fpp_fsplit.tgz file by issuing the following two commands:

% tar xfz stags_linux.tgz
% tar xfz fpp_fsplit.tgz

The first operation in this step creates a new subdirectory (named stags) within the
current working directory. This new subdirectory is called $STAGSHOME in the
directory structure diagram that is shown in Figure 2.1. After creating this new
subdirectory, the first operation constructs the STAGS program system within it.

The second operation in this step creates two additional subdirectories (named fpp
and fsplit) within the current working directory. The fpp and fsplit subdirectories
contain two utility programs that are needed whenever it is necessary to compile
STAGS routines and/or to “make” STAGS executables.

4) Continue the installation process by executing the RUN.ME.FIRST script from the
new stags subdirectory, as follows:

% cd stags
% RUN.ME.FIRST

The RUN.ME.FIRST script modifies the STAGS initialization file (discussed next);
then it commits suicide by deleting itself.

5) Continue the installation process by transferring from the stags subdirectory to fpp
(one of stags’ two siblings) and performing the following operations:

% cd ../fpp
% make fpp

The make fpp command compiles and “makes” the fpp utility program, producing
fpp*. Transfer (copy or move) fpp* from the current working directory into the
/usr/local/bin directory (which must be in the user’s path).
2-18 April 2009 STAGS 5.0 User Manual

Linux-Based Systems Installation and Execution
6) Conclude the installation process by transferring from the fpp subdirectory to fsplit
(stags’ other sibling) and performing the following operations:

% cd ../fsplit
% make fsplit

The make fsplit command compiles and “makes” the fsplit utility program,
producing fsplit*. Transfer (copy or move) fsplit* from the current working
directory into the /usr/local/bin directory (which must be in the user’s path).

Installation is now complete. An initialization procedure must be performed, however, before
STAGS can be executed.

Initializing STAGS on a Linux system

Issue the following command once per login session prior to changing or running STAGS:

% source $STAGSHOME/prc/initialize

where $STAGSHOME is the complete path name to the stags directory structure that is shown in
Figure 2.1. The $STAGSHOME/prc/initialize procedure establishes a number of command aliases
and environmental variables that are necessary to operate on and/or to execute the STAGS

programs. For example, $STAGSHOME is defined as an environmental variable that contains the
path name of the stags directory.

It is strongly recommended that each STAGS user inspect the $STAGSHOME/prc/initialize file to
see the aliases and variables that it creates, and install this command (or define an alias for it) in
his or her .login file.

Making STAGS on a Linux system (as and if necessary)

For Linux installations, STAGS is typically distributed with source code, object libraries, and
executables for specific machine architectures. Normally, it is not necessary for the installing
administrator or for the typical user to “make” the STAGS programs. In unusual circumstances—
such as when inconsistencies exist between the environment used to create the STAGS

distribution software and that which is resident on the user’s machine—it may be necessary to
do so. The computationally-sophisticated user may elect to recompile and re-link STAGS

components to take advantage of high-performance compilation and/or optimization features that
may be available on his or her machine.

To make STAGS, simply execute the make command from the $STAGSHOME directory. To make
specific libraries or executables, issue the following command from any directory:
STAGS 5.0 User Manual April 2009 2-19

Installation and Execution Linux-Based Systems
% makestags [target]

See the file $STAGSHOME/prc/makestags for a list of valid targets. To remake the star library,
for example, execute the command:

% makestags star.a

The makestags command, with no arguments, will make all of STAGS. It is equivalent to
executing the make command from $STAGSHOME.

Coping with installation errors (as and if necessary)

Some common causes of installation difficulties include insufficient disk space, lack of write
permission in the selected directory, nonexistence of Linux commands that are required for the
installation procedure, and installer boneheadedness. If installation is not successful, identify and
correct the problem; then delete the entire $STAGSHOME directory and start over again at the
2.3.2 “Installation of STAGS on a Linux System” point.

Verifying that STAGS operates correctly

Correct operation of STAGS can be verified by running the small suite of test cases in the
$STAGSHOME/testcases directory and examining selected portions of the output. Basic concepts
and procedures for executing STAGS processors on Linux systems are described in the following
subsection—which the installing administrator and anyone who uses STAGS on such a system
must master. A first-level operation verification procedure for STAGS is discussed in Section 2.6
(at the end of this chapter).

2.3.3 Execution of STAGS on a Linux System

There are two basic types of executable STAGS programs:

• default executables these are the standard versions of the STAGS processors (s1, s2,
stapl, scopy and xytrans) that are supplied with the program
and used for most applications; these executables are always
stored in the $STAGSHOME/bin directory

• custom executables these are application-dependent versions of s1, s2, stapl,
scopy and/or xytrans—which are typically created by linking
with user-written subroutines and/or user-defined elements
and are typically stored in user-controlled directories.

On Linux systems, the $STAGSHOME/prc directory contains a number of procedure files that
facilitate the execution and construction of STAGS programs. These procedure files (scripts) are
described in the $STAGSHOME/README file. The most important of these (in the “execution”
department) is the stags procedure—which is typically used to run
2-20 April 2009 STAGS 5.0 User Manual

Linux-Based Systems Installation and Execution
• s1 STAGS’ model processor
• s2 STAGS’ solution processor
• stapl STAGS’ plotting post-processor
• scopy STAGS’ file-copy processor
• pitrans STAGS’ translator/post-processor
• xytrans STAGS’ post-processor to generate data for XY plots

to construct a STAGS model, to perform one or more analyses with it, to perform pre- and/or
post-analysis plotting operations, and to do other things with data on STAGS I/O files.* The most
important of these procedures (in the “construction” department) is makeuser—which is used to
“make” custom versions of STAGS processors when it is necessary to do so. The remainder of
this subsection is devoted to descriptions of these two procedures:

stags: On Linux systems, one typically “runs” the STAGS program(s) by invoking
the $STAGSHOME/prc/stags procedure; this is typically done via the stags
alias, which $STAGSHOME/prc/initialize constructs when the user initializes
STAGS prior to exercising it; the stags procedure can be used to run
STAGS with default and/or with custom STAGS executables.

See “Executing STAGS with stags (Linux)” on page 2-22 for information
about the stags procedure, and “Initializing STAGS on a Linux system” on
page 2-19 for more information about the initialization process.

makeuser Custom, user-owned versions of executable STAGS processors may be created
with the $STAGSHOME/prc/makeuser procedure, which is generally executed
via the makeuser alias that $STAGSHOME/prc/initialize defines when the
user initializes STAGS prior to exercising it; custom executables must be
created and executed when user-written subroutines and/or user-defined
elements are employed.

See “Creating custom STAGS executables with makeuser (Linux)” on page 2-
23 for more information about the makeuser procedure.

See “Initializing STAGS on a Linux system” on page 2-19 for information
about the initialization process.

See Chapter 12 “User-Written Subroutines” for more information about user-
written subroutines, and Chapter 13 “User–Defined Elements” for more
information about user-defined elements.

Users can also create special-purpose versions of STAGS code, since source
code is distributed with the program; this type of advanced use is outside the
scope of this document, but the sophisticated analyst may find occasion to
customize STAGS for specific applications.

* See Chapter 17 “Input/Output Files” for documentation on STAGS I/O files.
STAGS 5.0 User Manual April 2009 2-21

Installation and Execution Linux-Based Systems
Executing STAGS with stags (Linux)

Synopsis

stags [options] casename [options]

Options

-b – run STAGS in background; the default nice value is 10.
-n [nice_value] – set nice value for non-queued jobs; if option -n is selected,

but a nice value is not supplied, the default is 10.
-sm – send email message upon termination of background jobs;

default is send no email: queued jobs always send email
upon termination.

-1 [s1_executable] – run s1; a user-specified s1 executable is optionally defined.
-2 [s2_executable] – run s2; a user-specified s2 executable is optionally defined.

Examples

• run the default s1 and s2 executables interactively or in the foreground
% stags casename

If neither -1 nor -2 is present, then both s1 and s2 will be run in succession, using the default
executables.

• run a custom version of s2 with the default version of s1
% stags -1 -2 [s2_executable] casename

• run a custom version of s1 with the default version of s2
% stags -2 -1 [s1_executable] casename

• run default s1 and custom s2 in background, then send email upon completion
% stags -b -1 -2 ~/my_s2 -sm mycase

• run custom s2 in the background, then send mail upon completion
% stags -b -sm -2 ~/my_s2 mycase

• run s1 in the foreground
% stags mycase -1

Note that options -1/-2 appear after mycase in the above/below examples; any argument
following -1 or -2 must be either a valid STAGS executable (custom or default) or another
option (i.e., an argument beginning with a -).

• run s2 in the foreground
% stags mycase -2
2-22 April 2009 STAGS 5.0 User Manual

Linux-Based Systems Installation and Execution
Creating custom STAGS executables with makeuser (Linux)

Synopsis

makeuser [-g] [-l userlib.a] [target]

Options

-g – compile .F files with standard debug option

-cpp “cppflags” – where cppflags are valid cpp options; user-entered cppflags are both prepended
and appended to the default cppflags; the user-entered cppflags are prepended
so that, if given, alternate include-file directories can be searched before the
standard include-file directories; the user-entered cppflags are also appended so
that default cpp definitions can be reset by the user; the user-entered cppflags do
not replace the default cppflags because STAGS code will not compile correctly
without certain default cpp definitions that the user is likely to forget to include.

Example: -cpp “-D_debug_”

-fc “fcflags” – where user-entered fcflags (FORTRAN compiler options) replace the default
compiler options for all modes of compilation: no optimization, partial
optimization, full optimization, and debug; on most machines, users should
remember to include the “-c” flag if they exercise this option.

Example: -fc “-c -g -O2”

-cc “ccflags” – where user-entered ccflags (C compiler options) replace the default compiler
options.

Example: -cc “-c -g -O2”

-ld “linkflags” – where user-entered linkflags (linker options) replace the default linker options.

Example: -ld “-M -Bstatic”

-l userlib.a – Link library userlib.a when target is made; more than one library can be linked
using additional “-l” arguments.

target is a target in $STAGSHOME/make/makefile.user. Valid targets are:

• s1 creates a custom version of s1, the STAGS model processor

• s2 creates a custom version of s2, the STAGS solution processor

• scopy creates a custom version of scopy, a STAGS data postprocessor

• pitrans creates a custom version of pitrans, a STAGS translator/postprocessor

• xytrans creates a custom version of xytrans, a STAGS xy-plot-data translator

• clean removes custom object and executable files from the current
working directory

If no target is specified, then makeuser attempts to make all STAGS executables, placing
them in the current working directory (see Table 2.2).

Each user-written subroutine must be in a .F source file. Routines called by user-written
subroutines, if any, can be in .c files, .F files, and/or in .a library files; do not duplicate any
STAGS names.
STAGS 5.0 User Manual April 2009 2-23

Installation and Execution Linux-Based Systems
The makeuser procedure compiles source files (.F, .c, and .h, as appropriate) in the current
working directory and links these files ahead of the standard STAGS libraries. If user libraries are
included, they will be linked after any source files in the current directory but before any STAGS

libraries.

The makeuser procedure operates exclusively on files that are in the current working directory
($cwd) and has no effect on the $STAGSHOME file system or on any other file system.

CAUTION: Existing .o files are erased by makeuser. These may be placed in a .a
library file, which may be linked with the “-l” option.

makeuser attempts to “force link” any object modules produced from source files, and some
linkers will abort if asked to force link a name that is not referenced. This vexation can be

Table 2.2 makeuser target summary

 target action

 s1 All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the s1 program files in user.a are extracted and linked ahead of all other libraries
to create the us1 executable.

 s2 All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the s2 program files in user.a are extracted and linked ahead of all other libraries
to create the us2 executable.

stapl All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the stapl program files in user.a are extracted and linked ahead of all other
libraries to create the ustapl executable.

 scopy
pitrans
xytrans

All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the files in user.a are extracted and linked ahead of all other libraries to create
the scopy, pitrans and xytrans executables.

 clean Any of the following files which exist in the current working directory are removed:
 __*
*.o
any STAGS executable
user.a
2-24 April 2009 STAGS 5.0 User Manual

Linux-Based Systems Installation and Execution
avoided by ensuring that $cwd includes only those source files containing program modules
whose names are referenced by the target.

Examples

Suppose the current working directory contains the following files:

-rw-r--r-- 1 stags 12833 Jan 12 10:30 mylib1.a
-rw-r--r-- 1 stags 78294 Jan 12 10:30 mylib2.a
-rw-r--r-- 1 stags 1242 Jan 12 10:30 user2.F
-rw-r--r-- 1 stags 7231 Jan 12 10:30 user1.F

• create a custom version of s2, incorporating user1.F and user2.F
% makeuser s2

• create a custom version of s2—with user1.F and user2.F compiled for symbolic debugging
% makeuser -g s2

• create a custom version of s2—linking in mylib1.a and mylib2.a, in addition to user1.F and
user2.F
% makeuser -l mylib1.a -l mylib2.a s2

• create a custom version of s2—linking in mylib1.a and mylib2.a, together with user1.F and
user2.F compiled for symbolic debugging;
% makeuser -g -l mylib1.a -l mylib2.a s2

In all of these examples, makeuser will produce a user.a user–library file and a us2 user–
executable file. Since no .c files and no .h files exist in the current directory, makeuser will also
create dummy files dummyc.c and dummyi.h.
STAGS 5.0 User Manual April 2009 2-25

Installation and Execution Macintosh-Based Systems
2.4 Macintosh-Based Systems

PRELIMINARY:

The good news here is that STAGS can be installed and executed on Macintosh-based machines.
The bad news here is that this seriously underfunded section of Chapter 2 is also “under
construction” and is also incomplete. We recommend that anyone who experiences difficulties
in installing and executing STAGS on a Macintosh system contact Dr. Charles C. Rankin, at

Rhombus Consultants Group
2565 Leghorn Street
Mountain View, CA 94043

2.4.1 Basic Macintosh System Requirements

Basic system requirements that must be met to install STAGS on a Macintosh system are
summarized in the following:

Operating system OS X (10.2)

Minimum disk space required 85 MB

System utilities required fpp & fsplit (supplied)

Compilers required gcc & g77

System requirements that must be met (and should be comfortably exceeded) to execute STAGS

programs on a Macintosh system are summarized in the following table:

Processor speed requirements 300 MHz

Memory requirements 256 MB

Storage requirements 512 MB

2.4.2 Installation of STAGS on a Macintosh system

To install STAGS on a Macintosh system, one must be in a terminal window.

Installing STAGS on a Macintosh system

Macintosh versions of STAGS are typically distributed on CDs or via “ftp” as a pair of gzip-
compressed archive files—the primary distribution file (stags_mac.tgz) and a secondary
(but necessary) utility file (ftp_split.tgz). Installation of STAGS on a Macintosh system is
typically a six-step process:
2-26 April 2009 STAGS 5.0 User Manual

Macintosh-Based Systems Installation and Execution
1) Establish the root directory into which STAGS is to be installed (the /home/stags
directory, for example)—creating it as and if necessary; make this directory the
current working directory.

2) Copy the two STAGS distribution files from their distribution medium into this
working directory.

3) Extract STAGS from the stags_mac.tgz file and the fpp and fsplit utilities from
the fpp_fsplit.tgz file by issuing the following two commands:

% tar xfz stags_mac.tgz
% tar xfz fpp_fsplit.tgz

The first operation in this step creates a new subdirectory (named stags) within the
current working directory. This new subdirectory is called $STAGSHOME in the
directory structure diagram that is shown in Figure 2.1. After creating this new
subdirectory, the first operation constructs the STAGS program system within it.

The second operation in this step creates two additional subdirectories (named fpp
and fsplit) within the current working directory. The fpp and fsplit subdirectories
contain two utility programs that are needed whenever it is necessary to compile
STAGS routines and/or to “make” STAGS executables.

4) Continue the installation process by executing the RUN.ME.FIRST script from the
new stags subdirectory, as follows:

% cd stags
% RUN.ME.FIRST

The RUN.ME.FIRST script modifies the STAGS initialization file (discussed next);
then it commits suicide by deleting itself.

5) Continue the installation process by transferring from the stags subdirectory to fpp
(one of stags’ two siblings) and performing the following operations:

% cd ../fpp
% make fpp

The make fpp command compiles and “makes” the fpp utility program, producing
fpp*. Transfer (copy or move) fpp* from the current working directory into the
/usr/local/bin directory (which must be in the user’s path).

6) Conclude the installation process by transferring from the fpp subdirectory to fsplit
(stags’ other sibling) and performing the following operations:

% cd ../fsplit
% make fsplit

The make fsplit command compiles and “makes” the fsplit utility program,
producing fsplit*. Transfer (copy or move) fsplit* from the current working
directory into the /usr/local/bin directory (which must be in the user’s path).
STAGS 5.0 User Manual April 2009 2-27

Installation and Execution Macintosh-Based Systems
Installation is now complete. An initialization procedure must be performed, however, before
STAGS can be executed.

Initializing STAGS on a Macintosh system

Issue the following command once per login session prior to changing or running STAGS:

% source $STAGSHOME/prc/initialize

where $STAGSHOME is the complete path name to the stags directory structure that is shown in
Figure 2.1. The $STAGSHOME/prc/initialize procedure establishes a number of command aliases
and environmental variables that are necessary to operate on and/or to execute the STAGS

programs. For example, $STAGSHOME is defined as an environmental variable that contains the
path name of the stags directory.

It is strongly recommended that each STAGS user inspect the $STAGSHOME/prc/initialize file to
see the aliases and variables that it creates, and install this command (or define an alias for it) in
his or her .login file.

Making STAGS on a Macintosh system (as and if necessary)

For Macintosh installations, STAGS is typically distributed with source code and with object
libraries and executables, for specific machine architectures. Normally, it is not necessary for the
installing administrator or for the typical user to “make” the STAGS programs. In unusual
circumstances—such as when inconsistencies exist between the environment used to create the
STAGS distribution software and that which is resident on the user’s machine—it may be
necessary to do so. The computationally-sophisticated user may elect to recompile and re-link
STAGS components to take advantage of high-performance compilation and/or optimization
features that may be available on his or her machine.

To make STAGS, simply execute the make command from the $STAGSHOME directory. To make
specific libraries or executables, issue the following command from any directory:

% makestags [target]

See the file $STAGSHOME/prc/makestags for a list of valid targets. To remake the star library,
for example, execute the command:

% makestags star.a

The makestags command, with no arguments, will make all of STAGS. It is equivalent to
executing the make command from $STAGSHOME.
2-28 April 2009 STAGS 5.0 User Manual

Macintosh-Based Systems Installation and Execution
Coping with installation errors (as and if necessary)

Some common causes of installation difficulties include insufficient disk space, lack of write
permission in the selected directory, nonexistence of Macintosh commands that are required for
the installation procedure, and installer boneheadedness. If installation is not successful, identify
and correct the problem; then delete the entire $STAGSHOME directory and start over again at
the 2.4.2 “Installation of STAGS on a Macintosh system” point.

Verifying that STAGS operates correctly

Correct operation of STAGS can be verified by running the small suite of test cases in the
$STAGSHOME/testcases directory and examining selected portions of the output. Basic concepts
and procedures for executing STAGS processors on Macintosh systems are described in the
following subsection—which the installing administrator and anyone who uses STAGS on such a
system must master. A first-level operation verification procedure for STAGS is discussed in
Section 2.6 (at the end of this chapter).

2.4.3 Execution of STAGS on a Macintosh System

There are two basic types of executable STAGS programs:

• default executables these are the standard versions of the STAGS processors (s1, s2,
stapl, scopy and xytrans) that are supplied with the program
and used for most applications; these executables are always
stored in the $STAGSHOME/bin directory

• custom executables these are application-dependent versions of s1, s2, stapl,
scopy and/or xytrans—which are typically created by linking
with user-written subroutines and/or user-defined elements
and are typically stored in user-controlled directories.

On Macintosh systems, the $STAGSHOME/prc directory contains a number of procedure files
that facilitate the execution and construction of STAGS programs. These procedure files (scripts)
are described in the $STAGSHOME/README file. The most important of these (in the “execution”
department) is the stags procedure—which is typically used to run
STAGS 5.0 User Manual April 2009 2-29

Installation and Execution Macintosh-Based Systems
• s1 STAGS’ model processor
• s2 STAGS’ solution processor
• stapl STAGS’ plotting post-processor
• scopy STAGS’ file-copy processor
• pitrans STAGS’ translator/post-processor
• xytrans STAGS’ post-processor to generate data for XY plots

to construct a STAGS model, to perform one or more analyses with it, to perform pre- and/or
post-analysis plotting operations, and to do other things with data on STAGS I/O files.* The most
important of these procedures (in the “construction” department) is makeuser—which is used to
“make” custom versions of STAGS processors when it is necessary to do so. The remainder of
this subsection is devoted to descriptions of these two procedures:

stags: On Macintosh systems, one typically “runs” the STAGS program(s) by invoking
the $STAGSHOME/prc/stags procedure; this is typically done via the stags
alias, which is constructed by $STAGSHOME/prc/initialize when the user
initializes STAGS prior to exercising it; the stags procedure can be used
to run STAGS with default and/or with custom STAGS executables.

See “Executing STAGS with stags (Macintosh)” on page 2-31 for information
about the stags procedure, and “Initializing STAGS on a Macintosh system” on
page 2-28 for more information about the initialization process.

makeuser Custom, user-owned versions of executable STAGS processors may be created
with the $STAGSHOME/prc/makeuser procedure, which is generally executed
via the makeuser alias that $STAGSHOME/prc/initialize defines when the user
initializes STAGS prior to exercising it; custom executables must be created and
executed when user-written subroutines and/or user-defined elements are
employed.

See “Creating custom STAGS executables with makeuser (Macintosh)” on page
2-32 for more information about the makeuser procedure.

See “Initializing STAGS on a Macintosh system” on page 2-28 for information
about the initialization process.

See Chapter 12 “User-Written Subroutines” for more information about user-
written subroutines, and Chapter 13 “User–Defined Elements” for more
information about user-defined elements.

Users can also create special-purpose versions of STAGS code, since source code
is distributed with the program; this type of advanced use is outside the scope of
this document, but the sophisticated analyst may find occasion to customize
STAGS for specific applications.

* See Chapter 17 “Input/Output Files” for documentation on STAGS I/O files.
2-30 April 2009 STAGS 5.0 User Manual

Macintosh-Based Systems Installation and Execution
Executing STAGS with stags (Macintosh)

Synopsis

stags [options] casename [options]

Options

-b – run STAGS in background; the default nice value is 10.
-n [nice_value] – set nice value for non-queued jobs; if option -n is selected,

but a nice value is not supplied, the default is 10.
-sm – send email message upon termination of background jobs;

default is send no email: queued jobs always send email
upon termination.

-1 [s1_executable]–run s1; a user-specified s1 executable is optionally
defined.

-2 [s2_executable]–run s2; a user-specified s2 executable is optionally
defined.

Examples

• run the default s1 and s2 executables interactively or in the foreground
% stags casename
If neither -1 nor -2 is present, then both s1 and s2 will be run in succession, using the default
executables.

• run a custom version of s2 with the default version of s1
% stags -1 -2 [s2_executable] casename

• run a custom version of s1 with the default version of s2
% stags -2 -1 [s1_executable] casename

• run default s1 and custom s2 in background, then send email upon completion
% stags -b -1 -2 ~/my_s2 -sm mycase

• run custom s2 in the background, then send mail upon completion
% stags -b -sm -2 ~/my_s2 mycase

• run s1 in the foreground
% stags mycase -1

Note that options -1/-2 appear after mycase in the above/below examples; any argument
following -1 or -2 must be either a valid STAGS executable (custom or default) or another
option (i.e., an argument beginning with a -).

• run s2 in the foreground
% stags mycase -2
STAGS 5.0 User Manual April 2009 2-31

Installation and Execution Macintosh-Based Systems
Creating custom STAGS executables with makeuser (Macintosh)

Synopsis

makeuser [-g] [-l userlib.a] [target]

Options

-g – compile .F files with standard debug option

-cpp “cppflags” – where cppflags are valid cpp options; user-entered cppflags are both prepended
and appended to the default cppflags; the user-entered cppflags are prepended
so that, if given, alternate include-file directories can be searched before the
standard include-file directories; the user-entered cppflags are also appended so
that default cpp definitions can be reset by the user; the user-entered cppflags do
not replace the default cppflags because STAGS code will not compile correctly
without certain default cpp definitions that the user is likely to forget to include.

Example: -cpp “-D_debug_”

-fc “fcflags” – where user-entered fcflags (FORTRAN compiler options) replace the default
compiler options for all modes of compilation: no optimization, partial
optimization, full optimization, and debug; on most machines, users should
remember to include the “-c” flag if they exercise this option.

Example: -fc “-c -g -O2”

-cc “ccflags” – where user-entered ccflags (C compiler options) replace the default compiler
options.

Example: -cc “-c -g -O2”

-ld “linkflags” – where user-entered linkflags (linker options) replace the default linker options.

Example: -ld “-M -Bstatic”

-l userlib.a – Link library userlib.a when target is made; more than one library can be linked
using additional “-l” arguments.

target is a target in $STAGSHOME/make/makefile.user. Valid targets are:

• s1 creates a custom version of s1, the STAGS model processor

• s2 creates a custom version of s2, the STAGS solution processor

• scopy creates a custom version of scopy, a STAGS data postprocessor

• pitrans creates a custom version of pitrans, a STAGS translator/postprocessor

• xytrans creates a custom version of xytrans, a STAGS xy-plot-data translator

• clean removes custom object and executable files from the current
working directory

If no target is specified, then makeuser attempts to make all STAGS executables, placing
them in the current working directory (see Table 2.3).
2-32 April 2009 STAGS 5.0 User Manual

Macintosh-Based Systems Installation and Execution
Each user-written subroutine must be in a .F source file. Routines called by user-written

subroutines, if any, can be in .c files, .F files, and/or in .a library files; do not duplicate any

STAGS names.

The makeuser procedure compiles source files (.F, .c, and .h, as appropriate) in the current

working directory and links these files ahead of the standard STAGS libraries. If user libraries are

included, they will be linked after any source files in the current directory but before any STAGS

libraries.

The makeuser procedure operates exclusively on files that are in the current working directory

($cwd) and has no effect on the $STAGSHOME file system or on any other file system.

Table 2.3 makeuser target summary

 target action

 s1 All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the s1 program files in user.a are extracted and linked ahead of all other libraries
to create the us1 executable.

 s2 All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the s2 program files in user.a are extracted and linked ahead of all other libraries
to create the us2 executable.

stapl All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the stapl program files in user.a are extracted and linked ahead of all other
libraries to create the ustapl executable.

 scopy
pitrans
xytrans

All of the source files (.F, .c, and .h) in the current directory are compiled and the object
files produced by those compilations are placed in the user.a library.

All of the files in user.a are extracted and linked ahead of all other libraries to create
the scopy, pitrans and xytrans executables.

 clean Any of the following files which exist in the current working directory are removed:
 __*
*.o
any STAGS executable
user.a
STAGS 5.0 User Manual April 2009 2-33

Installation and Execution Macintosh-Based Systems
CAUTION: Existing .o files are erased by makeuser. These may be placed in a .a
library file, which may be linked with the “-l” option.

makeuser attempts to “force link” any object modules produced from source files, and some
linkers will abort if asked to force link a name that is not referenced. This vexation can be
avoided by ensuring that $cwd includes only those source files containing program modules
whose names are referenced by the target.

Examples

Suppose the current working directory contains the following files:

-rw-r--r-- 1 stags 12833 Jan 12 10:30 mylib1.a
-rw-r--r-- 1 stags 78294 Jan 12 10:30 mylib2.a
-rw-r--r-- 1 stags 1242 Jan 12 10:30 user2.F
-rw-r--r-- 1 stags 7231 Jan 12 10:30 user1.F

• create a custom version of s2, incorporating user1.F and user2.F
% makeuser s2

• create a custom version of s2—with user1.F and user2.F compiled for symbolic debugging
% makeuser -g s2

• create a custom version of s2—linking in mylib1.a and mylib2.a, in addition to user1.F and
user2.F
% makeuser -l mylib1.a -l mylib2.a s2

• create a custom version of s2—linking in mylib1.a and mylib2.a, together with user1.F and
user2.F compiled for symbolic debugging;
% makeuser -g -l mylib1.a -l mylib2.a s2

In all of these examples, makeuser will produce a user.a user–library file and a us2 user–
executable file. Since no .c files and no .h files exist in the current directory, makeuser will also
create dummy files dummyc.c and dummyi.h.
2-34 April 2009 STAGS 5.0 User Manual

Windows-Based Systems Installation and Execution
2.5 Windows-Based Systems

The current version of STAGS can be installed and executed on Windows-based machines, but
we strongly recommend that anyone who wants to do that should seriously consider Linux-based
alternatives. This section of Chapter 2 is not “under construction” yet, so we recommend that
anyone who is determined to install and execute STAGS on a Windows system should contact
Dr. Frank C. Weiler, at

Lockheed-Martin Missiles & Space Co., Inc.
ATC Org. L9-21; Bldg. 204
3251 Hanover Street
Palo Alto, CA 94304

2.5.1 Basic Windows System Requirements

2.5.2 Installation of STAGS on a Windows System

Installing STAGS on a Windows system

Initializing STAGS on a Windows system

Making STAGS on a Windows system (as and if necessary)

Coping with installation errors (as and if necessary)

Verifying that STAGS operates correctly

2.5.3 Execution of STAGS on a Windows System
STAGS 5.0 User Manual April 2009 2-35

Installation and Execution Installation Verification
2.6 Installation Verification

Correct operation of STAGS can be verified by running the small suite of test cases in the
$STAGSHOME/testcases directory and examining portions of the output. The precise way in
which this is done depends on the user’s platform (and is described in the appropriate section of
this chapter, above. For simplicity, the first-level verification process for a UNIX-based system
is described here. Administrators and users with other platforms can make the necessary
adjustments to this narrative for the platform of interest.

Change your current working directory to $STAGSHOME/testcases and follow the instructions
below. If all three test cases produce correct results, then you may assume that STAGS is
operating correctly on your machine.

Test 1: sxybuck

This is a small test case in which the shear buckling setup, boundary conditions and behavior are
examined for a model with exotic material layup angles.

Execute STAGS [see “Executing STAGS with stags (UNIX)” on page 2-12 (for example) for
information about the stags command):

% stags sxybuck

Examine the eigenvalues in the sxybuck.out2 output file and compare them to the correct values
shown below. The results should be accurate to 4 or 5 significant digits.

 CRITICAL LOAD FACTOR COMBINATION
NO. EIGENVALUE LOAD SYSTEM A LOAD SYSTEM B
 1 -0.18683774E+04 -0.186838E+04 0.000000E+00
 2 -0.22704978E+04 -0.227050E+04 0.000000E+00

Test 2: pcats

This standard plasticity test case, with a simple model, is frequently used to test the effects of
variations in material and other parameters.

Execute STAGS:

% stags pcats

Execute xytrans:

% xytrans pcats <<EOF
 3
 f
 q
 q
2-36 April 2009 STAGS 5.0 User Manual

Installation Verification Installation and Execution
 EOF

The file pcats.step should look like the file below. Results should be accurate to 4 or 5
significant digits.

There are 13 loadsteps for this case.
==
Loadstep of initial plastic yield: 6
Choose the loadstep for which you want to create a loadstep data file.

Loadstep Load Factor A Load Factor B time # of modes
 0 0.100000E-01 0.000000E+00 0.000000E+00 0
 1 0.100000E-01 0.000000E+00 0.000000E+00 0
 2 0.200000E-01 0.000000E+00 0.000000E+00 0
 3 0.312503E-01 0.000000E+00 0.000000E+00 0
 4 0.447805E-01 0.000000E+00 0.000000E+00 0
 5 0.607618E-01 0.000000E+00 0.000000E+00 0
 6 0.791830E-01 0.000000E+00 0.000000E+00 0
 7 0.986861E-01 0.000000E+00 0.000000E+00 0
 8 0.116296E+00 0.000000E+00 0.000000E+00 0
 9 0.123024E+00 0.000000E+00 0.000000E+00 0
 10 0.125273E+00 0.000000E+00 0.000000E+00 0
 11 0.127322E+00 0.000000E+00 0.000000E+00 0
 12 0.128000E+00 0.000000E+00 0.000000E+00 0

Test 3: dynela

This is a small test case for an elastica model experiencing nonlinear dynamic transient response.

Execute STAGS:

% stags dynela

Execute xytrans:

% xytrans dynela <<EOF
 4
 f
 11
 q
 q
 EOF

Issue the UNIX command:

% head -4 dynela.velo.11

The lines below should be printed to your screen. Again, results should be accurate to 4 or 5
significant digits.

Case: dynela, Loadstep: 11, Nodal Velocities
 22 22 -0.205472E+00 10 6
Load Factors: A (PA) = 0.00000E+00, B (PB) = 0.00000E+00
Maximum Velocity (w) = -0.20547E+00 at global node: 10
STAGS 5.0 User Manual April 2009 2-37

3

3

3 3
Getting Started

The first part of this chapter (Sections 3.1 through 3.6) presents a quick overview of STAGS by
guiding the user step-by-step through an example nonlinear analysis. Though everything here is
covered in more detail in other parts of the manual, this material provides a convenient reference
to facilitate comprehension of the detailed explanations given in the chapters that follow. While
it will be most useful to the new user, even an experienced user will benefit from a study of this
example. The final part of this chapter (Section 3.7) is a brief description of some of the test
problems that STAGS developers employ to verify that the program is working correctly and that
STAGS users should study to become more familiar and confident with the program.

Some key concepts which are introduced in the following example problem are summarized
below. These concepts should be kept in mind as the example problem is followed. At this point,
details are unimportant, and the reader should not be concerned with understanding every aspect
of the example analysis. What is important is to get a feel for what STAGS does and how it
interacts with the user. It will be helpful to refer back to this chapter, scrutinizing it thoroughly,
as other parts of the manual are absorbed.

• model definition

Models are defined in a model input file, casename.inp, where casename is a
character identifier supplied by the user. The model input file is referred to as the INP
file. See Chapters 5–10.

• solution specification

The analysis type and solution strategy are specified in a solution input file,
casename.bin. The solution input file is referred to as the BIN file. Just as there are
separate input files for model definition and solution specification, there are separate
executable programs (s1 & s2) for the two analysis phases. The concept of
independent model definition and solution specification is fundamental to the
STAGS 5.0 User Manual April, 2009 3-1

Getting Started Infinite Cylinder Under Hydrostatic Pressure
tremendous power and flexibility provided by STAGS to restart an interrupted
analysis, even switching analysis types (as from transient to static) at arbitrary points
in the solution process. See Chapter 11 “Solution Input”.

• file systems

STAGS uses various file systems: text input/output files, binary database files, and
scratch files. Two text input files (INP & BIN) are mentioned above. Understanding
these file systems is important for effective use of STAGS. This is especially so for
restarting an analysis, for pre/postprocessing, and for interfacing with the database
via STAR, the STAGS Access Routines. See Chapter 17 “Input/Output Files”.

• program execution

STAGS execution involves various command procedures which manipulate I/O files
and run the STAGS executables: s1, the model processor, and s2, the solution
processor. When using user-written subroutines, custom, application-dependent
executables are run in lieu of the standard ones. See Chapter 2 “Installation and
Execution”.

3.1 Infinite Cylinder Under Hydrostatic Pressure

The infinite cylinder is a structure that is of great theoretical and practical interest. Figure 3.1
shows a finite-element model of a short segment from the middle of a cylinder of infinite length.
It is a right circular cylinder, with a radius of R = 10.0 inches and a wall thickness of t = 0.1
inch. The resulting ratio indicates a thin-shell approximation. “Symmetry” boundary
conditions (BCs) on the & planes permit a structure to be modeled with
a arc, and the symmetry BCs on the & planes permit a cylinder of infinite
length with a symmetric response to be modeled as one having a finite length. The applied
loading is a ‘live’ hydrostatic pressure of p = 1.0 psi, acting in the inward radial direction. Live
pressure is a STAGS traction loading which remains normal to the deformed surface throughout
geometrically-nonlinear deformations. This “hydrostatic” pressure ignores the end
load since axial motion is constrained at both ends. The solution provided by thin-shell theory is

where the subscript c indicates the circumferential direction, and a the axial direction.

R t⁄ 100=

θ 0°= θ 90°= 360°

90° x 0= x L=

Na pR 2⁄=

ΔR 1 ν2
–()pR

2
Et⁄= εc ΔR R⁄=

σc pR t⁄=

εa 0=

σa νσc=
3-2 April, 2009 STAGS 5.0 User Manual

Infinite Cylinder Under Hydrostatic Pressure Getting Started
A perfect cylinder (one whose shape is perfectly cylindrical with an absolutely uniform wall

thickness) fabricated from an ideal material (one which remains linearly elastic under arbitrary

strain states) will remain stable as it undergoes large displacements caused by increasing

hydrostatic pressure. Eventually, the perfect cylinder will be compressed until its radius becomes

zero, maintaining linear strain-displacement and constitutive behavior throughout. For such a

structure, a linear static analysis will determine the load level corresponding to a given stress

criteria, and a linear eigenanalysis will predict bifurcation-buckling load levels. Often, such

linear analyses are adequate to determine allowable loads on a structure, but some applications

warrant a more rigorous approach.

Real cylinders do not have perfect geometry and are not made of ideal materials. Moreover,

some thin-shell structures buckle at fractions of their design loads, and their utility depends upon

post-buckling strength—a linear analysis is of limited value for such a structure. Our analysis

objective is to find the nonlinear collapse mode of such an imperfect cylinder. A rigorous

collapse analysis must account for initial geometric imperfections as well as nonlinear behavior.

The example presented here accounts for initial geometric imperfections and nonlinear strain-

displacement relations, but does not include nonlinear material behavior. Applied to the analysis

of thin shells, this strategy often reveals instability at load levels lower than those predicted by

a linear buckling analysis, while stress levels are well below the yield criterion for the material.

Figure 3.1 Example: Infinite cylinder under “live” hydrostatic pressure.

X

Y

Z

θ

axis

R 10″=

θ 0°=

θ 90°=

L 5″=

B.C. – symmetry on all 4 sides

 ‘live’ hydrostatic pressurep 1.0=

E 10.0
6×10=

ν 0.30=

t 0.10=
axis
STAGS 5.0 User Manual April, 2009 3-3

Getting Started Linear Bifurcation Buckling
The solution strategy followed in our example problem consists of three phases:

• linear buckling analysis

The first two eigenmodes are computed based upon a linear stress state. A linear
combination of the eignenvectors will be used to specify an initial geometric
imperfection for the nonlinear analysis, which follows.

• begin nonlinear static analysis

The nonlinear analysis begins with a small load magnitude and proceeds up to a level
just below the critical buckling load. Behavior is essentially linear in this region, but
the effects of the geometric imperfections are important.

• restart nonlinear analysis

The analysis restarts at the final load factor of the previous execution and continues
through very large displacements as the cylinder collapses. The collapse mode is
triggered by the presence of the initial geometric imperfections.

Each analysis phase is now described, in turn. Reference is made to various input files in the
following descriptions. These input files are listed in Section 3.6 “Input Files” on page 3-10.
Please refer to that section as needed throughout this chapter.

3.2 Linear Bifurcation Buckling

As explained in the introduction to this chapter, two text input files are required to perform an
analysis. The INP file (casename.inp) describes the model, and the BIN file (casename.bin)
specifies the solution strategy. The casename chosen for this analysis is “ring”. The INP file
describing the model is given in “ring.inp.1” on page 3-11, and the BIN file is in “ring.bin.1”.
Detailed explanations for the model and solution input are given in Chapter 5 “Model Input”
through Chapter 11 “Solution Input”. It may be beneficial to preview these chapters now, to gain
some understanding of the ring INP and BIN files. This is not essential, however.

The main point is that we are going to perform a buckling analysis of our cylindrical thin-shell
structure. To do so, we must have an input file to describe the model and a second input file to
specify the analysis type and solution strategy. So, let us perform the buckling analysis. First,
create a scratch space to contain the files that will be used for our sample problem. For example,
user “newton” might create the directory “/user/newton/stags/practice/ring”. Here the scratch
directory will be referred to symbolically as “$RING”. Create a linear buckling analysis
subdirectory, for example “$RING/buckling”, and in it install the input files for the buckling
3-4 April, 2009 STAGS 5.0 User Manual

Linear Bifurcation Buckling Getting Started
analysis, copying them from the *$STAGSHOME/examples/ring directory, and giving them the
required names of casename.inp and casename.bin. These operations are indicated symbolically
using a metalanguage, as follows:

Copy $STAGSHOME/examples/ring/ring.inp.1 to $RING/buckling/ring.inp

Copy $STAGSHOME/examples/ring/ring.bin.1 to $RING/buckling/ring.bin

At this point, the $RING/buckling directory contains two files, ring.inp (the INP file) and
ring.bin (the BIN file). Make $RING/buckling the default directory, and execute the buckling
analysis by issuing the “stags” command, giving “ring” (the casename) as an argument. To
run the buckling analysis interactively in the foreground, issue the following command:

stags ring

For a complete discussion of the stags command, see “Executing STAGS with stags (UNIX)” on
page 2-12. On completion of the buckling analysis (which should take only a few seconds to
perform), the $RING/buckling directory will contain the following files:

ring.inp model input

ring.bin solution input

ring_m.pdf model plot (PDF format)

ring.out1 model text output

ring.out2 solution text output

ring.sav binary model data

ring.rst, ring.res,
ring.imp, ring.egv binary solution data

ring.log execution summary text file

See “File Systems” on page 3-8 and Chapter 17 “Input/Output Files” for explanations of these
and all STAGS files.

Plots of the first two buckling modes, which were just computed, are shown in Figure 3.2. For
availability of graphical postprocessors for STAGS, see your site STAGS manager.

* $STAGSHOME is a system variable (a UNIX environmental variable) that refers to the top-level
STAGS directory for your particular installation. See “Initializing STAGS on a UNIX system” on
page 2-8.
STAGS 5.0 User Manual April, 2009 3-5

Getting Started Large-Deflection Analysis of an Imperfect Cylinder
3.3 Large-Deflection Analysis of an Imperfect Cylinder

Next, we will begin the nonlinear collapse analysis, including initial geometric imperfections. It
is necessary to create a new model in order to include the initial geometric imperfections. This
new model is developed by modifying the previous (ring.inp) input file to account for the initial
imperfections—simply by editing the existing file. Then, in order to run the nonlinear analysis,
we must specify the analysis type and solution strategy. The INP file describing the model is
given in “ring.inp.2” on page 3-12, and the BIN file is in “ring.bin.2”. Create a nonlinear analysis
subdirectory, “$RING/collapse”, and in it install the input files for the nonlinear analysis, copying
them from the $STAGSHOME/examples/ring directory, and giving them the required names of
casename.inp and casename.bin. As before, this operation is indicated symbolically as:

Copy $STAGSHOME/examples/ring/ring.inp.2 to $RING/collapse/ring.inp

Copy $STAGSHOME/examples/ring/ring.bin.2 to $RING/collapse/ring.bin

The initial geometric imperfections are defined as a linear combination of the first two buckling
modes as

Figure 3.2 Linear elastic buckling modes of a perfect cylinder.

X

Y

Z

X

Y

Z

Mode 1, λ 2.76= Mode 2, λ 13.8=
3-6 April, 2009 STAGS 5.0 User Manual

Large-Deflection Analysis of an Imperfect Cylinder Getting Started
where is the eigenvector corresponding to the first buckling mode, and is the second mode.
The are constants, and is the resulting imperfection vector. Inspection of the INP file
reveals that and . With , and with each eigenvector scaled so
that the largest translational component has a value of 1.0, it can be seen that the imperfection
is specified to be a linear combination of the first buckling mode, having a maximum amplitude
equal to 3.0% of the shell thickness, plus the second buckling mode, having a maximum
amplitude equal to 1.5% of the shell thickness. All translational components of the eigenvector
are used to generate the initial imperfection shape. This shape is then output in the model plot
file (casename_m.pdf or casename_m.ps).

The eigenvectors are contained in the file pair (IMP,EGV) computed in the linear buckling
analysis. These files must be present in the $RING/collapse directory since they are indirectly
referenced in the INP file. Install them as indicated below:

COPY $RING/buckling/ring.imp TO $RING/collapse/ring.imp

COPY $RING/buckling/ring.egv TO $RING/collapse/ring.egv

To execute the first phase of the collapse analysis interactively, issue the following command in
the $RING/collapse directory:

stags ring

Upon completion of the this analysis (which should take only a few seconds to perform), the
$RING/collapse directory will contain the following files:

ring.inp model input

ring.bin solution input

ring_m.pdf model plot (including imperfection)

ring.out1 model text output

ring.out2 solution text output

ring.sav binary model data

ring.rst, ring.res,
ring.imp, ring.egv binary solution data

ring.log execution summary text file

Φ α1φ1 α2φ2+=

φ1 φ2

αi Φ

α1 0.0030= α2 0.0015= t 0.10''= φi
STAGS 5.0 User Manual April, 2009 3-7

Getting Started Restarting a Nonlinear Analysis
3.4 Restarting a Nonlinear Analysis

A new BIN file is needed to restart the nonlinear collapse analysis. This is found in
$STAGSHOME/examples/ring/ring.bin.3. Copy this file to the $RING/collapse directory, as
follows:

Copy $STAGSHOME/examples/ring/ring.bin.3 to $RING/collapse/ring.bin

The above operation will overwrite the existing ring.bin, so save it with a different name, such
as “ring.bin.first”, if desired. To resume the collapse analysis interactively, issue the following
command in the $RING/collapse directory:

stags ring -2

After completion of the restarted analysis, (again, taking only a few seconds to perform), the
$RING/collapse directory will contain the following files:

ring.inp model input
ring.bin solution input
ring_m.pdf model plot (including imperfection)
ring.out1 model text output
ring.out2 solution text output
ring.out2.1 previous ring.out2 (renamed)
ring.sav binary model data
ring.rst, ring.res,
ring.imp, ring.egv binary solution data
ring.log execution summary text file

The final deformed shape is shown in Figure 3.3, and the load-deflection history is shown in
Figure 3.4. Note that for a load factor of nearly four the radial displacement at is about

, and at , about . Compare these radial displacements with the cylinder radius,
 and shell thickness .

3.5 File Systems

Table 3.1 is a summary of the files which are discussed in the foregoing example problem. This
table is included as a quick reference to help introduce the user to STAGS file systems. For
complete documentation of all STAGS files, see Chapter 17 “Input/Output Files”. The meaning
of the information in the six-column format is as follows:

θ 0°=

3.7″ θ 90°= 8.0″

R 10″= t 0.1''=
3-8 April, 2009 STAGS 5.0 User Manual

File Systems Getting Started
Figure 3.3 Deformed shape (true magnitude) at a load corresponding to .
Compare with Figure 3.4, the load-displacement curve.

Figure 3.4 Load-displacement curves, showing radial displacement vs. load-factor
at & .

X

Y

Z

PA 4.0=

-8.0 -6.0 -4.0 -2.0 0 2.0 4.0

0

1.0

2.0

3.0

4.0

lo
ad

 f
ac

to
r

radial displacement (in.)

θ 90°= θ 0°=

PA

θ 0°= θ 90°=
STAGS 5.0 User Manual April, 2009 3-9

Getting Started Input Files
• file general file name, used to refer to a file without reference to a specific
casename.

• name particular file name, where casename is a user-assigned alphanumeric
string of characters. casename is “ring” for the example problem.

• type either T for text (ASCII) or B for binary.

• s1, s2 indicates action taken by each of the two processors:
s1, the model processor, and s2, the solution processor.
This will be one of four categories: R (read), W (write),
R/W (read &write), or null (no action).

• description a brief explanation of the file contents

3.6 Input Files

The input files used in the example problem described in this section are supplied with the
STAGS program system, located in the $STAGSHOME/examples/ring directory, with names as

Table 3.1 STAGS files.

file name type s1 s2 description

 INP casename.inp text R model input

 BIN casename.bin text R solution input

 OUT1 casename.out1 text W model output

 OUT2 casename.out2 text W solution output

 OUT2.i casename.out2.i text OUT2, previous run

 LOG casename.log text execution summary

 SAV casename.sav binary W R model data

PDF casename_m.pdf text W configuration plot

PS casename_m.ps text W configuration plot

 RES casename.res binary R/W solution data

 RST casename.rst binary R/W solution data addresses

 EGV casename.egv binary R/W solution data

 IMP casename.imp binary R/W solution data addresses

10≤
3-10 April, 2009 STAGS 5.0 User Manual

Input Files Getting Started
summarized below. This section concludes with a listing of each of these files.

analysis model solution

• linear buckling analysis ring.inp.1 ring.bin.1

• start nonlinear analysis ring.inp.2 ring.bin.2

• restart nonlinear analysis — ring.bin.3

Linear buckling analysis

ring.inp.1

Infinite Cylinder, Live Hydrostatic Pressure

 0 $ B-1

 1 $ B-2 1 Shell unit

 1 0 1 $ B-3 1 material type, 1 wall type

 2 10 $ F-1 2 rows, 10 columns for 10 degree hoop spacing

 1 $ I-1 Material number 1

 1.E7 .3 0. .1 $ I-2 Modulus, Poisson’s ratio, density

 1 1 1 $ K-1 Wall ID #, wall type, # layers

 1 0.1 $ K-2 Layer 1 has material 1, thickness 0.1

$

$ Begin Shell Unit Definition

$

 5 $ M-1 Shell type 5 means CYLINDER

 0. 5. 0. 90. 10. $ M-2A Axial Coord. 1 and 2, 0. to 90. Deg

 1 $ M-5 Wall type 1 used

 410 $ N-1 The 410 element will be used

 4 4 4 4 $ P-1 Symmetry on all boundaries

 1 $ Q-1 1 load system defined

 1 1 $ Q-2 1 record on A system

 -1. 5 3 0 0 $ Q-3 Live hydrostatic pressure everywhere

 0 $ R-1 Print nothing except diagnostics

ring.bin.1

Linear Buckling Solution Control

 1 1 $ B-1 Do linear bifurcation and archive displs and modes

 1.0 $ C-1 Reference load set to unity

 0 $ D-2

 2 $ D-3 Two modes
STAGS 5.0 User Manual April, 2009 3-11

Getting Started Input Files
Start nonlinear analysis

ring.inp.2

Infinite Cylinder, Small Imperfection, Live Hydrostatic Pressure
 0 $ B-1
 1 0 0 0 0 0 2 $ B-2 1 Shell unit and 2 imperfection modes read
 1 0 1 $ B-3 1 material type, 1 wall type
 .0030 0 1 1 $ B-5 Weight .0030, step 0, mode 1, run 1
 .0015 0 2 1 $ B-5 Weight .0015, step 0, mode 2, run 1
 2 10 $ F-1 2 rows, 10 columns for 10 degree hoop spacing
 1 $ I-1 Material number 1
 1.E7 .3 0. .1 $ I-2 Modulus, Poisson’s ratio, density
 1 1 1 $ K-1 Wall ID #, wall type, # layers
 1 0.1 $ K-2 Layer 1 has material 1, thickness 0.1
$
$ Begin Shell Unit Definition
$
 5 $ M-1 Shell type 5 means CYLINDER
 0. 5. 0. 90. 10. $ M-2A Axial Coord. 1 and 2, 0. to 90. Deg
 1 $ M-5 Wall type 1 used
 410 $ N-1 The 410 element will be used
 4 4 4 4 $ P-1 Symmetry on all boundaries
 1 $ Q-1 1 load system defined
 1 1 $ Q-2 1 record on A system
 -1. 5 3 0 0 $ Q-3 Live hydrostatic pressure everywhere
 0 $ R-1 Print nothing except diagnostics

ring.bin.2

Nonlinear Static Analysis Solution Control
 3 1 $ B-1 Nonlinear static analysis, saving displacements
 0.5 0.5 2.7 $ C-1 Start load, delta-load, final load
 0 300 12 -20 0 1.0E-6 $ D-1 Begin new case, 12 cuts, true Newton,
$ begin with load control, error tol. = 1.0E-6
 0 $ ET-1 Default Riks arc-length control

Restart nonlinear analysis

ring.bin.3

Restart Nonlinear Static Analysis
 3 1 $ B-1 restart nonlinear analysis, saving disp.
 2.7 1.0 4.0 $ C-1 Start load, Riks scale factor, final load
 15 300 12 -20 -1 1.0E-6 $ D-2 Restart at 15, 12 cuts, true Newton,
$ continue Riks, error tol. = 1.e-6
 0 $ ET-1 Assume solution is continuous on restart
3-12 April, 2009 STAGS 5.0 User Manual

Test problems Getting Started
3.7 Test problems

As noted above, this section contains brief descriptions of some of the test problems that STAGS

developers employ to verify that the program is working correctly and that STAGS users should

study to become more familiar and confident with the program. The test cases subject is large

and filled with complexities that cannot be discussed in any meaningful way within the severe

constraints of this document—especially in view of the nonexistent funding for and the limited

energies of individuals who might contribute to those efforts. The best that we can do under the

circumstances at hand is to present the information in the following table, which contains one-

line descriptions of (some of) the problems that STAGS developers exercise to determine whether

or not the program is functioning properly after it has been modified and/or ported to another

computer system. The input (and printed output) files for this suite of test cases can be found on

the $STAGSHOME/testcases directory and on directories that are subordinate to it. We encourage

the interested (or desperate) reader to study those cases that are of greatest interest to him/her

and/or which have the most relevance to his/her problems.

Table 3.2 Suite of Test Cases for STAGS.

case # case name description

 1 acoro test plastic collapse capabilities (historical fabrication methods)

 2 acoro_gcp test plastic collapse capabilities (GCP fabrication methods)

 3 annular test pole functionality; test auto-generation of triangular elements at
a pole

 4 arch test snap-through path-following under dead loading

 5 arch1 test snap-through path-following under dead loading

 6 bebox test G-1 connections along various boundary lines (including
‘reverse’ numbering)

7 bplast test beam plasticity; test plasticity tangent stiffness

8 bra_1 test planar boundary conditions; test solver treatment of Lagrange
constraints; test path-following solution algorithm; test ‘cable
moment’ loading

 9 cone test buckling eigensolver

 10 contact1 test general point/surface contact algorithms

 11 contact2 same as contact1, adding generalized fastener

 12 contact3 test general point/surface contact algorithms for configuration with
large contact region
STAGS 5.0 User Manual April, 2009 3-13

Getting Started Test problems
case # case name description

 13 disk test response of disk to center load

 14 disk1 same as disk, permitting only w at the center

 15 doors test G-2 partial compatibility connectivity specifications

 16 dynela test nonlinear dynamic transient response, using the Park-method
integrator, for elastica problem

 17 elplas test multi-segment White-Besseling curve for plasticity problem

 18 ep130 test plasticity option with E130 fastener elements

19 f15s reference crack test: crack introduced by changing boundary
conditions; test E510 mesh-transition elements in presence of
stiffener blades; test continuities in stress plots (with stapl)

20 f15t similar to f15s, with more complexities

 21 f15t2 similar to f15s, without blade stiffeners

 22 f15tr2 test mesh-transition boundaries with G-1 instead of G-2
compatibility specifications; test multiple transitions with re-entrant
corner, modeled with E510 and E710 transition elements

 23 fast2 simple fastener test case

 24 fast3 test looping input in element unit with E130 (fastener) elements

25 fast4 test looping capabilities, with user points as well as elements

26 g2e410 test soccer-ball pinched-hemisphere problem; test warping

27 ground test cylindrical panel with ground motions

28 he130 test E130 fastener elements with hyperelastic properties

29 indisp test ring problem, with initial displacements

30 lamequad test default Lame routine and G-1 connectivities, for triangle
constructed entirely with quadrilateral plate elements

31 mountd test use of mount tables and elements to reproduce inverse-square
attraction forces; test stability of dynamic transient response
algorithms under tough conditions

32 pad1 test E810 Pad Hertzian contact element with beam-hitting-beam
problem

33 pad2 same as pad1, with a twist: test sideslip capability of E810 Pad
element

34 pcats standard plasticity test case; easy to alter to test effects of material
and other parameters
3-14 April, 2009 STAGS 5.0 User Manual

Test problems Getting Started
The interested reader is also encouraged to spend time and energy studying the interesting and
informative test cases that are documented (with varying levels of detail) in the STAGS Test
Cases Manual.

case # case name description

 35 plive test complete collapse of ring under external pressure

 36 poste test accuracy of planar boundary conditions

 37 riks original test case for the Riks path-following solution algorithm

 38 shin_320 test thermal analysis capabilities for model with E320 triangle
elements (patch test)

 39 shin_410 test thermal analysis capabilities for model with E410 quadrilateral
elements (patch test)

 40 sphere test response of sphere to point force loading; test nonlinear collapse
for a model with imperfections

41 straw nonlinear test case for Brazier problem in shear

42 sxybuck test shear buckling setup, boundary conditions, and behavior of
model with exotic material layup angles

 43 truequad similar to lamequad, but using standard quadrilateral shell units; test
UGRID = 1 option

 44 vibrate vibration analysis of infinite cylinder

 45 vibrum vibration analysis for model with added mass

 46 yusernum test arbitrary user node numbering
STAGS 5.0 User Manual April, 2009 3-15

4
4
4 4

Fundamentals

4.1 Coordinate Systems

Effective use of STAGS demands a thorough understanding of the many coordinate systems it
employs to define shell structures. These systems are described in alphabetical order in this
section. Table 4.1 on page 4-2 summarizes coordinate systems that STAGS uses, giving brief
descriptions along with references to sketches where graphical representation of various
coordinate systems can be found. A word of encouragement to the new user: do not be daunted
by this list of coordinate systems. You will quickly discover that they are easy to understand and
natural to use; and they are all orthogonal coordinate systems.

branch (or shell unit) coordinates

Branch coordinate system, a Cartesian coordinate system that is
defined independently for each shell unit. The geometry of the
surface is determined by the relations

where are surface coordinates. See “Standard Shell Surfaces”
beginning on page 6-2, where these surface-to-branch relations are given for
each of the standard shell types. Note that a shell unit is fixed with respect
to its branch coordinate system.

computational coordinates

A rectilinear system which defines the directions of the
displacement unknowns at all nodes in a unit. In shell units,
including the user-generated shell unit (, M-1), the

 system is identical to the shell system. In
element units, the auxiliary system , where defined,
determines the nodal freedoms; otherwise, the nodal-global system

 is used.

x y z, ,()

x x X Y,()= y y X Y,()= z z X Y,()=

X Y,()

x′′ y′′ z′′, ,()

ISHELL 1=

x′′ y′′ z′′, ,() X′ Y′ Z′, ,()
xa ya za, ,()

xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 4-1

Fundamentals Coordinate Systems
Table 4.1 STAGS coordinate systems.

symbol name use sketch

 branch shell-unit definition Figure 4.1 on page 4-6
“Standard Shell Surfaces” beginning on
page 6-2

 computational primary solution
(nodal dof)

Figure 7.1 on page 7-6

 cross-section beam cross-section Figure 5.5 on page 5-122
Figure 6.5 on page 6-52
Figure 8.1 on page 8-12
Figure 16.4 on page 16-10

 element element
computations

Figure 8.1 on page 8-12
Chapter 14 “The Element Library”

 element-edge line loads Figure 4.2 on page 4-7

 element-surface surface traction Figure 4.2 on page 4-7

 fabrication wall fabrication Figure 5.7 on page 5-133
Figure 6.2 on page 6-28
Figure 8.3 on page 8-20

 global reference for all
coordinate systems

Figure 4.1 on page 4-6
Figure 7.1 on page 7-6

 material material properties Figure 5.7 on page 5-133

 nodal-auxiliary option for nodal dof,
element unit

Figure 7.1 on page 7-6

 nodal-global option for nodal dof,
element unit

Figure 7.1 on page 7-6

 shell nodal dof, shell unit Figure 4.1 on page 4-6
Figure 6.2 on page 6-28
Figure 6.5 on page 6-52
Figure 6.6 on page 6-58

 surface shell-unit surface
parameters

Figure 4.1 on page 4-6
“Standard Shell Surfaces” beginning on
page 6-2
Figure 6.1 on page 6-19
Figure 6.6 on page 6-58

 wall-reference reference for
fabrication system

Figure 6.2 on page 6-28
Figure 8.2 on page 8-19

x y z, ,()

x′′ y′′ z′′, ,()

y z,()

x′ y′ z′, ,()

xe ye ze, ,()

xs ys zs, ,()

x y,()

xg yg zg, ,()

φ1 φ2,()

xa ya za, ,()

xg yg zg, ,()

X′ Y′ Z′, ,()

X Y,()

xw yw,()
4-2 April, 2009 STAGS 5.0 User Manual

Coordinate Systems Fundamentals
cross-section coordinates

A Cartesian system used in definition of beam cross-sections. For
convenience, the beam axial direction is sometimes represented by
the symbol , forming a 3-D orthogonal system. For shell-
unit stiffeners, is parallel to for rings and to for stringers;
see Figure 6.5 on page 6-52. For element-unit beams, is parallel
to the beam element axis; see Figure 8.1 on page 8-12.

NOTE: Do not confuse cross-section coordinates with
fabrication coordinates. The distinction will be clear from the
context in which the particular coordinate system is referenced.

element coordinates

A Cartesian system defined independently for each element in both
shell units and element units. Chapter 14 “The Element Library”
contains an explanation for each element type. Generally, for shell
elements, only the element normal is of importance to the user,
since pressure is the only data for input or output that refers to
these coordinates. Although various computations are performed in
element coordinate systems, quantities are always transformed to
other systems for presentation to the user. For nonlinear analysis
using corotation, rotates rigidly with the element as it
deforms.

element-edge coordinates

A local element system which is independently defined on each
element edge. The direction is defined by the vector pointing
from edge-node 1 to edge-node 2, projected onto the element plane.

 is the same as , the element normal, and , directed outward
from the edge, completes a right-handed system.

element-surface coordinates

A local element system in which the direction is defined by the
vector pointing from element-node 1 to element-node 2, projected
onto the element plane. is the same as , the element normal; and

, in the element plane, completes a right-handed system.

fabrication coordinates

A 2-D Cartesian system used as a reference for defining a wall
fabrication. are in the plane of the shell or element, which is
determined by the shell normal in shell units and by the element
normal in element units. For convenience, the normal direction is
sometimes represented by the symbol (please see Figure 5.7 on

y z,()

x x y z, ,()
x Y′ X′

x

x′

x y z, ,() x y z, ,()

x′ y′ z′, ,()

z′

x′ y′ z′, ,()

xe ye ze, ,()

ye

ze z′ xe

xs ys zs, ,()

xs

zs z′
ys

x y,()

x y,()
Z′

z′
z

STAGS 5.0 User Manual April, 2009 4-3

Fundamentals Coordinate Systems
page 5-133), forming a 3-D orthogonal system. The
fabrication coordinate system is oriented in the surface-tangent
plane by rotating the wall-reference system through the
angle ZETA, a right-handed rotation about (see Figure 6.2 on page
6-28 and Figure 8.2 on page 8-19).

NOTE: Do not confuse fabrication coordinates with
cross-section coordinates. The distinction will be clear from the
context in which the particular coordinate system is referenced.

global coordinates

A global Cartesian coordinate system. The orientations of all local
systems for shell units or the element units are defined with respect
to this system.

material coordinates

A 2-D Cartesian system in the plane of the shell or element. The
material properties of individual shell wall layers are defined in the

 directions, which are established by rotating the fabrication
coordinates through the angle ZETL, a right-handed rotation
about , which is uniquely defined for each layer. See Figure 5.7 on
page 5-133.

nodal-auxiliary coordinates

An arbitrary, rectangular system which may optionally be defined
by the user at each node in an element unit. Where defined, the
nodal-auxiliary system determines the directions of the
computational freedoms (see the computational coordinates
description, above), which are determined by the nodal-global
system, defined next.

nodal-global coordinates

A Cartesian system with its origin at a finite element node and with
coordinate axes parallel to (i.e., a simple translation of the
global system to a particular node).

shell coordinates

A local rectilinear system defined at each point on the reference
surface of shell units. The coordinates are tangents to the
coordinate lines defined by the surface coordinates . is the
shell normal, directed “outward”, outward being defined by the
sense of the cross product . Note that have units of
length, whereas are surface parameters whose units are
dependent upon the specific shell type (see “Standard Shell

x y z, ,()

xw yw,()
z

x y z, ,() x y z, ,()

xg yg zg, ,()

φ1 φ2,()

φ1 φ2,()
x y,()

z

xa ya za, ,()

xg yg zg, ,()

xg yg zg, ,()

X′ Y′ Z′, ,()

X′ Y′,()
X Y,() Z′

X′ Y′×() X′ Y′ Z′, ,()
X Y,()
4-4 April, 2009 STAGS 5.0 User Manual

Coordinate Systems Fundamentals
Surfaces” beginning on page 6-2). In a cylindrical shell, for
example, X is the meridional distance (axial length) and Y is the
circumferential distance (arclength in degrees).

For the standard STAGS shell units (ISHELL = 2–12; see “Standard Shell
Surfaces” beginning on page 6-2), the shell coordinates
naturally form an orthogonal set, with the single exception of the
Elliptic Cone (). For the Elliptic Cone and for shell units
that are generated by user-written subroutine LAME (),

 is orthogonalized in the following ways. is the surface
normal in every case. For , the circumferential and
shell-normal directions are chosen as the directions, and

 establishes the orthogonal system. For (LAME),
the user optionally selects either or by reference to the
corresponding surface coordinate (X or Y). The remaining axis is
computed to establish a right-handed system.

NOTE: For convenience, the symbol sometimes is used to
indicate “either the shell normal or the element normal , as
applicable.” For example, see Figure 5.6 on page 5-130. The
perceptive reader will have no difficulty making this distinction.

surface coordinates

Basic curvilinear surface coordinates for shell units. A pair of
values specifies the position of a point on the shell reference
surface. These coordinates also define the directions of the in-plane
displacements , and may also be used for grid generation.
These are parametric coordinates on a plane that is mapped onto a
two dimensional surface imbedded in three dimensional space. An
example is the mapping of the spherical angles into three-
space in the generation of a spherical shell. The mapping of
into branch coordinates for all the standard STAGS shell units
can be found in “Standard Shell Surfaces” beginning on page 6-2.

 form an orthogonal set, with the single exception of the
Elliptic Cone ().

wall-reference coordinates

A 2-D Cartesian system used as a reference for orienting a wall
fabrication in the plane of the shell or element. By default,
are coincident with the shell coordinates in shell units (see
Figure 6.2 on page 6-28) and are established by selecting and
projecting one of the global direction vectors onto the
element surface in element units (see Figure 8.2 on page 8-19). For
both shell units and element units, there is an option for
establishing the wall-reference system by projecting a user-defined

X′ Y′ Z′, ,()

ISHELL 9=

ISHELL 1=

X′ Y′ Z′, ,() Z′
ISHELL 9= Y()

Y′ Z′,()
Y′ Z′× X′= ISHELL 1=

X′ Y′

Z′
Z′ z′

X Y,()

X Y,()

u v,()

ψ θ,()
X Y,()

x y z, ,()

X Y,()
ISHELL 9=

xw yw,()

xw yw,()
X′ Y′,()

xg yg,()
STAGS 5.0 User Manual April, 2009 4-5

Fundamentals Coordinate Systems
“wall-reference vector” onto the element surface. See Figure 8.3 on
page 8-20 for element units; this option is currently unavailable for
shell units.

Figure 4.1 Shell-unit coordinate systems.

global coordinates

branch coordinates

surface coordinates

shell coordinates

xg yg zg, ,()

x y z, ,()

X Y,()

X′ Y′ Z′, ,()

Rectangular Plate (ISHELL=2, page 6-3)

side 3

side 2

side 4

Cylindrical Shell (ISHELL=5, page 6-5)

side 1
x

y

z

xg

yg

zg

X

Y

X′
Z′

zg

xg

yg

x

y

z

X

Y

X′

Y′

Z′

Y′

side 4

side 3

side 2

side 1
4-6 April, 2009 STAGS 5.0 User Manual

Coordinate Systems Fundamentals
Figure 4.2 Element coordinate systems.

1

3

2
yexe

ze z ′=
xe

ye

4

1

3

4

‘outward’ normal

1–2

ze z ′=

‘outward’

2–3

xe

xe

4–1
ye

3–4

ye

ze z ′=

ze z ′=

2

xs

zs z ′=

1–2

ys

 normal

‘outward’

 normal

‘outward’

 normal

element coordinates

element-edge coordinates

element-surface coordinates

x′ y′ z′, ,()

xe ye ze, ,()

xs ys zs, ,()
STAGS 5.0 User Manual April, 2009 4-7

Fundamentals Shell Unit
4.2 Shell Unit

STAGS models are composed of one or more individual substructures. Each substructure is
either a shell unit or an element unit. A shell unit (a quadratic surface which is automatically
generated and meshed) is chosen from a library of “standard geometries”, while an element unit
is an arbitrary assemblage of user-defined nodes and elements. There are no limitations placed
on the number of substructures in a model.

The configuration of a shell unit is described by the use of a reference surface. The location of
any point on the reference surface can be uniquely defined by use of a set of two independent
parameters . The geometry of the reference surface is given after a functional relationship
has been established that defines the coordinates in a Cartesian system as functions of the
values of these two parameters:

 (4.1)

The parameters defining the position of a point on a surface are referred to as surface

coordinates, and are referred to as branch coordinates. For the shell and plate
configurations contained in the library of standard geometries, the user need not be concerned
with these relations.

If one of the surface coordinates is held constant and the other is varied over a range, a
trace is obtained on the surface. Such a trace is referred to as a coordinate line. Two sets of such
coordinate lines are always used to define the surface grid needed in a finite element analysis.

For each shell unit, a unique branch coordinate system is defined to describe that unit, or
branch. Another Cartesian system is selected as a global coordinate system. Special
parameters are used to specify the orientation of each branch coordinate system with respect to
the global system, unless the position of the unit is uniquely determined by connection to a
previously defined shell unit.

At the intersection of grid lines on the shell reference surface (grid points), a local Cartesian
system is defined. In this shell coordinate system, the axes are in the directions
of the tangents to the grid lines, the axis is chosen to form a right-handed orthogonal system.
Loads, displacements, stiffener spacings, and eccentricities are generally defined in terms of
these local coordinates. In computer output, primes are not used.

X Y,()

x y z, ,()

x x X Y,()= y y X Y,()= z z X Y,()=

X Y,()

x y z, ,()

X Y,()

x y z, ,()

xg yg zg, ,()

X′ Y′ Z′, ,() X′ Y′,()

Z′
4-8 April, 2009 STAGS 5.0 User Manual

Shell Unit Fundamentals
In the manual as well as in the computer output, reference is made to an inside and an outside

surface. The outside surface is always defined as the shell wall surface corresponding to the

largest positive or least negative value of .

If the shell wall or layer of the shell wall is orthotropic with respect to some direction, then the

stiffness properties are most easily defined in an orthogonal system in the plane of the

shell. This is referred to as the material coordinate system. Internally in the program the

properties of the shell wall (or of its layers) are transformed from the system to the

 system. See Figure 5.7 on page 5-133.

Stiffeners are structural elements that are attached to the shell surface. Their cross-sections

cannot deform or warp. At times in the manual, stiffeners following the grid lines corresponding

to constant -values are referred to as stringers, while those on constant -values are called

rings. The cross-section coordinate system is a special local Cartesian system used for the

definition of cross-section properties. Stiffeners can either be considered as discrete, in which

case they are defined one by one, or their contribution to the shell wall stiffness can be

“smeared” over the shell surface. Smeared stiffeners are used for convenience (to reduce input

requirements) or in order to suppress local deformation between stiffeners. The use of smeared

stiffeners also reduces the demand on limited computer resources.

The element coordinate system is used for local Cartesian systems defining the

orientation of finite elements (element unit). STAGS also uses such a frame for every element,

but except for stress output requested in the element frame, these coordinates can be ignored by

the user for the standard geometries.

A shell unit may be mapped onto a rectangular domain (the mapping is analytic if the surface

coordinates are used). Consequently, it can always be considered as a surface with four

sides (see Figure 4.3, on the following page). These sides are referred to in the user instructions

by the integers 1, 2, 3, 4. The node points are arranged in a rectangular numbering system, so

that each is given a row and a column index. Side 1 is always the side on which the node points

have the row number 1; Side 4 is the side on which the column numbers are 1. If

coordinates are used, Side 1 is the side on which the X is zero, Side 4 is the side on which Y is

zero. Side 3 is opposite Side 1, and Side 2 is opposite Side 4. The sides are arranged in clockwise

order. As examples, a rectangular plate and a cylindrical shell are shown in Figure 4.1.

Z′

φ1 φ2,()

φ1 φ2,()

X′ Y′,()

Y X

y z,()

x′ y′ z′, ,()

X Y,()

X Y,()
STAGS 5.0 User Manual April, 2009 4-9

Fundamentals The Element Unit
4.3 The Element Unit

In preparation.

4.4 Assembled Structures

In preparation.

4.5 Boundary Conditions

In preparation.

Figure 4.3 Shell-unit boundary- and corner-numbering schemes.

4

4
1

1

2

2 3

i

i

3

X

Y

side i

corner i
4-10 April, 2009 STAGS 5.0 User Manual

Loads Fundamentals
4.6 Loads

ROUGH DRAFT

Figure 4.4 STAGS distributed loading types.

line loads surface traction live pressure

Fu Fv Fw | Mu Mv Mw
⎩ ⎭
⎨ ⎬
⎧ ⎫

Fu Fv Fw
⎩ ⎭
⎨ ⎬
⎧ ⎫

p – force area⁄

Fi – force length⁄

Mi – moment length⁄
Fi – force area⁄

direction remains normal

to deformed surface
STAGS 5.0 User Manual April, 2009 4-11

Fundamentals Loads

Table 4.2 Shell unit distributed loading.

coordinate system line loads traction live pressure

✔ ✔

✔ ✔

✔

Table 4.3 Element unit distributed loading.

coordinate system line loads traction live pressure

✔ ✔

✔

✔

✔

xg yg zg, ,()

X′ Y′ Z′, ,()

z′

xg yg zg, ,()

xe ye ze, ,()

xs ys zs, ,()

z′
4-12 April, 2009 STAGS 5.0 User Manual

Summary of Modeling Techniques Fundamentals
4.7 Summary of Modeling Techniques

Before preparation of input data, the user should carefully consider the modeling of the structure
and the computation strategy to be followed. The choice of analysis type and problems connected
with modeling and strategy are discussed in Chapter 11. Some control and summary data
occurring early in the input can be defined only after the discretization and the computational
strategy have been determined.

Execution of the STAGS program always proceeds in two distinct steps, the first being the model
setup phase (S1) and the second being the analysis phase (S2). In previous versions of the
program, all data were read in at the beginning, including solution strategy and control data. This
was true even though in principle it was not necessary to execute the model setup step again for
changes in the solution parameters. These data were always available at the beginning of the
analysis phase. STAGS now provides two sets of input data: one for model setup (see Chapters
5–10) and one for solution control (see Chapter 11). To maintain upward compatibility of STAGS

input run streams, solution control records that previously appeared in the initial input have been
preserved. These records will be repeated in the input to the analysis program, and include
records B-1, C-1, and all D and E records. The advantage of having two separate input files is
that it permits a user to restart or change strategies using previously-saved model data, making
additional executions of the model setup step unnecessary. The very brief input stream for the
analysis phase is described in Chapter 11.

The model setup is defined in terms of shell units and element units:

• Shell units. These modeling units are typically thin plate or shell components—but
they may also be single- or multi-layered sandwich or solid components. Their
discretization is defined by reference to a numbering system based on rows and
columns. Different options are available for discretization.

• Element units. These modeling units consist of thin, shell-type and/or thicker
sandwich and/or solid-type finite elements defined either individually on regular data
records or in batches through user-written subroutines. Such batches can be used, for
example, for definition of a shell segment with a discretization that does not fit into
the row and column scheme required for a shell unit. Finite element models
developed using modeling pre-processor software systems such as PATRAN or
I-DEAS typically generate element unit input data.

For a better overview, the different logical records have been divided into groups so that the
contents of the records within the same group contain information of similar type. The groups of
data in the model setup step are contained in the INP file and include the following groups of
input records:
STAGS 5.0 User Manual April, 2009 4-13

Fundamentals Summary of Modeling Techniques
• Title record. Title of the model and analysis problem.

• Summary and Control Parameters. Various model controls—including the number of
modeling units, the number of materials, the types of material models, and so forth.

• Discretization and Connectivity Summary. These records define the shell unit
discretization in terms of the number of rows and columns in each shell unit, the
number of nodes and elements in each element unit, connectivities among the
modeling units, crack modeling, MPC definitions, and partial compatibility
constraints

• Data Tables. These include the Material Table, the Generic Constitutive Processor
Table, the Beam Cross-Section Table, the Shell Wall Property Table, and the User
Parameter Table:

• Material Table. This table defines elastic properties and, if necessary, stress-strain
curves for a number of materials.

• Generic Constitutive Processor Table. This table defines material properties,
stress-strain curves (as necessary), and shell and solid fabrication types—with
STAGS’ Generic Constitutive Processor (GCP) functionality.

• Beam Cross-Section Table. This table defines cross-sections and (with reference
to the Material Tables) materials of beams and stiffeners.

• Shell Wall Property Table. This table defines geometry and (with reference to the
Material Table) material of shell wall configurations.

• User Parameter Table. This table defines constants (integers) and floating point
numbers, that are read in for possible use in user-written subroutines.

Next follows detailed information about all modeling units. For each modeling unit the following
groups of input records are read in order.

• Geometry and Material

• Discretization

• Discrete Stiffeners

• Boundary Conditions

• Loads

• Output Control

The input for one unit is completed before any entry is made for the following unit. Shell and
element units are numbered in the order in which they are specified and are referred to in the
output by this “unit” number. Properties are defined by reference to the Data Tables whenever
appropriate.
4-14 April, 2009 STAGS 5.0 User Manual

Summary of Modeling Techniques Fundamentals
The last groups of input records are referred to as Element Units. In contrast to shell units, all
available finite element types can be intermingled within the same unit.

Detailed information is given in Chapters 7–10 and in the STAGS Elements Manual about the
properties of finite elements in the STAGS element library. The available elements include:

• Mount and Fastener Elements (general nonlinear springs)
• General Beams (torsional and axial bars)
• Rigid-Link and Soft-Link Beam Elements
• Triangular Plate/Shell Elements
• Quadrilateral Plate/Shell Elements
• Quadrilateral Plate/Shell Mesh Transition Elements
• Solid Elements and Shell/Solid Sandwich Elements
• Solid and Sandwich Mesh Transition Elements
• Surface/Surface, Point/Surface, and Line Contact Elements

Some considerations and restrictions should be noted:

• The E210 beam element, in STAGS, is compatible with the E320 triangular shell
element and with the E410 quadrilateral shell element. It is not compatible with
higher-order elements.

• The E330 triangular shell element, in STAGS, is not compatible with other the shell
elements.

• GCP functionality, in the current version of STAGS, is available with the E330, E410
and E480 shell elements and with all solid and sandwich elements. GCP functionality
has not been implemented for the E210 beam element or for the E320 shell element.

• The Poisson’s ratio parameter specified on the I-2 record is the minor Poisson’s ratio.
The Poisson’s ratio required for GCP input is the major Poisson’s ratio.

• Material density, in the current version of STAGS, is defined as weight density in the
traditional (I-record) specifications—and as mass density within the GCP.

• The plasticity option can only be used with an initially isotropic material. It cannot
be used with material properties that vary with the surface coordinates. The stress-
strain curve must be independent of temperature.

• Bifurcation buckling and small vibration analysis may not include plasticity.

• Progressive failure analysis, in STAGS, is supported only under the GCP and is not
active for linear stress and/or eigenvalue analyses.

and
STAGS 5.0 User Manual April, 2009 4-15

Fundamentals Summary of Modeling Techniques
• The default definition of the gravitational acceleration constant (g) is 386.1 in/sec2.

• When the very first character in any record of a STAGS input file is an upper case “C”
or a “$” sign, the entire record is treated as a comment. When the very first character
is a lower case “c” the record is treated as input data.

Experienced users may find it convenient to utilize the Input Record Catalog, Appendix B.

The groups of data in the solution control step are contained in the BIN file, which contains the
following groups of input records:

• Title record. Title of the model and analysis problem.

• Summary and Control Parameters. Specifies analysis type, equation solver,
corotation options, higher-order imperfection flag, output options, and so forth.

• Computational Strategy Parameters. These records specify load factors, solution
strategies, eigenvalue analysis control parameters, time integration parameters,
convergence controls, and so on.
4-16 April, 2009 STAGS 5.0 User Manual

5
5
5 5

Model Input

STAGS user input consists of two text files, the INP file and the BIN file (see Chapter 17 “Input/
Output Files” for a summary description of all I/O files). The INP file is described in Chapters
5–10, and the BIN file is described in Chapter 11. Each of these two input files consists of a
sequence of input records, which have a required order of appearance. Moreover, data have a
required order of entry on each record. Chapters 5–11 describe the input records sequentially, in
the required order of appearance in the INP and BIN files. Each record description indicates the
required order of input data comprising that record. See Appendix B “Input Record Catalog” for
a summary of input records.

Conventions used in describing input records are presented in Section 5.1 “Conventions Used in
Input-Record Descriptions”. An example input-record description, for a typical INP-file record,
is presented in 5.2 “Example Input-Record Description”. Conventions governing required input-
data format for most of the INP-file records and for all of the BIN-file records are presented in
Section 5.3 “Input Format Conventions”. Conventions used in defining User elements are
described in Chapter 13.

Special Fonts

• Record-ID See Record ID and title, on the following page

• DATA See Data summary, on the following page
STAGS 5.0 User Manual April, 2009 5-1

Model Input Conventions Used in Input-Record Descriptions
5.1 Conventions Used in Input-Record Descriptions

Conventions used in input-record descriptions in this document are explained via reference to an
example — “I-2 Material Elastic Properties” on page 5-59. Each record description consists of
five sections.

Record ID and title

The first line of each record description contains the record ID followed by the record title.
In the example “I-2 Material Elastic Properties”, the record ID is “I-2” and the record title is
“Material Elastic Properties.” Records are sometimes identified by referring to their record ID’s,
which appear in a special font. For example, “see I-2” and “(I-2)” are shorthand notations for “see
the documentation for the I-2 record.”

Discussion

A short discussion regarding the data that are entered on the record follows the record ID and
title line.

Data summary

This is a one-line summary of data that are entered on the record, indicating the required order
of entry. The I-2 record contains seven data items. Each input datum is identified by a datum
name. Data names appear in uppercase in a special font, as in RHO. The notation “RHO (I-2)” is
shorthand for “the datum RHO on the I-2 record”. If it is clear that the I-2 record is indicated, then
RHO may appear without the corresponding record ID.

Data description

Each datum is described in detail, in the order it is entered on the record.
5-2 April, 2009 STAGS 5.0 User Manual

Example Input-Record Description Model Input
Where to go from here

Input records have a required, application-dependent, order of appearance. Some records are
always included, while others are required only under certain circumstances. The final section of
each record description contains logic, written in pseudo-code, which indicates the next record
to appear in the input file. This section is marked with a compass symbol, shown in the box to
the right of this paragraph, suggesting its use in navigating through the hazardous waters of
STAGS input data.

5.2 Example Input-Record Description

In the following, each of the five record description parts is identified for the chosen example,
“I-2 Material Elastic Properties” on page 5-59.

Record ID and title:

I-2 Material Elastic Properties

Discussion:

In plate or shell analysis the plane stress assumption is used; the transverse normal stress is

assumed to be zero. In that case, the elastic properties are defined by a matrix C such that

•
•
•

If the material is isotropic, it is not necessary to input all the four material constants. When the

shear modulus is set to zero, it is assumed that the material is isotropic, i.e., that and

. If a material with a zero shear modulus must be defined, input a very small

value for G. If the coefficient of thermal expansion in the direction is set equal to zero, it is

assumed that .

E2 E1=

G E1 2 1 ν12+()[]⁄=

φ2

α1 α2= A1 A2=()
STAGS 5.0 User Manual April, 2009 5-3

Model Input Input Format Conventions
Data summary:

E1 U12 G RHO A1 E2 A2

Data description:

E1 elastic modulus in direction

•
•
•

A2 coefficient of thermal expansion in direction, . Setting causes

enforcement of the relationship .

Where to go from here:

NESP (I-1) number of points on the curve

if (NESP > 0) then go to I-3
else follow instructions at end of I-3a

5.3 Input Format Conventions

A free-form input record contains a number of data fields—each of which is separated from its
neighbor(s) by one of several data terminators—and optional comments that may be placed
after the end of input data and are ignored by the program. Most of the input records for STAGS

INP and BIN files contain only numerical data, consisting of one or more integer-type and/or
floating-point-type data fields. Each numerical data field specifies zero or more integer or
floating point data values. The zero or more part of this statement is describe below, after the
following bulleted notes about numerical data fields:

• Unless otherwise noted, an entry on a data record is an integer if the variable name
starts with I–N. Otherwise it is to be treated as a floating-point number.

• Integer field widths cannot exceed 10 characters, including the optional plus or
minus sign. Leading blanks and a terminating character are not counted.

φ1

φ2 α2 A2 0=

α2 α1 α= =

σ ε,()
5-4 April, 2009 STAGS 5.0 User Manual

Input Format Conventions Model Input
• Floating-point numbers must contain a decimal point; an exponent is optional. The
exponent may be in any form allowed by regular FORTRAN “E” type format. The
following data forms are all equivalent:

1450. 1.45E+03 .145+4 1.45E3

• Floating-point decimal field widths are unlimited, however floating-point data are
truncated to about 7 or 8 decimal digits.

• A numerical data field may begin with any number of blanks (which are ignored) and
is terminated with one of the following characters:

“ ” blank
“,” comma
“/” slash
“$” dollar sign

or by the end of STAGS’ record-input character-string buffer, which can accommodate
up to (but not more than) 255 characters.

• Blanks are ignored everywhere on records containing numerical data, except when
they occur between two numerical data fields; then the first field is terminated by the
blank. Thus input integers or floating-point numbers may never contain embedded
blanks.

WARNING: For most of the INP file (see Chapter 9 for exceptions to this)
and for all of the BIN file, a totally blank line is not ignored; it produces
a single logical record.

• A comma is normally used to terminate a data field when the logical record contains
additional data. Hence, when the last data field on one line is terminated with a
comma, the comma functions as a continuation character and indicates that the logical
record continues with the next input line. Otherwise, the logical record is terminated
when the end of data on the line is reached. Successive commas on a line may be used
to generate blank values of integer items in a list. For example, “20,,,10” is
equivalent to “20, 0, 0, 10”, which is equivalent to “20 0 0 10”.

• A slash terminates a logical record, and means that any following data field begins a
new logical record. Thus, several logical records may be constructed with one input
line (whereas with the use of commas, several input records might comprise a single
logical record). A slash following a comma prevents continuation and the comma
then functions as a simple terminator.

• A dollar sign (or the “C” character) in column 1 indicates that the entire record is a
comment. A comment record may appear anywhere in an input file, except for the
first record, which is taken to be the title “card” (see “A-1 Case Title” on page 5-7).
A dollar sign in any other column signals the end of data on the record and means that
the remaining information on the line is ignored. Space following the dollar sign may
STAGS 5.0 User Manual April, 2009 5-5

Model Input Summary and Control Parameters
be used for comments. A dollar sign may also be used when the data field on a line is
terminated by a comma, i.e., when the logical record continues on the following input
line.

The current version of STAGS recognizes the [N*]V construct for data-field specification, where
the brackets surrounding the N* prefix indicate that it is optional, and where V represents a
specific integer or floating-point value. Omission of the N* prefix specifies a single instance of
V for the data field in question. Use of the N* prefix, with N a non-negative integer, makes
STAGS interpret N*V as N successive instances of the specified value V. For example, STAGS

interprets “2*33.” as “33. 33.” and “4*20” as “20 20 20 20”.

Some STAGS input records in the INP file begin with a character-type command entry
that is (usually) followed by one or more integer-type and/or floating-point-type
numeric data entries. STAGS recognizes the [N*]V construct for character-type information,
too; but the current version of STAGS does not expect more than one consecutive character-type
data field.

5.4 Summary and Control Parameters

The first group of input records consists of the A and B records.

The first two, A-1 and B-1, appear in both the INP (model input) file and the BIN (solution
input) file. These are the only two records that appear in both input files.

A-1 is the Case Title record, which contains a character string strictly for the user’s convenience.
B-1 is the Analysis Type Definition record.

The INP B-1 record is not interchangeable with the BIN B-1 record. They

contain different input data altogether.
☞

5-6 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Model Input
A-1 Case Title

The case title is read on the first line and may contain any alphanumeric characters. This text is

printed at the beginning of the output for the case and for identification on any disk file saved

for possible restart. Subsequently any number of comment records can be added provided they

begin with a “$” in column 1. Comments can also be included at the end of a data line—a “$”

terminating data, and the comment following. A list of the complete input file, including any

comment records, is printed at the beginning of all text output files. The user is urged to use this

record as a way to document the analysis.

COMMENT

COMMENT case title

go to B-1
STAGS 5.0 User Manual April, 2009 5-7

Model Input Summary and Control Parameters
B-1 Analysis Type Definition

This is a revised version of the B-1 record found in earlier versions of STAGS. Note that the BIN

(solution input) file also includes a B-1 record, but that it contains data that are different than

those found here. The B-1 records in the INP & BIN files are not interchangeable.

The B-1 record in the INP file is not interchangeable with the B-1 record in

the BIN file. They contain different input data altogether.

IGRAV ICHECK ILIST INCBC NRUNIT NROTS KDEV

IGRAV gravitational constant, , definition option; IGRAV is needed for mass
computation, since density (RHO, I-2) and nodal mass (GM, Q-4 and U-4)
are defined using units of force rather than mass.

0 –
1 – g will be read on B-4

ICHECK 0 – normal execution

1 – quick execution for model verification only

ILIST data printout option

0 – normal printout
1 – full printout

INCBC incremental boundary condition (BC) flag.
(See 6.4 “Boundary Conditions” on page 6-57.)

0 – incremental BC are not used
1 – incremental BC are included

When incremental BC are included , the default condition is that they
are the same as basic BC. Default incremental BC may be selectively overridden
in the following ways:

Shell Units: IBOND (P-1)

Shell Units and Element Units: load system B specified
displacements (, Q-3/U-3) are interpreted as incremental BC.
In this situation, the value of the displacement (P, Q-3/U-3) is
ignored, and a dof constraint is imposed (i.e., specified zero).

☞

g

g 386.1 inches ondsec
2⁄=

INCBC 1=()

LT 1–=
5-8 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Model Input
NRUNIT model plot control variable

0 – plot the entire model
>0 – plot units listed in B-1a

NROTS plot rotation specification variable

0 – use the default plot orientation

>0 – use sequence of rotations given in B-1b list

KDEV plot device indicator

0 – use the pdf (Acrobat) format for model plot
1 – use the PostScript file format for model plot

-1 – generate no model plot

NRUNIT (B-1) model plot control variable
NROTS (B-1) plot rotation specification variable

if (NRUNIT > 0) then go to B-1a
elseif (NROTS > 0) then go to B-1b
else go to B-2
STAGS 5.0 User Manual April, 2009 5-9

Model Input Summary and Control Parameters
B-1a Model Unit List

List of units to be included in the model plot.

(IUNIS(i), i = 1, NRUNIT)

IUNIS(i) unit number to be included in the model plot.

NROTS (B-1) plot rotation specification variable

if (NROTS> 0) then go to B-1b
else go to B-2
5-10 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Model Input
B-1b Sequence of Model Rotations

Sequence of rotations to be imposed on model plot. Record B-1b is repeated NROTS times. Each
rotation is in the global body system, which is initially coincident with the global
system. The current global body system is the result of all previous rotations; this corresponds
to the “relative rotation” option in PATRAN. A particular application of this principle is the
situation where you wish to alter the orientation of the model plot after having chosen the default
value NROTS =0. If NROTS =0, STAGS will choose an orientation based on the model dimensions,
with the rotation angles and axes displayed on the model plot. If you want to alter the orientation
based on the picture, you must first input the sequence (of up to three rotations) printed by
STAGS, after which any number of additional rotations may be specified. An example of this is
the situation where you like the STAGS default orientation but wish to view the other side.
Suppose in this case, you want to rotate 180 degrees about the current x axis, and suppose STAGS

has printed 93 degrees about x, -26 degrees about y, and 15 degrees about z; then you would
input NROTS=4, followed by the following four B-1b records:

1 93.
2 -26.
3 15.
1 180.

Alternatively, these four model rotations can be specified on a single line of text using the logical
record separator; that is,

1 93. / 2 -26. / 3 15. / 1 180.$ B-1b Model Rotations

IROT ROT

IROT rotation axis.
1 – rotation about the global body x axis
2 – rotation about the global body y axis
3 – rotation about the global body z axis

ROT rotation angle (degrees)

 go to B-2

xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 5-11

Model Input Summary and Control Parameters
B-2 General Model Summary

This record consists of an overall summary of model characteristics, such as the number of shell
and element units, the number of units with stiffeners, what kind of constraints are required, and
whether there are initial imperfections.

Very small initial geometric imperfections must sometimes be used to trigger deformation in the
buckling mode. Imperfections of somewhat larger amplitudes must be included in the analysis
model if the degree of imperfection sensitivity of the collapse load is to be established.

A number of different ways to include geometric imperfections is available. One of the options
is to use a linear combination of buckling modes computed in an earlier execution of the program
to define the shape of the imperfections. If this option is employed, the user must specify on the
B-2 record the number of buckling modes NIMPFS to be read from the IMP file. The amplitudes
of the imperfection modes are read on the B-5 record. Other options to define geometric
imperfections are described on the M-5 record.

STAGS also permits the user to impose a moving plane boundary condition. The moving plane
acts in the same way as an ordinary symmetry condition except that the plane of symmetry is
allowed to translate and rotate as part of the system response. Thus, all translations along the
specified boundary are restricted to lie in a plane, and only rotations normal to the plane are
permitted. The program automatically introduces the appropriate Lagrange constraints in the
proper order to enforce the boundary condition. The method is in force for all solution options,
including the default nonlinear large rotation (corotational) algorithm. STAGS treats the moving
plane boundary as new line elements of special type E250, which are treated just like the other
beams in the 200 series. These “beams” can be invoked either directly in the element units, or
as special rings or stringers to be placed along any row or column line in a shell unit that
initially satisfies the planar condition. Users should visualize the new input as a new kind of
stiffener of special cross section -1 (reserved internally by STAGS) that cannot deform out of
plane (large area moment), cannot twist (large torsional constant), but is free to deform within
the plane (small area moment). It should be noted that the code enforces the boundary exactly,
and does not actually put cross-section properties on this boundary. The user must increment
NSTFS by one for each planar boundary used (below).
5-12 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Model Input
NUNITS NUNITE NSTFS NINTS NPATS NCONST NIMPFS INERT NINSR NPATX NSTIFS

NUNITS number of shell units

NUNITE number of element units; if , include an H-1 record for each element
unit

NSTFS number of shell units with discrete stiffeners. Do not forget the F-2 record. User
must also supply a stiffener for each moving plane boundary desired. Moving
plane boundaries can, of course, be mixed with ordinary stiffeners, including real
stiffeners on the boundary itself.

NINTS number of (G-1-record) specifications of connections between shell units. Each
such specification establishes displacement compatibility for two shell unit
boundary lines. G-1 can also be used to define the internal connection in closed
shell units.

NPATS number of records (G-2) used to define partial compatibility of displacements at
specified node pairs (all types of units); also see NPATX, below

NCONST number of constraint relations defined in user-written subroutine UCONST or on
G-4 records. If there is a subroutine UCONST, NCONST equals the number of
times CONSTR is called in UCONST. For bifurcation buckling or for small
vibrations, constraints defined by UCONST apply both to the stress state and the
incremental displacement. If , constraints will be read on
the G-3 and G-4 records called “regular constraints.”

NIMPFS number of buckling modes read from the IMP file to be used to generate
imperfections. If , scale factors must be provided on the B-5 record.

INERT number of inertial-load records (B-6)

NINSR number of inserted node/element sets (G-5–G-7) defining cracks

NPATX number of records (G-2c) used to define partial compatibility of displacements at
specified node pairs in multi-layered shell and/or element units; also see NPATS,
above

NSTIFS number of linear-stiffness-matrix contributions (W-1)

go to B-3

NUNITE 0>

NCONST 0< NCONST

NIMPFS 0>
STAGS 5.0 User Manual April, 2009 5-13

Model Input Summary and Control Parameters
B-3 Data Tables Summary

This record specifies the number of library entries for materials, cross sections, wall fabrications,
user input, and mount elements. It also specifies whether or not STAGS’ version of the Generic
Constitutive Processor (GCP) is to be used for material-property and wall-fabrication
information, in addition to or instead of the above-mentioned libraries (the traditional STAGS

approach). Whenever data in a library entry or in the GCP system are needed, the appropriate
library is referenced by an integer identifier, as explained in records I, J and K. The User
Parameter records L provide a means to pass user-defined data to user-written subroutines.

NTAM NTAB NTAW NTAP NTAMT NGCP

NTAM number of entries (materials) in the Material Table (I-1).

NTAB number of entries (cross-sections of beams or stiffeners)
in the Beam Cross-Section Table (J-1).

NTAW number of entries (shell wall types) in the Shell Wall Property Table (K-1).

NTAP 0 – User Parameters are not included (L-1).

1 – User Parameters are included (L-1).

NTAMT number of tables for mount elements (nonlinear springs) and/or
for penalty-function tables (used with contact elements)

NGCP GCP-utilization flag:

0 – The GCP system will not be used

1 – The GCP system will be used

IGRAV (B-1) gravitational constant, , definition option
NIMPFS (B-2) number of buckling modes read from the IMP file
INERT (B-2) number of inertial-load records
NUNITS (B-2) number of shell units

if (IGRAV = 1) then go to B-4
elseif (NIMPFS > 0 then go to B-5
elseif (INERT > 0) then go to B-6
elseif (NUNITS > 0) then go to F-1
else follow instructions at end of G-1

g

5-14 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Model Input
B-4 Gravitational Acceleration

This record modifies the gravitation constant if the units used are other than inches and seconds.
It is included only if (B-1).

GRAV

GRAV gravitational acceleration (e.g.,)

NIMPFS (B-2) number of buckling modes read from the IMP file
INERT (B-2) number of inertial-load records
NUNITS (B-2) number of shell units

if (NIMPFS > 0) then go to B-5
elseif (INERT > 0) then go to B-6
elseif (NUNITS > 0) then go to F-1
else follow instructions at end of G-1

IGRAV 1=

g 9.80665 m s
2⁄=
STAGS 5.0 User Manual April, 2009 5-15

Model Input Summary and Control Parameters
B-5 Buckling Mode Imperfections

These records are included only if (B-2). STAGS allows the user to include
imperfections from a number of eigenvalue executions of the same case. For example, one
may have initially performed a linear bifurcation analysis, followed by a nonlinear collapse
analysis, followed by a mode computed from the nonlinear stress state. Another execution could
be run from the beginning, including all the modes accumulated so far. For each eigenvalue
execution, STAGS produces two files, IMP and EGV, that contain all the modes computed during
the entire history of the case. These modes are identified by the load step number, IMSTEP; the
mode number, IMMODE; and the eigenvalue-execution ID number, IMRUN. These mode-identifying
data are found in the OUT2 files corresponding to the specified eigenvalue executions. The user
can generate any linear combination of these modes by specifying their amplitudes (remember,
for eigenmodes computed by STAGS, the largest translational component is normalized to
unity). These imperfections are combined with any imperfections generated by M-6 records or
by user-written subroutine DIMP. The eigenvectors identified on the B-5 record are read from
the EGV/IMP file set; see Chapter 17 “Input/Output Files”. Note that the buckling mode
amplitude WIMPFA multiplies all translational components in the eigenvector—not just the
transverse component.

This record is repeated NIMPFS times.

WIMPFA IMSTEP IMMODE IMRUN

WIMPFA buckling mode amplitude; may be positive or negative

IMSTEP load step number

IMMODE mode number

IMRUN eigenvalue-execution ID number

NIMPFS (B-2) number of buckling modes read from the IMP file
INERT (B-2) number of inertial-load records
NUNITS (B-2) number of shell units

if (NIMPFS modes have been defined) then
if (INERT > 0) then go to B-6
elseif (NUNITS > 0) then go to F-1
else follow instructions at end of G-1

elsecontinue defining B-5

NIMPFS 0>
5-16 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Model Input
B-6 Inertial Loads Summary

This record is included only for inertial loading, (B-2). Each of the INERT inertial load

records is defined via a B-6–B-6d sequence and may be independently added to Load System A

or to Load System B. Inertial loading constitutes part of the base loads, which are scaled by the

load factors and (see Section 6.5).

A general inertial field which acts over the entire structure is achieved by prescribing:

• components of an acceleration vector acting in the global coordinate directions

• components of an angular velocity vector , acting about the axes of a coordinate
system whose directions are parallel to and whose origin is specified by the
position vector

• components of an angular acceleration vector , acting about the axes of the
coordinate system described above for

The resulting inertial loads are computed on a nodal basis as

where is the inertial force vector which acts on node i due to the product of , the “lumped

mass” at node i, and , the acceleration at node i, computed as the sum of gravitational

acceleration and centripetal acceleration according to

where is the input acceleration vector, is the input angular velocity vector, is the input

angular acceleration vector, and is the relative location of node i, computed as

where is the vector which positions the origin of the coordinate system used to compute

centrifugal loading, and contains the coordinates of node i.

Notice the minus sign in the expression for , which expresses the principle that inertial forces

oppose acceleration. For example, to impose gravity loading on a structure with the negative

axis pointing towards the center of the earth, specify , , and .

INERT 0>

PA PB

ao()
xg yg zg, ,()

ωo()
xg yg zg, ,()

xo()

αo()
ωo()

fi mi ai–()=

fi mi

ai

ai ao ωo ωo ri×()× αo ri×+ +=

ao ωo αo

ri

ri xi xo–=

xo

xi xg yg zg, ,()

fi

zg

ao 0 0 g, ,()= ωo 0= αo 0=
STAGS 5.0 User Manual April, 2009 5-17

Model Input Summary and Control Parameters
ISYS IA IOM IAL IOPT

ISYS load system option

1 – Load system A

2 – Load system B

IA acceleration () option

0 – acceleration vector omitted

1 – acceleration vector specified on B-6a

IOM angular velocity () option

0 – angular velocity vector omitted

1 – angular velocity vector specified on B-6b

IAL angular acceleration () option

0 – angular acceleration vector omitted

1 – angular acceleration vector specified on B-6c

IOPT coordinate system option for angular velocity/acceleration

0 – , are about the system;

1 – , are about a set of axes which are parallel to

and centered at the center of mass for the structure;
 is computed by STAGS

2 – , are about a set of axes which are parallel to

and centered at a user-specified position; is input on B-6d

if (IA = 1) then go to B-6a
elseif (IOM = 1) then go to B-6b
elseif (IAL = 1) then go to B-6c
elseif (IOPT = 2 then go to B-6d
else follow instructions at end of B-6d

ao

ωo

αo

ωo αo xg yg zg, ,() xo 0=

ωo αo xg yg zg, ,()

xo

ωo αo xg yg zg, ,()

xo
5-18 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Model Input
B-6a Inertial Loads — Acceleration

AX AY AZ

AX, AY, AZ components of the acceleration vector ; units are

(e.g., or)

IOM (B-6) angular velocity () option
IAL (B-6) angular acceleration () option
IOPT (B-6) coordinate system option for angular velocity/acceleration

if (IOM = 1) then go to B-6b
elseif (IAL = 1) then go to B-6c
elseif (IOPT = 2) then go to B-6d
else follow instructions at end of B-6d

ao length time2⁄

m s2⁄ ft s2⁄

ωo

αo
STAGS 5.0 User Manual April, 2009 5-19

Model Input Summary and Control Parameters
B-6b Inertial Loads — Angular Velocity

OMX OMY OMZ

OMX,OMY,OMZ components of the angular velocity vector ; units are ,

(e.g.,)

IAL (B-6) angular acceleration () option
IOPT (B-6) coordinate system option for angular velocity/acceleration

if (IAL = 1) then go to B-6c
elseif (IOPT = 2) then go to B-6d
else follow instructions at end of B-6d

ωo radians time⁄

radians s⁄

αo
5-20 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Model Input
B-6c Inertial Loads — Angular Acceleration

ALX ALY ALZ

ALX,ALY,ALZ components of the angular acceleration vector ; units are ,

(e.g.,)

IOPT (B-6) coordinate system option for angular velocity/acceleration

if (IOPT = 2) then go to B-6d
else follow instructions at end of B-6d

αo radians time
2⁄

radians s
2⁄
STAGS 5.0 User Manual April, 2009 5-21

Model Input Discretization and Connectivity Summary
B-6d Inertial Loads — Position Vector

This record is included only when the user is specifying a position vector for angular velocity

(IOPT = 2, B-6).

X Y Z

X, Y, Z components of the position vector

INERT (B-2) number of inertial-load records
NUNITS (B-2) number of shell units

if (INERT inertial-load records have been defined) then
if (NUNITS > 0) then go to F-1
else follow instructions at end of G-1

else return to B-6

5.5 Discretization and Connectivity Summary

The next group of records in the INP file provides a summary of the discretization of each of the
modeling units and specifies connectiivities among these units—including crack definitions (if
any). Shell unit discretizations are defined via F-1 Grid Summary and F-2 Stiffener Summary
records. Element unit discretizations are summarized on the H-1 Element Unit Summary record.
Connectivites among the modeling units, partial compatibility constraints, and multi-point
constraints are defined via G-1 through G-4 record groups. Crack definitions are specified via
G-5, G-6 and G-7 records.

xg yg zg, ,() xo
5-22 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
F-1 Grid Summary

The grid point summary record gives the number of rows and columns for each of the NUNITS

(B-2) shell units. While in most cases, these coincide with the element edges, for nine-node shell
elements with full-fledged midside nodes, every other gridline coincides with the element edges.
Thus, for the nine-node E480 element, for example, the element spans three gridlines instead of
two. That is, a grid specified by three rows and three columns (a 3x3 grid) accommodates a
single 9-node quadrilateral element or four 4-node quadrilateral elements. NROWS and NCOLS

must be odd to accommodate these elements. For ordinary quadrilateral shell elements, the
number of elements along a row is

while for nine-node shell elements it is

with corresponding formulas for the number of elements along a column.

(NROWS(i) NCOLS(i) , i = 1, NUNITS)

NROWS(i) number of rows for shell unit i
NCOLS(i) number of columns for shell unit i

NOTE: All of the data here are on a single logical record; when the user’s model
has a large number of shell units, it is generally necessary to divide this
logical record into two or more subrecords, each (except the last) of which
is terminated with a record-continuation character (comma) (see 5.3 “Input
Format Conventions” on page 5-4).

NSTFS (B-2) number of shell units with discrete stiffeners
NINTS (B-2) number of shell-unit-connection records required
NPATS (B-2) number of G-2 type partial-compatibility records required
NPATX (B-2) number of G-2c type partial-compatibility records required
NCONST(B-2) number of Lagrange-constraint equations
NINSR (B-2) number of inserted node/element sets defining cracks
NUNITE (B-2) number of element units

if (NSTFS > 0) then go to F-2
elseif (NINTS > 0) then go to G-1
elseif (NPATS > 0) then go to G-2
elseif (NPATX > 0) then go to G-2c
elseif (NCONST < 0) then go to G-3
elseif (NINSR > 0) then go to G-5
elseif (NUNITE > 0) then go to H-1
else follow instructions at end of H-1

Ner

Ner NCOLS 1–=

Ner NCOLS 1–() 2⁄=
STAGS 5.0 User Manual April, 2009 5-23

Model Input Discretization and Connectivity Summary
F-2 Stiffener Summary

This record is included if and only if there are shell units with discrete stiffeners, i.e., when

 (B-2); this includes any moving plane boundary conditions. Ordinary stiffeners and

moving plane boundaries can be mixed together in any order, and can lie on top of one another.

This record is repeated NSTFS times.

IUNIT NRGS NSTR

IUNIT shell unit number

NRGS number of discrete stiffeners or moving plane boundaries in the
row direction (constant X)

NSTR number of discrete stiffeners or moving plane boundaries in the
column direction (constant Y).

NSTFS (B-2) number of shell units with discrete stiffeners
NINTS (B-2) number of shell-unit connections
NPATS (B-2) number of G-2 type partial-compatibility records required
NPATX (B-2) number of G-2c type partial-compatibility records required
NCONST (B-2) number of Lagrange-constraint equations
NINSR (B-2) number of inserted node/element sets defining cracks
NUNITE (B-2) number of element units

if (NSTFS F-2 records have been defined) then
if (NINTS > 0) then go to G-1
elseif (NPATS > 0) then go to G-2
elseif (NCONST < 0) then go to G-3
elseif (NINSR > 0) then go to G-5
elseif (NUNITE > 0) then go to H-1
else follow instructions at end of H-1

else continue defining F-2

NSTFS 0>
5-24 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
G-1 Shell Unit Connections

Type G-1 record(s) are required when displacement compatibilities between pairs of shell unit
boundary lines have been specified by defining NINTS>0 (B-2). Each G-1 record specifies one or
(if the looping feature described below is used) more than one pair of shell-unit boundary lines
for which displacement compatibilities are to be enforced.

Typically, G-1 records are used to join pairs of shell units that are constructed with thin-shell
elements or to connect pairs of shell units that are constructed with solid elements. For some
models, one or more G-1 records may be used to join pairs of shells where one is a thin-shell
unit and the other is a solid-element (multi-layered) unit. Please see the note about that situation,
later in this description.

In any event, the user should know that shell units are automatically numbered by the order in
which they are defined. The boundary lines of the shell units are numbered as shown in Figure
6.6 on page 6-58. A G-1 shell unit connection record specifies compatibility between one
boundary line on a shell unit m and a second boundary line on a shell unit n. Shell unit m must
be chosen as the unit with the lower number of the two units involved in one G-1 record. G-1
can only be used to connect boundary lines of shell units. Connections can be defined at internal
grid lines either by partial compatibility (G-2 and/or G-2c) records, with Lagrange constraints
(G-3), or as user-written constraints.

If more than two shell units are connected at the same line, the m unit on all of the corresponding
G-1 records must be the same.

G-1 can be used to define a connection between two boundary lines on the same shell unit. This
feature is used to define a closed shell. In that case, ; and MBOUND, NBOUND are
set to connect boundaries 1-to-3 or 2-to-4, as those are the only permissible ways to effect an
intraunit connection. For example, a closed cylinder must be connected on the and

 boundaries (2-to-4); otherwise a “slit” cylinder results.

If , the juncture line on the unit n is connected to the unit m in reverse order. This
option is used if the shell coordinate X or Y in the two connected units is increasing in opposite
directions along the common boundary.

The user must insure that the grid lines in each unit are compatible along the line of juncture;
this means that the number of rows or columns in one unit must equal either the number of rows
or the number of columns in the other (F-1). For example, if a juncture line along a row on unit
1 is joined along a column in unit 2, the number of columns in unit 1 must be equal to the
number of rows in unit 2 for a compatible fit. If compatibility conditions are not satisfied, a
diagnostic message is printed.

MUNIT NUNIT=

θ 0°=

θ 360°=

NBOUND 0<
STAGS 5.0 User Manual April, 2009 5-25

Model Input Discretization and Connectivity Summary
Typically, a single G-1 record will be used to define each of the NINTS shell-unit connections for
the problem at hand. For some configurations, however, it is convenient to use the G-1 looping
feature described below to specify two or more connections with a single G-1 record; in this
case, the number of G-1 records required will be less than NINTS (but must be sufficient to define
all NINTS connections).

If one or the other (but not both) of the two units on a G-1 record identifies a multi-layered shell,
it is

MUNIT MBOUND NUNIT NBOUND NDEFS INC1 INC2 INC3 INC4

MUNIT the magnitude of MUNIT identifies the lower-numbered shell unit ;
see the note following this description for important information about
the sign of MUNIT

MBOUND boundary line number, for unit m

NUNIT the magnitude of NUNIT identifies the higher-numbered shell unit ;
see the text above for important information about the sign of NUNIT

NBOUND boundary line number, for unit n
NDEFS the number of shell-unit connections specified via the current G-1 record;

STAGS sets NDEFS equal to unity if it is nonpositive or if it is omitted

INC1 incrementation parameter for MUNIT

INC2 incrementation parameter for MBOUND

INC3 incrementation parameter for NUNIT

INC4 incrementation parameter for NBOUND

Note: A shell unit that is modeled with thin shell elements only needs a single layer of node
points to define those elements. The shell may be a multi-layered shell in terms of its material
fabrication properties; but it is a single-layered shell, geometrically. A shell unit that is modeled
with sandwich or solid elements must have two or more layers of nodes in the thickness direction
to accommodate those elements. The user typically establishes a “reference” layer of node points
by specifying a geometry type (ISHELL) on an M-1 record and parameters associated with that
type of shell on the M-2 companion for that M-1 record. When the user specifies the use of
sandwich or solid elements for constructing the shell unit (on the N-1 record for that unit), STAGS

starts with the reference layer of nodes (the reference grid) and generates additional nodal layers
by “pulling” the reference layer through the thickness. The shell unit constructed by this process
may be single-layered with respect to its fabrication (regardless of the number of nodal layers
required) but it is always multi-layered in a geometric sense. If one or the other (but not both)
of the two units that are specified here identifies a multi-layered shell (with two or more nodal
layers), the user must give a negative sign to the unit-specification variable for the multi-layered

m n≤()

n m≥()
5-26 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
unit (i.e., to MUNIT or NUNIT, depending on which of the two units is the multi-layered one). This
tells STAGS to generate soft links (E121 elements) and Lagrange multipliers automatically, to
enforce the displacement compatibilities that are needed to join pairs of shells when one of them
is nodally multi-layered.

Example 1: the following G-1 record:

10 2 20 4 3 1 0 1 0 $ G-1 record

generates the same three shell-unit connections as the following three G-1 records:

10 2 20 4 $ G-1 record
11 2 21 4 $ G-1 record
12 2 22 4 $ G-1 record

Example 2: the following G-1 record:

-13 2 23 4 $ G-1 record

specifies a single connection in which a thin-shell unit is joined to a solid-shell unit.

NINTS (B-2) number of shell-unit connections
NPATS (B-2) number of G-2 type partial-compatibility records required
NPATX (B-2) number of G-2c type partial-compatibility records required
NCONST (B-2) number of Lagrange-constraint equations
NINSR (B-2) number of inserted node/element sets defining cracks
NUNITE (B-2) number of element units

if (NINTS shell unit connections have been defined) then
if (NPATS > 0) then go to G-2
elseif (NPATX > 0) then go to G-2c
elseif (NCONST < 0) then go to G-3
elseif (NINSR > 0) then go to G-5
elseif (NUNITE > 0) then go to H-1
else follow instructions at end of H-1

else continue defining G-1
STAGS 5.0 User Manual April, 2009 5-27

Model Input Discretization and Connectivity Summary
G-2 Partial Displacement Compatibility

Record(s) of type G-2 are required when partial compatibility between displacements at
particular nodes has been specified by defining (B-2). NPATS G-2 records must be
included. Each G-2 record specifies one or more partial displacement compatibility conditions,
depending on whether or not the G-2 record exterior-looping feature (described below) is used.

If G-2 records are used to connect single-layered shell units, IGLOBE (M-1) must be 0, 3, 4, or 5.
A single-layered-shell-unit displacement component is identified by its unit, row, column, and
component (direction) numbers. A displacement component in element units is identified by
node number (IR1), a zero for IC1, and a value for the direction (ID1). The first 8 items on each
G-2 record define a pair of displacement components. The two units referenced may be the same.
The first shell unit (IU1) must not be greater than the second (IU2).

The zero rule applies to the variables IR1, IC1, IR2, IC2: if any of these variables is set to zero in
a shell unit, it means the compatibility condition applies to an entire row or column, respectively.
For example, to enforce compatibility of the u freedom along row 1 of unit 1, the single G-2
record shown below can be used:

 1 1 1 1 1 1 0 1

When either a row (or column) entry is zero for both the master and slave sets of integers, a loop
over all rows (or columns) is implied, generating nrow (or ncol) separate constraints, where
nrow and ncol are the number of rows and columns in the shell unit. For example, the single
G-2 record

 1 0 1 3 1 0 14 3

means that for each row, the w freedom () on column 14 is equated with the w freedom
on column 1. When this capability is used with two different shell units, the number of rows
(columns) must of course be the same.

If the value of IR2 or IC2 (for the slave nodes) is negative, the compatibility between units IU2 and
IU1 is enforced in reverse order (this is identical to what happens with the NBOUND variable on
G-1 records). This option is used if the shell coordinate X or Y in the two connected units is
increasing in opposite directions along the common boundary.

Since no transformations are performed, the specified nodes should not lie on a boundary line
involved in a shell unit connection (G-1) unless the two shell units have the same orientation
with respect to the global coordinates.

NPATS 0>

ID1 3=
5-28 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
A special option is provided for joining shell units using G-2 records. If both ID1 and ID2 are zero,
then full compatibility is enforced between the nodes on IU1 and IU2. This means that the
components on the node belonging to IU2 are first transformed into the local system in IU1 before
the compatibility condition is enforced, which is the same thing that happens when shell units
are joined using G-1 records. The zero rule also applies to the row and column indices here; thus,
to join shell unit 2, row 1 to shell unit 1, row 13, the single record

1 13 0 0 2 1 0 0

suffices. Here, row 13 could be in the interior of the unit. The user must be very careful when
using this option. First, he must insure the same row or column compatibility as required for the
G-1 records; second, the user cannot set ID2 to zero to transform the coordinates in unit 2 to the
master unit system when only a single component is specified in unit 1 (ID1 not zero); third, he
must insure that the lines involved in the juncture actually coincide in space, since the code will
not check for the physical coincidence of the juncture lines. The user can take advantage of
IGLOBE options 3, 4, or 5 (M-1) to move the units around until they meet in the right place.

The next six items (ND1A through INC2) on the G-2 record are optional input variables allowing
the user to specify full compatibility for a range of nodes. These data are ignored unless the
following logical expression evaluates to ‘True’:

 .

These optional input variables provide a convenient (interior-looping) method for specifying
compatibility between any portion of a row or column of one unit and a portion of a row or
column of another unit. This type of input may also be used in element units provided the range
of nodes has a fixed increment. For both shell and element units, increasing and decreasing
ranges are allowed. If or , an increment of +1 is used for increasing ranges
and -1 for decreasing ranges.

Typically, one G-2 record will be used to define each of the NPATS partial displacement
compatibility conditions for the problem at hand. For some configurations, however, it is
convenient to use the G-2 exterior-looping feature described below to make two or more
specifications with a single G-2 record. The final item (NDEFS) on the G-2 record is an optional
control parameter that, when omitted or set equal to any integer less than or equal to unity,
causes the G-2 record to generate a single (set of) partial displacement compatibility
specification(s)⎯ or, when NDEFS > 1, causes the G-2 record (with information on the G-2a
record following it) to generate NDEFS sets of partial compatibility specifications (see the
example following the G-2a description, below).

IR1 0 or IC1 0==() and IR2 0= or IC2 0=(){ }

INC1 0= INC2 0=
STAGS 5.0 User Manual April, 2009 5-29

Model Input Discretization and Connectivity Summary
If the exterior-looping feature is not used on any of the G-2 records given, the NPATS G-2 records
define NPATS partial displacement compatibilities; if the exterior-looping feature is used, the
NPATS G-2 records given define more than NPATS partial displacement compatibility conditions.

IU1 IR1 IC1 ID1 IU2 IR2 IC2 ID2 ND1A ND1B INC1 ND2A ND2B INC2 NDEFS

IU1 unit number of first node. indicates element unit k; IU1 must be
the lower number ; see CAUTION, below.

IR1 row number of first node or node number in element unit; if , then either
 or must be set.

IC1 column number of first node. in element unit; if , then either
 or must be set.

ID1 Indicates the component involved at the first node; ID1 = 1, 2, 3, 4, 5 or 6 for u,
v, w, ru, rv, rw, respectively; if , then all components are involved, and

 must be set.

IU2 unit number of second node; for element unit k;
IU2 must be the higher number ; see CAUTION, below.

IR2 row number of second node or node number in element unit.

IC2 column number of second node; in element unit.

ID2 indicates the component involved at the second node. ID2 = 1, 2, 3, 4, 5 or 6 for
u, v, w, ru, rv, rw, respectively; if , then the components are first
transformed to the IU1 system before partial compatibility is enforced. Note: if

, then ID1 must also be 0.

ND1A first node of: (row, if) or (column, if)

ND1B last node of: (row, if) or (column, if)

INC1 increment for nodes from ND1A to ND1B

ND2A first node of: (row, if) or (column, if)

ND2B last node of: (row, if) or (column, if)

INC2 increment for nodes from ND2A to ND2B

NDEFS number of partial compatibility specifications generated via this G-2
record; set to unity by STAGS if nonpositive or omitted

CAUTION: when different shell or element units are involved, the lower-numbered unit must be
given first. This rule also applies to node numbers within a specific unit; the lower-numbered

IU1 NUNITS k+=

IU1 IU2≤()

IR1 0=

IR2 0= IC2 0=

IC1 0= IC1 0=

IR2 0= IC2 0=

ID1 0=

ID2 0=

IU2 NUNITS k+=

IU2 IU1≥()

IC2 0=

ID2 0=

ID2 0=

IR1 0= IC1 0=

IR1 0= IC1 0=

IR2 0= IC2 0=

IR2 0= IC2 0=
5-30 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
node must be given first. In shell units, nodes are numbered in row-major order; i.e., along row
1, starting at column 1; then along row 2, starting at column 1; etc.

if (NDEFS > 0) then go to G-2a
else follow instructions at end of G-2a
STAGS 5.0 User Manual April, 2009 5-31

Model Input Discretization and Connectivity Summary
G-2a Partial Compatibility Incrementations

A single record of type G-2a must be included immediately after each type G-2 record on which
the NDEFS parameter is greater than unity. Eight incrementation variables are specified here for
use with the G-2 record exterior-looping capabilities.

JU1 JR1 JC1 JD1 JU2 JR2 JC2 JD2

JU1 incrementation variable for use with the IU1 (unit-specification)
variable on the parent G-2 record

JR1 incrementation variable for use with IR1 (on G-2)

JC1 incrementation variable for use with IC1 (on G-2)

JD1 incrementation variable for use with ID1 (on G-2)

JU2 incrementation variable for use with IU2 (on G-2)

JR2 incrementation variable for use with IR2 (on G-2)

JC2 incrementation variable for use with IC2 (on G-2)

JD2 incrementation variable for use with ID2 (on G-2)

Any of these incrementation variables may be negative, zero or positive.

Exterior-looping example: the following G-2/G-2a record combination:

63 2 0 4 71 2 0 4 1 7 1 1 7 1 3 $ G-2 record
 0 0 0 1 0 0 0 1 $ G-2a record

generates the same three partial compatibility definitions as the following three G-2 records:

63 2 0 4 71 2 0 4 1 7 1 1 7 1 $ G-2 record
63 2 0 5 71 2 0 5 1 7 1 1 7 1 $ G-2 record
63 2 0 6 71 2 0 6 1 7 1 1 7 1 $ G-2 record
5-32 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
NPATS (B-2) number of G-2 type partial-compatibility records required
NPATX (B-2) number of G-2c type partial-compatibility records required
NCONST (B-2) number of Lagrange-constraint equations
NINSR (B-2) number of inserted node/element sets defining cracks
NUNITE (B-2) number of element units

if (NPATS G-2 records have been defined) then
if (NPATX > 0) then go to G-2c
elseif (NCONST < 0) then go to G-3
elseif (NINSR > 0) then go to G-5
elseif (NUNITE > 0) then go to H-1
else follow instructions at end of H-1

else return to continue defining G-2
STAGS 5.0 User Manual April, 2009 5-33

Model Input Discretization and Connectivity Summary
G-2c Partial Displacement Compatibility

Record pair(s) of type G-2c and G-2d are required when partial compatibility between
displacements at particular nodes has been specified by defining (B-2): this protocol
for specifying partial-compatibility conditions can be used with single-layered shell and/or
element units; but it is most suitable for use with multi-layered shell and/or element units.

The term “single-layered” in this context refers to modeling units (or regions) where a single
layer of node points (a two-dimensional grid) is needed to model the structure with a single layer
of two-dimensional plate and/or shell elements. The term “multi-layered” refers, here, to units
(or regions) where two or more layers of nodes are required to model a structural component
with sandwich or solid elements that have two or more nodes in the “thickness” direction.

In any event, NPATX G-2c/G-2d record pairs must be included. Each G-2c record specifies one or
more partial displacement compatibility conditions, depending on whether or not the exterior-
looping feature is used on the G-2d record (described below). Each G-2c record must be
followed immediately by a G-2d record.

If G-2c records are used to connect shell units, IGLOBE (M-1) must be 0, 3, 4, or 5. A
displacement component in a single-layered shell unit is identified by its unit, row, column,
shell-layer, and component (direction) numbers—with the shell-layer number set equal to zero.
A displacement component in a multi-layered shell unit is identified by its unit, row, column,
shell-layer, and component (direction) numbers—with the layer number set to a positive value
that is less than or equal to the number of nodal layers in the unit. A displacement component in
an element unit is identified by its node number (IR1), a zero for IC1, a zero for IL1, and a value
for the direction (IDIR). The first 10 items on each G-2c record define a pair of displacement
components. The two units referenced may be the same. The first unit number (IU1) must not be
greater than the second (IU2).

The zero rule applies to the variables IR1, IC1, IR2, IC2: if any of these variables is set to zero in
a shell unit, it means the compatibility condition applies to an entire row or column, respectively.
For example, to enforce compatibility of the u freedom along row 7 on nodal layer 5 of unit 2,
the following G-2c record can be used:

 2 7 1 1 5 2 7 0 1 5

When either a row (or column) entry is zero for both the master and slave sets of integers, a loop
over all rows (or columns) is implied, generating nrow (or ncol) separate constraints, where
nrow and ncol are the number of rows and columns in the shell unit. For example, the G-2c
record

 2 0 1 3 5 2 0 14 3 5

NPATX 0>
5-34 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
means that for each row of nodal layer 5, the w freedom () on column 14 is equated
with the w freedom on column 1. When this capability is used with two different shell units, the
number of rows (columns) must of course be the same.

If the value of IR2 or IC2 (for the slave nodes) is negative, the compatibility between units IU2 and
IU1 is enforced in reverse order (this is identical to what happens with the NBOUND variable on
G-1 records). This option is used if the shell coordinate X or Y in the two connected units is
increasing in opposite directions along the common boundary.

Since no transformations are performed, the specified nodes should not lie on a boundary line
involved in a shell unit connection (G-1) unless the two shell units have the same orientation
with respect to the global coordinates.

As is the case with the G-2 record, a special option is provided for joining shell units using G-2c/
G-2d record pairs. If the ID1 and ID2 variables are both zero, then full compatibility is enforced
between the nodes on IU1 and IU2. This means that the components on the node belonging to IU2

are first transformed into the local system in IU1 before the compatibility condition is enforced,
which is the same thing that happens when shell units are joined using G-1 records. The zero
rule also applies to the row and column indices here; thus, to join shell unit 2, row 1, nodal layer
5 to shell unit 1, row 13, nodal layer 7, the single record

1 13 0 0 7 2 1 0 0 5

suffices. Here, row 13 could be in the interior of the unit. The user must be very careful when
using this option. First, the user must insure the same row or column compatibility as required
for the G-1 records; second, the user must insure that the lines involved in the juncture actually
coincide in space, since the code will not check for the physical coincidence of the juncture lines.
The user can take advantage of IGLOBE options 3, 4, or 5 (M-1) to move the units around until
they meet in the right place.

The next six items (ND1A through INC2) on the G-2c record are optional input variables allowing
the user to specify full compatibility for a range of nodes. These data are ignored unless the
following logical expression evaluates to ‘True’:

These optional input variables provide a convenient (interior-looping) method for specifying
compatibility between any portion of a row or column of one unit and a portion of a row or
column of another unit. This type of input may also be used in element units provided the range
of nodes has a fixed increment. For both shell and element units, increasing and decreasing
ranges are allowed. If or , an increment of +1 is used for increasing ranges
and -1 for decreasing ranges.

IDIR 3=

IR1 0 or IC1 0==() and IR2 0= or IC2 0=(){ }

INC1 0= INC2 0=
STAGS 5.0 User Manual April, 2009 5-35

Model Input Discretization and Connectivity Summary
Typically, one G-2c record will be used to define each of the NPATX partial displacement
compatibility conditions for the problem at hand. For some configurations, however, it is
convenient to use the G-2c exterior-looping feature described below to make two or more
specifications with a single G-2c record. The final item (NDEFS) on the G-2c record is an optional
control parameter that, when omitted or set equal to any integer less than or equal to unity,
causes the G-2c record to generate a single (set of) partial displacement compatibility
specification(s) ⎯ or, when NDEFS > 1, causes the G-2c record (with information on the G-2d
record following it) to generate NDEFS sets of partial compatibility specifications (see the
example following the G-2d description, below).

If the exterior-looping feature is not used on the G-2d record immediately following a G-2c
record, the G-2c record defines a single set of partial displacement compatibilities; if the
exterior-looping feature is used, the G-2c/G-2d record pair defines NDEFS sets of conditions.

IU1 IR1 IC1 IL1 ID1 IU2 IR2 IC2 IL2 ID2 ND1A ND1B INC1 ND2A ND2B INC2

IU1 unit number of first node; indicates element unit k; IU1 must be
the lower number ; see CAUTION, below.

IR1 row number of first node or node number in element unit; if , then either
 or must be set.

IC1 column number of first node. in element unit; if , then either
 or must be set.

IL1 nodal layer number for the first node; set if unit IU1 is a single-layered
shell unit, or to a positive value not exceeding the number of layers of nodes in
unit IU1 if it is a multi-layered (solid) shell unit.

ID1 Indicates the component involved at the first node; ID1 = 1, 2, 3, 4, 5 or 6 for u,
v, w, ru, rv, rw, respectively; if , then all components are involved, and

 must be set.

IU2 unit number of second node; for element unit k;
IU2 must be the higher number ; see CAUTION, below.

IR2 row number of second node or node number in element unit.

IC2 column number of second node; in element unit.

IL2 nodal layer number for the second node; set if unit IU2 is a single-layered
shell unit, or to a positive value not exceeding the number of layers of nodes in
unit IU2 if it is a multi-layered (solid) shell unit.

IU1 NUNITS k+=

IU1 IU2≤()

IR1 0=

IR2 0= IC2 0=

IC1 0= IC1 0=

IR2 0= IC2 0=

IL1 0=

ID1 0=

ID2 0=

IU2 NUNITS k+=

IU2 IU1≥()

IC2 0=

IL2 0=
5-36 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
ID2 indicates the component involved at the second node. ID2 = 1, 2, 3, 4, 5 or 6 for
u, v, w, ru, rv, rw, respectively; if , then the components are first
transformed to the IU1 system before partial compatibility is enforced. Note: if

, then ID1 must also be zero.

ND1A first node of: (row, if) or (column, if)

ND1B last node of: (row, if) or (column, if)

INC1 increment for unit IU1 nodes from ND1A to ND1B

ND2A first node of: (row, if) or (column, if)

ND2B last node of: (row, if) or (column, if)

INC2 increment for unit IU2 nodes from ND2A to ND2B

CAUTION: when different shell or element units are involved, the lower-numbered unit must
be given first. This rule also applies to node numbers within a specific unit; the lower-numbered
node must be given first. In shell units, nodes are numbered in row-major order; i.e., along row
1, starting at column 1; then along row 2, starting at column 1; etc.

go to G-2d

ID2 0=

ID2 0=

IR1 0= IC1 0=

IR1 0= IC1 0=

IR2 0= IC2 0=

IR2 0= IC2 0=
STAGS 5.0 User Manual April, 2009 5-37

Model Input Discretization and Connectivity Summary
G-2d Partial Compatibility Looping and Incrementations

A single type G-2d record must be included immediately after each type G-2c record. The
external looping parameter (NDEFS) and ten incrementation variables are specified here for use
with information provided on the G-2c record.

NDEFS JU1 JR1 JC1 JL1 JD1 JU2 JR2 JC2 JL2 JD2

NDEFS number of partial compatibility specifications generated via this G-2c/
G-2d record pair; set to unity by STAGS if nonpositive.

JU1 incrementation variable for use with the IU1 (unit-specification)
variable on the parent G-2c record

JR1 incrementation variable for use with IR1 (on G-2c)

JC1 incrementation variable for use with IC1 (on G-2c)

JL1 incrementation variable for use with IL1 (on G-2c)

JD1 incrementation variable for use with ID1 (on G-2c)

JU2 incrementation variable for use with IU2 (on G-2c)

JR2 incrementation variable for use with IR2 (on G-2c)

JC2 incrementation variable for use with IC2 (on G-2c)

JL2 incrementation variable for use with IL2 (on G-2c)

JD2 incrementation variable for use with ID2 (on G-2c)

Any of these incrementation variables can be negative, zero or positive.

Example: the following G-2c/G-2d record combination:

 63 2 0 3 4 71 2 0 3 4 1 7 1 1 7 1 $G-2c record
 3 0 0 0 0 1 0 0 0 0 1 $G-2d record

generates 3 sets of partial compatibility definitions, using the interior-looping feature of the G-2c
record to enforce compatibility between nodes on row 2 of (nodal layer 3) of shell units 71 and
63, and using the exterior-looping feature of the G-2d record to specify direction-5 and
direction-6 components in addition to the direction-4 component that is specified on the G-2c
record.
5-38 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
NPATX (B-2) number of G-2c type partial-compatibility records required
NCONST (B-2) number of Lagrange-constraint equations
NINSR (B-2) number of inserted node/element sets defining cracks
NUNITE (B-2) number of element units

if (NPATX G-2c records have been defined) then
elseif (NCONST < 0) then go to G-3
elseif (NINSR > 0) then go to G-5
elseif (NUNITE > 0) then go to H-1
else follow instructions at end of H-1

else return to continue defining G-2c
STAGS 5.0 User Manual April, 2009 5-39

Model Input Discretization and Connectivity Summary
G-3 Constraint—Record 1

This record is read if (B-2). The sequence G-3, G-4 is repeated times,
each sequence defining one or more Lagrange constraints of the type

where

 are displacement unknowns, scaled by constant coefficients, ;

 is a constant term;

 and are the load factors (see 6.5 “Loads” on page 6-64), scaled by constant
coefficients, and ;

and where the number of constraints defined via any given G-3, G-4 record sequence depends
on whether or not the exterior looping feature, described subsequently, is used.

In general, Lagrange constraints have terms, where is required. Each of the remaining
three terms is optional. The displacement unknowns are defined by specification of unit
number, local node number, and dof direction. The constant term and the constant
coefficients are defined as real numbers.

Each Lagrange constraint is enforced by one of two methods, described below, which is
independently specified for each constraint. The direct-elimination method is generally
preferable, as each constraint of this type removes an equation, whereas selection of the
constraint-equation method adds an equation.

Constraint-equation method

Constraint equations are assembled into the stiffness matrix along with the other
freedoms. For each constraint, a new freedom is introduced. In order to avoid
numerical difficulties, it may be necessary to scale constraint equations. This is
achieved by multiplying the constant coefficients , as well as the constant
term , by a scale factor, which should be chosen so that each term is roughly the
order of magnitude of the other stiffness matrix elements. We suggest a scale factor
equal to the material modulus or modulus times wall thickness.

NCONST 0< NCONST

cixi c0 cAPA cBPB+ + +

i 1=

n

∑ 0=

xi ci

c0

PA PB

cA cB

n 3+ n 1≥
xi()

c0()
ci cA cB, ,()

ci cA cB, ,()
c0()
5-40 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
One additional feature of Lagrange constraints is that for each equation a negative
root will appear in the stiffness matrix. It is important to take this into account when
using properties of the stiffness matrix to determine structural stability
characteristics.

Choose the constraint-equation method when it is difficult to select a set of unique
dependent freedoms from the total set of freedoms involved in all constraints; see
NOTE, p. 5-43. Constraint equations are very general, and there are no limitations
whatsoever regarding ordering of terms in a constraint equation or on the appearance
of dof in other constraints, including direct elimination constraints.

Direct-elimination method

This results in one freedom, the dependent freedom, being defined in terms of the
other freedoms, the independent freedoms, and eliminated from the system of
equations. Thus, rather than adding a constraint equation, this method results in the
elimination of one equation for each constraint. Scaling, as in the constraint-equation
method, is not necessary for direct elimination.

Choose the direct-elimination method when it is possible to express a dependent
freedom as a linear combination of “independent” freedoms. By independent, we
mean that the particular freedom does not appear as a dependent freedom in any other
direct-elimination constraint.

A maximum of 100 terms in a single constraint is allowed. Given the very poor bandwidth such
a large number of terms creates, this is a very generous limit. A very effective way around the
limitation on the number of terms and the resulting bandwidth problems is to nest constraints.
Nesting means to define intermediate nodes first and break up the constraints into smaller
components. For example, if freedom k equals the sum of 400 particular freedoms, one could
define 8 extra freedoms. On the lowest level, 8 freedoms are each set equal to the sum of 50
different freedoms taken from the set of 400, forming the inner level of the nest. The outer level
is simply a constraint setting the desired freedom to be the sum of the 8 newly-defined freedoms.
Nesting can, in principal, be carried to any level. The bandwidth is limited to the maximum
number of terms in a given constraint.
STAGS 5.0 User Manual April, 2009 5-41

Model Input Discretization and Connectivity Summary
NTERMS NX INC1 INC2 INC3 INC4 INC5

NTERMS defines the number of terms in the constraint; .
 specifies the constraint-equation method.
 specifies the direct-elimination method.

NX Looping parameter; defines the number of Lagrange constraints to be generated
with information on the current G-3, G-4 record sequence; set equal to unity by
STAGS if nonpositive or omitted.

INC1 Incrementation parameter for all of the IU variables specified on G-4 records in
the current G-3, G-4 sequence (used only if).

INC2 Incrementation parameter for all of the IX variables specified on G-4 records in the
current G-3, G-4 sequence (used only if).

INC3 Incrementation parameter for all of the IY variables specified on G-4 records in the
current G-3, G-4 sequence (used only if).

INC4 Incrementation parameter for all of the ID variables specified on G-4 records in
the current G-3, G-4 sequence (used only if).

INC5 Incrementation parameter for all of the IZ variables specified on G-4 records in the
current G-3, G-4 sequence (used only if).

EXAMPLE: specifies one or more constraints with 5 terms, implemented via the
constraint-equation method.

 specifies one or more constraints with 5 terms, implemented via
the direct-elimination method.

go to G-4

NTERMS NTERMS 100≤
NTERMS 0>
NTERMS 0<

NX 1>

NX 1>

NX 1>

NX 1>

NX 1>

NTERMS 5=

NTERMS 5–=
5-42 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
G-4 Constraint—Record 2

This record is read NTERMS times in each G-3/G-4 sequence. The number of Shell Units is NUNITS

(B-2). For element unit l, the variable IU is set to k, where . Constraints on
displacement or rotation components at a juncture line must be defined in terms of the freedoms
on the shell unit with the lowest number of those involved in the juncture. Constraints at element
unit node points located at shell unit nodes must be defined in terms of the freedoms at the shell
unit node.

CAUTION:Slave dof may not appear in constraint equations. Master/slave dof relationships are
created automatically by STAGS where compatibility has been prescribed. There are three
different modeling features which result in such relationships:

• shell-unit junctures (G-1)

• displacement compatibility (G-2)

• nodal definition in a higher-numbered unit by reference to a lower-numbered unit
(S-1)

IU(i) IX(i) IY(i) ID(i) CC(i) IZ(i)

IU(i) indicates that either the constant term or one of the load-

factor coefficients is defined. Currently, only one record defining the

constant term (IU(i)=0) is allowed (per constraint), and this record must be the last
one defined for this constraint.

 indicates that one of the dof coefficients is defined; IU(i)

specifies the unit where the unknown is located.

 for a shell unit, where IUNIT is the unit number

 for element unit l (see above)

NOTE: In a direct-elimination constraint, the first freedom specified is taken to be the
dependent freedom, the one that is eliminated. A dependent freedom must not
otherwise be constrained by a BC; and it must not appear in any other direct-
elimination constraint, either as the dependent freedom or as an independent
freedom. It may appear in any number of constraint equations.

IX(i) node/row where the unknown is located. IX(i) is defined as:

: IX(i) = row number

: IX(i) = node number

k NUNITS l+=

IU i() 0= c0()

cA cB,()

IU i() 0> ci()

xi

IU i() IUNIT=

IU i() k=

xi

IU i() IUNIT=

IU i() k=
STAGS 5.0 User Manual April, 2009 5-43

Model Input Discretization and Connectivity Summary
IY(i) column where the unknown is located. IY(i) is defined as:

: IY(i) = column number
: IY(i) is irrelevant

ID(i) term identifier, interpreted according to the value of IU(i), as follows:

1 – load-factor coefficient

2 – load-factor coefficient

3 – constant term,

1 – dof coefficient; refers to the displacement component u

2 – dof coefficient; refers to the displacement component v

3 – dof coefficient; refers to the displacement component w

4 – dof coefficient; refers to the displacement component ru

5 – dof coefficient; refers to the displacement component rv

6 – dof coefficient; refers to the displacement component rw

CC(i) coefficient as required by the specification of ID(i), above.

IZ(i) nodal layer (in a shell unit) to which this constraint applies.

Example: the following G-3/G-4 record sequence:

2 3 0 0 0 1
1 511 0 4 1.000E6 1
1 515 0 4 -1.000E6 1

generates the same three Lagrange constraint definitions as the following three G-3/G-4 record
sequences:

2 $ G-3 record for definition # 1
1 511 0 4 1.000E6 1 $ G-4 record for definition # 1
1 515 0 4 -1.000E6 1 $ G-4 record for definition # 1
2 $ G-3 record for definition # 2
1 511 0 5 1.000E6 1 $ G-4 record for definition # 2
1 515 0 5 -1.000E6 1 $ G-4 record for definition # 2
2 $ G-3 record for definition # 3
1 511 0 6 1.000E6 1 $ G-4 record for definition # 3
1 515 0 6 -1.000E6 1 $ G-4 record for definition # 3

xi

IU i() IUNIT=

IU i() k=

IU i() 0=

cA

cB

c0

IU i() 0>

xi

xi

xi

xi

xi

xi
5-44 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
Only one of the five incrementation parameters should be used with any given G-3/G-4 record
sequence.

NTERMS(G-3) number of terms in constraint equation
NCONST(B-2) number of Lagrange-constraint-definition sequences
NINSR (B-2) number of inserted node/element sets defining cracks
NUNITE (B-2) number of element units

if (NTERMS G-4 records have been defined) then
if (NCONST G-3 records have been defined) then

if (NINSR > 0) then go to G-5
elseif (NUNITE > 0) then go to H-1
else follow instructions at end of H-1

else return to G-3
else continue defining G-4
STAGS 5.0 User Manual April, 2009 5-45

Model Input Discretization and Connectivity Summary
G-5 Crack Inserted Node Set—Record 1

G-5 is included when NINSR > 0 (B-2). The G-5–G-7 series is repeated NINSR times.

Generation of a crack requires the association of an ordered set of nodes in the structural model
with the crack face; these nodes must be ordered either from left end of the crack to the right
end of the crack, or vice versa. These nodes are collocated with nodes already defined in the
model but have independent displacement components after the crack opens. A number of
elements must also be specified to show which elements are to use the new nodes instead of the
original nodes. All crack nodes required for a series of analyses must be defined before the first
execution. The growth of a crack during a static or dynamic analysis is defined by choosing a
subset of such nodes to be “open,” with the freedoms on the remainder of the nodes (closed
nodes) set (or “slaved”) to the corresponding node on the other side of the crack. As the crack
grows, a larger number of nodes is designated as open. In default operation, STAGS keeps a
record of the growth of the crack, so that upon restart, the crack history at the desired restart step
is retrieved and used. A solution option exists to override the STAGS history at restart and use a
new crack configuration specified in these records.

If the user has already generated slave nodes corresponding to a crack, then he can specify these
nodes on record G-6. In this case, G-6 consists of two sets of crack nodes. The first set refers to
the master nodes, and the second to the slave nodes. The lists must be of identical length so that
a one-to-one correspondence between the first list and second list exists. No G-7 records are
needed when the user has already defined the slave nodes and the elements that contain them.

If the user inputs only one list on G-6, STAGS generates the second set of crack nodes. In this
case, if a section of a crack lies along a line that contains two sets of nodes (slave/master relation
defined by G-1 or G-2 records), the crack nodes in the G-6 record should refer only to the slave
nodes. The G-7 records should refer only to elements which contain these slave nodes.

More than one crack can be defined in a given model, with each crack given a unique identifier
(NCRACK) which starts with one and increments by one for every new crack defined. If NCRACK

< 0, a hinged crack is created with the identifier |NCRACK| (see the parameter definition list).

STAGS can be made to grow a crack automatically along the predetermined path defined by these
records, given a crack growth criterion. At present, only the Crack Tip Opening Angle (CTOA)
criterion is implemented (see [1],* for example). If the variable ITEAR is nonzero, the variable
ACRIT is interpreted as the CTOA that must be attained before the crack tip node is automatically
released. STAGS will continue the execution with the strategy chosen by the user until some other
termination criteria are reached, or the crack tip exhausts the list of closed nodes defined on the
given crack. More than one crack with CTOA growth can be defined.

* Numbers in square brackets, here, indicate references at the end of this chapter.
5-46 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
NCRACK INNODS INELTS ITEAR ACRIT CTOD
ACRITT SAWL SAWT CSCALE IDREC

NCRACK crack identifier; if NCRACK < 0, only the translations will be constrained along
closed portions of a crack; this is the so-called “hinged crack”

INNODS number of inserted node records (G-6)

INELTS number of element records (G-7)

ITEAR automatic crack growth indicator

0 – no automatic crack extension; ACRIT is ignored

1 – crack extension according to the CTOA criterion

-1 – crack extension according to CTOA, but along a symmetry boundary
(where only the upper or lower surface of the crack is actually modeled)

ACRIT the critical opening angle (CTOA), in degrees, for the L (longitudinal) direction;
always input the full angle, even when the crack is along a symmetry boundary
(ITEAR = -1)

CTOD the distance from the crack tip to the point from which ACRIT is measured; if CTOD

is 0, the node adjacent to the tip is used; if ACRIT cannot be generated with the
user’s CTOD, the adjacent node is also used

ACRITT the critical opening angle (CTOA), in degrees, for the T (transverse) direction, if
different from ACRIT; if zero, ACRITT is set to ACRIT inside STAGS

SAWL the critical opening angle (CTOA), in degrees, or the longitudinal direction for the
first node released in a sawcut; if zero, STAGS uses ACRIT

SAWT the critical opening angle (CTOA), in degrees, for the transverse direction for the
first node released in a sawcut; if zero, STAGS uses SAWL

CSCALE scale factor for Lagrangian constraints used to close the crack; recommended
value is 1.0 (the default value, if not specified)

IDREC component index for the shell normal coordinate; defaults to 3 if zero or omitted

go to G-6
STAGS 5.0 User Manual April, 2009 5-47

Model Input Discretization and Connectivity Summary
G-6 Crack Inserted Node Set—Record 2

The nodes defining a crack are specified here. G-6 is repeated INNODS (G-5) times. The ICUNIT,

JCUNIT and ICOPEN parameters on this record have special roles, as described in the following

paragraphs.

If the unit that is identified by the ICUNIT parameter has sandwich or solid elements, the sign of

ICUNIT specifies that the crack is on the lower or on the upper surface of that unit. In particular,

the crack will be on the lower surface of unit ICUNIT if , or it will be on the upper

surface of unit if .

If JCUNIT is greater than zero, the set JCROW1, JCCOL1, JCROW2, and JCCOL2 refer to a second set

of nodes already defined in STAGS that are associated one-to-one with the first set specified by

ICUNIT, ICROW1, ICCOL1, ICROW2, and ICCOL2. When the crack nodes are open, the corresponding

associated node on the other side of the crack is independent; when closed, it is slaved. If JCUNIT

is zero, STAGS generates the other set of crack nodes; and a G-7 record specifying the elements

belonging to the new nodes must be provided.

ICOPEN requires special treatment when there is a line of symmetry (ITEAR = -1). When there is

no line of symmetry, any positive value of ICOPEN will cause the released node to be

completely free. However, this procedure is not always suitable for symmetry, since two

symmetry lines can cross at a corner. For this special case, we have added two additional options,

as listed below. In addition, if the user defines his own slave crack nodes (JCROW1, JCCOL1,

JCROW2, JCCOL2), the released nodes always have the user-defined freedom pattern (see S-1, for

example).

ICUNIT 0>

ICUNIT ICUNIT 0<
5-48 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
ICOPEN ICUNIT ICROW1 ICCOL1 ICROW2 ICCOL2
JCUNIT JCROW1 JCCOL1 JCROW2 JCCOL2 THETA

ICOPEN 0 – node is “closed” or “slaved” to the parent node on the other side of the
crack

1 – node is “open” or independent, with its own freedom set. Use this choice
when ITEAR = 0 (G-5 – no line of symmetry). New node is completely free
(full set of freedoms).

1 – if ITEAR = -1 (symmetry) input 1 if the symmetry line is along a row in a
shell unit. For an element unit, release and .

2 – if ITEAR = -1 (symmetry) input 2 if the symmetry line is along a column
in a shell unit. For an element unit, release and .

3 – treat the adjacent tip as a sawcut. The CTOA for the first node refers to
SAWL or SAWT; newly released nodes default back to the original ACRIT or
ACRITT. In all other respects, this option is identical to ICOPEN = 1.

4 – treat the adjacent tip as a sawcut. The CTOA for the first node refers to
SAWL or SAWT; newly released nodes default back to the original ACRIT or
ACRITT. In all other respects, this option is identical to ICOPEN = 2.

5 – ignore all symmetry and free up the node unconditionally. For ITEAR = 0,
all positive choices for ICOPEN are equivalent after the first node has
opened.

For conditions not covered by the above options, the user can arbitrarily define
his own slave node set boundary conditions (see discussion above). Another way
to override the automatic freeing of dependent crack nodes is to assign them a
vanishingly small specified displacement, which causes the opened node to inherit
that constraint.

ICUNIT unit number; a given crack can span more than one unit. Remember that crack
nodes must be defined in order along the crack face, even when spanning more
than one unit (this requires more than one G-6 record).

ICROW1 row number of first node (shell unit); number of first node (element unit)

ICCOL1 column number of first node (shell unit); number of last node (element unit)

ICROW2 row number of last node (shell unit) Increment in passing from node ICROW1 to
ICCOL1 (element unit); nodes must be numbered in order along the crack face.

ICCOL2 column number of last node (shell unit) (not used in element unit); nodes must be
numbered in order along the crack face.

JCUNIT unit number containing nodes already defined that will form the other side of the
crack.

u Rv

v Ru
STAGS 5.0 User Manual April, 2009 5-49

Model Input Discretization and Connectivity Summary
JCROW1 row number of first node (shell unit); number of first node (element unit).

JCCOL1 column number of first node (shell unit); number of last node (element unit).

JCROW2 row number of last node (shell unit); increment in passing from node JCROW1 to
JCCOL1 (element unit); nodes must be numbered in order along the crack face and
correspond one-to-one with nodes on the other side of the crack.

JCCOL2 column number of last node (shell unit) (not used in element unit); nodes must be
numbered in order along the crack face and correspond one-to-one with nodes on
the other side of the crack.

THETA used only when ACRITT is nonzero (G-5), or is different from ACRIT. THETA is equal
to the angle (in degrees) between the longitudinal direction associated with ACRIT

and the x computational coordinate direction .

INNODS (G-5) number of node records

if (INNODS G-6 records have been defined) then go to G-7
else continue defining G-6

x′′()
5-50 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
G-7 Crack Inserted Node Set—Record 3

In most situations, the elements associated with inserted crack nodes can be defined either on
one side of the crack or the other. Remember to include the elements associated with the crack
tip nodes. G-7 is repeated INELTS (G-5) times.

Note: If a beam on a shell unit is specified (JETYPE=1), row and column identifiers must be
provided for both ends of the beam. Hence, either JCROW2 must be different from JCROW1, or
JCCOL2 must be different from JCCOL1. This requirement eliminates the ambiguity between a
beam that lies parallel to the crack and one that is perpendicular to the crack.

 JETYPE JCUNIT JCROW1 JCCOL1 JCROW2 JCCOL2

JETYPE 0 – skin elements
1 – stiffener elements

JCUNIT unit in which elements defined below are referenced.

JCROW1 row number of first node (shell unit); number of first element (element unit)

JCCOL1 column number of first node (shell unit); number of last element (element unit)

JCROW2 row number of last node (shell unit); increment in passing from element JCROW1

to JCCOL1 (element unit); elements can appear in any order.

JCCOL2 column number of last node (shell unit) (not used in element unit); elements can
appear in any order.

Example:

To illustrate this feature, let us assume that a STAGS model with an element edge length of
0.0625 inches has been created and that a crack is to be inserted within shell unit number 5. Let
us also assume that a portion of the crack is defined as being initially “open” and the remainder
is defined as “closed.” The self-similar crack growth path for this crack is specified by all of this.
The input records are

1 2 1 1 4.6 0.0625 $ G-5 Crack-inserted node set
1 5 5 1 5 32 $ G-6 Open crack (2 inches long)
0 5 5 33 5 97 $ G-6 Closed crack (4 inches long)
0 5 4 1 4 96 $ G-7

The G-5 record indicates that only one crack is defined, that two inserted node records are used,
that automatic crack extension by the CTOA criteria will be used, that the critical crack tip
STAGS 5.0 User Manual April, 2009 5-51

Model Input Discretization and Connectivity Summary
opening angle (CTOA) is 4.6 degrees, and that the point where the opening angle is calculated
is 0.0625 inches from the crack tip. The first G-6 record indicates that this crack is “open”, that
it is in unit 5, and that it is open from row 5 and column 1 up to row 5 and column 32. This is
equivalent, assuming uniform grid spacing of 0.0625 inches along the crack, to a 2-inch-long
initial crack (32 elements with crack tip at row 5 and column 33). The second G-6 record
indicates that this crack segment is “closed” initially but potentially can “open” during the
analysis, that the crack is in unit 5, that the crack tip is at row 5 and column 33, and that it could
grow along row 5 up to column 97 (i.e., that there is a 4-inch-long potential crack growth). The
G-7 record indicates that crack is in skin elements, that unit 5 contains the crack, that the crack
definition starts in the fourth row and first column of elements, and it can potentially grow to the
96th column of elements in the fourth row.

INELTS (G-5) number of element records
NINSR (B-2) number of inserted node/element sets defining cracks
NUNITE (B-2) number of element units

if (INELTS G-7 records have been defined) then
if (NINSR inserted node/element sets have been defined) then

if (NUNITE > 0) then go to H-1
else follow instructions at end of H-1

else return to G-5
else continue defining G-7
5-52 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
H-1 Element Unit Summary

If on the user’s B-2 record, then a single H-1 record is required for each of the NUNITE

element units in the model. The H-1 record for a given element unit specifies (or postpones the

specification of) one parameter (NUPT) that is used to select the method to be used in the node-

specification process and six parameters (NT1, NT2, NT3, NT4, NT5 and NS5) that are used to select

the method(s) and element(s) to be used in the element-specification process for that element

unit, as described below. H-1 also allows the user to specify three parameters (IUWP, IUWE and

IUDIMP) that trigger the employment of user-written subroutines to define some or all of the

nodes, elements and/or imperfections in that element unit. H-1 also allows the user to specify a

single parameter (IUWLE) that tells STAGS that user-defined element numbers may (or may not)

be employed in that element unit.

For each element unit, the user must identify and define the location of each node point that is

referenced in that element unit. This may include a subset of some or all of the nodes that are

defined in one or more shell units and/or a set of auxiliary nodes that are defined in the element

unit itself with their global system coordinates. In any event, the complete set of nodes that are

involved in the element unit is referred to as its user points. The current version of STAGS gives

the user two protocols for using “regular” data records to define some or all of these user points.

These protocols are described in Chapters 8 and 9 of this document. STAGS also supports the

employment of user-written subroutines to define some or all of the user points in the element

unit. This approach is described in Chapter 12. Alternatively, PATRAN may be used to model the

structure and output a STAGS input file (see Appendix D – PAT2STAGS).

The current version of STAGS gives the user two protocols for using “regular” data records to

define the elements that are used in a given element unit. The first of these—the Edef
(element–definition) protocol that has been used in every version of STAGS since finite

elements and element units were introduced—is described in Chapter 8; and the second—the

Ecom (element–command) protocol that uses a command-line approach and gives the analyst

much more control and flexibility in the element–specification process—is described in

Chapter 9. The current version of STAGS accommodates the use of either or both of these

protocols—as the user wishes and/or as convenience dictates. STAGS also supports the

employment of user-written subroutines to define some or all of the elements in the element

unit. See Chapter 12 for more information about this.

The current version of STAGS gives the user single protocols for employing “regular” data

records to define point and distributed loadings on the nodes and elements of the element unit.

NUNITE 0>
STAGS 5.0 User Manual April, 2009 5-53

Model Input Discretization and Connectivity Summary
These are described in Chapter 10 of this document. STAGS also supports the employment of

user-written subroutines to define some or all of these loadings. With the current version of

STAGS, imperfections in an element unit can only be accommodated via user-written

subroutines. See Chapter 12 for more information about this.

NUNITE records of the following type are required:

NUPT NT1 NT2 NT3 NT4 NT5 IUWP IUWE IUDIMP IUWLE NS5

NUPT control parameter for defining user points see Note 1, below

NT1 control parameter for defining “spring” elements see Note 2, below
NT2 control parameter for defining “beam” elements see Note 2, below
NT3 control parameter for defining “triangular” elements see Note 2, below
NT4 control parameter for defining “quadrilateral” elements see Note 2, below
NT5 control parameter for defining “other” elements see Note 2, below

IUWP user-points-via-subroutines parameter:

0 – all user points are defined on regular data records
1 – some user points are defined in user-written USRPT

IUWE elements-via-subroutines parameter:

0 – all elements are defined on regular data records
1 – some elements are defined in user-written USRELT see Note 3, below

IUDIMP imperfections-via-subroutines parameter:

0 – no initial imperfections
1 – initial imperfections are defined in user-written DIMP

IUWLE user-element-numbers parameter:

0 – no user element numbers are specified
1 – user element numbers are specified (in element units)

NS5 line–line-contact-definitions parameter:

0 – no line-contact-interaction specifications
>0 – number of line-contact-interaction specifications

Note 1: STAGS gives the user two methods for specifying the user points that are
utilized in an element unit: the so-called upts protocol that has been used in
every version of STAGS since element units were introduced, and the user-
points protocol that gives the analyst more flexibility in the point–
specification process. The older upts protocol is supported for use with
5-54 April, 2009 STAGS 5.0 User Manual

Discretization and Connectivity Summary Model Input
existing models and for use with any new models that may be constructed
manually or with software that does not “know” about and/or support the
newer user-points protocol. The value that the user specifies for the NUPTS

parameter, on H-1, determines which of these two protocols is to be
employed:

NUPTS = 0 — the user-points protocol is to be employed, to define an

unspecified number of user points (where the user lets STAGS count the points)

NUPTS > 0 — the upts protocol is to be employed, to define NUPTS user points

NUPTS = -1 — no user points are to be defined

The point-definition protocols are described fully in Chapter 7 of this
document.

Note 2: STAGS gives the user two methods for specifying the elements that are
utilized in an element unit: the older (and more rigid) Edef (element–
definition) protocol that has been used in every version of STAGS since
finite elements and element units were introduced, and the newer (and more
flexible) Ecom (element-command) protocol that uses a command-line
approach. The older of these—the Edef protocol—is supported for use with
existing models and for use with any new models that may be constructed
manually or with software that does not “know” about and/or support the
new Ecom protocol. As noted above, the current version of STAGS allows
the user to employ either or both of these protocols—as the user wishes and/
or as convenience dictates. The choice of which of these two methods is to
be used (or to use both methods) is made via the values that are specified
for the NT1, NT2, NT3, NT4 and NT5 parameters on H-1:

If one or more of these parameters is positive, STAGS starts its element-
specification operations by using the historic Edef protocol (which is
described in Chapter 8) to define NT1 “spring” (type E110, E120, E121 and/
or E130) elements, NT2 “beam” (type E210 and/or E250) elements, NT3

“triangle” (type E320 and/or E330) elements and/or NT4 “quadrilateral”
(type E410, E411, E420, E430, E480, E510 and/or E710) elements. After
doing that, STAGS examines the NT5 parameter to determine what to do next.
If NT5 = 0 on H-1, STAGS stops processing element-specification records and
starts processing loading specifications. If NT5 = 1 on H-1, STAGS continues
its element-specification operations by reading a type T-5 control record (see
Chapter 8) and using the parameters that are specified there to define one or
more type (type E810, E820 and/or E822 (contact) elements, one or more
type E830, E840, E845, E847 and/or E849 (sandwich) elements and/or one
or more of the E880-family elements—and then moves forward to the
processing of loading specifications. If NT5 = 2 on H-1, STAGS continues its
element-specification operations by reading a type T-5 control record
STAGS 5.0 User Manual April, 2009 5-55

Model Input Discretization and Connectivity Summary
(Chapter 8) and using the parameters specified there to define one or more
contact, sandwich and/or solid elements—and then switches over to the
Ecom protocol to define one or more elements of any type (as described in
Chapter 9), before moving forward to the processing of loading-
specification records.

If the NT1, NT2, NT3, NT4 and NT5 parameters are all zero on H-1, STAGS

recognizes the fact that the user only needs or wishes to employ the newer
Ecom protocol for all element-specification operations. See Chapter 9 for
more information about this protocol.

If the user wishes to construct an element unit that has user points but does
not have any elements, he (or she) should set NT1, NT2, NT3, NT4 or NT5 equal
to -1 on H-1.

Note 3: In no case does the inclusion of user-written element-definition subroutines
preclude transmission of additional information on regular or on Ecom data
records.

NUNITE (B-2) number of element units
NTAM (B-3) number of entries in the Material Table
NTAMT (B-3) number of entries in the Mount Element Table
NGCP (B-3) GCP-utilization flag
NTAB (B-3) number of entries in the Cross Section Table
NTAW (B-3) number of entries in the Wall Fabrication Table
NTAP (B-3) user parameters flag
NUNITS (B-2) number of shell units

if (NUNITE H-1 records have been defined) then
if (NTAM > 0) then go to I-1
elseif (NTAMT > 0) then go to I-4a
elseif (NGCP > 0) then go to I-5a
elseif (NTAB > 0) then go to J-1
elseif (NTAW > 0) then go to K-1
elseif (NTAP > 0) then go to L-1
elseif (NUNITS > 0) then go to M-1
else follow instructions at the end of R-3

else continue defining H-1
5-56 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
5.6 Data Tables

The records in this group (I–L) contain information as summarized below:

• I records: Material Table & Mount Element Table;
GCP Materials & GCP Fabrications Tables

• J records: Cross Section Table

• K records: Wall Fabrication Table

• L records: User Parameters
STAGS 5.0 User Manual April, 2009 5-57

Model Input Data Tables
I-1 Material Properties

Records I-1 and I-2 must be defined for each Material Table material. Furthermore, I-3 must be

defined where plastic properties are specified, and I-3a must be defined where creep properties

are specified. Creep properties cannot be defined for an elastic material.

ITAM NESP IPLST ITANST ICREEP IPLANE

ITAM user-assigned material number; (B-3)

NESP number of points on the curve (I-3), excluding the origin, which is
defined to be . If plasticity is not included for this material, set

. NESP cannot be greater than 10.

IPLST plasticity theory

0, 1 – White-Besseling theory

2 – isotropic strain hardening — INACTIVE

3 – kinematic strain hardening — INACTIVE

4 – deformation theory — INACTIVE

ITANST material stiffness approximation

0 – initial strain

1 – tangential stiffness

ICREEP creep flag — INACTIVE

0 – no creep

1 – creep

IPLANE plane strain flag (White-Besseling plasticity or elastic only)

0 – plane stress theory

1 – plane strain theory

go to I-2

1 ITAM NTAM≤ ≤

ε σ–

ε σ,() 0 0,()=

NESP 0=
5-58 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-2 Material Elastic Properties

In plate or shell analysis the plane stress assumption is used; the transverse normal stress is

assumed to be zero. In that case, the elastic properties are defined by a matrix C such that

If the material is defined in terms of the principle directions (a normal stress in the principle

directions causes no shear deformation), the material is orthotropic and

where . Materials must be defined with respect to the principle material directions

 (i.e.,).

If the material is isotropic, it is not necessary to input all the four material constants. When the

shear modulus is set to zero, it is assumed that the material is isotropic, i.e., that and

. If a material with a zero shear modulus must be defined, input a very small

value for G. If the coefficient of thermal expansion in the direction is set equal to zero, it is

assumed that .

σ1

σ2

τ⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

C

ε1

ε2

γ⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

C

E1

1 ν12ν21–

ν12E1

1 ν12ν21–
------------------------- 0

ν21E2

1 ν12ν21–

E2

1 ν12ν21–
------------------------- 0

0 0 G12

=

ν12E1 ν21E2=

φ1 φ2,() C13 C23, 0=

E2 E1=

G E1 2 1 ν12+()[]⁄=

φ2

α1 α2= A1 A2=()
STAGS 5.0 User Manual April, 2009 5-59

Model Input Data Tables
E1 U12 G RHO A1 E2 A2

E1 elastic modulus in direction

U12 Poisson’s ratio, , where .

CAUTION: The -subscript conventions used above are different from those used in many
references. Be sure that the defined here satisfies the above relationship.

G shear modulus, G. Setting indicates an isotropic material; this
causes enforcement of the and the

relationships; set G to a small value to define a material with a zero shear
modulus.

RHO weight density, in units of (e.g., or)

A1 coefficient of thermal expansion in direction,

E2 elastic modulus in direction; input zero for isotropic materials

A2 coefficient of thermal expansion in direction, ; setting

causes enforcement of the relationship .

NESP (I-1) number of points on curve

if (NESP > 0) then go to I-3
else follow instructions at end of I-3a

φ1

ν12 ν12E1 ν21E2=

ν
ν12

G 0=

E2 E1 E= = G E 2 1 ν+()()⁄=

force volume⁄ N m3⁄ lb in3⁄

φ1 α1

φ2

φ2 α2 A2 0=

α2 α1 α= =

σ ε,()
5-60 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-3 Material Plastic Properties

This record is included only if (I-1). The two plasticity theories of choice available in
STAGS are the White-Besseling theory (or mechanical sublayer model), and isotropic strain
hardening. Both have their limitations but perform adequately for a moderate-strain analysis of
metals. Each theory is based on a piecewise linear stress-strain curve, described on the data
records by definition of strain and stress at the corners. The slope of the stress-strain curve must
decrease at each corner. For a general layered shell, Simpson’s rule is used for integration
through the thickness of each layer, while for a stiffener, the plastic strain is considered constant
within each of a number of subelements. If, during a run, the strain exceeds the value of the last
strain point given below, the code assumes that another segment beyond those input exists. This
segment has a zero slope (perfectly plastic behavior), as shown in Figure 5.1. The first point
must agree with elastic behavior, or the modulus times the strain; if this condition is not satisfied,
a diagnostic is provided.

Definition of material plastic properties does not automatically include nonlinear
material effects in an analysis. Parameters for each shell unit, stiffener, or element
control whether or not plasticity is included for that structural segment. Users
often find it convenient to specify plastic properties when defining a material and
then selectively control plasticity effects as appropriate for each geometric region
independently of the material definition records. Where plasticity has been
suppressed, material behavior is elastic (I-2).

Figure 5.1 Stress-strain curve.

NESP 0>

(E(3), S(3))

(E(2), S(2))

(E(1), S(1))

σ

ε

perfectly plastic

S 1()
E 1()
----------- E1= is required

0 0,()

☞

STAGS 5.0 User Manual April, 2009 5-61

Model Input Data Tables
(E(i), S(i)), i=1,NESP

E(i) , the strain value corresponding to the i th point on the curve. Note that the

origin, , is not included as a data point. Additionally,
must be defined to satisfy the relation ; where , ,

and (the modulus of elasticity on I-2).

S(i) , the stress value corresponding to the i th point on the curve

ICREEP (I-1) creep properties flag

if (ICREEP > 0) then go to I-3a
else follow instructions at end of I-3a

εi ε σ,()

ε σ,() 0 0,()= E 1() S 1(),()
σ1 E ε1= ε1 E 1()= σ1 S 1()=

E E1=

σi ε σ,()
5-62 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input

☞

I-3a Material Creep Properties

INACTIVE

I-3a is included only if (I-1). A simple power-law creep theory is implemented, with

the effective creep strain dependent on creep time by , where is the

effective stress, A and B are material creep constants, and n and m are the material creep

exponents. Creep is permissible with the following options only (I-1):

• isotropic strain hardening, — INACTIVE

• kinematic strain hardening, — INACTIVE

Assigning creep properties to a material does not automatically cause their effects to be included

in an analysis. Creep effects are controlled by load system B load factor data (see “C-1 Load

Multipliers” on page 11-11).

ACO BCO M N

ACO creep constant A

BCO creep constant B

M creep exponent m

N creep exponent n

NTAM (B-3) number of entries in the Material Table
NTAMT (B-3) number of entries in the Mount Element Table
NTAB (B-3) number of entries in the Cross Section Table
NTAW (B-3) number of entries in the Wall Fabrication Table
NTAP (B-3) User Parameters flag
NUNITS (B-2) number of shell units

if (NTAM materials have been defined) then
elseif (NTAMT > 0) then go to I-4a
elseif (NTAB > 0) then go to J-1
elseif (NTAW > 0) then go to K-1
elseif (NTAP > 0) then go to L-1
elseif (NUNITS > 0) then go to M-1
else follow instructions at end of R-3

else return to I-1

ICREEP 0>

εc t εc A σ B⁄()m tn= σ

IPLST 2=

IPLST 3=
STAGS 5.0 User Manual April, 2009 5-63

Model Input Data Tables
I-4a Mount Element Table Size

The Mount Element provides the capability of defining a generalized one dimensional force

acting between two points in space with properties defined by the user. The force generated by

the mount is directed along the line defined by the two points, like a “nonlinear spring.” These

two points in turn are connected to nodes by rigid links, as shown in Figure 14.1 “E110 Mount

element” on page 14-6, so that the net result will be, in general, both moments and forces at the

structural nodes. If there are no rigid links, the mount element is presumed to be “pinned” to the

two nodes. The stiffness and damping characteristics of the mount element are nonlinear

functions of the axial relative displacement and axial relative velocity and are described by either

STAGS input records or by a user-written subroutine.

Because of the action of the rigid links, the element force vectors and the stiffness and damping

matrices computed for the E110 Mount Element will contain contributions for all six degrees of

freedom at the nodes N1 and N2.

Mount reactions, or forces, that vary nonlinearly with both relative displacement and velocity

between the ends of the mount are described best in tabular form that reflects how they were

acquired—load tests at constant velocities with forces measured at prescribed displacements.

This can be visualized as in Table 5.1 “Force-displacement-velocity profile” on page 5-66.

The I-4 records described in this section allow the user to define a force-displacement-velocity

profile in tabular form for each mount with different behavior. The mounts themselves refer to

the tables by the table identifier IMNT (below); these must be ordered consecutively.

The I-4 records described in this section also allow the user to define a penalty-function table that

can be used with E810, E820 and/or E830 contact elements. In this case, the table must specify

a stiffness parameter as a function of displacement. STAGS uses this penalty function to calculate

forces and stiffnesses acting to enforce (non-penetration) compatibility conditions when contact

occurs. The displacement parameter in a penalty-function table is sometimes called the “gap” in

descriptions elsewhere in this Manual. A positive value of displacement measures the

penetration of one contact point, line or surface into the line or surface that it contacts. In a

penalty-function table, therefore, displacement must start at zero and increase monotonically; and

the so-called “force” function should be given monotonically increasing stiffness values

The I-4a record is the first of the I-4a/b/c/d series that are input NTAMT times (B-3). This record

contains the number of relative displacements NRD and the number of relative velocities NRV

defined in records I-4b and I-4c respectively.
5-64 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
IMNT NRD NRV

IMNT mount element or penalty function table id; table entries must be defined
consecutively

NRD for a mount element table: number of relative displacements, ;
relative displacement is , where and are the initial and final

distances between the ends of the mount; if , forces are
ndependent of displacement; for a penalty function table:
number of “gap” (penetration) values,

NRV for a mount element table: number of relative velocities. ;
if , forces are independent of velocity; for a penalty function
table, NRV must be unity

go to I-4b

NRD 1≥
l l0– l0 l

NRD 1=

NRD 3≥

NRV 1≥
NRV 1=
STAGS 5.0 User Manual April, 2009 5-65

Model Input Data Tables
Table 5.1 Force-displacement-velocity profile

 • • •

 • • •

 • • •

 • • •

 •
 •
 •

 •
 •
 •

 •
 •
 •

 •
 •
 •

 •
 •
 •

 •
 •
 •

 • • •

 ✔

 ✔

 ✔

 ✔

 is relative velocity i, is relative displacement j

 is the force corresponding to at

The relative displacements are defined on I-4b

The relative velocities are defined on I-4c

I-4d is repeated nrv times, once for each relative velocity

I-4d record i contains , the complete set of relative
forces associated with , and comprises row i of Table 5.1

d1 d2 d3 dnrd

v1 F11 F12 F13 F1 nrd

v2 F21 F22 F23 F2 nrd

v3 F31 F32 F33 F3 nrd

vnrv Fnrv 1 Fnrv 2 Fnrv 3 Fnrv nrd

vi dj

Fij dj vi

dj , j 1 nrd,=

vi , i 1 nrv,=

Fij , j 1 nrd,=()
vi
5-66 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-4b Relative Displacement Vector

This record contains the NRD relative displacements (or penetrations) for which mount forces (or

contact stiffnesses) will be provided in record I-4d. These displacements must be entered starting

with the smallest value and increasing to the largest value. For a mount element table, a positive

relative displacement implies extension of the nonlinear spring, and a negative displacement

implies compression. The relative displacement is explicitly , where and are the initial

and final distances between the ends of the mount, respectively. For a penalty function table, a

positive displacement corresponds to penetration when contact occurs, and a negative value is

meaningless.

DISP(j), j = 1, NRD

DISP(j) relative displacement (or penetration) j

go to I-4c

l l0– l0 l
STAGS 5.0 User Manual April, 2009 5-67

Model Input Data Tables
I-4c Relative Velocity Vector

This record contains the NRV relative velocities for which mount forces will be provided in

record. These velocities must entered starting with the smallest value and increasing to the

largest value. A positive relative velocity implies extension of the mount, and a negative relative

velocity implies compression.

RVEL(i), i = 1, NRV

RVEL(i) relative velocity i

go to I-4d
5-68 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-4d Mount Force Matrix

For a mount element table, this record contains the mount forces corresponding to each of the

relative displacements for a particular relative velocity. The complete set of forces in the force-

displacement-velocity profile can be visualized as in Table 5.1 “Force-displacement-velocity

profile” on page 5-66.

For a penalty function table, this record contains the stiffness value corresponding to each of the

penetrations given on record I-4b. These should be monotonically increasing. Best results are

usually obtained when the stiffness vs. penetration curve is “S” shaped, with a “toe” at the origin.

FORCE(j), j = 1, NRD

FORCE(j) for a mount table: the force corresponding to relative displacement j
for penalty function table: the stiffness corresponding to penetration j

Note that I-4d contains NRD entries and is repeated NRV times.

NRV (I-4a) number of relative velocities
NTAMT (B-3) number of entries in the Mount Element Table
NGCP (B-3) GCP-utilization flag
NTAB (B-3) number of entries in the Cross Section Table
NTAW (B-3) number of entries in the Wall Fabrication Table
NTAP (B-3) User Parameters flag
NUNITS (B-2) number of shell units

if (NRV I-4d records have been defined) then
if (NTAMT mount tables have been defined) then

if (NGCP > 0) then go to I-5a
elseif (NTAB > 0) then go to J-1
elseif (NTAW > 0) then go to K-1
elseif (NTAP > 0) then go to L-1
elseif (NUNITS > 0) then go to M-1
else follow instructions at end of R-3

else return to I-4a
else continue defining I-4d
STAGS 5.0 User Manual April, 2009 5-69

Model Input Data Tables
I-5a GCP Command Record

This record is read if and only if the NGCP (GCP-utilization) flag is 1 on the B-3 record. I-5a

departs from STAGS’ traditional integer/real-data input-format conventions and uses the

command-oriented conventions used in NASA’s COMET program, from which the original

versions of the Generic Constitutive Processor (GCP) routines used in STAGS were taken. The

first item on this record is a command “verb” that instructs STAGS to read and catalog data for

a specific type of material or fabrication, or to stop reading such data and proceed to the next

type of model-definition input that is required.

COMMAND INFO(j), j = 1, 7

COMMAND command verb instructing STAGS to read a specific type of material or
wall-fabrication data, or to cease doing so; STAGS currently recognizes
and responds to the following commands:

ISOELASTIC_MATERIAL – linear, elastic, isotropic material

ORTHOELAST_MATERIAL – linear, elastic, orthotropic material

PLANE_STRAIN_MATERIAL – elastic/plastic plane-strain material

PLASTIC_WB_MATERIAL – mechanical-sublayer (White-Besseling) material

ORT_EL_BR_MATERIAL – linear orthotropic elastic brittle material

ABAQUS_UMAT_MATERIAL – user-defined material model developed for ABAQUS

PDLAM_MATERIAL – Chang’s progressive damage model, using
crack density state variable

SHM_MEMBRANE_MATERIAL – Stein-Hedgepeth-Miller membrane wrinkling model

NL_ORT_ELAST_MATERIAL – Orthotropic elastic model, with Hahn nonlinearity

SHELL_FABRICATION – shell fabrication

SOLID_FABRICATION – solid fabrication

END – end of GCP data

INFO integer vector of supplementary information: the meanings and permitted values
of entries in INFO depend on the command verb; see the descriptions for records
I-6a, I-7a, I-8a, I-9a, I-10a, I-11a, I-12a, I-13a, I-14a, I-21a and I-22a for those
details.
5-70 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
The command verb on record I-5a is case-independent. Each of the material- and fabrication-
specification commands can be abbreviated to anything from its shortest form to its complete
form—as shown in the following table:

The 3-character ‘END’ command cannot be abbreviated.

Table 5.2 GCP Command Record Summary

GCP
Material

Type

 GCP Command
Complete

Form
Shortest

Form
Status Comment

1 ISOELASTIC_MATERIAL ISOEL ✔ Isotropic, linear elastic model

2 ORTHOELAST_MATERIAL ORTHO ✔ Orthotropic, linear elastic model

3 PLASTIC_WB_MATERIAL PLAST ✔ Isotropic, elasto-plastic White-Besseling
model

4 ORT_EL_BR_MATERIAL ORT_E ✔ Orthotropic, linear elastic model with brittle
failure

5 SHAPE_MEM_MATERIAL SHAPE Planned Shape memory alloy model

6 PLANE_STRAIN_MATERIAL PLANE Planned Plane-strain-plasticity model

7 PDLAM_MATERIAL PDLAM ✔ Chang’s progressive damage model, with
crack density state variable

8 ABAQUS_UMAT_MATERIAL ABAQUS_UMAT ✔ ABAQUS UMAT compatible model

9 SHM_MEMBRANE_MATERIAL SHM_MEMB Under
development

Stein-Hedgepeth-Miller membrane wrin-
kling model

10 NL_ORT_ELAST_MATERIAL NL_ORT_EL Under
development

Orthotropic elastic model, with Hahn
nonlinear in-plane shear stress-strain relation

SHELL_FABRICATION SHELL ✔ Shell element fabrication

SOLID_FABRICATION SOLID ✔ Solid element fabrication

END END ✔ End of GCP input data
STAGS 5.0 User Manual April, 2009 5-71

Model Input Data Tables
The following example shows how I-5a and other GCP–related records might be used in a
typical STAGS input deck:

PCATS_6_gcp: 6-layer pcats problem
0 0 1 0 0 0 -1 $ B-1
1 $ B-2
0 0 0 0 0 1 $ B-3
2 15 $ F-1
$ ===
PLASTIC_WB_MATERIAL 1 1 1 2 0 $ I-5a matid,ngroups,nstates,onetwo
72000.0 0.3 0.0 0.0 6 0.0 $ I-9a E1, Gnu, Rho, Beta, Nx, T
0.00600 432.0 .00702 490.0, $ I-9b {strain,stress} values
0.00787 510.0 .01008 530.0, $ I-9b {strain,stress} values
0.01247 540.0 .01900 555.0 $ I-9b {strain,stress} values
$ --
SHELL_FABRICATION 1 1 1 0 0 $ I-5a fabid,nlayer,ipts,ishr,isym
1 $ I-21a matid
5 $ I-21b intshl
2.0 $ I-21c thkshl
0.0 $ I-21d angshl
$ --
END $ I-5a cease
$ ==
5 $ M-1
0. 5. 0. 90. 100. $ M-2
-1 0 0. 0. 1 1 $ M-5
410 $ N-1
3 0 3 4 $ P-1
100 100 $ P-2
1 0 0 0 $ Q-1
1 2 $ Q-2
-100. 3 3 0 1 $ Q-3
0. -1 1 1 $ Q-3
1 0 0 0 0 0 $ R-1

The first two I-5a records in this example can be abbreviated as

PLASTIC_WB 1 1 1 2 0 $ I-5a

and
SHELL_FAB 1 1 1 $ I-5a

or as

PLAST 1 1 1 2

and
SHELL 1 1 1

if the user wishes.
5-72 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
NTAB (B-3) number of entries in the Cross Section Table
NTAW (B-3) number of entries in the Wall Fabrication Table
NTAP (B-3) User Parameters flag
NUNITS (B-2) number of shell units

if (COMMAND = ‘ISOELASTIC_MATERIAL’) then go to I-6a
elseif (COMMAND = ‘ORTHOELAST_MATERIAL’) then go to I-7a
elseif (COMMAND = ‘PLANE_STRAIN_MATERIAL’) then go toI-8a
elseif (COMMAND = ‘PLASTIC_WB_MATERIAL’) then go to I-9a
elseif (COMMAND = ‘ORT_EL_BR_MATERIAL’) then go to I-10a
elseif (COMMAND = ‘PDLAM_MATERIAL’) then go to I-11a
elseif (COMMAND = ‘ABAQUS_UMAT_MATERIAL’) then go to I-12a
elseif (COMMAND = ‘SHM_MEMB_MATERIAL’) then go to I-13a
elseif (COMMAND = ‘NL_ORT_ELAST_MATERIAL’) then go to I-14a
elseif (COMMAND = ‘SHELL_FABRICATION’) then go to I-21a
elseif (COMMAND = ‘SOLID_FABRICATION’) then go to I-22a
elseif (COMMAND = ‘END’) then

if (NTAB > 0) then go to J-1
elseif (NTAW > 0) then go to K-1
elseif (NTAP > 0) then go to L-1
elseif (NUNITS > 0) then go to M-1
else follow instructions at end of R-3

else
return to I-5a

endif
STAGS 5.0 User Manual April, 2009 5-73

Model Input Data Tables
I-6a Linear Elastic Isotropic GCP Material

This record—which concludes the specification of properties for a linear, elastic, isotropic GCP

material—is read when COMMAND on I-5a is ‘ISOELASTIC_MATERIAL’, or is an acceptable

abbreviation of that character string (as discussed in the I-5a record description). Under these

circumstances, the INFO vector on I-5a contains the following information:

INFO(1) = MATID — material identifier, in the GCP Materials Table

INFO(2) = NGROUPS — number of material groups (must be 1, currently)

INFO(3) = NSTATES — number of material states in each group (must be 1, currently)

INFO(4) = not used, currently

INFO(5) = not used, currently

INFO(6) = not used, currently

INFO(7) = not used, currently

The following record is required for specification of the properties of the linear, elastic, isotropic

GCP material for each state within each group of states (a single record, currently):

E GNU RHO ALPHA BETA T M

E elastic modulus

GNU Poisson’s ratio

RHO mass density

ALPHA coefficient of thermal expansion

BETA coefficient of hygroscopic expansion

T reference temperature

M reference moisture content

go to I-5a
5-74 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-7a Linear Elastic Orthotropic GCP Material

This record—which continues the specification of properties for a linear, elastic, orthotropic

GCP material—is read when COMMAND on I-5a is ‘ORTHOELAST_MATERIAL’, or is an

acceptable abbreviation of that character string (as discussed in the I-5a record description).

Under these circumstances, the INFO vector on I-5a contains the following information:

INFO(1) = MATID — material identifier, in the GCP Materials Table

INFO(2) = NGROUPS — number of material groups (must be 1, currently)

INFO(3) = NSTATES — number of material states in each group (1, currently)

INFO(4) = not used, currently

INFO(5) = not used, currently

INFO(6) = not used, currently

INFO(7) = not used, currently

The following record is required for specification of the properties of the linear, elastic,

orthotropic GCP material for each state within each group of states (this is a single record,

currently, and all entries must be specified):

E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO A1 A2 A3 B1 B2 B3 T M

E1, E2, E3 elastic moduli (E1, E2 and E3)

G12, G13, G23 shear moduli (G12, G13 and G23)

P12, P13, P23 Poisson’s ratios (, and)

RHO mass density

A1, A2, A3 coefficients of thermal expansion

B1, B2, B3 coefficients of hygroscopic expansion

T reference temperature

M reference moisture content

The complete C matrix, which relates strains to stresses, is given by

ν12 ν13 ν23
STAGS 5.0 User Manual April, 2009 5-75

Model Input Data Tables
where

and

Note that the conventions here are not the same as on the I-2 record, described previously.

go to I-5a

C

δ 1 ν23ν32–()E
1

δ ν12 ν13ν32+()E2 δ 1 ν13ν31–()E2 Sym

δ ν13 ν12ν23+()E3 δ ν23 ν13ν21+()E3 δ 1 ν12ν21–()E3

0 0 0 G23

0 0 0 0 G13

0 0 0 0 0 G12

=

ν21 ν12 E2 E1⁄⋅=

ν31 ν13 E3 E1⁄⋅=

ν32 ν23 E3 E2⁄⋅=

δ 1 1 ν12ν21– ν23ν32– ν13ν31– 2ν21ν32ν13–()⁄=

νi j
5-76 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-8a Plane-Strain-Plasticity GCP Material

INACTIVE

This record—which concludes the specification of properties for an elastic/plastic, plane-strain

GCP material—is read when COMMAND on I-5a is ‘PLANE_STRAIN_MATERIAL’, or is an

acceptable abbreviation of that character string (as discussed in the I-5a record description).

Under these circumstances, the INFO vector on I-5a contains the following information:

INFO(1) = MATID — material identifier, in the GCP Materials Table

INFO(2) = NGROUPS— number of material groups (must be 1, currently)

INFO(3) = NSTATES — number of material states in each group (must be 1, currently)

INFO(4) = not used, currently

INFO(5) = not used, currently

INFO(6) = not used, currently

INFO(7) = not used, currently

The following record is required for specification of the properties of the elastic/plastic, plane-
strain GCP material for each state within each group of states (a single record, currently):

E GNU RHO ALPHA BETA T M

E elastic modulus

GNU Poisson’s ratio

RHO mass density

ALPHA coefficient of thermal expansion

BETA coefficient of hygroscopic expansion

T reference temperature

M reference moisture content

go to I-5a
STAGS 5.0 User Manual April, 2009 5-77

Model Input Data Tables
I-9a Mechanical Sublayer Plasticity GCP Material

This record—which continues the specification of properties for a mechanical sublayer plasticity
(White–Besseling) GCP material—is read when the COMMAND parameter on the I-5a record is
‘PLASTIC_WB_MATERIAL’, or is an acceptable abbreviation of that character string (as
discussed in the I-5a record description). Under these circumstances, the INFO vector on I-5a
contains the following information:

INFO(1) = MATID — material identifier, in the GCP Materials Table

INFO(2) = NGROUPS — number of material groups (must be 1, currently)

INFO(3) = NSTATES — number of material states in each group (must be 1, currently)

INFO(4) = ONETWO — dimensionality flag:
ONETWO = 1 — use one-dimensional theory
ONETWO = 2 — use two-dimensional theory

INFO(5) = IFLAG — material behavior flag:
IFLAG = 0 — elastic/plastic material behavior
IFLAG = 1 — elastic/plastic, plane-strain material behavior

INFO(6) = not used, currently

INFO(7) = not used, currently

The following record is required for specification of the properties of the mechanical sublayer
(White–Besseling) plasticity material for each state within each group of states (a single record,
currently) — each such record followed by an I-9b record containing the specified number of
(e,s) = (strain,stress) points on the curve for that state. This is strikingly similar to the White-
Besseling input that is described for the I-3 record.

E GNU RHO ALPHA NSUBS T

E elastic modulus

GNU Poisson’s ratio

RHO mass density

ALPHA coefficient of thermal expansion

NSUBS number of points on the curve, excluding the origin,
which is defined to be

T reference temperature

go to I-9b

ε σ–

ε σ,() 0 0,()=
5-78 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-9b Stress-Strain Curve for a Given State

The White-Besseling theory (or mechanical sublayer model) has its limitations, but it performs
adequately for a moderate-strain analysis of metals. This theory is based on a piecewise linear
stress-strain curve, described on the data records by definition of strain and stress at the corners.
The slope of the stress-strain curve must decrease at each corner. The first point on this curve
must agree with elastic behavior, or the elastic modulus times the first strain value.

(E(i),S(i) , i = 1, NSUBS)

E(i) , the strain value corresponding to the i th point on the curve; the origin,

, is not included as a data point; must be defined to
satisfy the relation ; where , , and (the

modulus of elasticity on I-9a).

S(i) , the stress value corresponding to the i th point on the curve

go to I-5a

Figure 5.2 Stress-strain curve.

(E(3), S(3))

(E(2), S(2))

(E(1), S(1))

σ

ε

perfectly plastic

S 1()
E 1()
----------- Elastic Modulus= is required

0 0,()

εi ε σ,()

ε σ,() 0 0,()= E 1() S 1(),()
σ1 E ε1= ε1 E 1()= σ1 S 1()= E E=

σi ε σ,()
STAGS 5.0 User Manual April, 2009 5-79

Model Input Data Tables
I-10a Linear Orthotropic Elastic Brittle GCP Material

This record*—which continues the specification of properties for a linear orthotropic elastic
brittle GCP material—is read when COMMAND on I-5a is ‘ORT_EL_BR_MATERIAL’, or is an
acceptable abbreviation of that character string (as discussed in the description of the I-5a
record). Under these circumstances, the INFO vector on I-5a contains the following information:

INFO(1) = MATID — material identifier, in the GCP Materials Table
INFO(2) = NGROUPS — number of material groups (must be 1, currently)
INFO(3) = NSTATES — number of material states in each group (1, currently)
INFO(4) = not used, currently
INFO(5) = not used, currently

INFO(6) = not used, currently

INFO(7) = not used, currently

The following record is required for specification of the properties of the linear, orthotropic
elastic brittle GCP material for each state within each group of states. This is a single record
currently, and all 44 entries must be specified as floating–point (real) entries. These data items
are stored in this order in an internal real array named mpd as the original input material data.
Caution must be exercised when converting from the traditional STAGS material model (I-2
records) to the GCP approach with regard to the definition of Poisson’s ratio (compare the
description of the I-2 record with that of the I-7a record). All strain and strength allowable values
are stored as positive numbers.

E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO A1 A2 A3 B1 B2 B3 T M
EPS1C EPS1T ESP2C EPS2T EPS6F EPS3C EPS3T EPS4F EPS5F
XC XT YC YT SXY ZC ZT SYZ SXZ ALPHA F12 BETA IFAIL IDGRD

VISF0 VISF1 VISFF

E1, E2, E3 elastic moduli (E1, E2 and E3)

G12, G13, G23 shear moduli (G12, G13 and G23)

P12, P13, P23 major Poisson’s ratios (, and)

RHO mass density

A1, A2, A3 coefficients of thermal expansion

B1, B2, B3 coefficients of hygroscopic expansion

T reference temperature for thermal calculations

* This description of the I-10a input requirements is based on that given in [2].

ν12 ν13 ν23
5-80 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
M reference moisture content for hygroscopic calculations

EPS1C, EPS1T compressive and tensile strain allowable values in the 1–direction (ε1C and ε1T)

EPS2C, EPS2T compressive and tensile strain allowable values in the 2–direction (ε2C and ε2T)

EPS6F shear strain allowable value in the 1–2 plane (γ12)a

EPS3C, EPS3T compressive and tensile strain allowable values in the 3–direction (ε3C and ε3T)

EPS4F shear strain allowable value in the 2–3 plane (γ23)a

EPS5F shear strain allowable value in the 1–3 plane (γ13)a

XC, XT strength allowable values in the 1–direction (XC and XT)

YC, YT strength allowable values in the 2–direction (YC and YT)

SXY shear strength allowable value in the 1–2 plane (Sxy or S)

ZC, ZT strength allowable values in the 3–direction (ZC and ZT)

SYZ shear strength allowable value in the 2–3 plane (Syz)

SXZ shear strength allowable value in the 1–3 plane (Sxz)

ALPHA nonlinear shear stress-strain coefficient, α

F12 coupling coefficient for the Tsai–Wu failure polynomial, F12

BETA scale factor for degrading material properties (e.g., 0.1 or 10-6); if BETA is
positive, then recursively degrade; if it is negative, then degrade only once (i.e.,
multiply elastic property by β only once)

IFAIL failure model identifier:
0 = pass through failure routines, but do not allow failure to occur
1 = maximum strain criteria
2 = maximum stress criteria
3 = Tsai–Wu failure polynomial
4 = Hashin criteria
5 = Chang–Chang criteria

99 = subroutine USRFPF, provided by the user

IDGRD material degradation model identifier:
1 = ply discounting of single modulus for maximum stress

and maximum strain criteria
2 = ply discounting of normal and shear moduli for maximum

stress and maximum strain criteria
3 = ply discounting for Tsai–Wu polynomial (same as 1)
4 = ply discounting for Hashin criteria
5 = ply discounting for Chang–Chang criteria

99 = subroutine USRDGD, provided by the user
STAGS 5.0 User Manual April, 2009 5-81

Model Input Data Tables
VISF0 artificial viscous damping factor —multiplying all damping terms when
convergence problems occur:

1 increase damping when nonconvergence occurs
1 reduce damping when nonconvergence occurs

= 0 eliminate all artificial viscous damping
= 1 maintain uniform damping

VISF1 artificial viscous damping factor associated with global damping; becomes
active after damage is detected and remains active, independent of damage state;
scaled by the longitudinal modulus, E11 (that is, ζ1 E11)

VISFF artificial viscous damping factor associated with local damping; becomes
active after damage is detected, is held constant for 5 solution steps, and is then
ramped linearly to zero over the next 5 steps; scaled by the longitudinal modulus,
E11 (that is, ζf E11)

The artificial viscous damping factor at a material point after damage has been detected has the
form

where the exponent α is determined by using the initial user-specified step increment ΔP0 (on
the C-1 record of the case.bin input file for s2) and on the current step increment ΔP; that is,

where before activation. When convergence difficulties arise that cause the step size
to be cut smaller than the initial value, the exponent α increases. If VISF0 is greater than one, the
artificial damping will increase; if VISF0 is less than one, it will decrease; and if VISF0 is equal to
zero, artificial damping will not be applied.

The complete C matrix, which relates strains to stresses, is given in Section I-7a. The user may
specify either the strain or strength allowables or both. However, as a minimum, a zero must be
entered for each unspecified value. If the strain allowables are given and the first strength
allowable is zero, then all strength allowables are computed by multiplying the appropriate strain
allowable value by its elastic modulus (or shear modulus in the case of shear). If the strength
allowables are specified and the first strain allowable is zero, then all strain allowables are
computed by dividing the appropriate strength allowable value by its elastic modulus (or shear
modulus in the case of shear).

ζ0

>

<

ζ1

ζf

ζ ζ0
α ζ1E11 ζfE11+()=

α ΔP0() ΔP()⁄()log≈

ΔP ΔP0 10⁄≤
5-82 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
A sample input record is shown next:

ORT_EL_BR_MATERIAL 1 1 1 $ I-5a GCP COMMAND RECORD
20.2E+6 1.41E+6 1.41e+6 , $ I-10a E1 E2 E3=E2
0.81E6 0.81E6 0.40E6 , $ I-10a G12 G13=G12 G23
0.29 0.29 0.29 , $ I-10a NU12 NU13=NU12 NU23=NU12
1.5E-4 , $ I-10a Mass density (not weight)
0.0 0.0 0.0 , $ I-10a CTE’S
0.0 0.0 0.0 , $ I-10a Moisture Coefficients
0.0 0.0 , $ I-10a Ref. Temp and Moisture contents
0.0109 0.0108 0.0227 0.0014 0.0074 ,$ I-10a E1C E1T E2C E2T GAM12F
0.0227 0.0014 0.0074 0.0074 ,$ I-10a E3C E3T GAM23F GAM13F
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0,$ I-10a Xc,Xt,Yc,Yt,Sxy Zc,Zt,Syz,Sxz
0.8E-14 0.0 1.0E-6, $ I-10a Alpha F12 Beta
1 1 , $ I-10a Ifail Idgrd
1.0 1.0E-9 1.0E-4 $ I-10a Visf0 Visf1 Visff

Failure prediction models based on stresses are implemented in subroutines named FPFi which
are called by GCP subroutine CS4F. The output from each routine is an array named flag of
length numcol. For C1 shell elements (e.g., E410 shell elements), numcol is equal to 3; for C0

shell elements (e.g., E480 shell elements), numcol is equal to 5; for solid elements (e.g., E881,
E883 and E885 solid elements), numcol is equal to 6.

The entries in the flag array are integers that have values that are equal to zero for no failure,
positive for tensile–related failures, or negative for compression–related failures. Shear–related
failures are always positive. For shell elements, the first entry, flag(1), relates to the fiber
direction; the second entry, flag(2), relates to the direction transverse to the fibers (matrix); and
the third entry, flag(3), relates to inplane shear. The fourth and fifth entries, flag(4) and flag(5),
relate to transverse shear failures. The absolute value of each entry in the flag array corresponds
to the solution step number at which that failure mode occurred. For solid elements, the first
three entries in flag relate to the normal stress components; and the next three entries relate to the
shear stress components.
STAGS 5.0 User Manual April, 2009 5-83

Model Input Data Tables
The following five failure models are implemented in the current version of STAGS:

• FPF1—Failure detection based on maximum strain criteria (IFAIL=1). These criteria
are not interacting and simply compare the inplane mechanical strain to the user–
specified strain allowable value.

For shell elements, the failure modes here are:

Fiber tensile failure: when ; flag(1) > 0

Fiber compressive failure: when ; flag(1) < 0

Matrix tensile failure: when ; flag(2) > 0

Matrix compressive failure: when ; flag(2) < 0

Inplane shear failure: ; flag(3) > 0

Transverse shear failure: ; flag(4) > 0

Transverse shear failure: ; flag(5) > 0

For solid elements, the failure modes are:

Fiber tensile failure: when ; flag(1) > 0

Fiber compressive failure: when ; flag(1) < 0

Matrix tensile failure: when ; flag(2) > 0

Matrix compressive failure: when ; flag(2) < 0

Interlaminar normal tensile failure: when ; flag(3) > 0

Interlaminar normal compressive failure: when ; flag(3) < 0

Transverse shear failure: ; flag(4) > 0

Transverse shear failure: ; flag(5) > 0

Inplane shear failure: ; flag(6) > 0

ε11

ε1t
------- 1≥ ε11 0>

ε11

ε1c
------- 1–< ε11 0<

ε22

ε2t
------- 1≥ ε22 0>

ε22

ε2c
------- 1–≤ ε22 0<

γ12

γ12()
a

-------------- 1≥

γ13

γ13()
a

-------------- 1≥

γ23

γ23()
a

-------------- 1≥

ε11

ε1t
------- 1≥ ε11 0>

ε11

ε1c
------- 1–≤ ε11 0<

ε22

ε2t
------- 1≥ ε22 0>

ε22

ε2c
------- 1–≤ ε22 0<

ε33

ε3t
------- 1≥ ε33 0>

ε33

ε3c
------- 1–≤ ε33 0<

γ23

γ23()
a

-------------- 1≥

γ13

γ13()
a

-------------- 1≥

γ12

γ12()
a

-------------- 1≥
5-84 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
• FPF2—Failure detection based on maximum stress criteria (IFAIL=2). These criteria
are not interacting and simply compare the inplane stress components to the user–
specified stress/strength allowable values.

For shell elements, the failure modes here are:

Fiber tensile failure: when ; flag(1) > 0

Fiber compressive failure: when ; flag(1) < 0

Matrix tensile failure: when ; flag(2) > 0

Matrix compressive failure: when ; flag(2) < 0

Inplane shear failure: ; flag(3) > 0

Transverse shear failure: ; flag(4) > 0

Transverse shear failure: ; flag(5) > 0

For solid elements, the failure modes are:

Fiber tensile failure: when ; flag(1) > 0

Fiber compressive failure: when ; flag(1) < 0

Matrix tensile failure: when ; flag(2) > 0

Matrix compressive failure: when ; flag(2) < 0

Interlaminar normal tensile failure: when ; flag(3) > 0

Interlaminar normal compressive failure: when ; flag(3) < 0

Transverse shear failure: ; flag(4) > 0

Transverse shear failure: ; flag(5) > 0

Inplane shear failure: ; flag(6) > 0

σ11

Xt
-------- 1≥ σ11 0>

σ11

Xc
-------- 1–≤ σ11 0<

σ22

Yt
-------- 1≥ σ22 0>

σ22

Yc
-------- 1–≤ σ22 0<

τ12

Sxy
---------- 1≥

τ13

Sxz
---------- 1≥

τ23

Syz
---------- 1≥

σ11

Xt
-------- 1≥ σ11 0>

σ11

Xc
-------- 1–≤ σ11 0<

σ22

Yt
-------- 1≥ σ22 0>

σ22

Yc
-------- 1–≤ σ22 0<

σ33

Zt
-------- 1≥ σ33 0>

σ33

Zc
-------- 1–≤ σ33 0<

τ23

Syz
---------- 1≥

τ13

Sxz
---------- 1≥

τ12

Sxy
---------- 1≥
STAGS 5.0 User Manual April, 2009 5-85

Model Input Data Tables
• FPF3—Failure detection based on the Tsai–Wu failure polynomial [3] (IFAIL=3). This
criterion is interacting but does not identify a mode of failure (e.g., fiber failure,
matrix failure). Most of the polynomial coefficients are computed based on user–
specified strength allowable values—with the exception of F12, which must be
supplied by the user as well. The complete polynomial is given by:

where ,

,

,

,

,

,

,

,

,

,

,

and .

In this model, only a single value is checked to see whether failure occurred or not.
In order to have set the failure flags used in the material degradation models, the
approach used by Reddy and Reddy [4] is adopted. This approach determines the
relative contributions of each stress component to the failure polynomial and if the
contribution for that component is a dominant component, then the corresponding

F1σ11 F2σ22 F3σ33 F+
11

σ11
2

F22σ22
2

F33σ33
2

2F+ 12σ11σ22 2F13σ11σ33 2F23σ22σ33+ + + + + + +

F44σ23
2

F55σ13
2

F66σ12
2

+ + 1.0≥

F1
1
Xt
----- 1

Xc
-----–=

F2
1
Yt
---- 1

Yc
-----–=

F3
1
Zt
---- 1

Zc
-----–=

F11
1

XtXc
-----------=

F22
1

YtYc
----------=

F33
1

ZtZc
----------=

F44
1

Syz
2

-------=

F55
1

Sxz
2

-------=

F66
1

Sxy
2

-------=

F12 –
1
2
--- 1

XtXcYtYc

--------------------------=

F13 –
1
2
--- 1

XtXcZtZc

--------------------------=

F23 –
1
2
--- 1

YtYcZtZc

--------------------------=
5-86 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
failure flag is made nonzero. Half the cross term is considered in both the σ11 term
and in the σ22 term. For shell elements, the coefficients F3, F33, F13 and F23 are zero
because of the plane stress assumptions.

• FPF4—Failure detection based on the Hashin criteria [5] (IFAIL=4). These criteria
identify the mode of failure using specified stress/strength allowable values.

For shell elements, the failure modes here are:

Fiber tensile failure: when ; flag(1) > 0

Fiber compressive failure: when ; flag(1) < 0

Matrix tensile failure: when ; flag(2) > 0

Matrix compression model: when ;

flag(2) < 0

Inplane shear failure: ; flag(3) > 0

Transverse shear failure: ; flag(4) > 0

Transverse shear failure: ; flag(5) > 0

For solid elements, the failure modes are:

Fiber tensile failure: when ; flag(1) > 0

Fiber compressive failure: when ; flag(1) < 0

Matrix tensile failure: when ; flag(2) > 0

Matrix compression model: when ;

flag(2) < 0

Interlaminar normal tensile failure: when ; flag(3) > 0

Interlaminar normal compressive failure: when ; flag(3) < 0

Transverse shear failure: ; flag(4) > 0

Transverse shear failure: ; flag(5) > 0

Inplane shear failure: ; flag(6) > 0

σ11

XT
--------⎝ ⎠

⎛ ⎞
2 σ12

Sxy
--------⎝ ⎠

⎛ ⎞
2

+ 1≥ σ11 0>

σ11

Xc
-------- 1–≤ σ11 0<

σ22

YT
--------⎝ ⎠

⎛ ⎞
2 σ12

Sxy
--------⎝ ⎠

⎛ ⎞
2

+ 1≥ σ22 0>

σ22

2Sxy
-----------⎝ ⎠

⎛ ⎞
2 Yc

2Sxy
-----------⎝ ⎠

⎛ ⎞
2

1–
σ22

Yc

σ12

Sxy
--------⎝ ⎠

⎛ ⎞
2

+ + 1≥ σ22 0<

τ12

Sxy
---------- 1≥

τ13

Sxz
---------- 1≥

τ23

Syz
---------- 1≥

σ11

XT
--------⎝ ⎠

⎛ ⎞
2 σ12

Sxy
--------⎝ ⎠

⎛ ⎞
2

+ 1≥ σ11 0>

σ11

Xc
-------- 1–≤ σ11 0<

σ22

YT
--------⎝ ⎠

⎛ ⎞
2 σ12

Sxy
--------⎝ ⎠

⎛ ⎞
2

+ 1≥ σ22 0>

σ22

2Sxy
-----------⎝ ⎠

⎛ ⎞
2 Yc

2Sxy
-----------⎝ ⎠

⎛ ⎞
2

1–
σ22

Yc

σ12

Sxy
--------⎝ ⎠

⎛ ⎞
2

+ + 1≥ σ22 0<

σ33

Zt
-------- 1≥ σ33 0>

σ33

Zc
-------- 1≤ σ33 0<

τ23

Syz
---------- 1≥

τ13

Sxz
---------- 1≥

τ12

Sxy
---------- 1≥
STAGS 5.0 User Manual April, 2009 5-87

Model Input Data Tables
• FPF5—Failure detection based on the Chang–Chang criteria [6] (IFAIL=5). These
criteria identify the mode of failure using specified stress/strength allowable values.

For shell elements, the failure models here are:

Fiber breakage and fiber–matrix shearing model:

when ; flag(1) > 0 and

flag(3) > 0

Fiber compressive failure: when ; flag(1) < 0

Matrix cracking model: when ; flag(2) > 0

Matrix compression model: when ; flag(2) < 0

where

Inplane shear failure: ; flag(3) > 0

Transverse shear failure: ; flag(4) > 0

Transverse shear failure: ; flag(5) > 0

For solid elements, the failure models are:

Fiber breakage and fiber–matrix shearing model:

when ; flag(1) > 0 and

flag(6) > 0

Fiber compressive failure: when ; flag(1) < 0

Matrix cracking model: when ; flag(2) > 0

Matrix compression model: when ; flag(2) < 0

where

Interlaminar normal tensile failure: when ; flag(3) > 0

Interlaminar normal compressive failure: when ; flag(3) < 0

Transverse shear failure: ; flag(4) > 0

Transverse shear failure: ; flag(5) > 0

σ11

XT
--------⎝ ⎠

⎛ ⎞
2

τ+ 1≥ σ11 0>

σ11

Xc
-------- 1–≤ σ11 0<

σ22

YT
--------⎝ ⎠

⎛ ⎞
2

τ+ 1≥ σ22 0>

σ22

2S
--------⎝ ⎠

⎛ ⎞
2 Yc

2S
------⎝ ⎠

⎛ ⎞
2

1–
σ22

Yc
-------- τ 1≥+ + σ22 0<

τ
σ12

S
--------⎝ ⎠

⎛ ⎞
2 1

3
2
---αG12σ12

2
+

1
3
2
---αG12S

2
+

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

τ12

Sxy
---------- 1≥

τ13

Sxz
---------- 1≥

τ23

Syz
---------- 1≥

σ11

XT
--------⎝ ⎠

⎛ ⎞
2

τ+ 1≥ σ11 0>

σ11

Xc
-------- 1–≤ σ11 0<

σ22

YT
--------⎝ ⎠

⎛ ⎞
2

τ+ 1≥ σ22 0>

σ22

2S
--------⎝ ⎠

⎛ ⎞
2 Yc

2S
------⎝ ⎠

⎛ ⎞
2

1–
σ22

Yc
-------- τ 1≥+ + σ22 0<

τ
σ12

S
--------⎝ ⎠

⎛ ⎞
2 1

3
2
---αG12σ12

2
+

1
3
2
---αG12S

2
+

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

σ33

Zt
-------- 1≥ σ33 0>

σ33

Zc
-------- 1–≤ σ33 0<

τ23

Syz
---------- 1≥

τ13

Sxz
---------- 1≥
5-88 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
Inplane shear failure: ; flag(6) > 0

Material degradation models based on ply discounting for each of the failure models are
implemented in subroutines named DGRADi that are called by GCP subroutine CS4F. At
present, the five material degradation models implemented include:

• DGRAD1—Material degradation model for the maximum strain and maximum stress
failure models based on the inplane values only (IDGRD=1).

For shell elements, the material degradation rules here are:

If flag(1) is nonzero, set E11 = β E11, P12 = β ν12 and P21 = β ν21 where β is a user–specified
value (e.g., 10-6) read on the ORT_EL_BR_MATERIAL input data

If flag(2) is nonzero, set E22 = β E22, P12 = β ν12 and P21 = β ν21

If flag(3) is nonzero, set G12 = β G12

If flag(4) is nonzero, set G13 = β G13

If flag(5) is nonzero, set G23 = β G23

For solid elements, the material degradation rules are:

Fiber failure (tension or compression) (flag(1)):

set , and

Matrix failure (tension or compression) (flag(2)):

set , and

Interlaminar normal failure (tension or compression) (flag(3)):

set , and

Interlaminar shear failure (flag(4)): set

Interlaminar shear failure (flag(5)): set

In-plane shear failure (flag(6)): set

• DGRAD2—Also a material degradation model for the maximum strain and
maximum stress failure models based on the inplane values only (IDGRD=2). This
model also degrades the inplane shear modulus when either fiber or matrix failures
are detected.

For shell elements, the material degradation rules here are:

If flag(1) is nonzero, set E11 = β E11, G12 = β G12, P12 = β ν12 and P21 = β ν21

where β is a user–specified value (e.g., 10-6) read on the ORT_EL_BR_MATERIAL
 input data.

If flag(2) is nonzero, set E22 = β E22, G12 = β G12, P12 = β ν12 and P21 = β ν21

If flag(3) is nonzero, set G12 = β G12

τ12

Sxy
---------- 1≥

0≠

C'11 βC11= C'12 βC12= C'13 βC13=

0≠

C'22 βC22= C'21 βC21= C'23 βC23=

0≠

C'33 βC33= C'31 βC31= C'32 βC32=

0≠ C'44 βC44=

0≠ C'55 βC55=

0≠ C'66 βC66=
STAGS 5.0 User Manual April, 2009 5-89

Model Input Data Tables
If flag(4) is nonzero, set G13 = β G13

If flag(5) is nonzero, set G23 = β G23

For solid elements, the material degradation rules are:

Fiber failure (tension or compression) (flag(1)):

set , and

Matrix failure (tension or compression) (flag(2)):

set , and

Interlaminar normal failure (tension or compression) (flag(3)):

set , and

Interlaminar shear failure (flag(4)): set

Interlaminar shear failure (flag(5)): set

In-plane shear failure (flag(6)): set

• DGRAD3—Material degradation model for the Tsai–Wu failure model [3] based on
the inplane values only (IDGRD=3). The material degradation rules follow those given
by Reddy and Reddy [4].

For shell elements, the material degradation rules here are:

If flag(1) is nonzero, set E11 = β E11, P12 = β ν12 and P21 = β ν21 where β is a user–specified
value (e.g., 10-6) read on the ORT_EL_BR_MATERIAL input data.

If flag(2) is nonzero, set E22 = β E22, P12 = β ν12 and P21 = β ν21

If flag(3) is nonzero, set G12 = β G12

If flag(4) is nonzero, set G13 = β G13

If flag(5) is nonzero, set G23 = β G23

For solid elements, the material degradation rules are:

Fiber failure (tension or compression) (flag(1)):

set , and

Matrix failure (tension or compression) (flag(2)):

set , and

Interlaminar normal failure (tension or compression) (flag(3)):

set , and

Interlaminar shear failure (flag(4)): set

Interlaminar shear failure (flag(5)): set

In-plane shear failure (flag(6)): set

0≠

C'11 βC11= C'12 βC12= C'13 βC13=

0≠

C'22 βC22= C'21 βC21= C'23 βC23=

0≠

C'33 βC33= C'31 βC31= C'32 βC32=

0≠ C'44 βC44=

0≠ C'55 βC55=

0≠ C'66 βC66=

0≠

C'11 βC11= C'12 βC12= C'13 βC13=

0≠

C'22 βC22= C'21 βC21= C'23 βC23=

0≠

C'33 βC33= C'31 βC31= C'32 βC32=

0≠ C'44 βC44=

0≠ C'55 βC55=

0≠ C'66 βC66=
5-90 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
• DGRAD4—Material degradation model for the Hashin [5] failure model based on the
inplane values only (IDGRD=4). This model also degrades the inplane shear modulus
when either fiber or matrix failures are detected. There is no inplane shear failure
mode (i.e., flag(3) will always be zero).

For shell elements, the material degradation rules here are:

If flag(1) is nonzero, set E11 = β E11, G12 = β G12, P12 = β ν12 and P21 = β ν21

where β is a user–specified value (e.g., 10-6) read on the ORT_EL_BR_MATERIAL
 input data.

If flag(2) is nonzero, set E22 = β E22, G12 = β G12, P12 = β ν12 and P21 = β ν21

If flag(3) is nonzero, set G12 = β G12

If flag(4) is nonzero, set G13 = β G13

If flag(5) is nonzero, set G23 = β G23

For solid elements, the material degradation rules are:

Fiber failure (tension or compression) (flag(1)):

set , and

Matrix failure (tension or compression) (flag(2)):

set , and

Interlaminar normal failure (tension or compression) (flag(3)):

set , and

Interlaminar shear failure (flag(4)): set

Interlaminar shear failure (flag(5)): set

In-plane shear failure (flag(6)): set

• DGRAD5—Material degradation model for the Chang–Chang failure model [6]
based on the inplane values only (IDGRD=5). This model also degrades the inplane
shear modulus when either fiber or matrix failures are detected.

For shell elements, the material degradation rules here are:

If flag(1) is nonzero (fiber breakage), set E11 = β E11, E22 = β E22, G12 = β G12,
P12 = β ν12 and P21 = β ν21, where β is a user–specified value (e.g., 10-6) read on the
ORT_EL_BR_MATERIAL input data. Chang and Chang actually use an exponentially
degrading value based on the area of the damage zone. These factors are not in
the current version.

If flag(2) is nonzero and positive (matrix cracking), set E22 = β E22,
G12 = β G12, P12 = β ν12 and P21 = β ν21

If flag(2) is nonzero and negative (matrix compression), set E22 = β E22,
P12 = β ν12 and P21 = β ν21

If flag(3) is nonzero (fiber-matrix shearing), set E11 = β E11, E22 = β E22,
G12 = β G12, P12 = β ν12 and P21 = β ν21

0≠

C'11 βC11= C'12 βC12= C'13 βC13=

0≠

C'22 βC22= C'21 βC21= C'23 βC23=

0≠

C'33 βC33= C'31 βC31= C'32 βC32=

0≠ C'44 βC44=

0≠ C'55 βC55=

0≠ C'66 βC66=
STAGS 5.0 User Manual April, 2009 5-91

Model Input Data Tables
If flag(4) is nonzero, set G13 = β G13

If flag(5) is nonzero, set G23 = β G23

For solid elements, the material degradation rules are:

Fiber failure (tension or compression) (flag(1)):

set , and

Matrix failure (tension or compression) (flag(2)):

set , and

Interlaminar normal failure (tension or compression) (flag(3)):

set , and

Interlaminar shear failure (flag(4)): set

Interlaminar shear failure (flag(5)): set

In-plane shear failure (flag(6)): set

The progressive failure analysis implementation in STAGS provides the historical material
database for postprocessing. For this material type, there are 12 data items for C1 shell elements
and 14 data items for C0 shell elements, for each material point—the current material properties
(E11, E22, E33, G23, G13, G12, ν23, ν13 and ν12), and the failure flags (3 or 5). These values may
be plotted on an element level by layer, with STAGS’ stapl postprocessing program.

go to I-5a

0≠

C'11 βC11= C'12 βC12= C'13 βC13=

0≠

C'22 βC22= C'21 βC21= C'23 βC23=

0≠

C'33 βC33= C'31 βC31= C'32 βC32=

0≠ C'44 βC44=

0≠ C'55 βC55=

0≠ C'66 βC66=
5-92 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-11a PDLAM GCP Material

This record—which contains the specification of properties for a progressive damage laminated
composite material model based on the crack density state variable model of Shahid and Chang
and implemented as a GCP material (Material Type 7)—is read when COMMAND on I-5a is
‘PDLAM_MATERIAL’, or is an acceptable abbreviation of that character string (as discussed in the
description of the I-5a record). Under these circumstances, the INFO vector on I-5a contains the
following information:

INFO(1) = MATID — material identifier, in the GCP Materials Table
INFO(2) = NGROUPS — number of material groups (must be 1, currently)
INFO(3) = NSTATES — number of material states (must be 1, currently)
INFO(4) = not used, currently
INFO(5) = not used, currently
INFO(6) = not used, currently
INFO(7) = not used, currently

The following record is required for specification of the properties of the PDLAM material
model for each state within each group of states (this is currently a single 36-item real-data
record, and all entries must be specified). These data items are stored, in this order, in an internal
array named mpd as the original input material data. These data can be on a single line or on
multiple lines with a comma denoting continuation of the record.

E1 E2 E3 G12 G13 G23 P12 P13 P23
RHO A1 A2 A3 B1 B2 B3 T M
XC XT YC SXZ SYZ ALPHA CURET G1C G2C
VISF0 VISF1 VISFF DPHI0 DELTA DFMIN BETA ETA BETAC

E1, E2, E3 elastic moduli for each material direction (E11, E22 and E33)

G12, G13, G23 elastic shear moduli (G12, G13 and G23)

P12, P13, P23 major Poisson’s ratios (ν12, ν13 and ν23)

RHO mass density, ρ

A1, A2, A3 coefficients of thermal expansion

B1, B2, B3 coefficients of hygroscopic expansion

T reference temperature for thermal calculations
M reference moisture content for hygroscopic calculations
XC compression strength allowable values in the 1–direction (Xc)
STAGS 5.0 User Manual April, 2009 5-93

Model Input Data Tables
XT tensile strength allowable value in the 1–direction (Xt)

YC compression strength allowable value in the 2–direction (Yc)

SYZ transverse shear strength allowable value in the 23–direction (Syz)

SXZ transverse shear strength allowable value in the 13–direction (Sxz)

ALPHA nonlinear shear stress–strain coefficient, α=α0(G12)
3 where α0 is

the usual coefficient having values in the range of 10-14

CURET laminate cure temperature

G1C mode I fracture toughness, GIc

G2C mode II fracture toughness, GIIc

VISF0 global artificial damping factor independent of damage

VISF1 global artificial damping coefficient, combined with longitudinal modulus

VISFF artificial damping coefficient after first fiber failure,
combined with longitudinal modulus

DPHI0 crack density increment,

DELTA fiber interaction zone,

DFMIN lower limit of degradation factor

BETA fiber failure degradation rate,

ETA fiber/matrix shear-out failure degradation rate,

BETAC compression failure degradation rate,

The complete C matrix, which relates strains to stresses, is given in Section I-7a. Tension
strength allowable value in the 2–direction (YT) and the inplane shear strength allowable value
(S) are dependent on the crack density state variable φ. These values as well as degraded reduced
stiffness coefficients are computed a priori using a stand–alone unit–cell plane–strain analysis
of the laminate.

Failure detection is based on the Shahid–Chang criteria [7]. These criteria identify the mode of
failure and utilize user–specified stress/strength allowable values.

Δφ

δ

β

η

βc
5-94 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
• Fiber breakage mode: when

• Fiber compression/shear mode: when

• Fiber–matrix shear-out mode: when

when

• Matrix cracking mode: when

• Matrix compression mode: when

Material degradation follows the formulation presented by Shahid and Chang using crack density
 as a state variable. Prior to performing a nonlinear progressive failure analysis, the STAGS user

firsts performs a plane–strain, unit–cell analysis of the laminate using the internal versions of
subroutines PDCOMP and RDSE. This analysis yields the reduced material stiffness coefficients as
a function of crack density for each layer in the laminate. Once failure is detected using the
failure criteria listed previously, the degraded material stiffness coefficients for the
corresponding crack density are used in the subsequent analysis step.

The present implementation of the PDLAM material formulation in STAGS assumes that a
maximum of ten PDLAM material types can be present in a given model and that each shell
fabrication using this material type uses a single PDLAM definition for all layers in that laminate.
The current implementation of PDLAM is limited to symmetric laminates.

go to I-5a

σ11

XT
--------⎝ ⎠

⎛ ⎞
2

1≥ σ11 0>

σ11

XC
--------⎝ ⎠

⎛ ⎞
2 σ12

S φ()
-----------⎝ ⎠

⎛ ⎞
2

+ 1≥ σ11 0<

σ11

XT
--------⎝ ⎠

⎛ ⎞
2 σ12

S φ()
-----------⎝ ⎠

⎛ ⎞
2

+ 1≥ σ11 0>

σ11

XC
--------⎝ ⎠

⎛ ⎞
2 σ12

S φ()
-----------⎝ ⎠

⎛ ⎞
2

+ 1≥ σ11 0<

σ22

YT φ()
--------------⎝ ⎠

⎛ ⎞
2 σ12

S φ()
-----------⎝ ⎠

⎛ ⎞
2

+ 1≥ σ22 0>

σ22

YC
--------⎝ ⎠

⎛ ⎞
2 σ12

S φ()
-----------⎝ ⎠

⎛ ⎞
2

+ 1≥ σ22 0<

φ

STAGS 5.0 User Manual April, 2009 5-95

Model Input Data Tables
I-12a ABAQUS UMAT GCP Material

This record—which contains the specification of properties for a user-defined material model
developed for ABAQUS and implemented as a GCP material (Material Type 8)—is read when
COMMAND on I-5a is ‘ABAQUS_UMAT_MATERIAL’, or is an acceptable abbreviation of that
character string (as discussed in the description of the I-5a record). Under these circumstances,
the INFO vector on I-5a contains the following information:

INFO(1) = MATID — material identifier, in the GCP Materials Table
INFO(2) = NGROUPS — number of material groups (must be 1, currently)
INFO(3) = NSTATES — number of material states (must be 1, currently)
INFO(4) = not used, currently
INFO(5) = not used, currently
INFO(6) = not used, currently
INFO(7) = not used, currently

The following record is required for specification of the properties of the HKS/ABAQUS UMAT
material model for each state within each group of states (this is currently a single 40-item real-
data record, and all entries must be specified). These data items are stored, in this order, in an
internal real array named mpd as the original input material data. These data can be on a single
line or on multiple lines with a comma denoting continuation of the record.

PROPS(1) PROPS(2) ... PROPS(40)

PROPS(i) material property data items (i=1, 2, ..., 40)

See the Note, immediately after the following navigation instruction:

go to I-5a

Note: The main purpose of a user-defined material model is to return a trial stress state and trial
values for the constitutive coefficients for the given strain state. Input values to an HKS/ABAQUS
UMAT subroutine[8] include the strain state from the previous solution step (STRAN) and the
increment in strain from that point to the current iteration cycle (DSTRAN). Then UMAT essentially
returns the current strain state (STRAN on exit), trial stress state (STRESS) and trial constitutive
coefficients (DDSDDE), and updated state variables set by the user (STATEV). These trial values
are computed based on the strain state from the previous solution step, the increment in strain
from that point to the present iteration cycle of the current solution step, and the trial constitutive
coefficients corresponding to the present iteration cycle of the current solution step.
5-96 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
The calling sequence for UMAT based on the HKS/ABAQUS documentation is:

 SUBROUTINE UMAT (STRESS, STATEV, DDSDDE, SSE, SPD, SCD,

 1 RPL, DDSDDT, DRPLDE, DRPLDT, STRAN, DSTRAN,

 2 TIME, DTIME, TEMP, DTEMP, PREDEF, DPRED,

 3 CMNAME, NDI, NSHR, NTENS, NSTATV, PROPS,

 4 NPROPS, COORDS, DROT, PNEWDT, CELENT, DFGRDO,

 5 DFGRD1, NOEL, NPT, LAYER, KSPT, KSTEP,

 6 KINC)

The functional status of the UMAT calling arguments for STAGS is given in Table 5.3 (at the end
of this note). Not all of the HKS/ABAQUS UMAT arguments are active at this point. However,
allocation of space and definition of variable type needs to be provided. The arguments in the
UMAT calling sequence are defined as follows:

• STRESS – stress vector at the beginning of the solution step on entry and updated
to the trial stress vector at the present iteration of the current step;
dimensioned NTENS

• STATEV – array of state variables saved from the previous solution step at each
material point and updated on exit to the trial values at the present
iteration for the current solution step; defined by the UMAT developer;
can be graphically displayed as a contour plot by stapl; dimensioned
NSTATV

• DDSDDE – matrix of secant constitutive coefficients; dimensioned NTENS NTENS

• SSE – strain energy density at a material point

• SPD – specific plastic dissipation at a material point

• SCD – specific creep or viscous dissipation at a material point

• RPL – volumetric heat generation per unit time

• DDSDDT – variation of the stress increments with respect to temperature;
dimensioned NTENS

• DRPLDE – variation of RPL with respect to strain increment; dimensioned NTENS

• DRPLDT – variation of RPL with respect to temperature increment; dimensioned
NTENS

• STRAN – total strain from the previous solution step on entry; total strain for
present iteration of the current step on exit; dimensioned NTENS

• DSTRAN – strain increment from previous solution step to present iteration of the
current solution step; dimensioned NTENS

• TIME – array with two entries; TIME(1) is the value of time at beginning of the
current increment; TIME(2) is the value of total time at the beginning of
the current increment

• DTIME – time increment or step size in a static analysis

×

STAGS 5.0 User Manual April, 2009 5-97

Model Input Data Tables
• TEMP – temperature at the beginning of the increment
• DTEMP – increment of temperature
• PREDEF – array of interpolated values of predefined field variables

at this material point at the start of this increment
• DPRED – array of increments of predefined field variables
• CMNAME – name of material within this UMAT subroutine
• NDI – number of direct stress terms: NDI=2 for shell elements
• NSHR – number of shear stress terms: NSHR=1 for C1 shell elements;

NSHR=3 for C0 shell elements
• NTENS – size of the stress or strain component array; dimensioned NDI+NSHR

• NSTATV – number of state variable to be archived at each material point;
maximum of twenty variables (see the csumat.h header file)

• PROPS – material properties and parameters for this material model; defined and
ordered by the UMAT developer; dimensioned NPROPS

• NPROPS – number of properties and values defined for this material model;
maximum of forty variables

• COORDS – array containing the coordinates of this material point; dimensioned 3
• DROT – rotation increment matrix; dimensioned 3 3
• PNEWDT – ratio of suggested new time increment to the time increment being used
• CELENT – characteristic element length
• DFGRD0 – array containing the deformation gradient at the beginning of the

increment; dimensioned 3 3
• DFGRD1 – array containing the deformation gradient at the end of the increment;

dimensioned 3 3
• NOEL – element number for this material point
• NPT – surface integration point number within the NOEL element
• LAYER – layer number within the total laminate for this material point
• KSPT – section point within the current layer in the laminate; continuous

numbering of the layer integration points throughout the laminate
from bottom layer to top layer

• KSTEP – ABAQUS analysis step number; typically constant and equal to unity
• KINC – ABAQUS solution increment number in the analysis; STAGS step number

STAGS uses the variable KSTEP as a controlling flag to compute the initial constitutive
coefficients (KSTEP=1), to perform a complete pass through UMAT (KSTEP=1), or to compute the
current stress state in a post-processing step (KSTEP=2). This use is somewhat different than how
HKS/ABAQUS uses the variable KSTEP. STAGS uses the variable KINC as the solution step number
similar to the “time” increment number of HKS/ABAQUS (i.e., pseudo-time step). The linear
solution always corresponds to a value of zero for KINC, and special provisions are included so
that only linear elastic constitutive coefficients and stresses are computed.

×

×

×

5-98 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
Table 5.3 Implementation Status of ABAQUS UMAT Variables in STAGS

Arguments to be Defined Within UMAT
UMAT Argument Name Active Now? Not Available Available in Future

STRESS (NTENS) ✔

STATEV (NSTATV) ✔

DSSDDE (NTENS,NTENS) ✔
SSE ✔ ✔
SPD ✔
SCD ✔
RPL ✔

DDSDDT (NTENS) ✔

DRPLDE (NTENS) ✔
DRPLDT ✔

Arguments Passed to UMAT as Information
UMAT Argument Name Active Now? Not Available Available in Future

STRAN (NTENS) ✔

DSTRAN (NTENS) ✔

TIME (1) ✔

TIME (2) ✔
DTIME ✔
TEMP ✔
DTEMP ✔

PREDEF (1) ✔

DPRED (1) ✔
CMNAME ✔
NDI ✔
NSHR ✔

NTENS (=NDI+NSHR) ✔
NSTATV ✔

PROPS (NPROPS) ✔
NPROPS ✔

COORDS (3) ✔

DROT (3,3) ✔
CELENT ✔

DFGRD0 (3,3) ✔

DFGRD1 (3,3) ✔
NOEL ✔
NPT ✔
LAYER ✔
KSPT ✔
KSTEP ✔
KINC ✔

Arguments that can be Updated within UMAT
UMAT Argument Name Active Now? Not Available Available in Future

PNEWDT ✔
STAGS 5.0 User Manual April, 2009 5-99

Model Input Data Tables
I-13a SHM-Membrane GCP Material

This record—which contains the specification of properties for the Stein-Hedgepeth-Miller
membrane wrinkling model, implemented as a GCP material (Material Type 9)—is read when
COMMAND on I-5a is ‘SHM_MEMBRANE_MATERIAL’, or is an acceptable abbreviation of that
character string (as discussed in the I-5a record description). Under these circumstances, the INFO

vector on I-5a contains the following information:

INFO(1) = MATID — material identifier, in the GCP Materials Table
INFO(2) = NGROUPS — number of material groups (must be 1, currently)
INFO(3) = NSTATES — number of material states in each group (must be 1, currently)
INFO(4) = not used, currently
INFO(5) = not used, currently
INFO(6) = not used, currently
INFO(7) = not used, currently

The following record is required for specification of the nine properties of the Stein-Hedgepeth-
Miller membrane wrinkling material model for each state within each group of states (this is a
single record, currently, and all entries must be specified). These data items are stored, in this
order, in an internal array named mpd as the original input material data. These data can be on a
single line or on multiple lines with a comma denoting continuation of the record.

E GNU RHO ALPHA BETA T M PENLTY IWRINK ISTATE

E elastic modulus
GNU Poisson’s ratio,
RHO mass density,
ALPHA coefficient of thermal expansion
BETA coefficient of hygroscopic expansion
T reference temperature
M reference moisture content

PENLTY penalty factor for the slack state
IWRINK wrinkling criteria:

1 = Wong principal stress criteria
2 = Wong principal strain criteria
3 = Wong mixed or combined principal stress-strain criteria
4 = Adler principal stress criteria
5 = Adler principal strain criteria
6 = Adler mixed or combined principal stress-strain criteria

ν

ρ

5-100 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
ISTATE initial membrane state for each iteration:

0 = initially always taut
1 = defined from previous converged solution

The complete C matrix, which relates strains to stresses, is given in Section I-7a. This matrix is
changed during the computations, depending on the membrane state (taut, slack or wrinkled).

A sample input record for this material model is shown next:

SHM_MEMB 1 1 1 $ I-5a GCP command record

3530.0 , $ I-13a Young’s modulus, N/mm^2

0.30 , $ “ Poisson’s ratio

1.50E-6 , $ “ mass density, kg/mm^3

4*0.0 , $ “ ALPHA, BETA,T & M

1.00E-6 , $ “ penalty factor for slack state

3 , $ “ Wong’s mixed criteria

1 $ “ initial state from previous step

See the Note, immediately after the following navigation instruction:

go to I-5a

Note: The basic concept behind the Stein-Hedgepeth-Miller model [9,10] is to examine points
within the thin membrane structure and determine the current stress state. Since the structure is
ultra-thin, bending is often neglected and the stress state is assumed constant through the
thickness at a given planar coordinate. Denoting the planar deformation field as the xy-plane and
given the state of strain (εxx,εyy,γxy) at a material point in that plane, the principal strains (ε1,ε2)
are determined from:

 (5.1)

where the subscript 1 denotes major principal value and subscript 2 denotes the minor principal
value. The orientation of the principal axes relative to x-axis is obtained from:

 (5.2)

ε1 , ε2

εxx εyy+

2
--------------------- ±

εxx εyy–

2
--------------------⎝ ⎠

⎛ ⎞
2

+
γxy

2
-------⎝ ⎠

⎛ ⎞
2

=

tan 2α
γxy

εxx εyy–
--------------------=
STAGS 5.0 User Manual April, 2009 5-101

Model Input Data Tables
The stress state at that material point can be determined using the strain state and the generalized
Hooke's law for an isotropic linear elastic material:

 (5.3)

where

 (5.4)

and E is the elastic or Young's modulus and ν is Poisson's ratio. Given this plane stress state, the
principal stresses can be calculated according to:

 (5.5)

where the subscript 1 denotes major principal value and subscript 2 denotes the minor principal
value. The orientation of the principal axes relative to x-axis is obtained from:

 (5.6)

The Stein-Hedgepeth-Miller model then examines these principal stress values and modifies the
local constitutive relations for the membrane. Wong [11] and Adler [12] consider three criteria
to define the membrane state: stress criteria; strain criteria; and a combined or mixed stress-strain
criteria. While similar in concept, the actual criteria are slightly different and six different ones
are implemented. The first three follow Wong [11] and the next three follow Adler [12]. These
criteria are:

σxx

σyy

σxy⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

εxx

εyy

γxy⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

Q11 Q22
E

1 ν2
–

--------------= =

Q12
νE

1 ν2
–

--------------=

Q66 G
E

2 1 ν+()
--------------------= =

Q16 Q26 0= =

σ1 , σ2

σxx σyy+

2
----------------------- ±

σxx σyy–

2
----------------------⎝ ⎠

⎛ ⎞
2

σxy()2
+=

tan 2β
2σxy

σxx σyy–
----------------------=
5-102 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
• Wong [11] stress criteria based on principal stresses (IWRINK=1)

Taut state:

Slack state: and

Wrinkled state: and

• Wong [11] strain criteria based on principal strains (IWRINK=2)

Taut state:

Slack state: and

Wrinkled state: and

• Wong [11] mixed stress-strain criteria based on both principal stresses and principal
strains (IWRINK=3)

Taut state:

Slack state: and

Wrinkled state: and

• Adler [12] stress criteria based on principal stresses (IWRINK=4)

Taut state:

Slack state:

Wrinkled state: and

• Adler [12] strain criteria based on principal strains (IWRINK=5)

Taut state: and

Slack state:

Wrinkled state: and

• Adler [12] mixed stress-strain criteria based on both principal stresses and principals
trains (IWRINK=6)

Taut state:

Slack state:

Wrinkled state: and

Of these criteria, the mixed stress-strain criteria appear to be the more commonly accepted
criteria. Once the membrane state is determined at a material point, the constitutive model for
the material point is set accordingly:

σ2 0>

σ1 ≤ 0 σ2 ≤ 0

σ1 0> σ2 ≤ 0

ε2 0>

ε1 ≤ 0 ε2 ≤ 0

ε1 0> ε2 ≤ 0

σ2 0>

ε1 ≤ 0 σ1 ≤ 0

ε1 0> σ2 ≤ 0

σ2 0>

σ1 ≤ 0

σ1 0> σ2 ≤ 0

ε1 0> ε2 νε1–>

ε1 ≤ 0

ε1 0> ε2 ≤ νε1–

σ2 0>

ε1 ≤ 0

ε1 0> σ2 ≤ 0
STAGS 5.0 User Manual April, 2009 5-103

Model Input Data Tables
 (5.7)

For the slack behavior, the constitutive coefficients are set to a penalty factor κ (input parameter
PENLTY) that is typically a very small number approaching zero and are given by:

 (5.8)

For the taut behavior, the constitutive coefficients are the original plane stress values for a linear
elastic, isotropic material given by:

 (5.9)

For the wrinkled behavior, the constitutive coefficients are changed and are given by:

 (5.10)

where P = cos 2α = (εxx-εyy)/(ε1-ε2) and Q = sin 2α = γxy/(ε1-ε2).

The wrinkling process is considered to be an elastic process where wrinkles may form and then
disappear if the local stress state at a material point would permit it.

This material model can be used with membrane elements (constraint all bending degrees of
freedom to zero using the Q-records) and also with plate/shell elements. Within STAGS,
membrane behavior is modeled by constraining all out-of-plane deformation degrees of freedom
(transverse displacement and two bending rotations) using the loading records (Q-records). The
E410 shell element uses the “drilling degree of freedom” to increase the order of the in-plane
displacement field approximations; the E330 and E480 shell elements do not have this freedom
and so it must also be constrained. Using this material model with plate/shell elements means
that the local material stiffness terms are modified in the same way based on the wrinkling
criteria and in addition, the bending stiffness terms are computed and used in the stiffness matrix
evaluation.

Qij

Qij
slack

slack state

Qij
wrinkle

wrinkled state

Qij
taut

taut state⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Q
slack[] κ

1 1 1

1 1 1

1 1 1

=

Q
taut[] E

1 ν2
–

1 ν 0

ν 1 0

0 0
1 ν–

2

=

Q
wrinkle[] E

4

2 1 P+() 0 Q

0 2 1 P–() Q

Q Q 1

=

5-104 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-14a Nonlinear Orthotropic Elastic GCP Material

This record—which continues the specification of properties for a nonlinear orthotropic elastic

GCP material model based on the Hahn nonlinear in-plane shear stress-strain definition [13,14],

implemented as a GCP material (Material Type 10)—is read when COMMAND on I-5a is

‘NL_ORT_ELAST_MATERIAL’, or is an acceptable abbreviation of that character string (as

discussed in the I-5a record description). Under these circumstances, the INFO vector on I-5a

contains the following information:

INFO(1) = MATID — material identifier, in the GCP Materials Table

INFO(2) = NGROUPS — number of material groups (must be 1, currently)

INFO(3) = NSTATES — number of material states in each group (1, currently)

INFO(4) = not used, currently

INFO(5) = not used, currently

INFO(6) = not used, currently

INFO(7) = not used, currently

The following record is required for specification of the nineteen properties of the nonlinear
orthotropic elastic material model for each state within each group of states (this is a single
record, currently, and all entries must be specified). These data items are stored, in this order, in
an internal array named mpd as the original input material data. These data can be on a single
line or on multiple lines with a comma denoting continuation of the record.

E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO A1 A2 A3 B1 B2 B3 T M S6666

E1, E2, E3 elastic moduli (E1, E2 and E3)

G12, G13, G23 shear moduli (G12, G13 and G23)

P12, P13, P23 Poisson’s ratios (, and)

RHO mass density,

A1, A2, A3 coefficients of thermal expansion

B1, B2, B3 coefficients of hygroscopic expansion

T reference temperature

M reference moisture content

S6666 nonlinear parameter for in-plane shear stress-strain relations

The complete linear elastic C matrix, which relates strains to stresses, is given in Section I-7a.

ν12 ν13 ν23

ρ

STAGS 5.0 User Manual April, 2009 5-105

Model Input Data Tables
A sample input record for this material model is shown next:

NL_ORT_EL 1 1 1 $ I-5a GCP command record
19.00E+6 1.89E+6 1.89E+6 , $ I-14a elastic moduli [psi]
 0.93E+6 0.93E+6 0.93E+6 , $ “ shear moduli [psi]
 0.38 0.38 0.38 , $ “ Poisson’s ratios
 2.59E-5 , $ “ mass density [slugs]
 3*0.0 3*0.0 2*0.0 , $ “ CTEs, CMEs, T & M
 1.00E-6 $ “ nonlinear shear parameter

See the Note, immediately after the following navigation instruction:

go to I-5a

Note: The basic concept behind the Hahn-Tsai [14] and Hahn [13] mode is to formulate a
complementary strain energy density function and determine the strain-stress relations. From
Hahn and Tsai [14], a unique solution for the in-plane shear strain-stress relations is derived to
have the form of a cubic equation given by:

 (5.11)

A unique solution to the cubic equation exists if:

 (5.12)

For real material systems, the coefficient Só6 is a positive real number; hence a unique solution
requires that S66óó be a real positive number greater than zero for all values of the shear stress.
Hahn and Tsai [14] then conclude that there is only one real root of the nonlinear shear strain-
stress equation, and the solution is denoted by:

 (5.13)

where f(e6) is the real root of the cubic equation given by:

e6 2ε12 S66σ12 S6666σ12
3

+
1

G12
---------σ12

α

G12
3

---------σ12
3

+= = =

de6

dσ12
----------- S66 3S6666σ12

2
0≠+=

σ12
1

S66
------- + f e6() e6=
5-106 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
 (5.14)

 (5.15)

A general cubic equation of the form

 (5.16)

can be reduced to

 (5.17)

by substituting and noting the following definitions for the constants a and b:

 (5.18)

There will be one real root and two conjugate imaginary roots if

 (5.19)

The solution for x (and therefore y) is then obtained in terms of A and B:

 (5.20)

where

 (5.21)

The solution to this cubic equation is calculated in subroutine CROOT (see croot.F in the GCP
subdirectory). The coefficients (p, q and r) are calling arguments and the real root is returned
from the subroutine.

Within the GCP of STAGS, the material model is entered with a given strain state and returns
trial stress values and, for nonlinear materials, trial constitutive coefficients. Thus, given the

y
3 3

S66
-------y

2 3

S66
2

S66

S6666

------------ 1

e6
2

-----+
⎝ ⎠
⎜ ⎟
⎛ ⎞

y
1

S66
3

-------+ + + 0=

y
3

py
2

qy r+ + + 0=

x
3

ax b+ + 0=

y x
P
3
---–=

a =
1
3
--- 3q p

2
–() and b

1
27
------ 2p

3
9pq– 27r+()=

c
b

2

4
----- +

a
3

27
------ 0>=

x A B+ A B+
2

-------------– +
A B–

2
------------- 3– A B+

2
-------------–

A B–
2

------------- 3––,,=

A = b
2
---– c+3 and B = b

2
---– c–3
STAGS 5.0 User Manual April, 2009 5-107

Model Input Data Tables
value of the in-plane shear strain e6 = γ12 = 2ε12, the linear elastic shear modulus G12 and the
nonlinear parameter S6666, the in-plane shear stress can be determined by solving the cubic
equation using the approach just described. The S6666 term has units of the reciprocal of stress
to the third power. That is,

 (5.22)

and has a value on the order of 1 x 10-15 (psi)-3 or 10 (GPa)-3 or 1 x 10-8 (Mpa)-3 and hence the
order of α is in the 1000's. This term is an experimentally determined quantity from off-axis
tension tests [14].

S6666
α

G12
3

---------=
5-108 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-21a GCP Shell Fabrication Record

This record—which continues the specification of a shell fabrication in the GCP—is read when
COMMAND on I-5a is ‘SHELL_FABRICATION’, or is an acceptable abbreviation of that character
string (as discussed in the I-5a record description). Under these circumstances, the INFO vector
on I-5a contains the following information:

INFO(1) = FABID — shell fabrication identifier, in the GCP Fabrications Table:
> 0— use material and fabrication properties specified here

for all elements referencing this FABID
< 0— call user-written subroutine USRFAB to determine if

an element referencing this fabrication uses material
and fabrication properties specified here or properties
that are specified in USRFAB (see Chapter 12)

INFO(2) = NLAYER— total number of material layers in the fabrication;

INFO(3) = IPTS — through-layer-integration-points flag:
0 — integrate at 2 points (bottom & top) for each layer
1 — specify number of through–layer points for each layer

INFO(4) = ISHR — shear–factor-specification flag:
0 — do not specify shear-correction factors
1 — specify shear-correction factors

INFO(5) = ISYM — layer–symmetry flag:
0 — general layup; specify data for all of the layers of the

layup (i.e., set NX = 1)
1 — fabrication is symmetric through the thickness; specify data

for the top layers—from layer number
to layer number NLAYER (which must be even);
STAGS will then symmetrize the layup

INFO(6) = not used, currently
INFO(7) = not used, currently

Note:

For C0 shell elements, the stress and strain components have the following orders:

σ1, σ2, τ12, τ13, τ23
ε1, ε2, γ12, γ13, γ23

For C1 shell elements, the stress and strain components have the following orders:

σ1, σ2, τ12
ε1, ε2, γ12

1 NLAYER 100≤ ≤

NX NLAYER 2⁄ 1+=
STAGS 5.0 User Manual April, 2009 5-109

Model Input Data Tables

MATID(j) j = NX, NLAYER

MATID(j) material identifier (in the GCP Materials Table) for the jth layer, where
 (when ISYM = 0) or (when ISYM = 1)

 (I-5a) through-layer-integration-points flag

if (IPTS > 0) go to I-21b
else go to I-21c

Figure 5.3 GCP Shell Fabrication

ISYM = 0 ISYM = 1

NX = 1 NX = NLAYER/2 + 1

NX 1= NX NLAYER 2⁄ 1+=

INFO 3() IPTS≡
5-110 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-21b GCP Shell Integration Points Record

This record—which continues the specification of a shell fabrication in the GCP—should be
included if and only if on I-21a: it specifies the number of through-layer integration
points to be used for each layer for which data are being specified.

INTSHL(j) j = NX, NLAYER

INTSHL(j) number of integration points to be used for the jth layer of the layup,
where (when ISYM=0) or (when ISYM = 1)

Note:

It is appropriate to set

when any bending within a layer is assumed negligible

to integrate at two locations within each layer (at ,
on either side of the midsurface of that layer);
this is exact when stress varies linearly over
the layer; this is STAGS’ default value

to integrate using Simpson’s 1/3 rule (odd values only):

go to I-21c

IPTS 1=

NX 1= NX NLAYER 2⁄ 1+=

INTSHLj 1=

INTSHLj 0 or 2=
1

3
------- hk 2⁄()±

INTSHLj 2>

f ξ() ξd
a

b

∫
1
3
--- b a–() f a() 4f

a b+
2

------------⎝ ⎠
⎛ ⎞ f b()+ +≈
STAGS 5.0 User Manual April, 2009 5-111

Model Input Data Tables
I-21c GCP Shell Layer Thickness Record

This record—which continues the specification of a shell fabrication in the GCP—must be
included: it specifies the thickness of each layer for which data are being specified.

THKSHL(j) j = NX, NLAYER

THKSHL(j) thickness of the jth layer, where (when ISYM=0) or
 (when ISYM = 1)

go to I-21d

NX 1=

NX NLAYER 2⁄ 1+=
5-112 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-21d GCP Shell Layer Orientation Record

This record—which continues the specification of a shell fabrication in the GCP—must be
included: it specifies the fabrication orientation angle for each layer for which data are being
specified.

ANGSHL(j) j = NX, NLAYER

ANGSHL(j) fabrication orientation angle for the jth layer,
where (when ISYM=0) or (when ISYM=1)

 (I-5a) shear-factor-specification flag

if (ISHR > 0) go to I-21e
else go to I-5a

NX 1= NX NLAYER 1+() 2⁄=

INFO 4() ISHR≡
STAGS 5.0 User Manual April, 2009 5-113

Model Input Data Tables
I-21e Shear Factor Specification Record

This record—which concludes the specification of a shell fabrication in the GCP—must be
included when on the I-21a record: it specifies the two shear-correction factors to be
for all layers of the current fabrication.

SCF1 SCF2

SCF1 first shear-correction factor; if , STAGS sets

SCF2 second shear-correction factor; if , STAGS sets

Note 1: The nominal value for each of these parameters is 5/6, for isotropic materials.

Note 2: Under the traditional STAGS approach for shell wall fabrications using K records,
STAGS internally assumes that SCF1 = SCF2 = 0.83333333 = 5/6 when C0 elements
are used.

go to I-5a

ISHR 1=

ISHR 0= SCF1 1.0=

ISHR 0= SCF2 1.0=
5-114 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-22a GCP Solid Fabrication Record

This record—which continues the specification of a solid fabrication in the GCP—is read when
COMMAND on I-5a is ‘SOLID_FABRICATION’, or is an acceptable abbreviation of that character
string (as discussed in the I-5a record description). Under these circumstances, the INFO vector
on I-5a contains the following information:

INFO(1) = FABID — solid fabrication identifier, in the GCP Fabrications Table:
> 0 — use material and fabrication properties specified here

for all solid elements referencing this FABID
< 0 — call user-written subroutine USRFAB to determine if

an element referencing this fabrication uses material
and fabrication properties specified here or properties
that are specified in USRFAB (see Chapter 12)

INFO(2) = MATID — material identifier, in the GCP Materials Table, for
the GCP material used in this solid fabrication

INFO(3) = IANG — fabrication-orientation flag:
 0 — set orientation angles to zero
 1 — input orientation angles [in degrees]

INFO(4) = NIPZ — number of through–thickness integration points (1 or 2)
(default = 2); NIPZ is meaningful only for the core
components of E800-series sandwich elements

INFO(5) = not used, currently
INFO(6) = not used, currently
INFO(7) = not used, currently

Note:

For solid elements, the stress and strain components have the following orders:

σ1, σ2, σ3, τ23, τ13, τ12
ε1, ε2, σ3, γ23, γ13, γ12
STAGS 5.0 User Manual April, 2009 5-115

Model Input Data Tables

THICK

THICK element thickness

 (I-5a) fabrication-orientation flag

if (IANG > 0) go to I-22b
else go to I-5a

Figure 5.4 GCP Solid Fabrication

THICK

INFO 3() IANG≡
5-116 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
I-22b GCP Solid Fabrication Orientation Record

This record—which concludes the specification of a solid fabrication in the GCP—must be
included if on the I-5a record: it specifies the orientation angle to be used for
the current solid fabrication.

ANGLE

ANGLE orientation angle, in degrees (in the x-y plane; rotations are measured
about the z-axis in a right-hand-rule sense)

go to I-5a

INFO 3() IANG≡ 1=
STAGS 5.0 User Manual April, 2009 5-117

Model Input Data Tables
J-1 Cross-Section

The records J-1–J-3 are included only if there are beam elements or stiffeners to be defined,

 (B-3). The record sequence is repeated NTAB times. These records define cross-section

properties, including, via reference to the Material Table (I records), material properties. These

data can be referenced in subsequent definitions of beam elements and stiffeners.

In the case of elastic deformation, the strain energy in a beam (stiffener) can be expressed in

terms of a few parameters such as cross-sectional area and moments of inertia. Whenever a beam

(stiffener) is defined by use of such data, we refer to its cross-section as being of the general

type.

If plastic deformation is included or if thermal expansion varies nonlinearly within the cross-

section, the total strain is still linear but the stresses are not. In that case the elastic strain energy

in the beam (stiffener) depends on the actual shape of the cross-section. For such applications

cross-sections of subelement type are defined. The cross-section is decomposed into a number of

subelements, each sufficiently small so that thermal expansion and plastic strain may (as a good

approximation) be considered constant within the subelement. Generally, then the moments of

inertia of the subelements about their own axes are negligible. If more than NSUB subelements

must be included, two or more beams (stiffeners) may be co-located (with the same effect as the

inclusion of one cross-section with a larger number of subelements). Plasticity and thermal

effects can be included in stiffeners of the subelement type only .

The subelement type of cross-section is useful even in elastic analysis without thermal effects.

A T-stiffener, for example, can be defined as a subelement type cross-section with two

rectangular subelements.

A beam (stiffener) cross-section is defined in cross-section coordinates (see Section 4.1).

When a beam (stiffener) element is defined, the user can specify an angle between the

(element unit) or (shell unit) axis and the cross-section axis. An eccentricity, the

(element unit) or (shell unit) coordinates at the origin of the system, can also be

specified (see Figure 6.5 on page 6-52 and Figure 8.1 on page 8-12).

An elastic Timoshenko beam capability can be used with the 200-series beams in STAGS. These

beams include those automatically introduced when rings and stringers are called for on shell

units discretized using the 300- and 400-series shell elements (see the description of the N-1

record in Chapter 6, and Sections 14.4 and 14.5 in Chapter 14). The following considerations

should be kept in mind when using the Timoshenko option:

NTAB 0>

KCROSS 2 or 3=()

y z,()

z′

Z′ z y′ z′,()

Y′ Z′,() y z,()
5-118 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
• Bending stresses and curvatures are computed correctly only at the midspan of the
beam element. Bending stress resultants and moments, however, are valid at all
element integration points.

• Plasticity cannot be used with the Timoshenko option, since the contribution of the
shear stress cannot be correctly accounted for.

• Timoshenko beam cross-sectional properties must be defined with respect to the
principal axes of the section, i.e., the product of inertia must be zero in the
system, as expressed below.

The sequence of J records is repeated NTAB times (B-3).

See Section 16.2 for more information about this.

ITAB KCROSS MATB NSUB TORJ SCY SCZ NSOYZ KAPY KAPZ

ITAB user-assigned cross-section number; (B-3)

KCROSS cross-section type. Thermal loading is permitted (via user-written subroutine
TEMP) only for . Plasticity is permitted only
for .

1 – general
2 – general subelement
3 – rectangular subelement
4 – arbitrary; elements of “stiffness matrix” defined

MATB material number, as defined by ITAM in the Material Table (I-1)

NSUB number of subelements ;
meaningful for subelement stiffeners only

TORJ torsional constant, J, having units of , where l is length. The torsional
stiffness for a beam of length L is , where G is the shear modulus.

For example, for open sections composed of long,

narrow rectangles. Stiffeners of shapes such as “blade”, “tee”, “I” fall
into this category; but “hat” stiffeners do not, since they form a closed
cross-section. In the above expression for J, h is the smallest dimension
for each rectangle and C is a correction factor, generally taken as 1.0 for
stiffeners of normal proportions. TORJ is not used for .

SCY coordinate of shear center

SCZ coordinate of shear center

y z,()

Iyz yzdA

A

∫ 0= =

1 ITAB NTAB≤≤

KCROSS 2 or 3=

KCROSS 2 or 3=

NSUB 10≤()
KCROSS 2 or 3=()

l 4

JG L⁄

J 1 3⁄()C bh3∑=

KCROSS 4=

y

z

STAGS 5.0 User Manual April, 2009 5-119

Model Input Data Tables
NSOYZ number of stress output points per cross-section; . NSOYZ is meaningful
for only.

KAPY dimensionless transverse-shear shape factor, , accounting for flexural shear

deformation in the plane (i.e., bending about the -axis). Set to
omit the effects of flexural-shear deformation. This is a floating point entry.

KAPZ dimensionless transverse-shear shape factor, , accounting for flexural shear

deformation in the plane (i.e., bending about the -axis). Set to
omit the effects of flexural-shear deformation. This is a floating point entry.

 are shape factors, accounting for variation of transverse shear stress over the beam cross
section in the directions, respectively. As an example, for parabolic variation over a
rectangular cross-section, .

STAGS will not report transverse shear stress values . However, stress resultants
are computed, and these are related to by the expressions

 (5.23)

where G is the shear modulus, A is the cross-sectional area, and are the average
transverse shear strains. If a discrete value of is desired, the analyst may compute this by
referring to the assumption of shear-stress variation which was used to derive . For
parabolic variation in a particular coordinate direction, the maximum stress, occurring at mid-
depth, is .

The cross-sectional area effective in developing transverse shear stress is sometimes assumed to
be different than that effective in developing normal stress. For example, a common assumption
for shapes similar to “tee”, “I”, channel, etc., is that the flanges do not develop shear stress.
Thus, the “shear area” is taken as the area of the web , with the familiar , since the
web is a simple rectangle. Since STAGS does not permit independent shear area definition, this
effect can be accounted for in the specification of . Thus, one might define
for a “tee” cross-section. This is left to the analyst’s judgment.

CAUTION: Some references define a form factor which is the inverse of the shape
factor used by STAGS . , as used in STAGS, must satisfy
(5.23).

if (KCROSS = 1) then go to J-2a
elseif (KCROSS = 2) then go to J-3a
elseif (KCROSS = 3) then go to J-3b
elseif (KCROSS = 4) then go to J-4a

NSOYZ 4≤
KCROSS 1=

κy

x y,() z KAPY 0=

κz

x z,() y KAPZ 0=

κy , κz

y z,()
κx κy κ 5 6⁄= = =

τy , τz() Vy , Vz()
κy , κz

Vy κy GA γy= Vz κz GA γz=

γy , γz()
τy , τz()

κy , κz

τmax 3 2⁄()τavg=

Aw() κ 5 6⁄=

κ κ 5 6⁄() Aw A⁄()⋅=

f()
f 1 κ⁄=() κy , κz
5-120 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
J-2a General Cross-Section—Record 1

Records of type J-2a/b are included only if the cross-section is of general type,

(J-1). Record J-2a gives the section properties of a beam (stiffener) of general type. The origin

of the cross-section coordinate system must coincide with the cross-section centroid;

may be oriented to simplify computation of cross-sectional properties. See Figure 5.5 on page 5-

122.

BA BIY BIZ BIYZ

BA cross-sectional area

BIY moment of inertia about -axis

BIZ moment of inertia about -axis

BIYZ product of inertia,

NSOYZ (J-1) number of stress output points

if (NSOYZ > 0) then go to J-2b
else follow instructions at end of J-2b

KCROSS 1=

y z,() y z,()

y

z

yz Ad
A∫
STAGS 5.0 User Manual April, 2009 5-121

Model Input Data Tables
General Cross Section General Subelement Cross Section

Rectangular Subelement Cross Section

Figure 5.5 Beam cross sections.

, the beam cross-section axis, completes a right-handed cross-section
coordinate system. The cross-section is positioned by specifying ECY and ECZ, and it
is oriented by specifying ZETA.

See Figure 6.5 on page 6-52 and Figure 8.1 on page 8-12.

centroid

y

z

5 4

3

2

1

z2

y

z

y2

KCROSS 1= KCROSS 2=

12

43

y

z

y1

y2

z2

z1

KCROSS 3=

x x y z, ,()
5-122 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
J-2b General Cross-Section—Record 2

This record is included only if stress output points are to be defined for the cross-section,

 (J-1). Locations for stress output are defined in cross-section coordinates.

(SOY(i), SOZ(i) , i = 1, NSOYZ)

SOY(i) coordinate of stress output point i

SOZ(i) coordinate of stress output point i

NTAB (B-3) number of entries in Cross Section Table

if (NTAB cross sections have been defined) then
follow instructions at end of J-4b

else return to J-1

NSOYZ 0> y z,()

y

z

STAGS 5.0 User Manual April, 2009 5-123

Model Input Data Tables
J-3a General Subelement Cross-Section

This record is included only if (J-1). It is substituted by a J-3b record if

 (subelements are rectangular). One record is used for each subelement, i.e., the

record is repeated NSUB times (J-1) for each cross section of this type. For subelement cross-

sections of this type, stress output is always given at the centroid. See Figure 5.5 on page 5-122.

SA(i) SY(i) SZ(i) SIY(i) SIZ(i) SIYZ(i) ISP(i)

SA(i) area of subelement

SY(i) coordinate at centroid of subelement

SZ(i) coordinate at centroid of subelement

SIY(i) subelement moment of inertia relative to its centroid, SZ(i), about a line parallel to
the axis

SIZ(i) subelement moment of inertia relative to its centroid SY(i), about a line parallel to
the axis

SIYZ(i) subelement product of inertia relative to its centroid (SY(i), SZ(i)) for the
directions

ISP(i) print flag for stress output. Stress output must be activated on the R-1 record
(output control) for each shell unit in which stress output is desired and on the V-1
record for each element unit; thus, stress results are printed only when specified
on R-1/V-1 and on the associated J-3a.

0 – print stresses for this subelement

1 – do not print stresses for this subelement

NSUB (J-1) number of subelements
NTAB (B-3) number of entries in the Cross Section Table

if (NSUB subelements have been defined) then
if (NTAB cross sections have been defined) then

follow instructions at end of J-4b
else return to J-1

else continue defining J-3a

KCROSS 2=

KCROSS 3=

y

z

y

z

y z,()
5-124 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
J-3b Rectangular Subelement Cross-Section

This record is included only if (J-1). One record is used for each subelement, i.e.,

the record is repeated NSUB times (J-1) for each cross section of this type. Stress output can be

obtained only at subelement corners. See Figure 5.5 on page 5-122.

Y1(i) Y2(i) Z1(i) Z2(i) ISOC(i)

Y1(i) for subelement i

Y2(i) for subelement i

Z1(i) for subelement i

Z2(i) for subelement i

ISOC(i) a 4-digit binary integer governing stress output. The four digits correspond to
corners 1–4 as shown in Figure 5.5, in that order; a one indicates stress output
at the corresponding corner, a zero suppresses output. For example,

 specifies stress output ar corners 2 and 4 of subelement i.

NSUB (J-1) number of subelements
NTAB (B-3) number of entries in the Cross Section Table

if (NSUB subelements have been defined) then
if (NTAB cross sections have been defined) then

follow instructions at end of J-4b
else return to J-1

else continue defining J-3b

KCROSS 3=

y1

y2

z1

z2

ISOC i() 0101=
STAGS 5.0 User Manual April, 2009 5-125

Model Input Data Tables
J-4a Arbitrary Cross-Section—Record 1

This record is included only if (J-1). The area input here is used to compute the

mass per unit length of the beam from the density referenced by material number MATB (J-1).

BMA

BMA cross-section area

go to J-4b

KCROSS 4=
5-126 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
J-4b Arbitrary Cross-Section—Record 2

This record is for input of the general material stiffness matrix for a beam cross section. The

matrix relates stress resultants to reference-axis strain, curvature, and unit twist by the relation

 are associated with bending about the axis, and are associated with bending

about the axis. Stress resultants are related to axial and torsional-shear stresses by the relations

Reference-axis strain, curvature, and unit twist are defined by the relations

where l is the length of the beam, and are the axial rotations at nodes 1 and 2, and the

unit twist has units of . In all of the above equations, represents the

 cross-section coordinate system, and are displacements in the directions

(see Figure 6.5 on page 6-52 and Figure 8.1 on page 8-12).

Note that the full matrix is input, even though it must be symmetric.

Nx

Mz

My

T⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫ C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

εx

κz

κy

α⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

κz , Mz z κy , My

y

Nx σxx y z,() dydz

A

∫= Mz yσxx y z,() dydz

A

∫= My zσxx y z,() dydz

A

∫=

T yτxz y z,() zτxy y z,()–[] dydz

A

∫=

εx u,x= κz v,xx–= κy w,xx–= α Rx
2 Rx

1–() l⁄=

Rx
1 Rx

2

α() radians length⁄ x y z, ,()

x y z, ,() u v w, ,() x y z, ,()
STAGS 5.0 User Manual April, 2009 5-127

Model Input Data Tables
(CCC(i,j), j=1,4), i=1,4

CCC(i,j) element in the cross-section stiffness matrix

NOTE: 16 entries on one record, input in row-major order.

NTAB (B-3) number of entries in the Cross Section Table
NTAW (B-3) number of entries in the Wall Fabrication Table
NTAP (B-3) User Parameters flag
NUNITS (B-2) number of shell units

if (NTAB cross sections have been defined) then
if (NTAW > 0) then go to K-1
elseif (NTAP > 0) then go to L-1
elseif (NUNITS > 0) then go to M-1
else follow instructions at end of R-3

else return to J-1

Cij
5-128 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
K-1 Shell Wall Properties

The records K-1–K-6 define various shell wall configurations. They are included only if

 (B-3).

Data in the Wall Fabrication Table are defined either by input on regular data records or by a

user-written subroutine WALL. A user-written subroutine must be used if

• The shell wall construction is not included among the standard types defined below.

• Properties or dimensions vary with the surface coordinates.

• Material properties vary continuously (not stepwise at interface between layers)
through the shell wall thickness.

Shell wall properties are defined in fabrication coordinates (see Section 4.1).* These

coordinates are chosen so that definition of material properties is as easy as possible. They need

not coincide with shell or element coordinates.

The shell wall constructions that can be defined by use of data records are:

1) Shells consisting of a number of orthotropic layers.

2) Shells consisting of fiberwound layers.

3) Shells reinforced by a corrugated skin.

4) Properties defined by use of the elements of the shell wall stiffness matrix.

5) Any of the above with smeared stiffeners. These stiffeners need not be along
coordinate lines, but the angle between the coordinate directions and the stiffener
attachment line may not vary along the stiffener.

A shell with a homogenous isotropic or orthotropic wall is defined by use of option (1).

Fiberwound layered shells may be defined by use of option (2). The shell wall stiffness

parameters are then computed from the basic properties of the constituent materials. However,

no method by which such parameters are computed has been generally accepted. If the stiffness

parameters for the individual layers are known (from test, for example), better results may be

obtained by use of option (1). The computation of the stiffness matrix from constituent material

* Note the similarity to beam cross-section coordinates, in which the coordinate defines the beam
axis, with the coordinates lying in the cross-section. For shells, the coordinates lie in
the shell surface, with defining the shell normal.

NTAW 0>

x y,()

x
y z,() x y,()

z

STAGS 5.0 User Manual April, 2009 5-129

Model Input Data Tables
data should be used only if the individual layer properties required for option (1) cannot be

obtained.

Material properties in each layer are defined in material coordinates (see Section 4.1),

which are established by rotating the fabrication coordinates through an angle , a right-

handed rotation about the axis. and are independently defined for each layer.

For a shell wall consisting of only a corrugated skin, use option (3).

If stiffeners are defined as “smeared,” their contribution to the shell wall stiffness is “smeared

out” uniformly over the shell surface. As a consequence they cannot be used if temperatures vary

within the structure.

For an “isogrid” or a skin with skew stiffeners, or for any wall whose stiffness properties have

been computed by other means, use option (4).

Properties of smeared stiffeners can be defined by reference to the Cross Section Table. If

stiffener spacing, the cross-section properties, or the angle with respect to the coordinate lines

Figure 5.6 Layered wall. Notice the relationships of: reference surface, middle
surface, top surface, bottom surface, shell normal (), element nor-
mal (), fabrication normal (), and eccentricity (e).
Also, see Figure 6.2 on page 6-28.

middle surface

h 2⁄

z Z′ e–=

e eccentricity=

h 2⁄

 reference surface

Z′ shell unit

or

z′ element unit

 top surface

 bottom surface

Z′
z′ z

φ1 φ2,()

x y,() ζ

z φ1 φ2,() ζ
5-130 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
varies with the shell coordinates, the data must be defined in a user-written subroutine WALL.

Stiffener data in the Cross Section Table can be referenced in WALL.

Some of the data defined on this record refer to layered shells . For walls with

corrugations, NLAY, NLIP are irrelevant. The direction for corrugated shells coincides with the

axis of the corrugations.

The sequence of K records is repeated NTAW times (B-3).

See 16.1 “Shell Results” on page 16-1 for more information.

ITAW KWALL NLAY NLIP NSMRS SHEAR1 SHEAR2

ITAW user-assigned wall configuration number; (B-3)

KWALL wall construction type

1 – general layered

2 – fiberwound — INACTIVE

3 – corrugated

4 – general; elements of “stiffness matrix” defined

NLAY number of layers through the thickness ;
relevant for layered walls only

NLIP number of integration points through the thickness of each individual layer to be
used for plasticity and thermal effects. Setting implies that all
properties, including temperature, are considered uniform within each layer. For
plasticity, NLIP must be odd and . See Table 5.4.

Table 5.4 Suggested values for NLIP.

 NLIP material behavior thermal loading

1 linear elasticity uniform temperature

3 linear gradient

5 plasticity quadratic gradient

7 severe plasticity

9

KWALL 1 or 2=()

φ1

ITAW NTAW≤

NLAY 100≤()
KWALL 1 or 2=()

NLIP 0 or 1=

0 NLIP 9≤ ≤
STAGS 5.0 User Manual April, 2009 5-131

Model Input Data Tables
NSMRS number of sets of smeared stiffeners ; material behavior is restricted
to linear elasticity in walls containing smeared stiffeners

SHEAR1 shear correction factor (see note, below)

SHEAR2 shear correction factor (see note, below)

Note: The default value for each of these shear correction factors is 5/6—which implies
a parabolic distribution through the thickness (exact for homogeneous, isotropic
prismatic fabrications). Setting either factor to unity implies a uniform
distribution, which is unconservative.

if (KWALL = 1) then go to K-2
elseif (KWALL = 2) then go to K-3a
elseif (KWALL = 3) then go to K-4a
elseif (KWALL = 4) then go to K-5a

NSMRS 3≤()
5-132 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
K-2 Layered Wall

The K-2 record defines a layered shell wall. It is included only if (K-1) and is
repeated NLAY times. Records to be defined later will control whether stresses are printed in any
given shell unit or part of the element unit. The layers are stacked in the order read and in the
direction of increasing . The origin of the system is located at the middle surface of the
shell (see Figure 5.6 on page 5-130). Eccentricity with respect to the reference surface is defined
on the M-5 record. The material properties for each layer are given through reference to the
Material Table (I-1).

MATL TL ZETL LSOL

MATL layer material number; select from the Material Table

TL layer thickness
ZETL material (e.g., fiber) orientation angle, in degrees; a right-handed rotation

about . ZETL is the angle between and .

LSOL layer stress output control:

0 – do not print stresses this layer
1 – print stresses this layer; applicable only at locations where overall

stress output is required
2 – print stresses and strains at all NLIP (K-1) integration points through

the thickness; applicable only in plastic analysis

NLAY (K-1) number of layers
NSMRS (K-1) number of sets of smeared stiffeners

if (NLAY layers have been defined) then
if (NSMRS > 0) then go to K-6
else follow instructions at end of K-6

else continue defining K-2

Figure 5.7 Coordinate systems for walls.

KWALL 1=

z x y,()

z ζ φ1 x

φ1
x

φ2

y

ζ

ζ = ZETAL layered wall

ζ = ZETW fiber-reinforced wall (INACTIVE)
STAGS 5.0 User Manual April, 2009 5-133

Model Input Data Tables
K-3a Fiber Reinforced Wall—Record 1

INACTIVE

Records K-3a/b define a fiber reinforced wall by use of the properties of the constituent

materials. Material properties for the matrix and fibers are obtained from the Material Table (I-1).

Usually, better results are obtained if the layer properties can be defined directly on K-2 records.

The K-3a/b records are included only if (K-1).

MATF MATM

MATF material number (I-1) for fibers

MATM material number (I-1) for matrix

go to K-3b

KWALL 2=
5-134 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
K-3b Fiber Reinforced Wall—Record 2

INACTIVE

The layers are numbered in the direction of increasing value of . The direction for the layer

coincides with the winding angle.

One K-3b record is read for each layer, i.e., the record is repeated NLAY times (K-1).

TT XX ZETW O

TT layer thickness

XX matrix content (by volume)

ZETW winding angle in degrees

O contiguity factor

NLAY (K-1) number of layers
NSMRS (K-1) number of sets of smeared stiffeners

if (NLAY layers have been defined) then
if (NSMRS > 0) then go to K-6
else follow instructions at end of K-6

else continue defining K-3b

z φ1
STAGS 5.0 User Manual April, 2009 5-135

Model Input Data Tables
K-4a Corrugation Stiffened Wall—Record 1

The records K-4a/b define a corrugation stiffened wall, (K-1).

MATC MATS CT CC CH CD CB

MATC material number (I-1) for corrugated sheet

MATS material number (I-1) for skin

CT thickness of corrugated sheet

CC

CH See Figure 5.8

CD

CB centerline-to-centerline spacing of corrugations

go to K-4b

Figure 5.8 Corrugation-stiffened shell wall.

KWALL 3=

REFERENCE SURFACE

CH

MIDSURFACEZ’

Z

CB

CC

INNER SURFACETS

MIDSURFACE OF
SMOOTH SKIN

CT

CD

1/2(CH+TS)

2
0

2

φ

5-136 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
K-4b Corrugation Stiffened Wall—Record 2

TS PHI ANC

TS thickness of smooth skin

PHI reduction factor for torsional stiffness

ANC corrugation location

0 – inside corrugation
1 – outside corrugation

NSMRS (K-1) number of sets of smeared stiffeners

if (NSMRS > 0) then go to K-6
else follow instructions at end of K-6
STAGS 5.0 User Manual April, 2009 5-137

Model Input Data Tables
K-5a General Wall—Record 1

This record is included only if (K-1). The thickness needs to be defined to permit

mass matrix computation and for thermal analysis (ITEMP, C-1). Mass per unit area is ,

where RHO is the weight density given on the I-2 record. The I-2 record is included so that density

and thermal expansion coefficients can be defined; the other entries are irrelevant.

TA MAT ITVS

TA shell wall thickness

MAT material number

ITVS transverse shear flag

0 – ignore transverse shear
1 – include transverse shear coefficients (K-5c)

ITVS must be set to 1 if this wall is to be assigned to an element which is
transverse-shear deformable (currently, only the E330 triangular and the E480
quadrilateral shell elements). Otherwise, the element stiffness matrix will be
singular. For elements which do not permit transverse-shear deformation, ITVS is
irrelevant.

go to K-5b

KWALL 4=

TA RHO⋅
5-138 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
K-5b General Wall—Record 2

This record is for input of the general material stiffness matrix. This matrix relates stress

resultants to reference-surface strains and curvatures by the relation

where represent fabrication coordinates.

NOTE: Engineering strains are used: and

The full matrix is input, even though it must be symmetric.

(CCC(i,j), j = 1, 6), i = 1, 6

CCC(i,j) element in the shell wall stiffness matrix

Note: 36 entries on one record, input in row-major order.

ITVS (K-5a) transverse shear flag
NSMRS (K-1) number of sets of smeared stiffeners

if (ITVS > 0) then go to K-5c
elseif (NSMRS > 0) then go to K-6
else follow instructions at end of K-6

Nxx

Nyy

Nxy

Mxx

Myy

Mxy⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫ C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

εxx

εyy

γxy

κxx

κyy

κxy⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

x y z, ,() x y z, ,()

γxy εxy εyx+= κxy 2wxy–=

Cij
STAGS 5.0 User Manual April, 2009 5-139

Model Input Data Tables
K-5c General Wall—Record 3

Record K-5c is used to input the two-by-two matrix of transverse shear coefficients used only for

transverse shear-deformable elements such as the E480 quadrilateral shell (see Section 14.5).

This record is read only if (K-5a).

This matrix relates transverse shear stress resultants to transverse shear strains by the relation

below, where the bar over indicates average through-thickness values.

Note: Engineering strains are used: and

The full matrix is input, even though it must be symmetric.

(CTS(i,j), j = 1, 2), i = 1, 2

CTS(i,j) transverse shear element in the shell wall stiffness matrix

NOTE: 4 entries on one record, input in row-major order.

NSMRS (K-1) number of sets of smeared stiffeners

if (NSMRS > 0) then go to K-6
else follow instructions at end of K-6

ITVS 0>

γ

Qx

Qy
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

C11 C12

C21 C22

γzx

γyz⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

γzx εxz εzx+= γyz εyz εzy+=

Cij
5-140 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
K-6 Smeared Stiffener

This record defines the properties of smeared stiffeners by referring to the Cross Section Table.

The record is not included if (K-1).

The record is repeated NSMRS times (K-1).

ICROSM SPASM ZETSM XSISM ECZSM

ICROSM cross-section number, as defined by ITAB (J-1) in the Cross Section Table;
 indicates that the stiffener is defined in user-written CROSS

SPASM stiffener spacing; see the following discussion regarding units

If , then its units are taken to be length.

If , then its units are interpreted according to the following. When
(smeared stringers) or (smeared rings), SPASM is input in the same units as the Y
surface coordinate (stringer) or the X surface coordinate (ring). For smeared skew stiffeners
() SPASM is interpreted according to

where , , and . It can be seen in the above equation

that when , SPASM is expressed in the same units as Y or X,

respectively.

ZETSM angle between the axis and the axis (see Figure 5.9 on page 5-142)

XSISM angle between the axis and the axis (see Figure 6.5 on page 6-52)

ECZSM eccentricity of the smeared stiffener with respect to the shell reference surface,
i.e., the value of the shell coordinate at the origin of the cross-section
coordinate system (see Figure 6.5 on page 6-52)

NSMRS 0=

ICROSM 0=

SPASM 0>

SPASM 0< ZETSM 0°=

ZETSM 90°=

0° ZETSM 90°< <

ΔS α1Δθ 1
ZETSMsin()2 α1 α2⁄()2 ZETSMcos()2+

---=

S1d α1 Xd= S2d α2 Yd= Δθ SPASM=

ZETSM 0° or 90°=

ζ x xw

ξ z Z′

Z′ y z,()
STAGS 5.0 User Manual April, 2009 5-141

Model Input Data Tables
NSMRS (K-1) number of sets of smeared stiffeners
NTAW (B-3) number of entries in the Wall Fabrication Table
NTAP (B-3) User Parameters flag
NUNITS (B-2) number of shell units

if (NSMRS K-6 records have been defined) then
if (NTAW wall fabrications have been defined) then

if (NTAP > 0) then go to L-1
elseif (NUNITS > 0) then go to M-1
else follow instructions at end of R-3

else return to K-1
else continue defining K-6

Figure 5.9 Orientation of smeared stiffener.

x
xw

yw

ζ
ζ ZETSM= smeared stiffener
5-142 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
L-1 User Parameters Summary

The L-1/L-2a/L-2b series is used to define constants for access in user-written subroutines. This

L record series is included only if (B-3).

NPI NPF

NPI number of integer parameters to be read on L-2a;

NPF number of floating-point parameters to be read on L-2b;

if (NPI > 0) then go to L-2a
elseif (NPF > 0) then go to L-2b
else follow instructions at end of L-2b

NTAP 0>

NPI 200≤

NPF 200≤
STAGS 5.0 User Manual April, 2009 5-143

Model Input Data Tables
L-2a Integer Parameters

This record is used to read NPI integers (L-1). These integer parameters may then be accessed in

any user-written subroutine via the FORTRAN type and labeled common statements:

INTEGER UserInt
COMMON /UPI/ UserInt(200)

USERINT(i), i = 1, NPI

USERINT(i) integer constant

NPF (L-1) number of floating-point parameters

if (NPF > 0) then go to L-2b
else follow instructions at end of L-2b
5-144 April, 2009 STAGS 5.0 User Manual

Data Tables Model Input
L-2b Floating-Point Parameters

This record is used to read NPF floating-point constants (L-1). These floating-point parameters

may then be accessed within any user-written subroutine via the FORTRAN type and labeled

common statements:

REAL UserFlo
COMMON /UPF/ UserFlo(200)

USERFLO(i), i = 1, NPF

USERFLO(i) floating-point constant

NUNITS (B-2) number of shell units

if (NUNITS > 0) then go to M-1
else follow instructions at end of R-3
STAGS 5.0 User Manual April, 2009 5-145

Model Input References for Chapter 5
5.7 References for Chapter 5

1 Newman, J.C., Jr. and M.A. James, “A Review of CTOA/CTOD Fracture Criteria–
Why it Works?,” AIAA Paper No. 2001-1324, April 2001

2 Knight, Noman F., Jr., “Enhancement of STAGS Progressive Failure Capability,”
MRJ Technology Solutions Final Report for MRJ Task 1410, October 1999,
pp. 18–27

3 Tsai, S. W. and E. M. Wu, “A General Theory of Strength for Anisotropic
Materials,” Journal of Composite Materials, Vol. 5, January 1971, pp. 58–80

4 Reddy, Y. S. and J. N. Reddy, “Three–Dimensional Finite Element Progressive
Failure Analysis of Composite Laminates Under Axial Compression,” Journal
of Composite Technology and Research, Vol. 15, No. 2, Summer 1993, pp. 73–87

5 Hashin, Z., “Failure Criteria for Unidirectional Fiber Composites,” Journal of
Applied Mechanics, Vol. 47, June 1980, pp. 329–334

6 Chang, F. K. and K. Y. Chang, “A Progressive Damage Model for Laminated
Composites Containing Stress Concentrations,” Journal of Composite
Materials, Vol. 21, September 1987, pp. 834–855

7 Shahid, I. and F. K. Chang, “An Accumulative Damage Model for Tensile and
Shear Failures of Laminated Composite Plates,” Journal of Composite
Materials, Vol. 29, No. 7, 1995, pp. 926–981

8 Anonymous, “ABAQUS/Standard User's Manual, Volume III, Version 5.6,”
Hibbitt, Karlsson and Sorenson, Inc., Pawtucket, RI, 1996

9 Stein, Manuel and John M. Hedgepeth, “Analysis of Partly Wrinkled Membranes,”
NASA TN D–813, July 1961

10 Miller, Richard K. and John M. Hedgepeth, ‘An Algorithm for Finite Element Analysis
of Partly Wrinkled Membranes,” AIAA Journal, Vol. 20, No. 12, December 1982, pp.
1761–1763

11 Wong, Yew Wei, “Analysis of Wrinkle Patterns in Prestressed Membrane
Structures,” Master of Philosophy Dissertation, Department of Engineering,
University of Cambridge, U.K., August 2000
5-146 April, 2009 STAGS 5.0 User Manual

References for Chapter 5 Model Input
12 Adler, A. L., “Finite Element Approaches for Static and Dynamic Analysis of
Partially Wrinkled Membrane Structures,” Ph.D. Dissertation, Department of
Aerospace Engineering, University of Colorado, Boulder, CO, December 2000

13 Hahn, H.T., “Nonlinear Behavior of Laminated Composites,” Journal of Composite
Materials, Vol. 7, No. 2, April 1973, pp. 257–271

14 Hahn, H.T. and S.W. Tsai, “Nonlinear Elastic Behavior of Unidirectional Composite
Laminae,” Journal of Composite Materials, Vol. 7, No. 1, January 1973, pp. 102–118
STAGS 5.0 User Manual April, 2009 5-147

6

6

6 6
Model Input—Shell Units

Shell units are numbered sequentially, in the order in which they are defined, from 1 to ,

where NUNITS is the number of shell units (B-2).

The group of records in the M–R series describes the shell units. They are defined in serial

fashion, completely describing one shell unit before proceeding to the next. When ,

the M–R series is defined for the first shell unit, the series is repeated for the second shell unit,

and so forth, until all of the NUNITS shell units have been defined.

The NUNITE (B-2) element units are then defined in a similar manner using the S–V series (see

Chapter 7 “Model Input—Element Units (1)”).

The M–R records contain information as summarized below:

• M records: Geometry

• N records: Discretization

• O records: Discrete Stiffeners

• P records: Boundary Conditions

• Q records: Specified Loadings and/or Displacements

• R records: Output Control

A STAGS model may contain any number of shell units, combined with any
number of element units. Restrictions in previous versions of STAGS on the
allowable number of units have been removed.

NUNITS

NUNITS 2≥

☞

STAGS 5.0 User Manual April, 2009 6-1

Model Input—Shell Units Geometry
6.1 Geometry

Standard Shell Surfaces

Definition of standard shell surfaces requires particular awareness of four coordinate systems

(see Section 4.1 “Coordinate Systems” on page 4-1):

• branch coordinates

• surface coordinates

• shell coordinates

• global coordinates

The standard shell surfaces, ISHELL = 2–12 (M-1), are shown in the following figures. Each figure

contains a sketch of a particular shell type, along with labeled coordinate axes for both branch

coordinates and surface coordinates. Equations to the right of each figure define user input

(PROPS, M-2) in terms of these two coordinate systems. Furthermore, expressions relating branch

coordinates to surface coordinates are given beneath each sketch. While the user generally need

not be concerned with these surface-to-branch relationships, they are definitive for resolving any

ambiguity.

Shell coordinates form an orthogonal set, without exception, and at each shell-unit node, the

computational degrees-of-freedom (dof) are determined by this system. That is to say,

is coincident with at each node in a shell unit. also form an orthogonal set,

 being coincident, with the single exception of the Elliptic Cone (). On this

type of surface, the meridians and parallels do not cross at right angles, except for the three

degenerate surfaces (elliptic cylinder, circular cone, circular cylinder). However, the

system is still orthogonal in this case. The circumferential and shell-normal directions are

chosen as the directions, and establishes the orthogonal system.

After defining a shell unit (branch) via ISHELL/PROPS, it must be positioned in global space via

IGLOBE (M-1). Globally positioning a shell branch is logically equivalent to defining a branch-to-

global transformation, that is specifying where the origin of the branch coordinate system is

located, and how it is oriented (rotated) to position the shell branch properly. STAGS provides

tremendous flexibility and automation for globally positioning shell branches, so the user need

not be concerned with mathematical details. Still, it is insightful to bear in mind that the effect

x y z, ,()

X Y,()

X′ Y′ Z′, ,()

xg yg zg, ,()

x′′ y′′ z′′, ,()

X′ Y′ Z′, ,() X Y,()

X′ Y′,() ISHELL 9=

X′ Y′ Z′, ,()

Y()

Y′ Z′,() Y′ Z′× X′=
6-2 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
of IGLOBE selection is to define a branch-to-global transformation. For example, in the simplest

case, IGLOBE = 0, the branch system is coincident with the global system, thus defining the

identity transformation.

 RECTANGULAR PLATE ISHELL = 2

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

y Y,

x X,

1 2

4 3

X1

X4

Y1

Y2

x X= y Y= z 0=
STAGS 5.0 User Manual April, 2009 6-3

Model Input—Shell Units Geometry
 QUADRILATERAL PLATE ISHELL = 3

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

PROP(5) =

PROP(6) =

PROP(7) =

PROP(8) =

NOTE: ; i.e., the surface coordinate directions are parallel to the branch
coordinate directions.

A quadrilateral plate with derived from the lines can be generated
with a user-defined shell surface (). For an example, see “LAME
Reference Surface Geometry” on page 12-19.

y Y,

x X,

ξ 0=

η 1=
η 0=

ξ 1=

4
3

2

1

X1

Y1

X2

Y2

X3

Y3

X4

Y4

f1 1 ξ–() 1 η–()= f2 1 ξ–()η= f3 ξη= f4 ξ 1 η–()=

x f X Y,() fi Xi⋅

i 1=

4

∑= = y g X Y,() fi Yi⋅

i 1=

4

∑= = z 0=

X Y,() x y,()=

X Y,() ξ η,()
ISHELL 1=
6-4 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
 ANNULAR PLATE ISHELL = 4

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

 CYLINDER ISHELL = 5

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

PROP(5) =

Ra

Rb

z

y

x

Y1

4

3

2

X

θa

θb

X1 Ra=

X4 Rb=

Y1 θa=

Y2 θb=

y2 z2+ r2 X2= =

x 0= y g X Y,() X Ysin= = z h X Y,() X Ycos= =

x

z

y

2

3

4

Y

X

θb

R

L

θa

1

X1 x1=

X4 x4=

Y1 θa=

Y2 θb=

R

L X4 X1–= y2 z2+ R2=

x X= y g X Y,() R Ysin= = z h X Y,() R Ycos==
STAGS 5.0 User Manual April, 2009 6-5

Model Input—Shell Units Geometry
 CONE ISHELL = 6

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

PROP(5) =

PROP(6) =

 SPHERE ISHELL = 7

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

PROP(5) =

x

z

y

2

3
4

X

θb

L

ϕ

r

Ra

Rb

θa

1 Y

x1

x4

Y1 θa=

Y2 θb=

Ra

Rb

Ra Rb OK>

L x4 x1–=

ϕtan Rb Ra–() L⁄=

r Ra x x1–() ϕtan+=

y2 z2+ r2= y g x Y,() r Ysin= = z h x Y,() r Ycos==

ψb
ψa

θbθa

z
y

x

Y
X

4
3

2
1

R

X1 ψa=

X4 ψb=

Y1 θa=

Y2 θb=

R

x2 y2 z2+ + R2=

x f X Y,() R Xcos–= =

y g X Y,() R Xsin Ysin= =

z h X Y,() R Xsin Ycos==
6-6 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
 TORUS ISHELL = 8

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

PROP(5) =

PROP(6) =

X

Y

4 3

21

y
z

x Ra

ψa

ψb

θbθa
Rb

R Ra Rb Xsin+=

x f X Y,() Rb– Xcos= =

y g X Y,() R Ysin⋅= =

z h X Y,() R Ycos⋅= =

X1 ψa=

X4 ψb=

Y1 θa=

Y2 θb=

Ra

Rb
STAGS 5.0 User Manual April, 2009 6-7

Model Input—Shell Units Geometry
 ELLIPTIC CONE/CYLINDER ISHELL = 9

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

PROP(5) =

PROP(6) =

PROP(7) =

 (ISHELL = 6)

 (ISHELL = 5)

 :

 :

NOTE: are non-orthogonal for the elliptic cone only; see page 6-2.

x

z

y

2

3
4

X

θb

L

ϕ

r

θa

1 Y

Rya

Rzb

Rza

x1

x4

Y1 θa=

Y2 θb=

Rza

Rya

Rzb

Rza Rzb> OK

L x4 x1–=

ϕtan Rzb Rza–() L⁄=

Rza , Rya , Rzb ⇒ elliptic cone

Rza Rzb Rz ;= = Rya Ry= ⇒ elliptic cylinder

Rza Rya Ra ;= = Rzb Rb= circular cone⇒

Rza Rya Rzb R= = = circular cylinder⇒

Rza Rzb< Xap x x1 Rza ϕtan⁄()+–=

Rza Rzb≥ Xap x4 x Rzb ϕtan⁄()+–=

ry Rya Rza⁄()Xap ϕtan= rz Xap ϕtan=

y2

ry
2

----- z2

rz
2

-----+ 1=

y g x Y,() ry Ysin= = z h x Y,() rz Ycos= =

X Y,()
6-8 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
 PARABOLOID ISHELL = 10

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

PROP(5) =

PROP(6) =
z

Ra

Y

L

y

1 2

θb

θa

3
4

Rb

ROUGH DRAFT

x1

x4

Y1 θa=

Y2 θb=

Ra

Rb

y2 z2+ r2 4Ra x Rb+()= = R 2 Ra x Rb+()=

y g x Y,() R Ysin⋅= = z h x Y,() R Ycos⋅= =
STAGS 5.0 User Manual April, 2009 6-9

Model Input—Shell Units Geometry
 ELLIPSOID ISHELL = 11

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

PROP(5) =

PROP(6) =

Y 1 2

θa

X

z

y

x

R3
4

ψ
ψ

θb

ROUGH DRAFT

X1 ψa=

X4 ψb=

Y1 θa=

Y2 θb=

Rx

Ryz

y2 z2+
Ryz

2
---------------- x2

Rx
2

------+ 1=

Xe
Rx

Ryz
------- Xtan⎝ ⎠

⎛ ⎞atan= x f X Y,() Rx– Xecos= =

y g X Y,() Ryz Xesin Ysin= = z h X Y,() Ryz Xesin Ycos= =
6-10 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
 HYPERBOLOID ISHELL = 12

PROP(1) =

PROP(2) =

PROP(3) =

PROP(4) =

PROP(5) =

PROP(6) =

PROP(7) =

z

Ra

Y
L

y

1 2

θb

θa

34

x,X

Rc

Rb

ROUGH DRAFT

x1

x4

Y1 θa=

Y2 θb=

Ra

Rb

Rc

y2 z2+
Ra

2

x Rc+()2

Rb
2

----------------------– 1= R
Ra

Rb
------ Rb

2 x x1 Rc+–()2+=

y g x Y,() R Ysin⋅= = z h x Y,() R Ycos⋅= =
STAGS 5.0 User Manual April, 2009 6-11

Model Input—Shell Units Geometry
M-1 Shell Type

Six basic parameters are required by STAGS to define the geometry of a shell unit. The first of

these (ISHELL) is used to specify the type of shell surface that is to be generated; the second

(IGLOBE) can be used to identify the method by which the shell unit is positioned within the

 global coordinate system; the third and fourth (NROWS & NCOLS) are reserved for

future use for specifying how the shell surface is to be tessellated (into an I-J grid) for

constructing the finite elements required for the model; the fifth (NLAYS) is used to specify the

number of elements to be generated through the thickness of a solid shell unit; and the sixth

(NFABS) is used to specify the number of fabrications that are required for the elements to be

generated.

The twelve choices that are available for the ISHELL parameter in the current version of STAGS

are described below. The NROWS and NCOLS parameters on M-1 are currently ignored by the

program, which uses information from the F-1 record to form the I-J nodal grid(s) required for

the shell unit: the user should set these two parameters equal to zero (or omit them entirely if

NLAYS and NFABS are also omitted or zero (see the discussion below). With these things in mind,

the remainder of this preamble concentrates on the IGLOBE, NLAYS and NFABS parameters.

STAGS interprets the specification that to mean that the branch coordinate

system for the shell unit coincides with the global coordinate system, and that no

positioning transformation is required. (Please refer to “Standard Shell Surfaces” on page 6-2 &

Section 4.1 “Coordinate Systems” on page 4-1.) If the program automatically

selects 3 points on the boundary line that is common with previously defined shell units and uses

these data for location of the unit. (To find out how units are joined together, see records G-1

and G-2.) If only one side of the unit is connected to a previously defined unit and that side is a

straight line or has only two points, additional information is needed, and will not

work. The option was originally intended for this case and is retained for

compatibility, but its use is not recommended since newer, more robust, options have made it

obsolete. Full generality is provided by the addition of options , 4 and 5. With

, the M-4a record is used to define the global coordinates for the corner points 1, 2,

and 3 on the shell unit. (See Figure 6.1 on page 6-19 for corner-numbering conventions.) The

options give the user the opportunity to specify both a translation and an

Euler rotation for either the origin of the branch coordinate system or corner point 1. These

options will be needed for closed shell units such as complete cylinders and annular plates,

where the three corner points all lie along a line; in that case, the option cannot be

used.

xg yg zg, ,()

IGLOBE 0= x y z, ,()

xg yg zg, ,()

IGLOBE 1=

IGLOBE 1=

IGLOBE 2=

IGLOBE 3=

IGLOBE 3=

IGLOBE 4 and 5=

IGLOBE 3=
6-12 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
The NLAYS parameter was not required in previous versions of STAGS because shell units there

could only be created with one-dimensional beam and/or two-dimensional thin-shell elements.

The current version of STAGS uses the NLAYS parameter to determine whether or not solid-type

elements are used for the current shell unit and (if so) how many solid elements are to be

generated in the thickness direction at any given location. Specification that (or

omission of the NLAYS specification) instructs STAGS to generate a single layer of one-

dimensional and/or thin-shell elements through the thickness of the shell unit. Under these

circumstances, the NFABS parameter should be set equal to 0 or 1 so that STAGS will read a single

M-5 record identifying the fabrication to be used.

Specification that instructs STAGS to generate NLAYS layers of solid elements through

the thickness of the shell at each location. Under these circumstances, the NFABS parameter must

be set equal to 0, to 1, to NLAYS, or to ()—depending on the type of element to be used

for the shell unit (see the N-1 record, on 6-34).

When type E830, E840 or E849 (sandwich) elements are used, the NLAYS parameter must be set

equal to the number of core elements to be used through the thickness of the shell, and the NFABS

parameter must be set equal to or . With single-core-section E830, E840 or

E849 elements, three fabrications are required: the first of these is used for the lower face sheet

element, the second is used for the core element, and the third is used for the upper face sheet

element of the E830, E840 or E849 assembly at each location on the shell unit. With multiple-

core-section E830, E840 or E849 sandwiches, the NLAYS parameter specifies the number of core

components to be used for each E830, E840 or E849 element, and NFABS must be set equal to

. In this case, the first of these NFABS fabrications (identified via the NFABS M-5

records following M-1 et al.) is used for the lower face sheet, the second is used for the lowest

core element, the third is used for the next core element, ... and so on, and the next-to-last

fabrication is used for the upper face sheet of the E830, E840 or E849 assembly at each location

on the shell. STAGS uses the last (NFABSth) fabrication to construct a “fictitious” E330, E410 or

E480 element at each of the interfaces between successive layers of the NLAYS core-section

components. It is recommended that each layer of elements have a fabrication record defined.

When E881, E882, E883 or E885 elements are used, NFABS may be 0, 1 or NLAYS: if

or 1, STAGS will read a single M-5 record that identifies the fabrication to be used for all of those

elements; if , STAGS will read an M-5 record for each layer of elements—

starting with the bottom layer (defined by the ISHELL parameter and the information on the

record(s) following the current M-1 record) and continuing through and including the topmost

layer of the construction.

NLAYS 0=

NLAYS 0>

NLAYS 2+

NLAYS 2+ NLAYS 3+

NLAYS 3+

NFABS 0=

NFABS NLAYS=
STAGS 5.0 User Manual April, 2009 6-13

Model Input—Shell Units Geometry
In any event, the sequence of records M-1 through R-3 is repeated NUNITS times (B-2).

ISHELL IGLOBE NROWS NCOLS NLAYS NFABS

ISHELL indicates basic shell geometry; see “Standard Shell Surfaces” on page 6-2:

1 – defined by user-written subroutine LAME

2 – rectangular plate

3 – quadrilateral plate

4 – annular plate

5 – cylinder

6 – cone

7 – sphere

8 – torus

9 – elliptic cone/cylinder

10 – paraboloid

11 – ellipsoid

12 – hyperboloid

IGLOBE global positioning option

0 – the branch coordinate system for the shell unit coincides
with the global coordinate system

1 – the shell unit is positioned automatically by use of points on a common
boundary line; do not use if the connected side is straight or has only two
grid points

2 – OBSOLETE; retained for compatibility, but use is not recommended due
to the addition of the more general, more robust options below.

3 – the shell unit is positioned by specifying the global coordinates of three
corner points

4 – the shell unit is positioned by positioning the origin of the
branch coordinate system at a specified location, followed by
three rotations about axes centered at the origin and
parallel to the global coordinate directions

5 – the shell unit is positioned by positioning corner point 1 at a specified
location, followed by three rotations about axes centered at corner point
1 and parallel to the global coordinate directions

NROWS reserved for future use; set equal to zero

x y z, ,()
xg yg zg, ,()

x y z, ,()

x y z, ,()
xg yg zg, ,()

xg yg zg, ,()
6-14 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
NCOLS reserved for future use; set equal to zero

NLAYS element-layering parameter:

 – generate one layer of standard (non-solid) elements

– generate NLAYS layers of solid elements in the
thickness direction (see N-1, on 6-34)

NFABS fabrication-specification parameter:

 – one M-5 record is required

– NFABS M-5 records required

go to M-2

0≤

0>

1≤

1>
STAGS 5.0 User Manual April, 2009 6-15

Model Input—Shell Units Geometry
M-2 Shell Surface Constants

This record specifies properties of the reference surface. The type of surface is indicated by

ISHELL (M-1). “Standard Shell Surfaces” on page 6-2 shows what these properties mean for the

standard surface types defined by ISHELL = 2–12. M-2 is also read when a user-written LAME is

used (). In that case, the properties have the following meaning:

PROP(1) = X value for boundary line 1

PROP(2) = X value for boundary line 3

PROP(3) = Y value for boundary line 4

PROP(4) = Y value for boundary line 2

PROP(5) through PROP(8) may be used for other parameters in user-written LAME.

Boundary lines are numbered as shown in Figure 6.1 on page 6-19.

When ISHELL = 1 and IUGRID = 1 (N-1), the range of is automatically set to

PROP remains intact, but it is not used by STAGS when IUGRID = 1 is set in conjunction with

ISHELL = 1. In that case, the user may assign any values to the PROP array. See “LAME
Reference Surface Geometry” on page 12-19.

PROP(i), i=1,8

PROP(i) surface properties depending on ISHELL (M-1); all angles are in degrees
for ISHELL = 2–12.

Refer to “Standard Shell Surfaces” on page 6-2. For clarity of presentation, PROPs
are shown as having positive values in the sketches there. Negative values are also
permissible, except for radius values, such as in the Annular Plate.
However, the following relations must be satisfied:

ISHELL 1=

X Y,()

0 X 1≤ ≤ 0 Y 1≤ ≤

☞

Ra , Rb

PROP 2() PROP 1()>

PROP 4() PROP 3()>
6-16 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
Some of these shell surfaces may include poles. STAGS will recognize the existence of a pole

and will generate triangular elements at the pole under the conditions that are summarized in

Table 6.1.

IGLOBE (M-1) global position option

if (IGLOBE = 2) then go to M-3
elseif (IGLOBE = 3) then go to M-4a
elseif (IGLOBE = 4 or 5) then go to M-4d
else go to M-5

Table 6.1 Triangular shell elements at poles.

 ISHELL type conditions

 4 annular plate PROP(1) = 0

 6 cone PROP(5) or PROP(6) = 0

 7 sphere PROP(1) or PROP(2) = 0
 PROP(1) or PROP(2) = 180
 PROP(2) = 360

 9 elliptic cone PROP(5) or PROP(6) = 0

 10 paraboloid PROP(6) = 0

 11 ellipsoid PROP(1) or PROP(2) = 0
 PROP(1) or PROP(2) = 180
 PROP(2) = 360
STAGS 5.0 User Manual April, 2009 6-17

Model Input—Shell Units Geometry
M-3 Shell Unit Orientation—Straight-Line Boundary

OBSOLETE

This option is retained for compatibility, but its use is not recommended due to the
addition of the more general, more robust options IGLOBE = 3 – 5.

This record is used only if (M-1). It defines the global coordinates of

one reference point on the surface of the shell unit. Any point can be chosen as long as it is not

located on a line of juncture with a previously defined unit.

NREP NCEP XGEP YGEP ZGEP

NREP row number of reference point

NCEP column number of reference point

XGEP, YGEP, ZGEP global coordinates of reference point

go to M-5

IGLOBE 2= xg yg zg, ,()

xg yg zg, ,()
6-18 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
M-4a Shell Unit Orientation—Corner Point 1

The records M-4a, M-4b and M-4c are used only if IGLOBE = 3 (M-1). They define the global

coordinates of the three corner points 1, 2, 3 on the shell unit. The numbering system is shown

in Figure 6.1.

XGC1 YGC1 ZGC1

XGC1, YGC1, ZGC1 global coordinates of corner point 1

go to M-4b

Figure 6.1 Shell-unit boundary- and corner-numbering schemes.

xg yg zg, ,()

4

4
1

1

2

2 3

i

i

3

X

Y

side i

corner i
STAGS 5.0 User Manual April, 2009 6-19

Model Input—Shell Units Geometry
M-4b Shell Unit Orientation—Corner Point 2

XGC2 YGC2 ZGC2

XGC2, YGC2, ZGC2 global coordinates of corner point 2

go to M-4c

xg yg zg, ,()
6-20 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
M-4c Shell Unit Orientation—Corner Point 3

XGC3 YGC3 ZGC3

XGC3, YGC3, ZGC3 global coordinates of corner point 3

go to M-5

xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 6-21

Model Input—Shell Units Geometry
M-4d Shell Unit Orientation—Translation

Record M-4d is input if (M-1). These options permit the user to move a shell

unit into position manually, even for the case where the corner points lie in a line, as is the case

for closed shell units such as complete cylinders or cones. The shell unit is positioned by

specifying the global coordinates of a reference point and then applying rotations about axes that

are centered at the reference point and parallel to the global axes. Record M-4d provides the

global coordinates for the reference point chosen. Record M-4e specifies the Euler angles for

rotation.

If , the reference point is the origin of the branch coordinate system, shown

in “Standard Shell Surfaces” on page 6-2 for each choice of ISHELL (M-1). This option has the

effect of translating the shell unit in the global coordinate directions, with distances given by

, since is initially coincident with , and the shell unit

is fixed with respect to the system.

If , the reference point is the node belonging to row 1, column 1 (corner point 1,

Figure 6.1 on page 6-19). This option has the effect of translating the shell unit to position corner

point 1 at the location .

XG YG ZG

XG, YG, ZG a position vector in the global coordinate system, defining the location

of the reference point

go to M-4e

IGLOBE 4 or 5=

IGLOBE 4= x y z, ,()

xg yg zg, ,() XG YG ZG, ,()= x y z, ,() xg yg zg, ,()

x y z, ,()

IGLOBE 5=

xg yg zg, ,() XG YG ZG, ,()=

xg yg zg, ,()
6-22 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
M-4e Shell Unit Orientation—Rotation

This record consists of the Euler angles used to rotate the shell unit about the reference point

(M-4d). If , the reference point is the origin of the branch coordinate

system, and if , the reference point is corner point 1. Note that the reference point

was positioned in global space by the M-4d record.

The angles input here represent right-handed rotations about axes that are centered at the

reference point and parallel to the global axes , in the following order:

• rotate first about the axis, by an amount

• rotate next about the axis, by an amount

• rotate last about the axis, by an amount

CAUTION: Note that the rotations are order-dependent and are applied in the
reverse order of input.

Each rotation is counterclockwise with the viewer looking down along the chosen axis (i.e., in

the negative coordinate direction) onto the plane of the remaining two axes. For the STAGS right-

handed global coordinate system, the convention chosen is called the space-fixed system of right-

hand rotations, given symbolically by the relation

where each symbol represents a orthogonal matrix.

XGROT YGROT ZGROT

XGROT the angle (degrees)

YGROT the angle (degrees)

ZGROT the angle (degrees)

go to M-5

IGLOBE 4= x y z, ,()
IGLOBE 5=

xg yg zg, ,()

zg φ°

yg θ°

xg χ°

R χ θ φ, ,() R χ()R θ()R φ()=

3 3×

χ°

θ°

φ°
STAGS 5.0 User Manual April, 2009 6-23

Model Input—Shell Units Geometry
M-5 Shell Wall

Typically, a shell unit defines a two-dimensional reference surface that is subsequently

discretized into one- and/or two-dimensional finite elements. The properties of this surface are

provided by the Wall Fabrication Table (see the K records, described above), by the GCP

Fabrications Table (described in the I records, above), or by a user-written WALL subroutine.

The M-5 record contains the necessary data linking a given fabrication to the reference surface.

Data input here will also tell STAGS whether the strain-displacement relations are linear or

nonlinear, whether there is to be nonlinear material behavior, and whether there are initial

geometric imperfections defined either as a trigonometric expansion, in a user-written

subroutine, or by scaled buckling modes (see records B-2 and B-5). A single M-5 record is

always required for such shell units.

A shell unit that is constructed with type E830, E840 or E849 sandwich elements requires a

separate fabrication identifier for each distinct component in the thickness direction of the shell

unit. The simplest E830, E840 or E849 sandwich construction—which uses one E330, E410 or

E480 thin-shell element for its lower face sheet, a single sandwich-core element for its core, and

a second E330, E410 or E480 thin-shell element for its upper face sheet—requires three

fabrication identifiers. The first of these is used for the lower face sheet, the second is used for

the core, and the third is used for the upper face sheet. A more complex E830, E840 or E849
sandwich construction—with core components at each station—requires

fabrication identifiers. The first of these is used for the lower face sheet, the second is used for

the lowest core element, the third is used for the next core element, ... and so on, and the

next-to-last fabrication is used for the upper face sheet. STAGS uses the last (NFABSth) of

these fabrications to construct a “fictitious” E330, E410 or E480 thin-shell element at each

of the interfaces between successive layers of the core-section components. STAGS uses the

reference surface of the shell unit to define the location of the interface between the lower

face sheet and the first (lowest) sandwich-core component of a shell unit that uses E830,

E840 or E849 sandwich elements. STAGS then constructs additional layers of nodes by

adding the thickness of each successive sandwich-core component—the uppermost such

layer defining the interface between the uppermost core element and the upper face sheet of

the assembly.

A shell unit that is constructed with type E881, E882, E883 or E885 three-dimensional solid

elements requires one fabrication identifier specifying the single fabrication to be used for all of

those elements, or it requires a separate fabrication identifier for each layer of elements across

the thickness of the shell: this is controlled by the NLAYS and NFABS parameters on the M-1

NLAYS 1> NLAYS 3+
6-24 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
record, described above. With these types of “standard” solid elements, STAGS computes the

total thickness of the shell wall by summing the thickness of each layer of the construction.

STAGS uses half of this total thickness to determine the offset in the normal direction from the

shell’s reference surface (which is specified via ISHELL on M-1 and PROPS on M-2) to the “lower”

surface of the solid shell, and places the first layer of shell-unit nodes there. Successive

additional layers of shell-unit nodes are placed on “parallel” nodal surfaces that are offset from

this first surface by the thickness of each successive layer of elements—or by the appropriate

whole-number fraction of that thickness, as appropriate. For these types of solid elements, then,

the reference surface of the shell is always midway between its lower and upper surfaces.

The principal material axes for individual layers in a fabrication are defined on the K-2 record

(ZETL) with the traditional STAGS definition of shell wall fabrication properties, and on the I-21d

record (ANGSHEL) with the GCP definition. The user may also rotate the fabrication in the plane

tangent to the reference surface by an angle ZETL (or ANGSHL) so that the angle a principal

material axis makes with the shell coordinate lines is the sum of ZETL (or ANGSHL) and the angle

defined for the individual layer in question. The default system for stress output is along the

natural shell coordinates. Output can also be specified along an arbitrary direction defined by the

user.

It is possible to suppress geometrically nonlinear terms for any particular unit using the ILIN

parameter. For linear analysis or small vibrations (stress free), INDIC = 0 or 2 (B-1), ILIN is

meaningless. For nonlinear analysis (including bifurcation or vibrations with nonlinear stress

state and transient analysis) INDIC = 3, 4, 5 or 6, ILIN can be used to suppress nonlinear effects

in some shell units and thus to expedite execution. For bifurcation buckling from a linear stress

state (INDIC = 1) ILIN can be used to prevent buckling in certain shell units. ILIN must be 0 for at

least one element or shell unit when performing a bifurcation analysis.

If nonlinear material behavior (plasticity or creep) is desired in a given shell unit, IPLAS must be

greater than zero. Like ILIN, IPLAS allows the user to turn plasticity on or off without changing

the contents of the material and wall construction libraries. When IPLAS=0, all material properties

are constructed from the linear elastic data given on the I-2 records. Two options are given for

plasticity. If IPLAS=1, the material law is satisfied at each element integration point, which for

the vast majority of cases gives the most accuracy. If IPLAS=2, the material law is enforced only

at the element centroid, with the same plastic strain distributed evenly to the integration points.

The result is a lower-order, approximate solution requiring only a fraction of the plasticity

computations needed when IPLAS=1. This option can be used when stresses are slowly varying

over the structure. There is one important special case that should be mentioned. Some elements,

like the E410, have a high-order bending interpolation and a lower-order membrane
STAGS 5.0 User Manual April, 2009 6-25

Model Input—Shell Units Geometry
interpolation. When there is eccentricity in a wall section (the variable ECZ on this record) that

introduces coupling between the membrane and bending element stiffnesses, the resulting

mismatch causes stress overshoot, with the stresses computed at the integration points potentially

lying far above and below the average over the element. These oscillations are an artifact of the

computation and do not represent real behavior. For elastic response, the displacements will not

be adversely affected. For a plastic analysis, however, the path-dependent nature of the material

response can cause large errors when significant plastic flow occurs. Since centroidal plasticity

avoids these problems, we recommend setting IPLAS=2 when and when using type E320,

E330, E410, E420 and/or E430 elements (N-1).

Deterministic imperfections are defined in the form of trigonometric functions on data records if

IWIMP>0, or in any form in a user-written DIMP subroutine if IWIMP = -1. Random imperfections

are defined in terms of trigonometric functions if IRAMP=1. As they are generated independently

for each shell unit, these shell-unit-specfic imperfections may not exhibit continuity across shell

unit boundaries. These imperfections are added to the buckling-mode imperfections that are

generated when NIMPFS is nonzero (on the B-2 record).

As noted previously, there must be at least one M-5 record at this point in the user’s input file.

If (M-1), then NFABS M-5 records are required.

ECZ 0≠

NFABS 1>
6-26 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units

✤

✤

✤

✤

IWALL IWIMP ZETA ECZ ILIN IPLAS IRAMP

IWALL fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL

>0 – shell wall configuration number in the Wall Fabrication Table (K-1)

<0 – shell or solid fabrication identifier in the GCP Fabrications Table (on
I-21) for shell elements or on I-22 for solid elements: this option is
required for E830, E840 and E849 sandwich-core elements

When , data below indicated by ✤ are defined in user-written
subroutine WALL; they are automatically initialized to zero before WALL is
called—superseding any nonzero values input here

IWIMP imperfection option

-1 – initial imperfections are defined in user-written DIMP

0 – no initial imperfections

>0 – number of imperfection components defined on M-6 records;

ZETA angle between the wall-reference coordinate and the fabrication coordinate

; is a right-handed rotation about . See Figure 6.2 on page 6-28.

ECZ eccentricity in direction. ECZ is the coordinate of the middle surface;
see Figure 6.2 on page 6-28. Also, see “Effects of Eccentricity” on page 16-6.

ILIN geometric nonlinearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

Note that with ILIN = 1, bifurcation buckling is suppressed in the shell unit

IPLAS material nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied at each
element integration point

2 – plasticity included, with the material law satisfied at the element
centroid (centroidal plasticity)

IRAMP random imperfections flag:

0 – no random imperfection used

1 – random imperfections used

IWALL 0=

IWIMP 50≤

ζ xw

x ζ z

Z′ Z′
STAGS 5.0 User Manual April, 2009 6-27

Model Input—Shell Units Geometry
NFABS (M-1) fabrication-specification parameter

if (fewer than NFABS fabrications have been specified) then
continue fabrication specification via additional M-5 record(s)

else
if (IWIMP > 0) then go to M-6
elseif (IRAMP = 1) then go to M-7a
else go to N-1

endif

Figure 6.2 Shell wall orientation—eccentricity (top) and reference angle (bottom).
Variable wall thickness and eccentricity, shown here, require user-written
subroutine WALL (see Chapter 12 “User-Written Subroutines”). Also, see
Figure 5.6 on page 5-130.

e Z′=

top surface

bottom surface

reference surface
X′

Z′

Y′

middle surface

x
xw , X′

y

yw , Y′

ζ

e ECZ=

ζ ZETA=
6-28 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
M-6 Shell Imperfections

The M-6 records allow the user to define initial geometric imperfections in the shell reference

surface. The imperfection consists of a deviation from the ideal geometry in the form of a

displacement field . The imperfect shell unit is considered stress-free under zero load.

Each record represents one component of the imperfection and the total initial displacement is

obtained through addition of all the components. The components are trigonometric functions in

the two-dimensional surface coordinate space, with maximum points located at

, and with half wavelengths equal to XL in the direction and YL in the

direction. Notice that the dimensions of XL,YL are the same as of , which depend upon the

specific shell type (see “Standard Shell Surfaces” on page 6-2). For example, in a cylindrical

shell, X is length, and Y is degrees.

The amplitude of each imperfection component, , can be expressed as

The record is repeated IWIMP times (M-5).

X1 Y1 XL YL WAMP ID

X1, Y1 value of the surface coordinates at one of the maximum points

XL half-wavelength of the imperfection in the direction;
if , is set

YL half-wavelength of the imperfection in the direction;
if , is set

WAMP amplitude of imperfection component

ID component identifier:
1 – u imperfection
2 – v imperfection

0,3 – w imperfection

IRAMP (M-5) random imperfections flag

if (IRAMP = 1) then go to M-7a
else go to N-1

u0 v0 w0, ,()

X Y,()
X Y,() X1 Y1,()= X′ Y′

X Y,()

W0

W0 WAMP X X1–() π
XL

⎩ ⎭
⎨ ⎬
⎧ ⎫

cos Y Y1–() π
YL

⎩ ⎭
⎨ ⎬
⎧ ⎫

cos⋅ ⋅=

X Y,()

X′
XL 0= XL ∞=

Y′
YL 0= YL ∞=
STAGS 5.0 User Manual April, 2009 6-29

Model Input—Shell Units Geometry
M-7a Random Imperfection Shapes

This record is used only if IRAMP = 1 (M-5). It defines the shape of a number of components

defining randomly-determined initial geometric imperfections. The user defines with the

parameters N1 and N2 the number of half-wavelengths of a “basic imperfection mode” over the

shell unit dimensions in the shell coordinate directions. The program includes

imperfections in all modes that are of the form

where N2 and M2 represent the maximum number of halfwaves over the shell unit dimensions,

and where NI and MI represent increments. The actual size of the imperfections can be printed.

The components are harmonics in which both the magnitude and location of the maximum are

independently chosen at random. Only transverse random imperfections can be defined.

N1 N2 NI M1 M2 MI KTEST

N1 initial wave number in the direction

N2 final wave number in the direction

NI wave number increment in the direction

M1 initial wave number in the direction

M2 final wave number in the direction

MI wave number increment in the direction

KTEST print option:

0 – no print of random imperfections

1 – print random imperfections generated

go to M-7b

X′ Y′,()

N N1 i NI⋅+= i 1 2 …, ,= N N2≤
M M1 j MI⋅+= j 1 2 …, ,= M M2≤

w0()

X′

X′

X′

Y′

Y′

Y′
6-30 April, 2009 STAGS 5.0 User Manual

Geometry Model Input—Shell Units
M-7b Random Imperfection Amplitudes

This record is included only if IRAMP > 0 (M-5). It gives the information on which the amplitudes

of random imperfection components are based. The amplitude, , of each component is set

equal to

where GRAMP and EXP are input variables and R(N,M) is a random number with uniform

probability in the interval . The values of R are chosen independently for the different

components. The exponent EXP is introduced because the shorter waves in the imperfection

pattern are likely to have smaller amplitudes, as in a Fourier expansion of a continuous periodic

function. Presently little experience is available on a value for EXP. Based on continuity

arguments alone, EXP should be at least unity for so-called “smooth” imperfections found in most

applications. Although in most cases restart executions will not require passing through the

model setup phase again, in some situations (such as load and boundary condition changes) the

random imperfections will be redefined. To preserve the same random pattern for these restarts,

set RANK to some nonzero number.

GRAMP RANK EXP

GRAMP general random amplitude factor; random numbers will be chosen in the range

RANK random number initialization constant (seed)

EXP exponent used to scale the amplitude of imperfection components corresponding
to higher harmonics

go to N-1

W0

W0 R N M,() GRAMP
N1 N2⋅

N N⋅

EXP
⋅=

1– 1,[]

GRAMP– GRAMP,[]
STAGS 5.0 User Manual April, 2009 6-31

Model Input—Shell Units Discretization
6.2 Discretization

The process of discretizing a shell unit into a number of finite elements is performed in two

stages: (1) Grid Generation and (2) Mesh Generation.

Grid Generation

The user defines an “underlying grid” composed of “rows” and “columns,” the intersection of

which are called “grid points.” The grid points (or “nodes”) are generated automatically such that

rows and columns correspond to lines of constant X and Y, respectively. The computational

freedoms (dof) at a grid point are in computational coordinates , which are identical

to shell coordinates in a shell unit.

The spacing of rows and columns for either of the above options may be

• uniform
• segmented, i.e., piecewise uniform
• variable

where spacing refers to or for the standard mesh and to or for the specialized

mesh. The two mesh types are described next.

Mesh Generation

The user introduces an ‘‘overlying mesh’’ of finite elements, utilizing the underlying grid in one

of the following ways:

Standard Mesh

Shell or plate elements are automatically introduced utilizing all underlying grid points. The user

is required to select a basic “triangular” or “quadrilateral” element type from the element library

(Chapter 14 “The Element Library”) to be used throughout the mesh. When quad elements are

selected and the shell unit has a pole, STAGS substitutes triangles at the pole as and if required.

Additionally, a “cutout” may be specified as a range of rows and columns within which no

elements will be introduced.

x″ y″ z″, ,()
X′ Y′ Z′, ,()

ΔX ΔY ΔS ΔT
6-32 April, 2009 STAGS 5.0 User Manual

Discretization Model Input—Shell Units
Specialized Mesh — INACTIVE

Shell or plate elements are introduced in user-controlled “patches.” Each patch requires the

definition of an element type, grid point connections of the first element, and some repetition

parameters. By incorporation of the transition elements (X-ref) it is therefore possible to utilize

a uniformly-spaced underlying grid to generate a mesh of variable refinement. Furthermore, it is

acceptable to use any of the grid generating options as a basis for the overlying mesh, i.e., for

element generation. Grid points which are not utilized by elements remain inactive during the

analysis and do not contribute any computational overhead.

Parts of the grid can be left open, i.e., no elements are defined. In that case, these parts will

represent cutouts.

Regardless of discretization procedure, the user should be aware of the following restrictions:

• The underlying grids of connected units must match, i.e., have an equal number of
grid points, along the juncture line.

• Adjacent elements should be of “consistent” types to achieve best results, i.e.,
convergence and accuracy of the solution. Consistency, here, means that the elements
have identical nodal and midside freedoms.
STAGS 5.0 User Manual April, 2009 6-33

Model Input—Shell Units Discretization
N-1 Discretization Control

This record establishes the “grid” and “mesh” generating options to be used in the discretization
process. Reference will be made to the preceding paragraphs, which define these options, and to
Chapter 14 “The Element Library”.

When a standard mesh is employed, the user’s choice for the KELT parameter on the N-1 record
instructs STAGS (in most cases) to generate the element mesh for the shell unit utilizing as many
shell, sandwich or solid elements of type KELT as may be required. In some cases, the (optional)
KELTX parameter may also be used to specify an alternate triangular element type or common-
side direction information, as described below. In any event, the KELT parameter must be
specified and must be one of the following values: 320, 330, 410, 411, 420, 430, 480, 830, 840,
849, 881, 882, 883 or 885.

The choice of KELT=320 (or KELT=330) instructs STAGS to use two adjacent E320 triangular
elements (or two adjacent E330 triangular elements) in each quadrilateral cell and to use a single
E320 element (or a single E330 element) in each triangular cell of the shell unit being created.
The KELTX parameter may be used here to specify the orientations of the common sides of these
elements, as described below. If KELTX is omitted or set equal to zero, STAGS alternates the
common-side direction as shown in sketch (a) in the following figure:

Figure 6.3 Influence of KELTX on E320 or E330 common-side directions.

(a) KELTX = 0 (b) KELTX = 1 (c) KELTX = 2
6-34 April, 2009 STAGS 5.0 User Manual

Discretization Model Input—Shell Units
The choice of KELT=410 (or KELT=411) instructs STAGS to use a single E410 (or E411)
quadrilateral element in each quadrilateral cell of the shell unit and to use a single E320 or E330
triangular element in each pole-imposed triangular cell. The KELTX parameter may be utilized
here to specify the user’s choice of E320 or E330 for the triangular element(s) to be used here.
When transition elements are generated for an E410-type shell unit (as described below), the
KELT parameter specifies the basic element type (E410) for the shell unit; and connectivity
considerations on the boundary (or boundaries) dictate the type(s) of transition elements that are
to be used.

The choice of KELT=420 (or 430) instructs STAGS to use two adjacent E320 triangular elements
(or two adjacent E330 triangular elements) in each quadrilateral cell and to use a single E320
(or E330) element in each triangular cell of the shell unit being created. Setting KELT=420 (or
430) gives exactly the same results as the KELT=320 (or KELT=330) choices described above.

The choice of KELT=480 instructs STAGS to use a single E480 quadrilateral element in each 9-
node quadrilateral cell of the shell unit (the nodal mesh for which must therefore have an odd
number of rows and an odd number of columns). The current version of STAGS does not
accommodate poles in or transitions involving E480-type shell units, so the KELTX and the
MESH1, MESH2, MESH3 and MESH4 parameters should not be used.

The choice of KELT=830 instructs STAGS to use a single- or multi-layered E830 sandwich
construction (of alternating 3-node triangular thin-shell and 6-node triangular sandwich-core
elements) for the shell unit in question. STAGS does not accommodate mesh transitions with
E830-type shell units.

The choice of KELT=840 instructs STAGS to use a single- or multi-layered E840 sandwich
construction (of alternating 4-node quadrilateral thin-shell and 8-node sandwich-core elements)
for the shell unit in question. The current version of STAGS does not accommodate poles in
E840-type shell units, so the KELTX parameter should not be used. STAGS does accommodate
mesh transitions with E840-type shell units, however; so STAGS does use the MESH1, MESH2,
MESH3 and MESH4 parameters to generate type E845 and/or type E847 sandwich transition
elements along the edge(s) of the shell unit, as and if required.

The choice of KELT=849 instructs STAGS to use a single- or multi-layered E849 sandwich
construction (of alternating 9-node thin-shell and 18-node sandwich-core elements) for the shell
unit in question. STAGS does not accommodate mesh transitions with E849-type shell units.

The choice of KELT=881 instructs STAGS to use one or more E881 solid elements through the
thickness of each multi-layered quadrilateral cell of the shell unit. The current version of STAGS

does not accommodate poles or transitions with E881-type shell units, so the KELTX MESH1,
MESH2, MESH3 and MESH4 parameters should not be used.
STAGS 5.0 User Manual April, 2009 6-35

Model Input—Shell Units Discretization
The choice of KELT=882 (or KELT=883 or KELT=885) instructs STAGS to use one or more E882
(or E883 or E885) solid elements through the thickness of each multi-layered 9-node
quadrilateral cell of the shell unit. The current version of STAGS does not accommodate poles or
transitions with these types of shell units, so the KELTX MESH1, MESH2, MESH3 and MESH4

parameters should not be used.

With the E410 element the user has the option to use a modified form of Gaussian
integration in which the element centroid is added as the fifth integration point. The added point
may, in some situations, suppress spurious strain-free deformation modes (mechanisms) that can
crop up in cases involving intersecting free boundaries. In most cases, careful choice of boundary
conditions will avoid such difficulties, making unnecessary the extra integration point that
increases computational expense and decreases the rate of convergence as the grid is refined. For
the E411 elements, a full Gaussian integration is provided to prevent spurious
mechanisms. If the boundary conditions are known to prevent strain-free deformation modes, the
user should choose the standard reduced integration.

In the E410 and E411 elements, the bending strain energy is based on a Taylor series with 12
degrees of freedom (corresponding to the two in-plane rotations and the out-of-plane translation
at each corner). The series must include two fourth order terms, and , which can lead to
a small discontinuity between elements along a given edge. The user can essentially eliminate
this discontinuity in the lateral displacements by requesting the use of a penalty function
(), which will make the element stiffer and could be helpful if the strain energy
converges from below as the grid is refined.

When, for an E410-type shell unit, any of the variables MESH1–MESH4 is set equal to 1 STAGS

will flag every other node as dependent along the corresponding boundary. STAGS will then
automatically generate E510 or E710 transition elements along that boundary to constrain out
the dependent nodes. The E510 element is used where a single dependent node occurs in an
E410 element. The E710 element is used in a corner where refinement is requested along two
adjacent lines (for example, if MESH2 and MESH3 are both set to 1). For more information about
this, see “E510 and E710 Quadrilateral mesh-transition shell elements” on page 14-25.

Similarly, when any of the variables MESH1–MESH4 is set equal to 1 for an E840-type shell unit,
STAGS will flag every other node as dependent along the corresponding boundary and will then
automatically generate E845 or E847 transition sandwich elements along that boundary to
constrain out the dependent nodes. The E845 element is used where a single dependent node
occurs in an E840 element. The E847 element is used in a corner where refinement is requested
along two adjacent lines (for example, if MESH2 and MESH3 are both set to 1). For more
information about this, see “E845 and E847 mesh-transition sandwich elements” on page 14-46.

INTEG 1=

3 3×

2 2×

x3y xy3

IPENL 1=
6-36 April, 2009 STAGS 5.0 User Manual

Discretization Model Input—Shell Units
KELT NNX NNY IRREG IUGRID INTEG IPENL MESH1 MESH2 MESH3 MESH4 KELTX

KELT element code number (see Chapter 14 “The Element Library”)

>0 – standard mesh:

= 320 E320 3-node C1 triangular shell element

= 330 E330 3-node C0 MIN3 triangular shell element

= 410 E410 4-node C1 quadrilateral shell element

= 411 E411 4-node C1 quadrilateral shell element
= 420 pairs of E320 3-node triangular shell elements
= 430 pairs of E330 3-node triangular shell elements

= 480 E480 9-node C0 ANS quadrilateral shell element
= 830 E830 6-node wedge-shaped sandwich solid/shell element
= 840 E840 8-node hexahedral-shaped quadrilateral sandwich

solid/shell element
= 849 E849 18-node hexahedral-shaped quadrilateral sandwich

solid/shell element
= 881 E881 8-node ANS hexahedral solid element
= 882 E882 18-node ANS hexahedral solid element
= 883 E883 27-node ANS hexahedral solid element
= 885 E885 20-node displacement-based hexahedral solid element

0 – specialized mesh — INACTIVE

NNX indicates row spacing of underlying grid; refers to the X coordinate

0 – uniform spacing in X direction
-1 – variable spacing, X coordinates defined on N-4 record

>0 – NNX defines the number of segments in the X direction,
each with constant spacing;

NNY indicates column spacing of underlying grid; refers to the Y coordinate

0 – uniform spacing in Y direction
-1 – variable spacing, Y coordinates defined on N-7 record

>0 – NNY defines the number of segments in the Y direction,
each with constant spacing;

IRREG mesh irregularities

0 – standard mesh with no irregularities
>0 – standard mesh with IRREG cutouts (to be defined on N-8 records)

(not operational with sandwich or solid elements)

NNX 30≤

NNY 30≤
STAGS 5.0 User Manual April, 2009 6-37

Model Input—Shell Units Discretization
IUGRID surface coordinate range flag; relevant only when ISHELL = 1 (M-1).

By default, when ISHELL = 1, PROP (M-2) is used to set the range of .

However, when IUGRID = 1, the range of is set to

PROP remains intact, but is not used by STAGS when IUGRID = 1. In that case, the
user may assign any values to the PROP array, which is available in user-written
subroutine LAME, used when ISHELL = 1.

Set IUGRID = 0 in all other cases

INTEG integration type:

0 – standard integration:
 Gauss points, for E410, E411 elements and E840 face sheets
 Gauss points (reduced integration), for E885 elements

1 – modified 5-point integration, for E410 and E411 elements

2 – full Gauss integration for E411 element;

 Gauss points, for E885 elements (not recommended)

IPENL penalty option:

0 – no penalty function on fourth-order terms in elements E410 and E411

1 – penalty function included in elements E410 and E411

MESH1 governs generation of dependent nodes along boundary line 1

0 – no dependent nodes generated (the mesh is continuous between
shell units along boundary line 1).

1 – generate dependent nodes along boundary line 1 (the mesh
doubles between shell units along boundary line 1), this
facilitates the use of E510 and/or E710 quadrilateral
shell transition elements on boundary 1.

3 – generate dependent nodes along boundary line 1 (the mesh
doubles between shell units along boundary line 1), this
facilitates the use of E330 triangular shell transition
elements on boundary 1.

X Y,()

X Y,()

PROP 1() X PROP 2()≤ ≤ PROP 3() Y PROP 4()≤ ≤

X Y,()

0 X 1≤ ≤ 0 Y 1≤ ≤

2 2×

2 2 2××

3 3×

3 3 3××
6-38 April, 2009 STAGS 5.0 User Manual

Discretization Model Input—Shell Units
MESH2 governs generation of dependent nodes along boundary line 2

0 – no dependent nodes generated (the mesh is continuous between
shell units along boundary line 2).

1 – generate dependent nodes along boundary line 2 (the mesh
doubles between shell units along boundary line 2), for E510
and/or E710 quadrilateral shell transition elements.

3 – generate dependent nodes along boundary line 2 (the mesh
doubles between shell units along boundary line 2), for E330
triangular shell transition elements.

MESH3 governs generation of dependent nodes along boundary line 3

0 – no dependent nodes generated (the mesh is continuous between
shell units along boundary line 3).

1 – generate dependent nodes along boundary line 3 (the mesh
doubles between shell units along boundary line 3), for E510
and/or E710 quadrilateral shell transition elements.

3 – generate dependent nodes along boundary line 3 (the mesh
doubles between shell units along boundary line 3), for E330
triangular shell transition elements.

MESH4 governs generation of dependent nodes along boundary line 4

0 – no dependent nodes generated (the mesh is continuous between
shell units along boundary line 4).

1 – generate dependent nodes along boundary line 4 (the mesh
doubles between shell units along boundary line 4), for E510
and/or E710 quadrilateral shell transition elements.

3 – generate dependent nodes along boundary line 4 (the mesh
doubles between shell units along boundary line 4), for E330
triangular shell transition elements.

KELTX auxiliary element code or adjacent-element direction index:

if KELT = 420 or 430, then

KELTX = 320 — use type E320 element(s) at pole

KELTX = 330 — use type E330 element(s) at pole

if KELT = 320 or 330, then

KELTX = 0 — alternate common-side directions throughout the mesh

KELTX = 1 — constant common-side direction, not intersecting (0,0)

KELTX = 2 — constant common-side direction, intersecting (0,0)
STAGS 5.0 User Manual April, 2009 6-39

Model Input—Shell Units Discretization
if (NNX > 0) then go to N-2
elseif (NNX = -1) then go to N-4
elseif (NNY > 0) then go to N-5
elseif (NNY = -1) then go to N-7
elseif (IRREG = 1) then go to N-8
else follow instructions at end of N-8
6-40 April, 2009 STAGS 5.0 User Manual

Discretization Model Input—Shell Units
N-2 X–Segment Length

This record is included only if (N-1).

SEGLX(i), i=1,NNX

SEGLX(i) length of segment i

Note: Segment lengths are in the user’s units except when ISHELL = 3 (quadrilateral plate); for

that case, the coordinates are scaled to the range [0,1], so that SEGLX(i) are fractions of the unit

interval.

go to N-3

NNX 0>
STAGS 5.0 User Manual April, 2009 6-41

Model Input—Shell Units Discretization
N-3 X–Segment Spacing

This record is included only if (N-1).

NSEGX(i), i=1,NNX

NSEGX(i) number of intervals within segment i

follow instructions at end of N-4

NNX 0>
6-42 April, 2009 STAGS 5.0 User Manual

Discretization Model Input—Shell Units
N-4 X–Coordinate

This record is used to read in a sequence of X coordinates. It is included only if (N-1).

X(i), i = 1, NROWS

X(i) X value for row i; must be monotonically increasing.

NROWS, number of rows, was read on F-1 record.

Note: Coordinate values are in the user’s units except when ISHEL= 3 (quadrilateral plate); for that

case, the coordinates are scaled to the range [0,1], so that the X(i) are points on the unit interval.

if (NNY > 0) then go to N-5
elseif (NNY = -1) then go to N-7
elseif (IRREG = 1) then go to N-8
else follow instructions at end of N-8

NNX 1–=
STAGS 5.0 User Manual April, 2009 6-43

Model Input—Shell Units Discretization
N-5 Y–Segment Length

This record is included only if (N-1).

SEGLY(j), j = 1, NNY

SEGLY(j) length of segment j

Note: Segment lengths are in the user’s units except when ISHELL = 3 (quadrilateral plate); for

that case, the coordinates are scaled to the range [0,1], so that SEGLY(i) are fractions of the unit

interval.

go to N-6

NNY 0>
6-44 April, 2009 STAGS 5.0 User Manual

Discretization Model Input—Shell Units
N-6 Y–Segment Spacing

This record is included only if (N-1).

NSEGY(j), j = 1, NNY

NSEGY(j) number of intervals within segment j

follow instructions at end of N-7

NNY 0>
STAGS 5.0 User Manual April, 2009 6-45

Model Input—Shell Units Discretization
N-7 Y–Coordinate

This record is used to read in a sequence of Y coordinates. It is included only if (N-1).

Y(j), j = 1, NCOLS

Y(j) Y value for column j; must be monotonically increasing.
NCOLS, number of columns, was read on an F-1 record.

Note: Coordinate values are in the user’s units except when ISHELL = 3 (quadrilateral plate); for

that case, the coordinates are scaled to the range [0,1], so that the Y(i) are points on the unit

interval.

if (IRREG = 1) then go to N-8
else follow instructions at end of N-8

NNY 1–=
6-46 April, 2009 STAGS 5.0 User Manual

Discretization Model Input—Shell Units
N-8 Mesh Irregularity

This record is included only if (N-1). It is used to define the bounding grid lines of

cutouts. Figure 6.4 shows a cutout in the shell surface located at boundary line 4 and rectangular

in the X, Y space (i.e., the edge follows two intersecting grid lines). Here, NRW1, NRW2, NCL1,

and NCL2 are row and column numbers corresponding to cutout boundaries. Cutouts of more

general shape can be introduced by setting the shell thickness equal to zero inside the cutout with

user-written subroutine WALL,

A total of IRREG cutouts may be defined, and the cutouts may overlap, so that the resulting

combined cutout is the union of all cutouts. This record is repeated IRREG times.

Figure 6.4 Shell unit with cutout.

IRREG 0>

4

1

2

3

NCL1 NCL2

NRW1

NRW2

X (or S)

Y (or T)

CUTOUT

ROUGH DRAFT
STAGS 5.0 User Manual April, 2009 6-47

Model Input—Shell Units Discretization
NRW1 NRW2 NCL1 NCL2

NRW1 row number of one edge of cutout

NRW2 row number of opposite edge of cutout;

NCL1 column number of one edge of cutout

NCL2 column number of opposite edge of cutout;

NSTFS (B-2) number of shell units with discrete stiffeners
IUNIT (F-2) unit currently being defined
NRGS (F-2) number of rings in IUNIT

NSTR (F-2) number of stringers in IUNIT

if (NRGS > 0) then go to O-1a
elseif (NSTR > 0) then go to O-2a
else go to P-1

NRW2 NRW1>

NCL2 NCL1>
6-48 April, 2009 STAGS 5.0 User Manual

Discrete Stiffeners Model Input—Shell Units
6.3 Discrete Stiffeners

Discrete stiffeners may be

• parallel to lines with constant X; such stiffeners are
sometimes referred to as rings

• parallel to lines with constant Y; such stiffeners are
sometimes referred to as stringers

Discrete stiffener records (O-1a through O-3b) define the location, eccentricity, and property

identification of each stiffener. Cross section properties are specified by reference to the data

tables defined on the J records.

Within each shell unit discrete stiffeners are assigned a number given by the order in which they

are defined.

If the cross-section number is set to -1, the “moving plane boundary condition” is invoked.

Discussed in detail under “B-2 General Model Summary” on page 5-12, this multi-point

constraint is like a symmetry boundary, except that the plane of symmetry is allowed to rotate

and translate as a rigid body. Each moving plane boundary is treated exactly like a ring or

stringer, and counted as such (B-2 and F-2). Moving plane boundaries can be superimposed on

real stiffeners, and real stiffeners can be stacked (please note the comments about plasticity and

cross-section fabrication under “J-1 Cross-Section” on page 5-118).
STAGS 5.0 User Manual April, 2009 6-49

Model Input—Shell Units Discrete Stiffeners

✤

✤

✤

✤

O-1a Discrete Ring—Record 1

A ring is a stiffener which runs along a line of constant . This record assigns a cross-section

to a ring stiffener by reference to the Data Tables (see Section 5.6 “Data Tables” on page 5-57).

Eccentricity of beam axis and orientation of beam cross-section are also specified. Location is

specified on O-1b. The O-1a/b sequence is repeated NRGS times (F-2).

ICROSS XSI ECY ECZ ILIN IPLAS

ICROSS cross-section number, as defined by ITAB (J-1) in the Cross Section Table:
 indicates that the stiffener is defined in user-written CROSS
 indicates that the stiffener line is a moving plane boundary

When , data below indicated by ✤ are defined in CROSS. They are
automatically initialized to zero before CROSS is called, thereby superseding any
nonzero values input here. When , only ECY is relevant. Refer to
Figure 6.5 on page 6-52 for an illustration of XSI, ECY, and ECZ.

XSI angle , in degrees, between the shell normal and the cross section .
 is a right-handed rotation about , the longitudinal axis of the ring, which is

parallel to .

ECY eccentricity in the direction. ECY is the coordinate of the pair which
positions the origin of the system. For (moving plane
boundary), ECY is a scale factor used for the numerical conditioning of Lagrange
constraints introduced by the multi-point constraint. In that case, ECY should be of
the same order of magnitude as entries in the stiffness matrix. A good guess is the
modulus of elasticity of the material.

ECZ eccentricity in the direction. ECZ is the coordinate of the pair which
positions the origin of the system.

ILIN geometric nonlinearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

X′

ICROSS 0=

ICROSS 1–=

ICROSS 0=

ICROSS 1–=

ξ Z′ z

ξ x

Y′

X′ X′ X′ Z′,()

y z,() ICROSS 1–=

Z′ Z′ X′ Z′,()

y z,()
6-50 April, 2009 STAGS 5.0 User Manual

Discrete Stiffeners Model Input—Shell Units

✤
 IPLAS material nonlinearity flag (see M-5):

0 – linear elastic constitutive relations
1 – plasticity included
2 – centroidal plasticity

go to O-1b
STAGS 5.0 User Manual April, 2009 6-51

Model Input—Shell Units Discrete Stiffeners
Ring

Stringer

Figure 6.5 Eccentricity and orientation of stiffener cross sections.

Compare with Figure 5.5 “Beam cross sections.” on page 5-122.
Also, see Section 16.2 “Beam Results” on page 16-8.

z

y
x

ξ

node

Y′

X′

Z′

ECZ
ECY

node

ECZ
ECY

z

X′

y

Y′

Z′

x

ξ

6-52 April, 2009 STAGS 5.0 User Manual

Discrete Stiffeners Model Input—Shell Units
O-1b Discrete Ring—Record 2

This record specifies the location on the shell surface of a discrete ring. The stiffener location

can be defined either by its row number and the column numbers at its end points or by

corresponding surface coordinate values . Use of surface coordinates is convenient if the

grid is changed in subsequent runs. If the coordinates (XR, YR1, YR2) do not coincide with a grid

line, STAGS will select the closest grid line. (XR, YR1, YR2) are ignored unless corresponding row

or column numbers (IR, JR1, JR2) are set to zero.

IR JR1 JR2 XR YR1 YR2

IR row number of ring; indicates that the location is given by the coordinate
value XR

JR1 column number at beginning of ring; indicates that this location is given
by the coordinate value YR1

JR2 column number at end of ring ; indicates that this location is
given by the coordinate value YR2

XR X coordinate of ring; ignored if

YR1 Y at beginning of ring; ignored if

YR2 Y at end of ring; ; ignored if

NSTFS (B-2) number of shell units with discrete stiffeners
IUNIT (F-2) unit currently being defined
NRGS (F-2) number of rings in IUNIT

NSTR (F-2) number of stringers in IUNIT

if (NRGS rings have been defined) then
if (NSTR > 0) then go t o O-2a
else go to P-1

else continue defining O-1a/b

X Y,()

IR 0=

JR1 0=

JR2 JR1>() JR2 0=

IR 0>

JR1 0>

YR2 YR1>() JR2 0>
STAGS 5.0 User Manual April, 2009 6-53

Model Input—Shell Units Discrete Stiffeners

✤

✤

✤

✤

O-2a Discrete Stringer—Record 1

A stringer is a stiffener which runs along a line of constant . This record assigns a cross-

section to a stringer by referencing the Data Tables (see Section 5.6 “Data Tables”). Eccentricity

of beam axis and orientation of beam cross-section are also specified. Location is specified on

O-2b. The O-2a/b sequence is repeated NSTR times (F-2).

ICROSS XSI ECY ECZ ILIN IPLAS

ICROSS cross-section number, as defined by ITAB (J-1) in the Cross Section Table:

 indicates that the stiffener is defined in user-written CROSS.
 indicates that the stiffener line is a moving plane boundary.

When , data below indicated by ✤ are defined in CROSS. They are
automatically initialized to zero before CROSS is called, thereby superseding any
nonzero values input here. When , only ECY is relevant. Refer to
Figure 6.5 on page 6-52 for an illustration of XSI, ECY, and ECZ.

XSI angle , in degrees, between the shell normal and the cross section .
 is a right-handed rotation about , the longitudinal axis of the stringer, which

is parallel to .

ECY eccentricity in the direction. ECY is the coordinate of the pair which
positions the origin of the system. For (moving plane
boundary), ECY is a scale factor used for the numerical conditioning of Lagrange
constraints introduced by the multi-point constraint. In that case, ECY should be of
the same order of magnitude as entries in the stiffness matrix. A good guess is the
modulus of elasticity of the material.

ECZ eccentricity in the direction. ECZ is the coordinate of the pair which
positions the origin of the system.

ILIN geometric nonlinearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

Y′

ICROSS 0=

ICROSS 1–=

ICROSS 0=

ICROSS 1–=

ξ Z′ z

ξ x

X′

Y′ Y′ Y′ Z′,()
y z,() ICROSS 1–=

Z′ Z′ Y′ Z′,()
y z,()
6-54 April, 2009 STAGS 5.0 User Manual

Discrete Stiffeners Model Input—Shell Units

✤
 IPLAS material nonlinearity flag (see M-5):

0 – linear elastic constitutive relations
1 – plasticity included
2 – centroidal plasticity

go to O-2b
STAGS 5.0 User Manual April, 2009 6-55

Model Input—Shell Units Discrete Stiffeners
O-2b Discrete Stringer—Record 2

This record specifies the location on the shell surface of a discrete stringer. The stiffener location

can be defined either by its column number and the row numbers at its end points or by

corresponding surface coordinate values . Use of surface coordinates is convenient if the

grid is changed in subsequent runs. If the coordinates (YS, XS1, XS2) do not coincide with a grid

line, STAGS will select the closest grid line. (YS, XS1, XS2) are ignored unless corresponding row

or column numbers (JS, IS1, IS2) are set to zero.

JS IS1 IS2 YS XS1 XS2

JS column number of stringer; indicates that the location is given by the
coordinate value YS

IS1 row number at beginning of stringer; indicates that this location is given
by the coordinate value XS1

IS2 row number at end of stringer ; indicates that this location is
given by the coordinate value XS2

YS Y coordinate of stringer; ignored if

XS1 X at beginning of stringer; ignored if

XS2 X at end of stringer; ; ignored if

NSTFS (B-2) number of shell units with discrete stiffeners
IUNIT (F-2) unit currently being defined
NSTR (F-2) number of stringers in IUNIT

if (NSTR stringers have been defined) then go to P-1
else continue defining O-2a/b

X Y,()

JS 0=

IS1 0=

IS2 IS1>() IS2 0=

JS 0>

IS1 0>

XS2 XS1>() IS2 0>
6-56 April, 2009 STAGS 5.0 User Manual

Boundary Conditions Model Input—Shell Units
6.4 Boundary Conditions

Records P-1 through P-4 are used to define constraints along boundary lines. Certain frequently-

occurring boundary conditions may be defined on these records. For other types of constraints

such as those applied at interior points, it is sometimes possible to use the load records (Q-1, Q-2,

Q-3), defined on pages 6-67, 6-69 and 6-70. For cases with more complicated constraints, a user-

written subroutine UCONST is included, or the constraints can be defined on data records as

indicated on record B-2 (see, for example, the G-2 and G-3 records).

The unknowns at a juncture line are represented by the displacement components in the direction

of the shell coordinates on the shell unit with the lowest number of those involved

in the juncture. In general, the constraints are most readily introduced on the shell unit with the

lowest number. Some care must be exercised when boundary conditions (P-1 through P-4

records) are introduced on the boundary lines that meet the juncture line to make sure that this

does not introduce undue constraints. A case in point involves an annulus with a pole (radius of

hole is zero): boundary line 1 (that has zero length) must be left unconstrained, ,

since the single node at the pole already satisfies the boundary conditions imposed along the two

intersecting edges 2 and 4.

Boundary lines are numbered 1–4 as shown in Figure 6.6 on page 6-58. This figure also shows

the positive directions for displacement components. are in the tangent plane of the shell,

w is in the direction of the shell normal, and are the corresponding rotations.

 are in the shell coordinate directions. This holds at every node (both

interior and boundary nodes) for all shell types, including the user-generated shell unit

(, M-1).

Note that the condition of antisymmetry is identical to the simple support condition. This

boundary condition as it stands causes problems for nonlinear executions involving very large

rotations; at the time of publication, this boundary condition is being generalized to handle

arbitrary response conditions. See Table 6.2 for a summary of boundary condition types.

Do not define constraints that are in conflict with displacements defined on load records. For

example, the simple support boundary condition cannot be used together with a specified

tangential displacement. A load applied on a clamped edge is ignored. Do not allow rigid body

motion in a static analysis. If the boundary conditions as defined here allow rigid body motions,

it is usually best to constrain the structure at suitably selected points by use of the load records

(Q-1, Q-2, Q-3).

X′ Y′ Z′, ,()

IBLN 1() 3=

u v,()
ru rv rw, ,()

u v w, ,() X′ Y′ Z′, ,()

ISHELL 1=
STAGS 5.0 User Manual April, 2009 6-57

Model Input—Shell Units Boundary Conditions
It is possible to define different boundary conditions for the pre-critical stress state (basic BC)

and the incremental state (incremental BC) in the case of the bifurcation buckling analysis by

setting (B-1). Incremental BC are meaningful for bifurcation buckling analyses

(, B-1) only.

When incremental BC are included , the default condition is that they are the same

as the basic BC. Default incremental BC may be selectively overridden in two ways—by setting

 (P-1), and by defining load system B with specified displacements (, Q-3).

boundary line 1 corresponds to row 1
boundary line 2 corresponds to column NCOLS (F-1)
boundary line 3 corresponds to row NROWS (F-1)
boundary line 4 corresponds to column 1

Figure 6.6 Sign conventions for displacement components.

X X′,

Z′

u

Y Y′,

ru

w

v

rw

rv

w

v
u

rw

ru

rv

u

ru

rvv

w

rw

u
v

w

ru

rv

rw

4

3

2

1

INCBC 1=

INDIC 1 or 4=

INCBC 1=()

IBOND 1= LT 1–=
6-58 April, 2009 STAGS 5.0 User Manual

Boundary Conditions Model Input—Shell Units
In this situation, the value of the displacement (P, on the Q-3 record) is ignored, and a dof

constraint (i.e., specified zero) is applied to the incremental BC. When different boundary

conditions for buckling have been chosen, specified displacements in load system A (Q-1–Q-3)

apply to the pre-critical stress state but not to the buckling solution, while specified-zero

displacements in load system B apply to the buckling solution only. In such cases, a starting load

factor for load system B (STLD(2), C-1) is not needed. This is of particular concern with finite

element models using solid and/or sandwich elements.

Lagrangian constraints (G-3/4 or UCONST) and partial compatibility (G-2) apply to both pre-

critical and buckling analyses.

In an eigenvalue analysis with a nonlinear stress state, incremental BC are not necessary because

it is much more straightforward to perform the nonlinear stress analysis in a separate run and to

modify the P-1 and P-2 records in the subsequent eigenvalue analysis. Modifications to boundary

conditions and loading are always permitted before restart.

Table 6.2 Boundary condition (BC) summary; refer to Figure 6.6.
See P-2 record for an explanation of ITRA, IROT.

BC type boundary fixed free ITRA IROT

 simple support
 1, 3 100 011

 2, 4 010 101

 symmetry
 1, 3 011 100

 2, 4 101 010

 clamped all dof fixed 000 000

 antisymmetry identical to simple support

v w ru, , u rv rw, ,

u w rv, , v ru rw, ,

u rv rw, , v w ru, ,

v ru rw, , u w rv, ,
STAGS 5.0 User Manual April, 2009 6-59

Model Input—Shell Units Boundary Conditions
P-1 Boundary Conditions—Record 1

IBLN(i), i = 1, 4 IBOND

IBLN(i) boundary-condition code for boundary line i, i=1,4; see Figure 6.6

0 – specified on P-2 records

1 – simple support

2 – clamped

3 – unrestrained

4 – symmetry

5 – antisymmetry

6 – compatibility with displacement on some boundary line (see G-1). This is
the same as unrestrained, except that the user is informed that the
boundary line is junctured in this case.

WARNING: It has been reported that under certain conditions STAGS applies erroneous BC at
poles when IBLN(i) > 0 on a side which degenerates to a pole. (Please see “M-2
Shell Surface Constants” and Table 6.1 on page 6-17 for conditions where poles
are generated.) It is recommended that IBLN(i) = 0 be set for a side which
degenerates to a pole, and that BC be defined using P-2 (see Section 6.4
“Boundary Conditions” and Table 6.2). If this is not done, results should be
checked carefully to ensure that proper BC have been applied.

IBOND boundary conditions for incremental and basic (prebuckling, prestress)
displacements are:

0 – identical

1 – different; may be used only with (B-1)

if (IBLN(i) = 0 for one or more boundaries) then go to P-2

elseif (IBOND = 1) then go to P-3

else follow instructions at end of P-4

INDIC 1 or 4=
6-60 April, 2009 STAGS 5.0 User Manual

Boundary Conditions Model Input—Shell Units
P-2 Boundary Conditions—Record 2

This record is included only if (P-1) for one or more shell-unit boundaries. A single

P-2 record is required for each boundary line for which has been specified. These

P-2 records are ordered according to the boundary-line numbering scheme, 1–4, as shown in

Figure 6.6 on page 6-58.

ITRA IROT

ITRA a 3-digit binary integer indicating freedom or constraint for each of the three
translational displacement components . The significance of each binary
digit is as follows:

0—fixed 1—free

The most significant digit corresponds to u, and the least significant to w.
For example, to specify u fixed and v, w free

ITRA = 011

IROT a 3-digit binary integer indicating freedom or constraint for each of the three
rotational displacement components . For example, to specify rv fixed,
and ru, rw free

IROT = 101

For the examples given above (u, rv fixed; v, w, ru, rw free), the P-2 record for the corresponding

boundary would be defined as

 011 101 $ P-2

Note that imbedded spaces are not permitted within either ITRA or IROT; these two 3-digit binary

integers must be separated by one or more spaces or by other legal data terminators (see 5.3

“Input Format Conventions” on page 5-4).

Also note that a separate P-2 record is defined for each additional boundary i, if any, indicated

by (P-1).

IBOND (P-1) basic/incremental BC flag

if (IBOND = 1) then go to P-3
else follow instructions at end of P-4

IBLN i() 0=

IBLN i() 0=

u v w, ,()

ru rv rw, ,()

IBLN i() 0=
STAGS 5.0 User Manual April, 2009 6-61

Model Input—Shell Units Boundary Conditions
P-3 Boundary Conditions—Record 3

This record is included only if incremental displacements and displacements in the basic stress

state are subject to different constraints (, P-1).

JBLN(i), i = 1, 4

JBLN(i) boundary-condition code for boundary line i, i=1,4; see Figure 6.6

0 – specified on P-4 records
1 – simple support
2 – clamped
3 – unrestrained
4 – symmetry
5 – antisymmetry
6 – compatibility with displacement on some boundary line (see G-1).

if (JBLN(i) = 0 for one or more boundaries) then go to P-4
else follow instructions at end of P-4

IBOND 1=
6-62 April, 2009 STAGS 5.0 User Manual

Boundary Conditions Model Input—Shell Units
P-4 Boundary Conditions—Record 4

This record is included only if (P-3) for one or more shell-unit boundaries. A P-4

record is defined for each boundary line where has been specified. P-4 records are

ordered according to the boundary-line numbering scheme, 1 – 4, as shown in Figure 6.6.

JTRA JROT

JTRA a 3-digit binary integer indicating freedom or constraint for each of the three
translational displacement components . See ITRA (P-2).

JROT a 3-digit binary integer indicating freedom or constraint for each of the three
rotational displacement components . See IROT (P-2).

go to Q-1

JBLN i() 0=

JBLN i() 0=

u v w, ,()

ru rv rw, ,()
STAGS 5.0 User Manual April, 2009 6-63

Model Input—Shell Units Loads
6.5 Loads

STAGS utilizes two independent load systems, load system A and load system B. Loading on the

structure is computed as

where

 and are load factors for load systems A and B.

 and are base loads for load systems A and B.

 and are scaled loads for load systems A and B.

p represents the applied loads.

Load factors, and , are specified on the C-1 record (in the case.bin file) for

static analysis and on the E-3/E-4 records for dynamic analysis. User-written subroutine

FORCET allows a more generalized load-factor history for transient analysis. For shell units,

base loads and are defined on the Q-1–Q-3 records. Base loads can also be specified via:

U-1–U-3 records, for element units; user-written subroutine USRLD, which is an alternative to

the Q/U records; and user-written subroutine TEMP, for thermal loading. User-written subroutine

UPRESS provides a more generalized pressure-loading feature. Inertial loads defined by the B-6

records are also included in the base load vectors and are scaled by the appropriate load factors.

In addition to forces, base loads include prescribed displacements. We distinguish between

prescribed displacements and initial conditions, both of which are defined on Q-3 when

. Prescribed displacements are nonzero displacement constraints which may be specified

in both static and dynamic analysis. Initial conditions represent nodal displacements and

velocities applied to the structure at time (E-1) in a transient analysis. Initial

displacements are equivalent to statically-applied prescribed displacements, with the associated

constraints removed upon commencement of the transient analysis (). Initial conditions

are meaningful only when (B-1), and for initial velocities, when IVELO = 1 (E-2).

It follows that prescribed displacements and initial conditions are mutually exclusive events.

Where a nodal degree-of-freedom (dof) has been constrained (either fixed or prescribed

nonzero), an initial condition applied to that dof is ignored, since it no longer is present in the

system of equations due to the specified constraint. Similarly, where a dof has been fixed by a

p PA fA⋅ PB fB⋅+=

PA PB

fA fB

PA fA⋅ PB fB⋅

PA PA= PB PB=

fA fB

LT 1–=

t TMIN=

t TMIN>

INDIC 6 or 7=
6-64 April, 2009 STAGS 5.0 User Manual

Loads Model Input—Shell Units
boundary condition (P records), a prescribed displacement is ignored. Notice the order of

precedence where conflicting conditions have been specified: fixity takes precedence over a

prescribed displacement, which takes precedence over an initial condition.

For bifurcation buckling, the critical load combination is given by , where is

the computed eignevalue. That is, the B-system represents a set of fixed loads.

Point forces, line loads, and surface tractions are generally assumed to maintain their original

direction during loading. The only exception to this is if a normal pressure (on the Q-3 record)

is defined as a “live pressure load.” In that case the pressure is applied normal to the deformed

shell surface. If the loads thus are allowed to rotate during deformation the system is not

necessarily conservative.

If IUPLDA or IUPLDB (ET-1) is set to unity, the load sets are assumed to rotate with the nodes in

question (follower loading). This option can be useful when modeling an endplate with boundary

conditions and line loads, since ordinary line loads do not account for the rotation of the plate.

Since these loads are not conservative, they should be used with care.

If a nonzero displacement is defined on a Q-3 record, this displacement will be multiplied by the

load factor in the same way as a regular load. The option can also be used for introduction of

constraints, as discussed under Section 6.4 “Boundary Conditions”. Fixing a displacement to

zero introduces a constraint.

The basic loads with fixed direction in any of the load systems can be defined either partially or

totally by a user-written subroutine USRLD. A live load that varies with the shell coordinates

must be defined in a user-written subroutine UPRESS. In contrast to other forms of loading, the

distribution of the live pressures defined in UPRESS can vary with time.

A uniform stress state is defined for bifurcation buckling or vibration analysis in a Q-5 record.

Load system records in that case are only meaningful if they apply homogeneous displacement

constraints.

As was described under Section 6.4 “Boundary Conditions”, it is possible to specify incremental

boundary conditions for a bifurcation analysis (, B-1) that can be different from

those for the pre-critical stress state. For shell units, if IBOND = 1 (P-1), specified displacements

for load system A apply to the prebuckling state, and specified displacements for load system B

become the incremental constraints. It should be noted that only a zero specified displacement

λPA fA⋅ PB fB⋅+ λ

INDIC 1 or 4=
STAGS 5.0 User Manual April, 2009 6-65

Model Input—Shell Units Loads
may be used in load B for buckling boundary conditions. It should also be noted that a buckling

analysis must be requested to make this meaningful. For element units, set (B-1) to

achieve the same effect.

The cable hinge moment and cable hinge restraint are a generalized moment and complementary

constraint condition suitable for a large rotation response to moment loading. For linear analysis

or when the rotations at a node are small, the cable hinge moment is identical to a torsional

moment directed along the axis of a cable, which is usually modeled with standard beam

elements like the E210 beam element (see Chapter 14 “The Element Library”). When rotations

become large, the torsional moment is no longer conservative and will produce poor convergence

and unanticipated response. A conservative hinge moment that is in agreement with what is

expected for a hinged cable under torsional moment loading is

where q is the unit vector along the current beam axis at the node being loaded, where e is the

user load direction (the unit vector in the direction of the applied moment), where is the

magnitude of the applied moment, and where is the point load at the node used by STAGS.

The cable hinge constraint is the corresponding boundary condition resulting from applying just

the right amount of cable moment loading to prevent axial twist. Its small-rotation counterpart is

the suppression of axial rotational freedom.

INDIC 1–=

mq
q e+

1 q e⋅+
-------------------- me=

me
mq
6-66 April, 2009 STAGS 5.0 User Manual

Loads Model Input—Shell Units
Q-1 Loads Summary

This record summarizes the load data to be defined for the shell unit. It is always included in

each of the shell units.

Temperatures are not defined on Q records. See the C-1 record in Chapter 11 and user-written

subroutine TEMP in Chapter 12.

NSYS NICS NAMS NUSS NHINGE NMOMNT NLEAST IPRESS

NSYS number of load systems. There are two load systems available—load system A
and load system B. Either or both may be included;

NICS number of sets of initial conditions for a transient analysis
(B-1). Two types of initial conditions are permissible—initial velocity and
initial displacement. Either or both may be included; . These

conditions are prescribed at time (E-1). If , initial conditions
are irrelevant, though they still may be defined, perhaps in preparation for an
anticipated transient analysis.

NAMS number of attached masses

NUSS indicates that a uniform basic stress state will be defined on Q-5 for
vibration or bifurcation buckling

NHINGE number of cable hinge restraint vectors

NMOMNT number of cable hinge moment loading vectors (must be 0, currently)

NLEAST number of least-squares loading sets

IPRESS 0 – no UPRESS

1 – UPRESS is included

User-written subroutine UPRESS defines pressure—surface loading which acts
normal to the element surface. The inclusion of UPRESS precludes the definition
of pressure loading in the INP file. When IPRESS = 1, any pressure loads defined
on Q-3/U-3 records (LT = 4 or 5) are ignored.

NSYS 2≤∴

INDIC 6 or 7=()

NICS 2≤∴
t TMIN= INDIC 5≤

NUSS 0>
STAGS 5.0 User Manual April, 2009 6-67

Model Input—Shell Units Loads
if ((NSYS > 0) or (NICS > 0)) then go to Q-2
elseif (NAMS > 0) then go to Q-4
elseif (NUSS > 0) then go to Q-5
elseif (NHINGE > 0) then go to Q-6
elseif (NMOMNT > 0) then go to Q-7
elseif (NLEAST > 0) then go to Q-8a
else go to R-1
6-68 April, 2009 STAGS 5.0 User Manual

Loads Model Input—Shell Units
Q-2 Load Set Summary

The number of loadsets, , is defined as (Q-1), where ;

therefore . Each of the load sets is defined in a Q-2/3 series. The order in which they

are defined is established as:

• load system A

• load system B

• initial displacement

• initial velocity

All four load sets are optional. Each load set which is present must be completely
defined via a Q-2/3 series before moving on to the next set in the order specified
above.

ISYS NN IFLG

ISYS for load systems:

1 – load system A

2 – load system B

for initial conditions:

0 – initial displacements

-1 – initial velocities

NN number of Q-3 records needed to describe the loads or initial conditions

IFLG 0 – no USRLD

1 – loads defined in user-written subroutine USRLD are included

if (NN > 0) then go to Q-3
else follow instructions at end of Q-3

Sl Sl NSYS NICS+= NSYS 2≤ NICS 2≤,

Sl 4≤ Sl
STAGS 5.0 User Manual April, 2009 6-69

Model Input—Shell Units Loads
Q-3 Load Definition

This record is included only if NN > 0 (Q-2); it is repeated NN times. A single Q-3 record is

typically used as described in the following three paragraphs to specify loading(s) or

displacement(s) at a given point of, along a given row or column of, or over the entire grid of

the current shell unit. A convenient exterior-looping parameter (NX) can also be used to make

multiple such definitions with the same Q-3 record, as described after that.

When the row number is entered as zero, the load (or initial condition) is assumed to act at every

grid point on the column indicated by the column number. If the column number is entered as

zero, the load is assumed to act at every grid point on the row indicated by the row number. If

both row and column numbers are zero, then the load is assumed to act at each grid point.

The unknowns at a juncture line are represented by the displacement components in the

directions of the shell coordinates associated with the shell unit having the lowest

number of those involved in the juncture. This must be observed if displacement constraints are

introduced by Q-2 records, by Q-3 records or in user-written UCONST or USRLD subroutines

at a juncture line. In general this is most readily achieved by introduction of the constraint on the

shell unit with the lowest number. Some care must be exercised when regular boundary

conditions (P-1–P-4) are introduced on the lines that meet the juncture line.

Line loads can be applied as uniform along an entire row or column, or they can be applied as

constant on a single edge. Refer to Figure 6.7 on page 6-73 for examples of how to specify edges

for line loads. To apply a non-uniform variation along a given line, define a separate load value

for each edge on that line. Best results will be obtained by specifying centroidal values for each

edge on the line.

As noted above, the optional NX parameter (and the three incrementation parameters associated

with it) may be used in combination with the other information on a Q-3 record to make multiple

loading/displacement definitions. This feature can be very useful in situations where similar

definitions are required for one or another of the three variables (LD, LI, or LJ) for which

FORTRAN-like looping might be appropriate.

X′ Y′ Z′, ,()
6-70 April, 2009 STAGS 5.0 User Manual

Loads Model Input—Shell Units
P LT LD LI LJ LAX NX INC1 INC2 INC3 ILAY

P magnitude of load, displacement, or velocity; the load type and direction are
determined by LT and LD, respectively

LT -1 – prescribed displacement (translation or rotation), or initial condition
(initial displacement or initial velocity)

1 – point force/moment
2 – line load/moment along row
3 – line load/moment along column
4 – dead pressure—normal to the undeformed element surface
5 – live pressure—normal to the deformed element surface

throughout geometrically-nonlinear deformations
6 – velocity dependent forces (see E-1) — INACTIVE

7 – surface traction — INACTIVE

LD load direction; interpretation of is dependent upon LAX, below

1 – u; force/translation in the X direction
2 – v; force/translation in the Y direction
3 – w; force/translation in the Z direction
4 – ru; moment/rotation, right-handed about the X axis
5 – rv; moment/rotation, right-handed about the Y axis
6 – rw; moment/rotation, right-handed about the Z axis

LI, LJ row and column number of the grid points at which P is applied.
(LI, LJ = 0, see above.)

LAX load axes, determining the interpretation of LD, above

0 – correspond to shell coordinates

1 – correspond to nodal-global coordinates

2 – correspond to element-edge coordinates

LAX = 0 is required for LT = -1
LAX = 2 is permitted for line loads only
LAX = 2 is permitted for the 410 and 411 elements only
LAX = 2 is permitted only for the quadrilateral plate (ISHELL = 3) or for a user-
written shell (ISHELL = 1 and user-written subroutine LAME); this option is not
necessary for other shell types, since a computational axis will serve as an edge
reference in all other shell types

X Y Z, ,()

X Y Z, ,() X′ Y′ Z′, ,()

X Y Z, ,() xg yg zg, ,()

X Y Z, ,() xe ye ze, ,()
STAGS 5.0 User Manual April, 2009 6-71

Model Input—Shell Units Loads
The element normal defines the direction of pressure

NX exterior-looping parameter; set equal to unity by STAGS if nonpositive or omitted

INC1 incrementation parameter for the LD variable, when

INC2 incrementation parameter for the LI variable, when

INC3 incrementation parameter for the LJ variable, when

ILAY layer- or surface-specification parameter; for non-solid shells, ILAY is ignored; for
solid shells, ILAY designates the nodal layer on which the specified displacement,
line or point loading is to be applied—or it designates the element layer to which
the specified pressure loading is to be applied

NAMS (Q-1) number of attached masses
NUSS (Q-1) uniform basic stress state option for eigenanalysis
NHINGE (Q-1) number of cable hinge restraint vectors
NMOMNT (Q-1) number of cable hinge moment loading vectors
NLEAST (Q-1) number of least-squares loading sets

if (NAMS > 0) then go to Q-4
elseif (NUSS > 0) then go to Q-5
elseif (NHINGE > 0) then go to Q-6
elseif (NMOMNT > 0) then go to Q-7
elseif (NLEAST > 0) then go to Q-8a
else go to R-1

z′()

NX 1>

NX 1>

NX 1>
6-72 April, 2009 STAGS 5.0 User Manual

Loads Model Input—Shell Units
Figure 6.7 Shell-unit line loads; examples of how to specify element edges.

LI LJ,() 1 1,() ; LT 2= =

L
I

L
J

,
(

)
1

1,
(

)
;

L
T

3
=

=

LI LJ,() 4 3,() ; LT 2= =

L
I

L
J

,
(

)
3

4,
(

)
;

L
T

3
=

=
X

Y

LI LJ,() 3 0,() ; LT 2= =

L
I

L
J

,
(

)
0

2,
(

)
;

L
T

3
=

=

STAGS 5.0 User Manual April, 2009 6-73

Model Input—Shell Units Loads
Q-4 Attached Mass

The Q-4 records allow the user to define attached masses at node points in the shell unit. The

record is repeated NAMS (Q-1) times.

GM IRM ICM LAYER NX INC1 INC2 INC3

GM weight of attached mass, in units of force

IRM row number of attached mass
ICM column number of attached mass
LAYER nodal layer number for attached mass

NX number of masses to be attached

INC1 incrementation parameter for the IRM variable
INC2 incrementation parameter for the ICM variable
INC3 incrementation parameter for the LAYER variable

NUSS (Q-1) uniform basic stress state option for eigenanalysis
NHINGE (Q-1) number of cable hinge restraint vectors
NMOMNT (Q-1) number of cable hinge moment loading vectors
NLEAST (Q-1) number of least-squares loading sets

if (NAMS attached-mass records have been defined) then
if (NUSS > 0) then go to Q-5
elseif (NHINGE > 0) then go to Q-6
elseif (NMOMNT > 0) then go to Q-7
elseif (NLEAST > 0) then go to Q-8a
else go to R-1

else continue defining Q-4
6-74 April, 2009 STAGS 5.0 User Manual

Loads Model Input—Shell Units
Q-5 Uniform Stress State for Eigenanalysis

This record may be used to define the stress resultants in a uniform basic stress state for

bifurcation buckling or small vibration analysis. When a Q-5 record is included, the only type of

loading allowed is specified homogeneous displacements (LT = -1, Q-3). Any other loadings

(mechanical or thermal) which may be defined are ignored, not only in the current unit, but in

all units. The stress resultants defined on this record are multiplied by the load factors

STLD(1),STLD(2) (C-1) for load systems A and B, respectively.

PNXA PNYA PNXYA PNXB PNYB PNXYB

PNXA value of the stress resultant in the direction, load system A

PNYA value of the stress resultant in the direction, load system A

PNXYA value of the shear resultant, load system A

PNXB value of the stress resultant in the direction, load system B

PNYB value of the stress resultant in the direction, load system B

PNXYB value of the shear resultant, load system B

NHINGE (Q-1) number of cable hinge restraint vectors
NMOMNT (Q-1) number of cable hinge moment loading vectors
NLEAST (Q-1) number of least-squares loading sets

if (NHINGE > 0) then go to Q-6
elseif (NMOMNT > 0) then go to Q-7
elseif (NLEAST > 0) then go to Q-8a
else go to R-1

X′

Y′

X′

Y′
STAGS 5.0 User Manual April, 2009 6-75

Model Input—Shell Units Loads
Q-6 Cable Hinge Restraint

This record is included only if (Q-1); it is repeated NHINGE times.

See discussion of cable hinge restraints under Q-1. The vector described below gives the

direction of the constraint in shell coordinates. Although the magnitude of this

vector does not theoretically influence the result, this is a multi-point constraint imposed by

Lagrange multipliers. The new equation (automatically) produced by this constraint is assembled

into the stiffness matrix along with the other freedoms. To avoid numerical problems, the

magnitude of this vector is converted to a scaling constant to help the conditioning of the

stiffness matrix. See the general discussion of Lagrange constraints under G-3 for more details.

IROW ICOL HRU HRV HRW LAYER NX INC1 INC2 INC3

IROW row number where constraint is applied

ICOL column number where constraint is applied

HRU, HRV, HRW the direction vector, in shell coordinates, along which rotation is
prevented; the magnitude of this vector should be of the same order as the element
torsional stiffness

LAYER nodal layer on which constraint is applied

NX number of constraints to be attached

INC1 incrementation parameter for the IROW variable

INC2 incrementation parameter for the ICOL variable

INC3 incrementation parameter for the LAYER variable

NHINGE (Q-1) number of cable hinge restraint vectors
NMOMNT (Q-1) number of cable hinge moment loading vectors
NLEAST (Q-1) number of least-squares loading sets

if (NHINGE cable hinge restraint vectors have been defined) then
if (NMOMNT > 0) then go to Q-7
elseif (NLEAST > 0) then go to Q-8a
else go to R-1

else continue defining Q-6

NHINGE 0>

X′ Y′ Z′, ,()

X′ Y′ Z′, ,()
6-76 April, 2009 STAGS 5.0 User Manual

Loads Model Input—Shell Units
Q-7 Cable Hinge Moment

NOTE: This feature is currently disabled, and the user must set (Q-1). STAGS

automatically introduces cable moments for all applied moment loadings.

This record is included only if (Q-1); it is repeated NMOMNT times.

See discussion of cable hinge moment loads under Q-1. The vector described below gives the

direction and magnitude of the applied moment in shell coordinates.

IROW ICOL MSYS RUM RVM RWM LAYER NX INC1 INC2 INC3

IROW row number where moment is applied

ICOL column number where moment is applied

MSYS 1 – load applies to the A system

2 – load applies to the B system

RUM, RVM, RWM moment vector components in shell coordinates

LAYER nodal layer on which moment is applied

NX number of moments to be applied

INC1 incrementation parameter for the IROW variable

INC2 incrementation parameter for the ICOL variable

INC3 incrementation parameter for the LAYER variable

NMOMNT (Q-1) number of cable hinge moment loading vectors
NLEAST (Q-1) number of least-squares loading sets

if (NMOMNT cable hinge moment loading vectors have been defined) then
if (NLEAST > 0) then go to Q-8a
else go to R-1

else continue defining Q-7

NMOMNT 0=

NMOMNT 0>

X′ Y′ Z′, ,()

X′ Y′ Z′, ,()
STAGS 5.0 User Manual April, 2009 6-77

Model Input—Shell Units Loads
Q-8a Least Squares Loading Summary

There are NLEAST (Q-1) sets of Q-8 records. Record Q-8a is used to define the number NSQR of

Q-8b special loading records to follow, to define the reference node for the application of the

least-squares summary loads or reactions, and to provide an overall scale factor SCALE for the six

Lagrange constraints introduced automatically for each least-squares load set. The reference

node must have been defined in the current or a previous unit. If any nodes not yet defined are

referenced in any Q-8 records, an error will result; to avoid this, postpone the definition of this

least-squares set until after all pertinent nodes have been defined. As with all other Lagrange

constraints that contribute to the stiffness matrix (see, for example, record G–3 and the ones that

follow it), numerical roundoff considerations require that the values of the Lagrange unknowns

not differ from other unknowns by too many orders of magnitude. This in turn means that the

stiffness contributions should be near the same order as other members, or a SCALE value set to

about equal to some average thickness times a modulus. The user should remember that this is

only an order-of-magnitude estimate for numerical conditioning.

NSQR IUNIT IROW ICOL SCALE

NSQR number of Q-8b data records required to define the edges involved in this
least-squares load set

IUNIT unit number for the reference node

IROW row number for the reference node

ICOL column number for the reference node

SCALE scale factor for numerical conditioning. We suggest something of the order of
magnitude of the material modulus times a representative shell thickness.

go to Q-8b
6-78 April, 2009 STAGS 5.0 User Manual

Loads Model Input—Shell Units
Q-8b Least Squares Load Definition

A least-squares constraint loading condition is specified by defining the following three

components:

• A reference node with section weighting (see Q-8a)

• A curve consisting of one or more arc segments and/or single nodes (Q-8b).

• Loads on the reference node (see Q-1, Q-2, Q-3 records)

Q-8b input records define a curve consisting of one or more arc segments, or alternatively,

individual nodes. There are a total of NSQRS Q-8b records. A sequence of Q-8b records, all with

(LU, LR, LC) defining actual nodes, specifies one arc segment. Additional arc segments may then

be defined by adding a Q-8b record with (LU, LR, LC) = 0 followed by more Q-8b records defining

the next arc segment. If a segment consists of a single node, the node weight P is used

unchanged. An individual Q-8b record can specify several nodes at once in two ways:

• For shell units, LR = 0 and LC > 0 means the entire column LC, while LR > 0
and LC = 0 means the entire row LR.

• For either shell or element units, items LNDA, LNDB, and LNDINC may be used
to describe a range of nodes.

P LU LR LC LNDA LNDB LNDINC

P nodal weight. For sections of uniform composition, input 1.0. When the defining
curve belongs to several distinct wall types, we suggest using 1.0 for the nodes in
the stiffest structural areas and choosing other weights so that the set of P values
are proportional to the modulus times the effective thickness ().

LU unit number of node; any Q-8b records that follow describe a new arc segment to
be added to this load set

LR row number of first node

LC column number of first node

LNDA first node of (row if LR = 0) or (column if LC = 0) in shell unit. If 0, the first node
on the row or column is chosen

Eh
STAGS 5.0 User Manual April, 2009 6-79

Model Input—Shell Units Loads
LNDB last node of (row if LR = 0) or (column if LC = 0) in shell unit. If 0, the last node
on the row or column is chosen. If LNDB = LNDA > 0, then only one node is
specified by this record.

LNDINC increment for nodes from LNDA to LNDB. Increasing or decreasing ranges are
allowed. If LNDINC = 0, an increment of +1 is used for increasing ranges, and -1
for decreasing ranges.

NSQR (Q-8a) number of Q-8b records
NLEAST (Q-1) number of least-squares loading sets

if (NSQR Q-8b records have been defined)then
if (NLEAST loading sets have been defined)then go to R-1
else return to Q-8a

else continue defining Q-8b
6-80 April, 2009 STAGS 5.0 User Manual

Least-Squares Distributed Line Loads Model Input—Shell Units
6.6 Least-Squares Distributed Line Loads

Definition of least-squares constraint

Users are often faced with the situation in which a detailed response is required in only part of

a structure, such as that shown by the shaded portion of the airplane in Figure 6.7 “Shell-unit

line loads; examples of how to specify element edges.” on page 6-73. For the rest of the

structure, an approximate analysis may be sufficient to provide enough information to define the

load path along the boundaries of the area of interest, shown in the lower half of this figure. A

very good estimate of the integrated boundary loads can sometimes be computed with simple

“stick models” consisting of beams with the appropriate section properties. Unfortunately, with

this approach the detailed edge loading (arrows in the figure) is lost. It is time-consuming and

error-prone to try to reconstitute these loads by hand; and even when a good approximate initial

estimate can be computed, changes in the load path as a function of edge deformation cannot be

accounted for. This is a more serious problem when only engineering statically-equivalent forces

Figure 6.8 Illustration of detailed model taken from larger structure.

+

Airplane with flight loads

Approximate
“stick model”

Detailed edge loading
STAGS 5.0 User Manual April, 2009 6-81

Model Input—Shell Units Least-Squares Distributed Line Loads
and moments acting on the section centroid are available, or when these loads come from

unknown reactions generated by an approximate combined model. How, then, can one compute

a “best” estimate for the edge loading automatically, one that induces the least spurious

deflection, when only the integrated edge force and moment pair acting on the centroid are

available?

One plausible solution to this problem is to recognize that the virtual work done by a force F and

moment M directed at a reference node—a point in the structure (presumably the centroid of the

section, marked by a “+” in the lower half of Figure 6.8)—is

 (6.1)

where is the virtual displacement, and is the virtual instantaneous rotation. In rigorous

language, this means that the force/moment pair is conjugate to the rigid translation and rotation

of the edge, and that the work done by all of the edge loads is equivalent to equation (6.1),

regardless of how the load is distributed over the edge. At this stage of the modeling process, we

will have at hand a finite element discretization of the detailed section, with a set of nodes lying

on the edge, as illustrated by the dots in the following figure. Imagine that initially we have

Figure 6.9 Illustration of least-squares loading.

δW Fδu0 Mδω0+=

δu0 δω0

Undeformed Configuration Deformed Configuration

deformed
section

rotated
undeformed section

di ri Δ– xi=+ +

M

F

6-82 April, 2009 STAGS 5.0 User Manual

Least-Squares Distributed Line Loads Model Input—Shell Units
defined a stretch of nodes that are to receive the loads produced by F and M. The minimum

disturbance of the edge is produced by requiring a least-squares error between the actual

deflection of the section node and the undeformed section rotating as a rigid body and doing

equivalent work on F and M. We illustrate this in Figure 6.8. On the left side of the figure, we

show an undeformed cross section with a number of open circles with dots. Each circle

represents a node along the loaded edge, and the + mark represents the loaded reference node.

The reference node is an arbitrary structural node, which can be loaded or connected to other

parts of the structure. Initially, the undeformed structure and the loaded section are coincident.

Later, the structure deforms as shown on the right side of the figure. Here, we have shown the

section ovalizing and carrying its nodes with it (dots). We also show an image of the

undeformed section that has translated and rotated to make the square of the distances

between the deformed node and its rotated undeformed image (open circle) a minimum. One of

these deflections (arrows pointing from the image to the deformed node) for node i is shown in

a box, labeled with its defining equation

 (6.2)

where are the undeformed coordinates of node i, where 0 refers to the reference node, and

where are the nodal positions after deformation by displacements , (including the reference

node):

 (6.3)

These vectors can be visualized with the help of the following figure. The orthogonal matrix

represents the rigid rotation of the reference node and the section image tied to it. What we want

is to rotate and translate the image section to make the least-squares error

 (6.4)

di

di ri Δ– xi=

ri T0ri
0

=

ri
0

Xi X0–=

Δxi xi x0–=

Xi

xi ui

xi Xi ui+=

T0

ε

ε φi di
2

i

∑=
STAGS 5.0 User Manual April, 2009 6-83

Model Input—Shell Units Least-Squares Distributed Line Loads
a minimum. If we take the derivative of equation (6.4) and remember that the variation of a

vector subjected to a rigid rotation (the second equation in (6.2)) is

 (6.5)

the result is six constraint equations expressed as

 (6.6)

where are weights chosen by the user. Usually these weights are selected to be proportional

to the length of section segments spanned by the nodes. The most straightforward way to

introduce these constraints into a finite element code like STAGS is to augment the strain energy

function U by introducing Lagrange multipliers and as follows:

 (6.7)

Figure 6.10 Definition of least-squares displacements.

u0

Xi X0– ri
0

=

ui xi x0– Δxi=di

ri T0 Xi X0–()=

0
0

i
i

δri δω0 ri×=

ri Δ– xi()φi

i

∑ 0=

ri Δxi×()φi

i

∑– 0=

φi

f0 m0

Û U f0 ri Δ– xi()

i

∑ m0– ri Δxi×

i

∑⋅⋅+=
6-84 April, 2009 STAGS 5.0 User Manual

Least-Squares Distributed Line Loads Model Input—Shell Units
The first variation

To obtain contributions to the residual, we take the variation of equation (6.7), the results of

which come out to be for each node i

 (6.8)

where the order of the freedoms is for the structural node ; for the

reference node ; and the last six for the Lagrange unknowns and , respectively. There is

a contribution to the reference node and the Lagrange freedoms from each , so that one could

view the as being generated by an “element,” shown by the dashed line connecting the

reference node and a deformed edge node in Figure 6.9; there is one such “element” connecting

each edge node on the section with the reference node, like spokes on a wheel. Also note that

there is no contribution to the rotational freedoms at the edge. If we take the simple case of a

reference node unconnected in any way to the structure except for these constraints, and if we

assume that the node is loaded by a simple force F and moment M, then equilibrium requires that

 (6.9)

If we simplify the problem further and consider only the case where the reference node is at the

center of the section, such that the relative centroid

 (6.10)

fi

ri m0 f0–×

f0 ri m0×–

m0 Δxi ri⋅() Δxi ri m0⋅()– ri f0×+

ri Δ– xi

r– i Δxi×

φi=

u v w, , i u v w Ru Rv Rw, , , , ,

0 f0 m0

fi

fi

i

F Wf0 r̂ m0×–=

M Jsm0 r̂ f0×+=

W φi

i

∑=

r̂ φiri

i

∑=

Js φi I Δxi ri⋅() Δxiri
T

–[]∑=

r̂ 0=
STAGS 5.0 User Manual April, 2009 6-85

Model Input—Shell Units Least-Squares Distributed Line Loads
then from the first of equations (6.6), we see that times the sum of the weights equals the

total force on the section. Indeed, the first constraint in equation (6.6) is simply a statement that

the relative centroid remains unchanged, and the second term in the force equation (6.9) is the

correction for the offset of the reference point from the actual centroid. can be interpreted as

a generalized area moment, since from equations (6.6) it is a symmetric matrix and is initially

equal to the area moment of the undeformed section. Most importantly, the reader can readily

verify that

 (6.11)

which is clearly required to guarantee that the virtual work done by the edge nodes is equivalent

to the work done by the reference node on F and M. To prove the second equation in (6.11), we

use both constraint conditions (equations (6.6)). Finally, for the simple case of a circular cut

through a cylinder, the cross product in the first line of equation (6.8) reduces to the familiar

cosine distribution derived from an imposed moment.

The stiffness matrix

The second variation is straightforward, so we shall only present the final results here. The lower

triangle of the symmetric stiffness matrix looks like

 (6.12)

where we have ordered the freedoms for each “element” i in the same manner as in equation

(6.8), and where refers to the rotational components of the reference node. Each of the

nonzero 3x3 blocks is defined as follows:

fo W

Js

fi

i

∑ ri m0 f0–×()φi

i

∑ F–= =

Δxi fi×

i

∑ Δxi ri m0 f0–×()φi×

i

∑ M–==

Ki

Ki φi

0
0 0

Kωi K– ωi Kωω

Kfi K– fi Kmi 0
Kmi K– mi Kmω 0 0

=

ω

6-86 April, 2009 STAGS 5.0 User Manual

Least-Squares Distributed Line Loads Model Input—Shell Units
 (6.13)

where represents the skew-symmetric matrix derived from the vector .

Using least-squares loading in STAGS

We are fortunate that in STAGS we are able to use existing software to compute automatically

the weights based on the correct internodal distances. The user will be required to provide

only a simple overall scale factor, and a section weight factor to be used to account for changes

in thickness or other modeling features he wants to include. As users become accustomed to the

least-squares loading feature, their experience will determine optimum weight choice.

STAGS automatically generates a set of local weights equal to the distance between adjacent

nodes in a list given by the user. This list, the designation of the reference node, and the section

weight factors are provided by a natural extension of the shell-unit Q and U records and the

element-unit U and V records in the STAGS input stream. The reference node must be defined

like any other, either as a part of a previously-defined shell unit, or in an element unit. Of course,

this means that an element unit is required if the new node is defined by itself. Loads and

boundary conditions for the reference node are defined as usual, including the reference node

force and moment that the user wants spread over an edge. The same rules apply to any structural

component attached to the reference node: treat the node like any other ordinary STAGS node.

After all nodes (edge “structural” nodes and the reference node) have been defined, a separate

set of Q records must be included for each least-squares loading condition. Provision is made on

these records to reference any previously-defined unit that may contain nodes involved in the

load set.

Kωi rim0
T I ri m0⋅()–=

Kfi I–=

Kmi r̃i=

K̂ωω m0 ri Δxi×()
T

Δ– xi ri m0×()
T rif0

T I ri f0⋅()–+=

Kωω
1
2
--- K̂ωω K̂ωω

T
+()=

Kmω I Δxi ri⋅() Δ– xiri
T

=

r̃i ri

φi
STAGS 5.0 User Manual April, 2009 6-87

Model Input—Shell Units Output Control
6.7 Output Control

Output for any given shell unit to the text-based output file (casename.out2, for example) is

controlled by input on the R records for that unit. R records are specified independently for each

shell unit and do not have to be the same for all units. It may be desirable, at times, to refrain

from printing results during the analysis operations—and to use post-processing utilities to print

and/or display results of interest, as appropriate. Options are provided for printing all

displacements, strains, stresses and/or stress resultants for all grid points and/or elements for

every solution step or at specified step-number intervals (see the R-1 record). The R-2 record

allows the user to specify a subset of grid points at which displacements are to be printed. The

R-3 record (which is disabled at the current time) allows the user to specify elements for which

stresses will be printed at each load or time step.
6-88 April, 2009 STAGS 5.0 User Manual

Output Control Model Input—Shell Units
R-1 Output Control—Record 1

This record is always included for each shell unit. The constants governing the output can differ

from one unit to another. Output of results within some or all of the units can be suppressed in

favor of output in the post-processor. Unnecessary output should be avoided as it leads to

unnecessary expense and increase in size of the text-based output file. This is particularly true

for stresses since the computer time involved in stress computations is significant.

All displacement and nodal point force output are displayed in shell coordinates.

This means that the output of quantities along a juncture belonging to two or more units may not

be the same, because these vectors are expressed in different local systems. As an example,

where an annular plate is joined to a cylinder, the w (radial, or normal) component for the

cylinder is the same as the u component for the plate. Similarly, the w component for the plate

is in the plus or minus u direction for the cylinder.

Nodal point equilibrium forces are available and may be printed. These internal forces should

balance any loads or reactions applied at the node. They can be used to check how well

equilibrium is maintained throughout the structural model because internal forces should be zero

everywhere except at points of support or mechanical loading. Since the live pressure load

contribution is not included in point force output, it is necessary to estimate the value of the

pressure when checking for system equilibrium. On shell unit junctures the point forces include

the reactions from the adjacent shell units.

Stress, strain, and stress resultant output are in fabrication coordinates. Stress output can

also be in material coordinates for the layer in question. (See Section 4.1 “Coordinate

Systems” on page 4-1 for a description of all STAGS coordinate systems.) In principle, for a

composite, the stresses on the lower and upper layers can be in different systems; the user

therefore should be very careful!

It is possible in nonlinear static or in transient analysis to print displacement components at all

load or time steps for selected points, rows, or columns. The total number of records defining

selected output in all units cannot exceed 100 times the total number of units.

X′ Y′ Z′, ,()

x y,()
φ1 φ2,()
STAGS 5.0 User Manual April, 2009 6-89

Model Input—Shell Units Output Control
IPRD IPRR IPRE IPRS IPRP IPRF NSELD NSELS IPRDSP IPRSTR ISL ISS ISD

IPRD 0 – do not print displacements

>0 – displacements are printed at every IPRDth load or time step

IPRR 0 – do not print stress resultants

>0 – stress resultants are printed at every IPRRth load or time step
(elastic analysis only)

IPRE 0 – do not print strains

>0 – strains are printed at every IPREth load or time step

IPRS 0 – do not print stresses

>0 – stresses are printed at every IPRSth load or time step

Stress output is obtained only where indicated for the corresponding shell wall or
beam cross-section. Please check LSOL (K-2), NSOYZ (J-1), ISP (J-3A), and ISOC (J-
3B). Also, see ISL, ISS, and ISD, below.

IPRP 0 – no additional stress output for points with yield

>0 – stresses and strains are printed at all points, with yield at every IPRPth

load or time step

IPRF 0 – do not print nodal point forces (internal force vector)

>0 – nodal point forces are printed at every IPRFth load or time step

NSELD number of records defining selected displacements (one record may correspond to
a node, a row, or a column)

NSELS number of records defining selected stresses (disabled, set NSELS=0)

IPRDSP 0 – print selected displacements at every load or time step

>0 – print selected displacements at every IPRDSPth load or time step

IPRSTR 0 – print selected stresses at every load or time step

>0 – print selected stresses at every IPRSTRth load or time step (disabled)

ISL 0 – element results are computed at centroids

1 – element results are computed at integration points

☞

6-90 April, 2009 STAGS 5.0 User Manual

Output Control Model Input—Shell Units
ISS 0 – no transverse shear stresses
1 – compute transverse shear stresses — INACTIVE

ISD 0 – print stress and strain components in fabrication coordinates

1 – print stress components in both fabrication coordinates and

material coordinates
2 – print stress components in both fabrication coordinates and the

principal directions (includes angle of orientation)

NUNITS (B-2) number of shell units
NUNITE (B-2) number of element units

if (NSELD > 0) then go to R-2
elseif (NSELS > 0) then go to R-3
elseif (NUNITS shell units have been defined) then

if (NUNITE = 0) then data deck is complete
else follow instructions at end of R-3

else return to M-1

x y,()

x y,() φ1 φ2,()

x y,()
STAGS 5.0 User Manual April, 2009 6-91

Model Input—Shell Units Output Control
R-2 Output Control—Record 2

This record defines a number of nodes at which displacements are to be printed at each load or

time step.

If IROWD is set equal to zero the displacements are printed for each row, (i.e., the entire column).

If ICOLD is set equal to zero the displacements are printed for each column, (i.e., the entire row).

IROWD ICOLD

IROWD row number at which displacements are to be printed

ICOLD column number at which displacements are to be printed

Note: This selected displacement output option also causes the internal forces for
the selected notes to be computed and printed. These forces are also
summed. This provides a convenient mechanism for printing the total
applied load in cases where only applied displacements are specified, or to
check equilibrium at boundaries.

NSELD (R-1) number of selected displacements
NSELS (R-1) number of selected stresses
NUNITS (B-2) number of shell units
NUNITE (B-2) number of element units

if (NSELD R-2 records have been defined) then
if (NSELS > 0) then go to R-3
elseif (NUNITS shell units have been defined) then

if (NUNITE = 0) then data deck is complete
else follow instructions at end of R-3

else return to M-1
else continue defining R-2
6-92 April, 2009 STAGS 5.0 User Manual

Output Control Model Input—Shell Units
R-3 Output Control—Record 3

INACTIVE

This record defines a number of locations at which stresses will be printed at each load or time
step. Stress output will be obtained in the directions defined by ISD (R-1) or in user-written
subroutines. Stresses suppressed in the general output by LSOL (K-2) or in user-written
subroutines cannot be printed as selected output. The stresses in a given element in the shell unit
are referred to by use of the lowest values of the numbers of the rows and columns that bound
the element. If selected stress output is requested, all stress components are printed at each
selected stress output point.

The record is repeated NSELS times (R-1).

IROWS ICOLS

IROWS row number identifying the element for stress output
ICOLS column number identifying the element for stress output

NSELS (R-1) number of selected stresses
NUNITS (B-2) number of shell units
NUNITE (B-2) number of element units
NUPT (H-1) number of user points
NT1 (H-1) number of “spring” elements
NT2 (H-1) number of “beam” elements
NT3 (H-1) number of triangular shell elements
NT4 (H-1) number of quadrilateral shell elements
NT5 (H-1) other-elements/element-command-mode flag

if (NSELS R-3 records have been defined) then
if (NUNITS shell units have been defined) then

if (NUNITE = 0) then data deck is complete
elseif (NUPT > 0) then go to S-1
elseif (NUPT = 0) then go to S-3
elseif (NUPT = -1) then go to S-3
elseif (NT1 > 0) then go to T-1
elseif (NT2 > 0) then go to T-2
elseif (NT3 > 0) then go to T-3a
elseif (NT4 > 0) then go to T-4a
elseif (NT5 > 0) then go to T-5
else go to U-1

else return to M-1
else continue defining R-3
STAGS 5.0 User Manual April, 2009 6-93

7
7
7 7

Model Input—Element Units (1)

Element units are numbered sequentially, in the order in which they are defined, from
 to , where NUNITS is the number of shell units and NUNITE is the

number of element units (B-2) in the model.

The group of records in the S–V series describes the element units. They are defined in serial
fashion, completely describing one element unit before proceeding to the next. Thus, when

, the S–V series is defined for the first element unit, then the series is repeated for the
second element unit, and so forth, until all of the NUNITE element units have been defined. The
S–V record sets contain information as summarized below:

• S records: Nodes and Lines
• T records: Element specifications
• U records: Loading specifications
• V records: Output control specifications

If the model has externally-generated linear-stiffness contributions, W-type records must be
included after the all of the S-V records (for all of the element units) have been given.

STAGS input requirements for the S (nodes and lines) records are described in this chapter. Input
requirements for the T-x and T-xx (element-definition) records that are used with the historic
Edef (element-definition) protocol are described in Chapter 8. Input requirements for the T-xxx

(element-definition) records that are used with the newer Ecom (element-command) protocol
are described in Chapter 9. Input requirements for the U (loadings), V (output-control) and W
(linear-stiffness-contribution) records are described in Chapter 10.

A STAGS model may contain any number of shell units, combined with any
number of element units.

NUNITS 1+ NUNITS NUNITE+

NUNITE 2≥

☞

STAGS 5.0 User Manual April, 2009 7-1

Model Input—Element Units (1) User Points
7.1 User Points

Elements in a STAGS element unit are typically connected to node points—some of which may
have been defined in one or more shell units and/or in one or more previously-specified element
units, and some of which may be unique to that element unit. Nodes that are referenced in any
given element unit are called the “user points” for that unit. The current version of STAGS gives
the user two protocols for defining user points.

If NUPT is positive on the H-1 record for the current element unit, STAGS expects the user to
follow the historic upts user-point-definition protocol and to identify (and/or create) exactly
NUPT user points. When this protocol is employed, STAGS attempts to read and process one or
more S-1/S-1a (and optionally S-2) user-point-definition record sets—all of which are described
in this chapter.

If the NUPT parameter is zero on H-1, STAGS expects the analyst to use the newer user–points
protocol to identify (and/or create) one or more user points for the current unit. When this
protocol is used, STAGS attempts to read and process one or more S-3/S-3a/S-4 user-point-
definition record sets (which are also described in this chapter)—continuing to do this until the
analyst tells the program (by setting the user-point-identity parameter to an extraordinarily high
value) to stop. With the very first of the record sets for this protocol, the analyst must choose to
use either one or the other of the two user-point numbering modes, as described in the following
two paragraphs:

If on the very first S-3 record the user assigns a positive value to the user-point
number, STAGS will use that value for the initial user point and will expect (require)
that all user points be identified explicitly on this and on all subsequent S-3/S-3a
record sets. In this case, STAGS determines NUPT by setting it equal to the highest
user-point number specified by any S-3/S-3a record set in the sequence.

If on the very first S-3 record the user assigns a zero (or any nonpositive) value to
the user-point number, STAGS will set the initial user-point number equal to one and
will increment each subsequent user-point number (from the first S-3/S-3a record set
and from all subsequent S-3/S-3a record sets) by one. In this case, STAGS ignores all
of the user-point numbers that are given by the user and/or calculated with user-
specified incrementations on each and every S-3/S-3a record set. STAGS sets NUPT

equal to the total number of user points that are defined by this process.

If NUPT=-1 on the H-1 record for the current element unit, no user points are to be defined via
S-1 or S-3 record groups for this element unit.

In any event, some (or all) of the user points may alternatively be identified (or defined) in a
user-written subroutine USRPT, as described in Chapter 12.
7-2 April, 2009 STAGS 5.0 User Manual

User Points Model Input—Element Units (1)
S-1 User Points (upts protocol)

The upts protocol uses records of this type to establish a nodal point list for the element unit.
Additional nodes are defined in user-written USRPT if IUWP=1 (H-1). If the node point coincides
with a node on one of the shell units, its location can be defined through reference to the row
and column number for that node. Full displacement compatibility at the node between shell unit
and element unit will then be enforced. Other node point locations (auxiliary nodes) are defined
by use of their coordinates in the global system.

For nodes that coincide with a node on a shell unit, the directions of the freedoms (displacement
and rotation vector components) are identical to those on the shell unit at that node. When more
than one shell unit belongs to such a node, the components belong to the shell unit with the
lowest number. The same rule applies when two different element units share a node: the
components belong to the lowest unit. All shell units have a lower number than any element
units. Any node that has not been created before in a lower unit is called an auxiliary node. For
auxiliary nodes, the user has a choice regarding the freedom pattern. Often constraints are readily
defined if the directions of the freedom coincide with the axes of the global system. For more
general cases, auxiliary systems can be defined on an S-2 record.

Constraints on displacements or rotations can be introduced on this record (IUVW, IRUVW).
Attached masses are also permitted. Constraints can also be applied as loads (U-3).

User points may be defined in any order, but they must be numbered from 1 to NUPT (i.e.,
). If IUS > 0, then IRS must be > 0. If the node belongs to another shell unit

(, B-2), then ICS must be > 0, giving both the row and column number of the node
in the lower unit. If IUS > NUNITS, the current element unit is joined to another element unit with
a lower number; in that case IRS is the node number belonging to the lower element unit, defined
on a previous S-1 record or in the user-written routine USRPT, and ICS = 0. If this is element
unit l counted in the order that it is defined, , where , where
(B-2). If IUS = 0, the nodal position must be defined in global coordinates.

Typically, a single S-1 record (with its associated S-2 record, if required) will be used to define
each user point. For some configurations, it is convenient to use the S-1 looping feature
described below to specify two or more closely-related user points simultaneously. The NPTS

parameter, on the S-1 record, facilitates that.

In any event, the S-1/S-1a, S-2 sequence must be repeated as many times as necessary to specify
NUPT (H-1) user points.

1 IUPT NUPT≤ ≤

IUS NUNITS≤

IUS k= k NUNITS l+= l NUNITE≤

xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 7-3

Model Input—Element Units (1) User Points
IUPT IUS IRS ICS XG YG ZG IUVW IRUVW IAUX NPTS ILAY

IUPT user point (node) number;

IUS, IRS, ICS shell unit number, row number, column number for node on a shell unit

If IUS > NUNITS, , where l is a previously-defined element
unit (counted in the order it was defined), and IRS is the corresponding node
number in that unit. No chaining is allowed. A shared node must be referenced to
the unit where it was first defined.

IUS = 0 implies that the user point is an auxiliary node; i.e., it is established
without reference to an existing node in a previously-defined unit; IRS and ICS are
irrelevant in that case.

The next six entries on this record are relevant for auxiliary nodes only.
See Figure 7.1 on page 7-6 for details regarding auxiliary nodes.

XG, YG, ZG global coordinates

IUVW, IRUVW 3-digit binary integers indicating freedom or constraint for each of the three
translational and each of the three rotational displacement components

and , respectively. The significance of each binary digit is as follows:

0—fixed 1—free

The most significant digit corresponds to u (or ru), and the least significant
corresponds to w (or rw). For example, to specify u fixed with v, w free, and rv
fixed, with ru, rw free

IUVW = 011

IRUVW = 101

IUVW and IRUVW are similar to ITRA and IROT (P-2).
See “P-2 Boundary Conditions—Record 2” on page 6-61.

IAUX degree-of-freedom option

0 – the directions of the freedoms are governed by
 nodal-global coordinates

1 – the directions of the freedoms are governed by
 nodal-auxiliary coordinates

NPTS number of user points specified via this S-1 record; set to unity by STAGS if
nonpositive or omitted

1 IUPT NUPT≤ ≤

IUS k NUNITS l+= =

☞

xg yg zg, ,()

u v w, ,()

ru rv rw, ,()

☞

xg yg zg, ,()

xa ya za, ,()
7-4 April, 2009 STAGS 5.0 User Manual

User Points Model Input—Element Units (1)
ILAY layer parameter

0 – ignored (this is the preferred value when the user node is not in a shell
unit or when it is in a shell unit that is not tessellated with solid
elements)

– the user node is located on surface # ILAY of the specified shell unit
(this option should only be used when the shell unit is tessellated with
solid elements)

if (NPTS > 1) then go to S-1a
else follow instructions at end of S-1a

0>
STAGS 5.0 User Manual April, 2009 7-5

Model Input—Element Units (1) User Points
auxiliary node n:

 point 1, on the axis:

 point 2, in the plane:

 if is specified, then

 else

 computational coordinates global coordinates

 nodal-auxiliary coordinates nodal-global coordinates

Figure 7.1 Degree-of-Freedom Directions at an Auxiliary Node

yg

xg

ya

zg
za

xa

1

2

zg

xg

yg

nxg
2yg

2 xg
1

zg
1

yg
1

zg
2

xg
n

zg
n

yg
n

q2

q1

xg
n yg

n zg
n, ,() XG YG ZG, ,()=

xa q1 xg
1 yg

1 zg
1, ,() YAX YAY YAZ, ,()= =

xa ya,() q2 xg
2 yg

2 zg
2, ,() YAX YAY YAZ, ,()= =

xa

q1
q1
---------= za

q1 q2×

q1 q2×
----------------------= ya za xa×=

xa ya za, ,() x′′ y′′ z′′, ,() xa ya za, ,()≡

x′′ y′′ z′′, ,() xg yg zg, ,()≡

x′′ y′′ z′′, ,() xg yg zg, ,()

xa ya za, ,() xg yg zg, ,()
7-6 April, 2009 STAGS 5.0 User Manual

User Points Model Input—Element Units (1)
S-1a User Point Incrementations (upts protocol)

A single record of type S-1a must be included immediately after each type S-1 record on which
the NPTS parameter is greater than unity. Seven incrementation variables are specified here for
use with the S-1 record looping function.

JUPT JUS JRS JCS Dxg Dyg Dzg

JUPT incrementation for the IUPT (user point number) variable, on S-1

JUS incrementation for the IUS (unit number) variable, on S-1

JRS incrementation for the IRS (row/element number) variable, on S-1

JCS incrementation for the ICS (column number) variable, on S-1

Dxg incrementation for the XG (coordinate) variable, on S-1

Dyg incrementation for the YG (coordinate) variable, on S-1

Dzg incrementation for the ZG (coordinate) variable, on S-1

Any of these incrementation variables can be negative, zero, or positive.

Example: the following S-1/S-1a record combination:

1 0 0 0 0.0 0.0 0.0 111 111 0 3 $ S-1
1 0 0 0 0.2 0.4 -0.2 $ S-1a

generates the same three user points as the following three S-1 records:

1 0 0 0 0.0 0.0 0.0 111 111 0 $ S-1
2 0 0 0 0.2 0.4 -0.2 111 111 0 $ S-1
3 0 0 0 0.4 0.8 -0.4 111 111 0 $ S-1

IAUX (S-1) degree-of-freedom option

if (IAUX > 0) then go to S-2
else follow instructions at end of S-2
STAGS 5.0 User Manual April, 2009 7-7

Model Input—Element Units (1) User Points
S-2 Auxiliary Coordinate System (upts protocol)

The S-2 records are used to define auxiliary coordinate systems. These are used for definition of
directions of nodal freedoms in element units. Matrices transforming displacements and rotations
from nodal-auxiliary coordinates to nodal-global coordinates are computed
by STAGS and can be utilized in user-written subroutines.

For all nodes in an element unit that do not also belong to a shell unit or to another previously-
defined element unit, the displacement and rotation components of the freedoms generated at the
node will have the directions indicated by the nodal-auxiliary coordinates if such a system is
defined. The purpose is to allow displacement and rotational constraints on components other
than those given in the nodal-global coordinates. If an S-2 record is not read, the nodal-global
coordinates define the computational coordinates.

The nodal-global coordinate system has its origin at the node point while the coordinate
directions coincide with those of the global system. The S-2 record defines the orientation of the
auxiliary system by defining two points— , lying on the positive axis, and , lying
anywhere in the plane off the axis (for example on the axis). The axis completes
a right-handed Cartesian system. Note that the origins of the two systems, and

, coincide. The algorithm for constructing this system is shown in Figure 7.1 on page
7-6. See Section 4.1 “Coordinate Systems” on page 4-1 for a summary of these and all of the
other coordinate systems that STAGS uses.

The user should be very careful about where in the plane is chosen, since the signs
of the auxiliary coordinate directions depend on this selection. The safest strategy is to put
along the axis itself. Note the similarity of the algorithm for determining the nodal-auxiliary
coordinate system here with that for nonlinear mounts (see T-1, for example) and the general
algorithm for beams (see T-2, for example). Please refer to Chapter 14 “The Element Library”
for more details.

The S-2 record is included only if IAUX = 1 (S-1). If multiple user points are defined via the S-1/

S-1a looping function, the default coordinate system or the auxiliary coordinate system defined
via this S-2 record must be the same for all of these points.

xa ya za, ,() xg yg zg, ,()

x′′ y′′ z′′, ,()

q1 xa q2
xa ya,() xa ya za

xg yg zg, ,()

xa ya za, ,()

xa ya,() q2
q2

ya
7-8 April, 2009 STAGS 5.0 User Manual

User Points Model Input—Element Units (1)
XAX XAY XAZ YAX YAY YAZ

XAX, XAY, XAZ nodal-global coordinates of point , lying on the axis.

 Refer to Figure 7.1 on page 7-6.

YAX, YAY, YAZ nodal-global coordinates of point , lying anywhere in the plane

 off the axis; a point on the axis is recommended.

NUPT (H-1) number of user points
NS5 (H-1) number of contact-line records
NT1 (H-1) number of “spring” elements
NT2 (H-1) number of “beam” elements
NT3 (H-1) number of triangular shell elements
NT4 (H-1) number of quadrilateral shell elements
NT5 (H-1) other-elements/element-command flag

if (NUPT user points have been defined) then
if (NS5 > 0) then go to S-5
elseif (NT1 > 0) then go to T-1
elseif (NT2 > 0) then go to T-2
elseif (NT3 > 0) then go to T-3
elseif (NT4 > 0) then go to T-4
elseif (NT5 > 0) then go to T-5
else go to T-100

else return to S-1

q1 xa

q2 xa ya,()

xa ya
STAGS 5.0 User Manual April, 2009 7-9

Model Input—Element Units (1) User Points
S-3 User Points (user–points protocol)

The user–points protocol uses one or more S-3/S-3a/S-4 record sets to establish a nodal point
list for the element unit. User-point-definition via this protocol is triggered by setting the NUPT

parameter equal to zero or -1 on H-1; and it is terminated by setting the N1 parameter (on an S-3

record) equal to 999999. Additional nodes are defined in user-written subroutine USRPT if
IUWP=1 on H-1. If the node point coincides with a node on one of the shell units, its location can
be defined through reference to the row and column number for that node. Full displacement
compatibility at the node between shell unit and element unit will then be enforced. Other node
point locations (auxiliary nodes) are defined by use of their coordinates in the global system.

For nodes that coincide with a node on a shell unit, the directions of the freedoms (displacement
and rotation vector components) are identical to those on the shell unit at that node. When more
than one shell unit belongs to such a node, the components belong to the shell unit with the
lowest number. The same rule applies when two different element units share a node: the
components belong to the lowest unit. All shell units have a lower number than any element
units. Any node that has not been created before in a lower unit is called an auxiliary node. For
auxiliary nodes, the user has a choice regarding the freedom pattern. Often constraints are readily
defined if the directions of the freedom coincide with the axes of the global system. For more
general cases, auxiliary systems can be defined on an S-4 record.

Constraints on displacements or rotations can be introduced on this record (IUVW, IRUVW).
Attached masses are also permitted. Constraints can also be applied as loads (U-3).

User points may be numbered explicitly by the analyst, or automatically by the program, as
explained in the following two paragraphs.

If the very first user point that the analyst defines is given a positive user-point
number (N1), then the user-point numbers of all of the user points in the element unit
must be specified explicitly. In this case, the user points may be defined in any
order—but they must be numbered from 1 to the total number of user points defined.
Here, STAGS sets NUPTS equal to the highest user-point number that is specified
during this process.

If the first user point that the analyst defines is given a nonpositive N1 value, STAGS

ignores that and all subsequent user-point-number specifications, and assigns all user-
point numbers sequentially—starting at 1 and incrementing by 1 until the analyst
stops the user-point definition process. In this case, STAGS sets NUPT equal to the total
number of user points that are defined.
7-10 April, 2009 STAGS 5.0 User Manual

User Points Model Input—Element Units (1)
In either event, after all user-point definitions have been made—and all user points identified
and/or created by user-written subroutine USRPT have been processed—STAGS checks to ensure
that each possible user point IUPT in the range has been defined.

If IUS > 0 for any user point, then IRS must be > 0 for that point. If the node belongs to another
shell unit (, B-2), then ICS must be > 0, giving both the row and column number of
the node in the lower unit. If IUS > NUNITS, the current element unit is joined to another element
unit with a lower number; in that case IRS is the node number belonging to the lower element
unit, defined on a previous S-3 record or in the user-written subroutine USRPT, and ICS = 0. If
this is element unit l counted in the order that it is defined, , where ,
where (B-2). If IUS = 0, the nodal position must be defined in global
coordinates.

A single S-3 record (with its associated S-4 record, if required) can be used to define each user
point. For some configurations, it is convenient to use the S-3 looping feature described below
to specify two or more closely-related user points simultaneously. The NPTS parameter, on S-3

facilitates that.

In any event, the S-3/S-3a, S-4 sequence may be repeated as many times as necessary to specify
user points. This sequence is terminated by setting the IUPT parameter equal to 999999.

IUPT IUS IRS ICS XG YG ZG IUVW IRUVW IAUX NPTS ILAY

IUPT user point (node) number (or end-of-sequence signal):

If IUPT < 1 on the very first S-3 record, it triggers the automatic user-point
numbering mode for the upts protocol (in which STAGS sets the number of the
first point defined to 1 and increments the number of each subsequent point by 1);
the values of IUPT and of its incrementation parameter (JPNT, on S-3a) are ignored
on the first and on all subsequent S-3/S-3a record sets.

If 0 < IUPT < 999999 on the first S-3 record, it triggers the explicit user-point
numbering mode [in which the initial point defined by this S-3 record is user
point number IUPT, and the user-point numbers of subsequent points (if any)
defined by the first and by subsequent S-3/S-3a records are computed from IUPT

and JUPT].

If IUPT = 999999 on any S-3 record, STAGS stops defining user points.

IUS, IRS, ICS shell unit number, row number, column number for node on a shell unit

If IUS > NUNITS, , where l is a previously-defined element
unit (counted in the order it was defined), and IRS is the corresponding node

1 IUPT NUPT≤ ≤

IUS NUNITS≤

IUS k= k NUNITS l+=

l NUNITE≤ xg yg zg, ,()

IUS k NUNITS l+= =
STAGS 5.0 User Manual April, 2009 7-11

Model Input—Element Units (1) User Points
number in that unit. No chaining is allowed. A shared node must be referenced to
the unit where it was first defined.

IUS = 0 implies that the user point is an auxiliary node; i.e., that it is established
in the current element unit without reference to an existing node in a previously-
defined unit; IRS and ICS are irrelevant in that case.

The next six entries on this record are relevant for auxiliary nodes only.
See Figure 7.1 on page 7-6 for details regarding auxiliary nodes.

XG, YG, ZG global coordinates

IUVW, IRUVW 3-digit binary integers indicating freedom or constraint for each of the three
translational and each of the three rotational displacement components

and , respectively. The significance of each binary digit is as follows:

0—fixed 1—free

The most significant digit corresponds to u (or ru), and the least significant
corresponds to w (or rw). For example, to specify u fixed with v, w free, and rv
fixed, with ru, rw free

IUVW = 011

IRUVW = 101

IUVW and IRUVW are similar to ITRA and IROT (P-2).
See “P-2 Boundary Conditions—Record 2” on page 6-61.

IAUX degree-of-freedom option

0 – the directions of the freedoms are governed by
 nodal-global coordinates

1 – the directions of the freedoms are governed by
 nodal-auxiliary coordinates

NPTS number of user points specified via this S-3 record; set to unity by STAGS if
nonpositive or omitted

ILAY layer parameter

0 – ignored (this is the preferred value when the user node is not in a shell
unit or when it is in a shell unit that is not tessellated with solid
elements)

– the user node is located on surface # ILAY of the specified shell unit
(this option should only be used when the shell unit is tessellated with
solid elements)

if (NPTS > 1) then go to S-3a
else follow instructions at end of S-3a

☞

xg yg zg, ,()

u v w, ,()

ru rv rw, ,()

☞

xg yg zg, ,()

xa ya za, ,()

0>
7-12 April, 2009 STAGS 5.0 User Manual

User Points Model Input—Element Units (1)
S-3a User Point Incrementations (user–points protocol)

A single record of type S-3a must be included immediately after each type S-3 record on which
the NPTS parameter is greater than unity. Seven incrementation variables are specified here for
use with the S-3 record looping function.

JUPT JUS JRS JCS Dxg Dyg Dzg

JUPT incrementation for the IUPT (user point number) variable, on S-3

JUS incrementation for the IUS (unit number) variable, on S-3

JRS incrementation for the IRS (row/element number) variable, on S-3

JCS incrementation for the ICS (column number) variable, on S-3

Dxg incrementation for the XG (coordinate) variable, on S-3

Dyg incrementation for the YG (coordinate) variable, on S-3

Dzg incrementation for the ZG (coordinate) variable, on S-3

Any of these variables can be negative, zero, or positive.

Example: the following S-3/S-3a record combination:

1 0 0 0 0.0 0.0 0.0 111 111 0 3 $ S-3
1 0 0 0 0.2 0.4 -0.2 $ S-3a

generates the same three user points as the following three S-3 records:

1 0 0 0 0.0 0.0 0.0 111 111 0 $ S-3
2 0 0 0 0.2 0.4 -0.2 111 111 0 $ S-3
3 0 0 0 0.4 0.8 -0.4 111 111 0 $ S-3

IAUX (S-3) degree-of-freedom option

if (IAUX > 0) then go to S-4
else follow instructions at end of S-4
STAGS 5.0 User Manual April, 2009 7-13

Model Input—Element Units (1) User Points
S-4 Auxiliary Coordinate System (user–points protocol)

The S-4 records are used to define auxiliary coordinate systems. These are used for definition of
directions of nodal freedoms in element units. Matrices transforming displacements and rotations
from nodal-auxiliary coordinates to nodal-global coordinates are computed
by STAGS and can be utilized in user-written subroutines.

For all nodes in an element unit that do not also belong to a shell unit or to another previously-
defined element unit, the displacement and rotation components of the freedoms generated at the
node will have the directions indicated by the nodal-auxiliary coordinates if such a system is
defined. The purpose is to allow displacement and rotational constraints on components other
than those given in the nodal-global coordinates. If an S-4 record is not read, the nodal-global
coordinates define the computational coordinates.

The nodal-global coordinate system has its origin at the node point while the coordinate
directions coincide with those of the global system. The S-4 record defines the orientation of the
auxiliary system by defining two points— , lying on the positive axis, and , lying
anywhere in the plane off the axis (for example on the axis). The axis completes
a right-handed Cartesian system. Note that the origins of the two systems, and

, coincide. The algorithm for constructing this system is shown in Figure 7.1 on page
7-6. See Section 4.1 “Coordinate Systems” on page 4-1 for a summary of these and all of the
other coordinate systems that STAGS uses.

The user should be very careful about where in the plane is chosen, since the signs
of the auxiliary coordinate directions depend on this selection. The safest strategy is to put
along the axis itself. Note the similarity of the algorithm for determining the nodal-auxiliary
coordinate system here with that for nonlinear mounts (see T-1, for example) and the general
algorithm for beams (see T-2, for example). See Chapter 14 “The Element Library” for more
details.

The S-4 record is included only if IAUX = 1 (S-3). If multiple user points are defined via the S-3/

S-3a looping function, the default coordinate system or the auxiliary coordinate system defined
via this S-4 record must be the same for all of these points.

xa ya za, ,() xg yg zg, ,()

x′′ y′′ z′′, ,()

q1 xa q2
xa ya,() xa ya za

xg yg zg, ,()

xa ya za, ,()

xa ya,() q2
q2

ya
7-14 April, 2009 STAGS 5.0 User Manual

User Points Model Input—Element Units (1)
XAX XAY XAZ YAX YAY YAZ

XAX, XAY, XAZ nodal-global coordinates of point , lying on the axis.

 Refer to Figure 7.1 on page 7-6.

YAX, YAY, YAZ nodal-global coordinates of point , lying anywhere in the plane

 off the axis; a point on the axis is recommended.

IUPT (S-3) initial user point number
NS5 (H-1) number of contact-line records
NT1 (H-1) number of “spring” elements
NT2 (H-1) number of “beam” elements
NT3 (H-1) number of triangular shell elements
NT4 (H-1) number of quadrilateral shell elements
NT5 (H-1) other-elements/element-command flag

if (IUPT < 999999) then
return to S-3

elseif (NS5 > 0) then go to S-5
elseif (NT1 > 0) then go to T-1
elseif (NT2 > 0) then go to T-2
elseif (NT3 > 0) then go to T-3
elseif (NT4 > 0) then go to T-4
elseif (NT5 > 0) then go to T-5
else go to T-100

q1 xa

q2 xa ya,()

xa ya
STAGS 5.0 User Manual April, 2009 7-15

Model Input—Element Units (1) Line-to-Line–Contact Specifications
7.2 Line-to-Line–Contact Specifications

There are situations that arise during the analysis of lightweight structures where the edges of
two shells come into contact with each other, as shown in Figure xx, as a result of deformations.
Such contacts will most commonly occur along a crack face in a portion of the structure that
undergoes compression and local buckling at loads below the ultimate design strength of the
structure. Typically, the opposite sides of the crack displace differently; and opposing edges of
the crack contact each other obliquely—with no more than one or a few points of contact along
the length of the crack. Line-to-line contact capabilities have been implemented in STAGS to take
this phenomenon into account.*

Lines in a STAGS element unit are also typically connected to node points—some of which may
have been defined in previously-specified shell units and/or in one or more previously-specified
element units, and some of which may be unique to that element unit. Lines are used in line-
contact specifications, as described next. Line and line-contact specifications are required and
should only be given if the NS5 parameter is positive on the H-1 record for the current element
unit.

Figure 7.2 Line-to-Line Contact Phenomenon

* For more information about this, see the “E822 Line contact element” portion of Section 14.8.

Contacted Line Contacting Line
7-16 April, 2009 STAGS 5.0 User Manual

Line-to-Line–Contact Specifications Model Input—Element Units (1)
S-5 Contact-Line Definition

An S-5 record is used to define a special kind of line on the current element unit (or on a

previously-defined shell unit) that may experience line-to-line contact with one or more other

lines. This record specifies the contact-line identifier to be used for a line, the unit on which the

line is defined, and the number of S-5a or S-5b records that are required for that definition. The

potential contact-line interactions for a given STAGS model are specified later, on one or more

T-8 and related records (described on page 8-41). It is important for the user to understand that

each such interaction involves two contact lines—one of which is considered to be the contacting

line and the other of which is considered to be the contacted line. The direction of a contact line

is determined by the order in which the nodes defining that line are specified. This is important

if the line is ever used as a contacted line, because it uniquely specifies the element(s) that are

associated with that line (and which may therefore be contacted by a contacting line).

NS5 (H-1) S-5 records are required.

LINEID UNITID NRECS

LINEID identifier for the current contact line; each contact-line in the model must have a

unique LINEID identifier

UNITID identifier for the (previously-defined) shell unit on which the contact line is

defined, or for the current element unit

NRECS number of S-5a records required to define this contact line (if it is on a shell unit),

or the number of S-5b records required to define it (if it is on the current element

unit)

if (UNITID identifies a shell unit) then

go to S-5a

else

go to S-5b

endif
STAGS 5.0 User Manual April, 2009 7-17

Model Input—Element Units (1) Line-to-Line–Contact Specifications
S-5a Contact Line on a Shell Unit

A contact line is a directed line segment that is defined by a sequence of node numbers. When
a contact line is on a shell unit, NRECS (S-5) records of this type are required to define that line.
A contact line on a shell unit can be all or part of an edge, all or part of any row or column, or
any set of nodes that are connected via an unbroken sequence of node numbers. Contact lines
are used by STAGS in E822 line-contact-interaction definitions (T-8), each of which identifies a
contact that may occur between two free edges. One of these edges is represented by a contacted
line, which has elements associated with it; and the other is represented as a contacting line,
which may or may not have elements associated with it. The theory behind line-to-line contact
is given by Rankin et al.* and is summarized in Chapter 14.

The order in which the nodes defining a contact line are specified determines its direction. This
is important because STAGS associates with the contact line the elements that are attached to its
left side. Any contact line that is ever used as a contacted line must have elements associated
with it. Any contact line that is only used as a contacting line may but need not have elements
associated with it. Figure 7.3 shows a typical shell unit in terms of its row and column nodal
topology, the shell elements that are defined on that unit, four contact lines, and the elements that
are associated with each contact line. Note that line 4 (a contacting line) has no elements
associated with it.

* Rankin, C.C., L.S. Chien, W.A. Loden and L.W. Swenson, Jr., “Line-to-Line Contact Behavior of Shell
Structures,” AIAA Paper No. 99-1237, April 1999.

Figure 7.3 Contact Lines on a Typical Shell Unit

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(1,1)

(1,2)

(2,1)

(1,5)

(7,1)

(7,2)

(7,3)

(7,4)

(7,5)

1

2

3

4

7-18 April, 2009 STAGS 5.0 User Manual

Line-to-Line–Contact Specifications Model Input—Element Units (1)
II JJ NPTS INC

II,JJ (row,col) indices for a node on the shell unit; if II = 0, all rows in column JJ are
included (STAGS resetting NPTS to NROWS, the number of rows in the shell unit);
if JJ = 0, all columns in row II are included (STAGS resetting NPTS to NCOLS, the
number of columns in the shell unit); II and JJ cannot both be zero; each of the
row indices specified by II and its offspring (via NPTS and INC, as described below)
must be in the range ; and each of the column indices specified by
JJ and its offspring (via NPTS and INC) must be in the range .

NPTS number of nodes to be specified with information on this S-5a record

INC direction indicator, used when II or JJ is 0 or when :
= +1 increment the row index II by + 1
= –1 increment the row index II by – 1
= +2 increment the col index JJ by + 1
= –2 increment the col index JJ by – 1

Example 1: The following S-5a record defines contact line 2 on Figure 7.3:

2 3 4 1 $ S-5a

Example 2: The following S-5a record defines contact line 1 on Figure 7.3:

5 5 5 -1 $ S-5a

Example 3: The following pair of S-5a records defines defines contact line 3 on Figure 7.3,
which starts at node (3,1), proceeds along column 1 to node (7,1) of the shell unit, then makes a
left-hand turn and goes along row 7 to node (7,4):

3 1 5 1 $ S-5a # 1
7 2 3 2 $ S-5a # 2

NS5 (H-1) number of S-5 records for the current element unit
NRECS (S-5) number of S-5a records required to define the current line

if (fewer than NRECS S-5a records have been processed) then
process another S-5a record

elseif (fewer than NS5 S-5 records have been processed) then
return to S-5

else
follow instructions at end of S-5b

endif

1 II NROWS≤ ≤

1 JJ NCOLS≤ ≤

NPTS 0>
STAGS 5.0 User Manual April, 2009 7-19

Model Input—Element Units (1) Line-to-Line–Contact Specifications
S-5b Contact Line on an Element Unit

A contact line is a directed line segment that is defined by a sequence of node numbers. When
a contact line is on an element unit, NRECS (S-5) records of this type are required to specify the
user nodes that define that line.

As noted in the S-5a description, above, contact lines are used by STAGS in E822 line-contact-
interaction definitions (T-8), each of which identifies a possible contact of two free edges. One
of the two edges is treated as the contacted line, which must have elements associated with it;
and the other is treated as the contacting line, which may or may not have elements associated
with it.

The order in which the nodes defining a contact line are specified determines the direction of
that contact line—the tail of the line being its first node and the head being its last. In its line-
contact operations, STAGS uses the elements that are attached to the left side of the contacted
line, as shown in the following figure:

II NPTS INC

II user node number for a node on the contact line

Figure 7.4 Contact Line on a Typical Element Unit
7-20 April, 2009 STAGS 5.0 User Manual

Line-to-Line–Contact Specifications Model Input—Element Units (1)
NPTS number of nodes to be specified with information on this S-5a record

INC incrementation, which may be positive or negative

NRECS (S-5) number of S-5a records required to define the current line
NS5 (H-1) number of S-5 records for the current element unit
NT1 (H-1) number of “spring” elements
NT2 (H-1) number of “beam” elements
NT3 (H-1) number of triangular shell elements
NT4 (H-1) number of quadrilateral shell elements
NT5 (H-1) other-elements/element-command flag

if (fewer than NRECS S-5b records have been processed) then
process another S-5b record

elseif (fewer than NS5 S-5 records have been processed) then
return to S-5

else
if (NT1 > 0) then go to T-1
elseif (NT2 > 0) then go to T-2
elseif (NT3 > 0) then go to T-3
elseif (NT4 > 0) then go to T-4
elseif (NT5 > 0) then go to T-5
else go to T-100

endif
STAGS 5.0 User Manual April, 2009 7-21

8

8

8 8
Model Input—Element Units (2)

This chapter describes the historic Edef protocol for specifying some or all of the elements that
are to be used in constructing an element unit in a STAGS model. As noted earlier, this protocol
is used if and only if one or more of the NT1, NT2, NT3, NT4 and NT5 parameters is positive on
the H-1 record for the current element unit. If all of these five parameters are nonpositive, then
STAGS expects the analyst to specify all of the elements for the element unit via the Ecom
protocol, which is described in Chapter 9.

The Edef protocol is a rigorous procedure that begins by using the values of NT1, NT2, NT3 and
NT4 (on H-1) to control loops in which appropriate type T-x record sets are processed to make
NT1 spring element definitions, then to make NT2 beam element definitions, then to make NT3

triangular element definitions, and finally to make NT4 quadrilateral element definitions. A
zero value for any (or all) of these parameters indicates that no elements of that type are to be
defined (via “regular” input records). After doing that, STAGS examines the NT5 parameter (on
H-1) to determine whether or not additional type T-x and/or T-xx record sets are then required to
define one or more contact, sandwich and/or solid elements. STAGS also checks to determine
whether or not the Ecom protocol is to be used after that, to define one or more elements of any
type.

8.1 Definition of “Spring” Elements via the Edef Protocol

If and only if NT1 is positive on H-1, STAGS expects the analyst to specify NT1 “spring” elements
at this point in his or her model-definition input file and will attempt to read and process one or
more type T-1 record sets to define those elements. Each of these T-1 record sets defines one or
more type E110 (mount), E120 (rigid-link), E121 (soft-link) or E130 (generalized-fastener)
spring elements—according to the value of the KELT parameter on T-1.
STAGS 5.0 User Manual April, 2009 8-1

Model Input—Element Units (2) Definition of “Spring” Elements via the Edef Protocol
T-1 Spring Element

As noted above, STAGS expects NT1 “spring” element definitions at this point in the model-

definition input file if NT1>0 on the H-1 record for this element unit. The NT1 parameter specifies

the total number of elements in the four categories that are listed below. Typically, each spring

is defined individually on a pair of records, as follows:

• E110 mount T-1 / T-1a

• E120 rigid link T-1 / T-1b

• E121 soft link T-1 / T-1b

• E130 generalized fastener T-1 / T-1c

Under some circumstances, the user will find it convenient to employ the looping feature

provided on record T-1 via the NX parameter, with increments for one or more of the nodes

specified thereon.

In any event, the T-1 series must be repeated as many times as necessary to specify a total of NT1

“spring” elements. Please refer to “E110 Mount element” on page 14-6, to “E120 Rigid link

element” on page 14-7, to “E121 Soft link element” on page 14-7 and/or to Section 14.8

“Contact Elements” on page 14-51 as necessary for explanations of the input data described here.

In the rigid link element (element type E120), the third node N3 is a reference node that is used

to enforce rotational compatibility between N1 and N2. If N3 is zero, the freedoms on N2 are

independent of those on N1—a condition that simulates a ball joint at N2. If N3 is nonzero, total

rotational compatibility is enforced between N1 and N2—a condition that simulates the ordinary

rigid link. If N3 is positive, the rotational constraint in enforced with a set of three Lagrange

multipliers. For this option, computational coordinates for each node in the link are completely

independent (at the discretion of the user), affording maximum flexibility. If N3 is negative, the

rotational constraint is enforced using partial compatibility (see record G-2, with ID1 = -2). A

restriction is introduced that forces the computational coordinates of N2 to be the same as for the

master node to which N1 refers. This can have unforeseen consequences if rigid links cause new

master/slave relationships to be defined between other nodes in the model. It is recommended

that a negative value for N3 be used with caution.

In the soft link element (element type E121), node N1 is usually associated with a node in a shell

unit; and N2 and N3 are usually associated with different layers of a solid.
8-2 April, 2009 STAGS 5.0 User Manual

Definition of “Spring” Elements via the Edef Protocol Model Input—Element Units (2)
N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

N1 node 1
N2 node 2
N3 node 3:

this is a reference node for the E120 element (a positive value
enforces rotational compatibility between nodes N1 and N2);

this is an active soft-link node for the E121 element

KELT 110 – E110 mount element
120 – E120 rigid link element

121 – E121 soft link element

130 – E130 generalized fastener

NX number of “spring” elements specified via the current T-1/* series;
set equal to unity by STAGS if nonpositive or omitted

INC1 incrementation variable for N1

INC2 incrementation variable for N2

INC3 incrementation variable for N3

USERELT user-specified element number (only used if IUWLE=1 on H-1)

INC4 incrementation variable for USERELT

if (KELT = 110) then go to T-1a
elseif (KELT = 120) then go to T-1b
elseif (KELT = 121) then go to T-1b
elseif (KELT = 130) then go to T-1c
STAGS 5.0 User Manual April, 2009 8-3

Model Input—Element Units (2) Definition of “Spring” Elements via the Edef Protocol
T-1a Mount

If the looping feature on the T-1 record is not used, each E110 mount element is defined
individually by a T-1 record followed by a T-1a record. If the looping feature is used, a series of
mount elements is defined by the T-1 record followed by NX T-1a records—one for each element
of the series.

The mount element is a special nonlinear spring capable of modeling a user-defined
displacement-velocity-force profile. The mount is discussed in “I-4a Mount Element Table Size”
on page 5-64 and in “E110 Mount element” on page 14-6. Please refer to those sections as
necessary. As can be seen in Figure 14.1 on page 14-6, rigid links can be introduced. Rigid links
provide a method for defining rotational stiffness in addition to axial spring stiffness. Rigid links
are expressed in local element coordinate systems, and , as shown in
Figure 14.1. The algorithm for determining these systems is very similar to that discussed for
record S-2, with the reference node N3 playing the same role as the point YAX, YAY, YAZ (S-2).
Clearly, node N3 must not lie on the same line as N1 and N2. The coordinate is in the direction
of the line connecting N1 to N2. The axis is normal to and in the plane defined by N1, N2,
and N3, pointing “toward” N3. Finally, is normal to the plane containing N1, N2, and N3,
completing a right-handed system. N3 can be either a structural node or a dummy node, defined
only for reference to the mount. Any freedoms defined on dummy nodes are ignored. For rigid
link 1, the origin of the system is situated at N1, and the distances RLX1, RLY1, and
RLZ1 are expressed in this system. For rigid link 2, the system, with origin at N2, is
used to express the distances RLX2, RLY2, RLZ2. These distances can be positive, negative, or zero.
When all these distances are zero, no rigid links exist.

X1 Y1 Z1, ,() X2 Y2 Z2, ,()

X1

Y1 X1

Z1

X1 Y1 Z1, ,()

X2 Y2 Z2, ,()
8-4 April, 2009 STAGS 5.0 User Manual

Definition of “Spring” Elements via the Edef Protocol Model Input—Element Units (2)
IMNT1 IMNT2 RLX1 RLY1 RLZ1 RLX2 RLY2 RLZ2

IMNT1 Mount Element Table identifier (I-4a)

IMNT2 optional additional mount table identifier: if IMNT2 is not zero, then IMNT1 and
IMNT2 must refer to tables consisting of a single row (displacement table,

, I-4a) or column (velocity table, , I-4a). There must be one
table of each type, or an error will result. If , the total mount force is the
sum of the force from the displacement table and the force from the velocity table.

RLX1, RLY1, RLZ1 coordinates of point RL1;

refer to Figure 14.1 on page 14-6

RLX2, RLY2, RLZ2 coordinates of point RL2

follow instructions at end of T-1c

NRV 1= NRD 1=

IMNT2 0>

X1 Y1 Z1, ,()

X2 Y2 Z2, ,()
STAGS 5.0 User Manual April, 2009 8-5

Model Input—Element Units (2) Definition of “Spring” Elements via the Edef Protocol
T-1b Rigid or Soft Link

If the looping feature on the T-120a record is not used, each E120 rigid link element or E121
soft link element is defined individually by a T-1 record followed by a T-1b record. If the looping
feature is used, a series of rigid link or soft link elements is defined by the T-1 record, followed
by one T-1b record on which the SCALE variable to be used for all of the elements of the series
is specified.

The rigid link element is discussed in “E120 Rigid link element” on page 14-7. A rigid link
element constrains the distance between two nodes (N1 and N2) to be invariant during an analysis.
The displacements of node N2 are dependent on the displacements and rotations of node N1

through a rigid-link constraint equation, which is enforced via Lagrange multipliers.

The potential energy for a rigid link element is given by

where is a vector of three Lagrange multipliers, and are the current global positions of
nodes N1 and N2, respectively, and is the directed position of N2 with respect to N1. The
magnitude of is the original distance between nodes N1 and N2. The user-specified element
scale factor is employed to make the magnitude of the stiffness contributions of the rigid link
element comparable in size to those of other elements in the configuration—this value is
typically on the order of the elastic modulus of the material.

Note that the rotations on N2 are unaffected unless the reference node N3 is nonzero, in which
case G-2 records are automatically generated to constrain the rotations on N1 to be the same as
N2; separate G-2 records can always be generated to constrain the rotational freedoms as the user
may desire.

The soft link element is discussed in “E121 Soft link element” on page 14-7. A soft link element
constrains the three nodes associated with it to be colinear.

SCALE

SCALE element scale factor

follow instructions at end of T-1c

Π

Π φαT x1 r x2–+()=

α x1 x2

r

r

φ

8-6 April, 2009 STAGS 5.0 User Manual

Definition of “Spring” Elements via the Edef Protocol Model Input—Element Units (2)
T-1c Generalized Fastener

If the looping feature on the T-1 record is not used, each E130 generalized fastener element is
defined individually by a T-1 record followed by a T-1c record. If the looping feature is used, a
series of generalized fastener elements is defined by the T-1 record followed by a single T-1c

record on which the mount-table-identifier and material-code variables to be used for all of the
elements of the series are specified.

The generalized fastener element is closely related to the E110 (mount) element, defined on T-1/

T-1a. Please refer to “E121 Soft link element” on page 14-7 for element-formulation details and
to Figure 8.1 “Degree-of-Freedom Directions at an Auxiliary Node” on page 8-12.

IMNT1 IMNT2 IMNT3 IMNT4 IMNT5 IMNT6 PLAS1 PLAS2 PLAS3 PLAS4 PLAS5 PLAS6

IMNT1 Mount Table identifier (see I–4a) applied to the relative local x translation
IMNT2 Mount Table identifier (see I–4a) applied to the relative local y translation
IMNT3 Mount Table identifier (see I–4a) applied to the relative local z translation

IMNT4 Mount Table identifier (see I–4a) applied to the relative local rotation

IMNT5 Mount Table identifier (see I–4a) applied to the relative local rotation

IMNT6 Mount Table identifier (see I–4a) applied to the relative local rotation

PLAS1 breakage code for IMNT1: see discussion, below, for significance
PLAS2 breakage code for IMNT2: see discussion, below, for significance
PLAS3 breakage code for IMNT3: see discussion, below, for significance
PLAS4 breakage code for IMNT4: see discussion, below, for significance
PLAS5 breakage code for IMNT5: see discussion, below, for significance
PLAS6 breakage code for IMNT6: see discussion, below, for significance

STAGS uses the six breakage codes, PLASi, specified here to control generalized fastener element
breakage modes for the associated mount identifiers, IMNTi (where). Each breakage code
may have one of the following five values:

PLASj = 1 ⇒ fastener j behaves elastically; its failure does not cause other fasteners to fail
PLASj = 2 ⇒ fastener j behaves elastically; its failure causes all of the fasteners to fail
PLASj = 3 ⇒ fastener j behaves elastically, and is unbreakable, throughout the analysis
PLASj = 4 ⇒ fastener j behaves plastically; its failure does not cause other fasteners to fail
PLASj = 5 ⇒ fastener j behaves plastically; its failure causes all of the fasteners to fail

θx

θy

θz

1 i 6≤ ≤
STAGS 5.0 User Manual April, 2009 8-7

Model Input—Element Units (2) Definition of “Spring” Elements via the Edef Protocol
NT1 (H-1) number of “spring” elements
NT2 (H-1) number of “beam” elements
NT3 (H-1) number of triangular shell elements
NT4 (H-1) number of quadrilateral shell elements
NT5 (H-1) other-elements/element-command flag

if (fewer than NT1 spring elements have been defined)return to T-1
elseif (NT2 > 0) then go to T-2
elseif (NT3 > 0) then go to T-3
elseif (NT4 > 0) then go to T-4
elseif (NT5 = 1) then go to T-5
elseif (NT5 = 2) then go to T-5
elseif (NT5 = 3) then go to T-100
else go to U-1
8-8 April, 2009 STAGS 5.0 User Manual

Definition of “Beam” Elements via the Edef Protocol Model Input—Element Units (2)
8.2 Definition of “Beam” Elements via the Edef Protocol

If and only if NT2 is positive on H-1, STAGS expects the analyst to specify NT2 “beam” elements
at this point in his or her model-definition input file and will attempt to read and process one or
more type T-2 record sets to define those elements. Each of these T-2 record sets defines one or
more type E210 (beam), or E250 (planar boundary conditions) “elements”—according to the
value of the KELT parameter on T-2.

T-2 Beam

If and only if NT2 > 0 on the H-1 record for this element unit, STAGS expects NT2 “beam” element
definitions at this point in the model-definition input file. In this case, NT2 specifies the total
number of elements in the two categories that are listed below. Typically, each “beam” element
is defined individually on one or two records, as follows:

• E220 standard beam element T-2 / T-2a
• E250 planar BC element T-2

Under some circumstances, the user will find it convenient to employ the looping feature
provided on record T-2 via the NX parameter, with increments specified thereon for one or more
of the listed nodes. In any event, the T-2 series of records must be repeated as many times as
necessary to specify a total of NT2 “beam” elements.

Beam References

• Section 4.1 “Coordinate Systems” on page 4-1

• Section 14.4 ““Beam” Elements” on page 14-12

• Figure 8.5 on page 8-33

As shown in Figure 14.5 on page 14-13, an element coordinate system, with its origin
located at node 1, is used to define beams. A reference node is required to establish the element
coordinate system. The coordinate is normal to and in the plane defined by N1, N2, N3,
pointing “toward” N3. Finally, is normal to the plane containing N1, N2, N3 and completes a
right-handed system. N3 can be either a structural node or a dummy node, defined only for
reference to the beam. All freedoms at a dummy node should be suppressed on the S-1 record.
Note the similarity of the system with the system for nonlinear mounts (T-1/T-1a) and
the nodal-auxiliary coordinate system defined on the S-2 record.

x′ y′ z′, ,()

y′ x′

z′

x′ y′ z′, ,()

xa ya za, ,()
STAGS 5.0 User Manual April, 2009 8-9

Model Input—Element Units (2) Definition of “Beam” Elements via the Edef Protocol
Moving-Plane Boundary References

• Section 14.8 “Contact Elements” on page 14-51

• “B-2 General Model Summary” on page 5-12

• “O-1a Discrete Ring—Record 1” on page 6-50

The T-2 record can also be used to define a moving plane boundary which is like a symmetry
boundary, except that the symmetry plane itself is allowed to move as a rigid body. In the
element unit, beam-like elements are strung along a user-defined space curve forming the
boundary. It is the user’s responsibility to make sure that curve initially lies in a plane (if the
constraint is violated initially, STAGS will complain). The reference node N3 must also lie in the
boundary plane.

Typically, each beam element within an element unit will be defined individually with its own
T-2 record, requiring the T-2 record to be repeated NT2 times (H-1). Under some circumstances,
the user will find it convenient to employ the looping feature triggered by the NX parameter on
the T-2 record: in this case, incrementation variables must be specified on a T-2a record
following any T-2 record that defines more than one beam; and T-2 records (plus T-2a records,
where appropriate) sufficient to define NT2 beam elements must be supplied.

N1 N2 N3 KELT ICROSS XSI ECY ECZ ILIN IPLAS NX USERELT

N1 node 1; refer to Figure 14.5 on page 14-13

N2 node 2

N3 node 3, the reference node, which is used to generate the element
coordinate system; for the moving plane boundary, N3 must lie in the boundary
plane.

KELT beam element code number; see Section 14.4 ““Beam” Elements” on page 14-12.
The only “beam” elements currently available are: E210 Beam and E250 Planar
Boundary Condition.

ICROSS cross-section number, as defined by ITAB (J-1), in the Cross Section Table:
 indicates that the stiffener is defined in user-written CROSS.
 indicates that the stiffener line is a moving plane boundary.

When , data tagged by ✤ below are defined in CROSS; they are
automatically initialized to zero before CROSS is called, thereby superseding any
nonzero values input here; when , only ECY is relevant. Refer to
Figure 8.5 on page 8-33 for an illustration of XSI, ECY, and ECZ; compare with
Figure 6.5 on page 6-52, the shell-unit-stiffener counterpart.

x′ y′ z′, ,()

ICROSS 0=

ICROSS 1–=

ICROSS 0=

ICROSS 1–=
8-10 April, 2009 STAGS 5.0 User Manual

Definition of “Beam” Elements via the Edef Protocol Model Input—Element Units (2)

✤

✤

✤

✤

✤

XSI angle , in degrees, between the element normal and the cross section . is
a right-handed rotation about , the longitudinal axis of the beam, which is
parallel to .

ECY eccentricity in the direction; ECY is the coordinate of the pair which
positions the origin of the system.

For (moving plane boundary), ECY is a scale factor used for the
numerical conditioning of Lagrange constraints introduced by the multipoint
constraint. In that case, ECY should be of the same order of magnitude as entries
in the stiffness matrix. A good guess is the modulus of elasticity of the material.

ECZ eccentricity in the direction; ECZ is the coordinate of the pair which
positions the origin of the system.

ILIN geometric nonlinearity flag

0 – nonlinear strain-displacement relations
1 – linear strain-displacement relations

IPLAS material nonlinearity flag (see M-5)

0 – linear elastic constitutive relations

1 – plasticity included

2 – centroidal plasticity

NX number of beam elements to be generated via this T-2 record;
set to unity by STAGS if nonpositive or omitted

USERELT user-specified element number, used only if IUWLE = 1 on H-1

if (NX > 1) then go to T-2a
else follow instructions at end of T-2a

ξ z′ z ξ
x

x′

y′ y′ y′ z′,()
y z,()

ICROSS 1–=

z′ z′ y′ z′,()
y z,()
STAGS 5.0 User Manual April, 2009 8-11

Model Input—Element Units (2) Definition of “Beam” Elements via the Edef Protocol
Figure 8.1 Degree-of-Freedom Directions at an Auxiliary Node

Compare with Figure 5.5 “Beam cross sections.” on page 5-122. Also, see 16.2 “Beam
Results” on page 16-8.

node

ECZ

EC

z

x′

y

y′

z′

x

ξ

8-12 April, 2009 STAGS 5.0 User Manual

Definition of “Beam” Elements via the Edef Protocol Model Input—Element Units (2)
T-2a Beam Incrementations

A single record of type T-2a must be included immediately after each type T-2 record on which
the NX parameter is greater than unity. Incrementation variables are specified here for use with
the T-2 record looping functions.

INC1 INC2 INC3 INC4

INC1 incrementation variable for use with the N1 (node 1) variable on T-2
INC2 incrementation variable for use with N2

INC3 incrementation variable for use with N3

INC4 incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

Example: the following T-2/T-2a record combination:

20 51 99 210 3 0.0 0.0 0.0 0 0 3 $ T-2 record
 5 10 0 $ T-2a record

generates the same three beams as the following three individual T-2 records:

20 51 99 210 3 0.0 0.0 0.0 0 0 $ T-2 record
25 61 99 210 3 0.0 0.0 0.0 0 0 $ T-2 record
30 71 99 210 3 0.0 0.0 0.0 0 0 $ T-2 record

NT2 (H-1) number of “beam” elements
NT3 (H-1) number of triangular shell elements
NT4 (H-1) number of quadrilateral shell elements
NT5 (H-1) other-elements/element-command flag

if (NT2 beams have been defined) then
if (NT3 > 0) then go to T-3
elseif (NT4 > 0) then go to T-4
elseif (NT5 = 1) then go to T-5
elseif (NT5 = 2) then go to T-5
elseif (NT5 = 3) then go to T-100
else go to U-1

else continue defining T-2
STAGS 5.0 User Manual April, 2009 8-13

Model Input—Element Units (2) Definition of Triangle Elements via the Edef Protocol
8.3 Definition of Triangle Elements via the Edef Protocol

If and only if NT3 is positive on H-1, STAGS expects the analyst to specify NT3 triangle elements
at this point in his or her model-definition input file and will attempt to read and process one or
more type T-3 record sets to define those elements. Each of these T-3 record sets defines one or
more E320 or E330 triangle elements—according to the value of the KELT parameter on T-3.

T-3 Triangular Shell

If and only if NT3 > 0 on the H-1 record for this element unit, STAGS expects NT3 triangle element
definitions at this point in the model-definition input file. In this case, NT3 specifies the total
number of elements in the two categories that are listed below. Typically, each triangle is defined
individually by a single T-3 record—or by a T-3/T-3a pair of records, if the IANG wall-reference
option is exercised—as follows:

• E320 standard triangle T-3 or T-3 / T-3a

• E330 MIN3 triangle T-3 or T-3 / T-3b

Refer to the discussion in “T-4 Quadrilateral Shell” on page 8-17.

N1 N2 N3 KELT IWALL ZETA ECZ ILIN IPLAS IANG USERELT

N1 node 1; see Section 14.5 “Shell and Mesh-Transition Shell Elements” on
page 14-19

N2 node 2

N3 node 3

KELT element code number (see Chapter 14 “The Element Library”):

= 320 — type E320 triangular element

= 330 — type E330 triangular element
8-14 April, 2009 STAGS 5.0 User Manual

Definition of Triangle Elements via the Edef Protocol Model Input—Element Units (2)

✤

✤

✤

✤

IWALL wall fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL

>0 – shell wall configuration (fabrication) number in the
Wall Fabrication Table (K-1)

<0 – shell fabrication identifier in the GCP Fabrications Table (I-21a):
this option is only available for type E330 elements

When , data below indicated by ✤ are defined in subroutine
WALL; they are automatically initialized to zero before WALL is called,
thereby superseding any nonzero values input here.

ZETA angle between the wall-reference coordinate and the fabrication

coordinate ; is a right-handed rotation about .
See Figure 8.2 on page 8-19.

ECZ eccentricity in direction. ECZ is the coordinate of the shell wall middle
surface; refer to Figure 6.2 on page 6-28. In element units, are used in
place of , which do not exist in an element unit. See “Effects of
Eccentricity” on page 16-6.

ILIN governs geometric nonlinearity

0 – nonlinear strain-displacement relations
1 – linear strain-displacement relations

Note that with ILIN = 1, bifurcation buckling is suppressed in the shell unit

IPLAS governs material nonlinearity

0 – elastic behavior only
1 – plasticity included, with the material law satisfied

at each element integration point
2 – plasticity included, with the material law satisfied

at the element centroid (centroidal plasticity)

IANG wall-reference option; see discussion above

0 – use default strategy of projecting to establish

1 – input , which is projected to establish

USERELT user-specified element number, used only when IUWLE = 1 on H-1

if (IANG = 1) then go to T-3a
else follow instructions at end of T-3a

IWALL 0=

ζ xw

x ζ z

z′ z′
x′ y′ z′, ,()

X′ Y′ Z′, ,()

xg yg, xw

rw xw
STAGS 5.0 User Manual April, 2009 8-15

Model Input—Element Units (2) Definition of Triangle Elements via the Edef Protocol
T-3a Wall Reference Vector

RX RY RZ

RX, RY, RZ wall reference vector, , which is projected onto the element surface to

determine the direction of the wall-reference coordinate ; is

expressed in global coordinates

NT3 (H-1) number of triangular shell elements
NT4 (H-1) number of quadrilateral shell elements
NT5 (H-1) other-elements/element-command flag

if (fewer than NT3 triangles have been defined)return to T-3
elseif (NT4 > 0) then go to T-4
elseif (NT5 = 1) then go to T-5
elseif (NT5 = 2) then go to T-5
elseif (NT5 = 3) then go to T-100
else go to U-1

rw

xw rw

xg yg zg, ,()
8-16 April, 2009 STAGS 5.0 User Manual

Definition of “Quadrilateral” Elements via the Edef Protocol Model Input—Element Units (2)
8.4 Definition of “Quadrilateral” Elements via the Edef Protocol

If and only if NT4 is positive on H-1, STAGS expects the analyst to specify NT4 “quadrilateral”
elements next and will attempt to read and process one or more type T-4 record sets to define
those elements. Each of these T-4 record sets defines one or more type E410, E411 or E480 quad
elements, one or more E510 or E710 quad transition elements, or one or more E420 or E430
pairs of E320 or E330 triangular elements—according to the value of the KELT parameter on T-4.

T-4 Quadrilateral Shell

If and only if NT4 > 0 on the H-1 record for this element unit, STAGS expects NT4 “quadrilateral”
element specifications at this point in the model-definition input file. In this case, NT4 specifies
the total number of elements in the three categories that are listed below. Each quadrilateral is
defined individually via a single T-4 record or (for the E480 9-node quadrilateral element) via a
T-4/T-4a pair of records—followed by a T-4b record if the IANG wall-reference option is
exercised—as follows:

• E410 4-node quadrilateral element T-4 or T-4 / T-4b
• E411 4-node quadrilateral element T-4 or T-4 / T-4b
• E480 9-node quadrilateral element T-4 / T-4a or T-4 / T-4a / T-4b

NT4 (H-1) is the total number of quadrilateral shell elements in the current element unit.

Quadrilateral Shell References

• Section 4.1 “Coordinate Systems” on page 4-1

• Section 14.2 “Algorithm for Determining the Element Frame” on page 14-2

• Section 14.5 “Shell and Mesh-Transition Shell Elements” on page 14-19

• “K-1 Shell Wall Properties” on page 5-129

• “M-5 Shell Wall” on page 6-24

A quadrilateral shell element is defined by specifying the four corner nodes in counterclockwise
order as viewed from above. In this context, “viewed from above” means looking down onto the
top surface of the element. As shown in Figure 6.2 on page 6-28, the top surface corresponds to

 (in an element unit). These four nodes, input on T-4, determine the
element coordinate system. Refer to 14.2 and 14.5 for details.
Z′ Z′max= z′ z′max= x′ y′ z′, ,()
STAGS 5.0 User Manual April, 2009 8-17

Model Input—Element Units (2) Definition of “Quadrilateral” Elements via the Edef Protocol
For elements having more than four nodes, nodes 5–n, where n is the total number of nodes in
the element, are specified on T-4a. The order in which the nodes are given is according to the
numbering shown in the sketches in Section 14.5 “Shell and Mesh-Transition Shell Elements”.
Some 4-node elements, like E411, contain midside deviational nodes that are added
automatically, without user input. Currently, only the 9-node E480 element requires a T-4a

record.

The axis defines the direction in which pressure acts—a positive pressure
value acts in the positive direction, and a negative pressure value acts in
the negative direction.

In shell units, the wall-fabrication orientation is determined by ZETA & ECZ (M-5). Figure 6.2
shows how ECZ defines the eccentricity and how ZETA rotates the fabrication coordinates to
establish their directions relative to the wall-reference coordinates. Implicit in Figure 6.2
is the shell-unit convention that the wall-reference coordinates are defined to be
coincident with the shell coordinates. In element units, shell coordinate systems do not
exist. Instead, the user is given two options for establishing wall-reference coordinates.

In the default option, STAGS determines whether the or axis lies closer to the element
plane. If lies closer, it is projected onto the element surface to establish the axis. If lies
closer, it is projected to establish the axis. This means that when and both lie in the
plane of the element, the result will be the same regardless of which is chosen to be projected.

The other option is to input a wall reference vector, , that determines the direction of .
Although the user will in most cases try to make sure that this vector is tangent to the surface he
has in mind, the code makes no such assumption. STAGS will project this vector onto the element
surface to establish the axis.

After the axis is established, using either of the two options, the wall orientation is then
determined just as it is for shell units. Compare Figure 8.2 with Figure 6.2. ZETA has the same
meaning in both instances. The only difference is that for shell units, the wall-reference
coordinates are uniquely defined by the shell coordinates, and for element units, one of
two user-selected options (IANG, on the T-4, T-9, T-10, T-11, T-12 and T-13 records) is used to
establish the wall-reference system.

The process outlined here often allows the user to specify all the wall angles with very simple
input. For example, some standard geometries such as cylinders or cones have an axis of
revolution (the generator) whose projection onto the element surface lies along the same
direction, independent of the element location. If user input specifies the generator as , or if
the default is used (for cone angles less than), a unique angle ZETA gives the proper offset

☞ z′

z′

z′

x y,()

xw yw,()

xw yw,()

X′ Y′,()

xg yg

xg xw yg

yw xg yg

rw xw

xw

xw

xw yw,()
X′ Y′,()

rw
45°
8-18 April, 2009 STAGS 5.0 User Manual

Definition of “Quadrilateral” Elements via the Edef Protocol Model Input—Element Units (2)
for all elements in the geometry. Figure 8.3 on page 8-20 shows an example where the generator
of a cone is specified as . It is usually straightforward to specify the global coordinates of a
vector parallel to a shell-of-revolution generator. The user should be careful for more complex
geometries. It should also be noted that the user need not know the shell element
coordinate system.

For all quadrilaterals, regardless of the number of nodes or the order of the element, the plane of
the element is determined by the procedure outlined in Section 14.2 “Algorithm for Determining
the Element Frame”. The result of this procedure is an element reference plane that is the “best
fit” to the four corner nodes. wall-reference coordinates, and hence fabrication
coordinates and material coordinates, all lie in this “average” plane.

Note that the fabrication coordinate system is oriented by rotating the wall-
reference system through the angle ZETA. The material coordinate system for
each layer in a laminate is then determined by rotating the fabrication
system through a unique angle ZETL (K-2)—or ANGSHL (I-21d), for GCP
input—for the corresponding layer.

T-4 is repeated NT4 times (H-1).

Figure 8.2 Shell Wall Orientation for Element Units

x
xw

y

yw

ζ

ζ ZETA=

rw

x′ y′ z′, ,()

xw yw,() x y,()

φ1 φ2,()

☞

STAGS 5.0 User Manual April, 2009 8-19

Model Input—Element Units (2) Definition of “Quadrilateral” Elements via the Edef Protocol
Figure 8.3 Specifying the Wall-Reference Vector, , in an Element Unit:
example showing use of a conical-shell generator

x

z
y

xg

zg

yg

rw

xw

ζ

x zg–= rw 0 0 1–, ,()=∴

xw projection of rw=

onto element plane3
4

2

1

Specify the cone generator, , for :x rw

z
x

 is a right-handed rotation about , the fabrication normal.ζ ZETA= z

rw
8-20 April, 2009 STAGS 5.0 User Manual

Definition of “Quadrilateral” Elements via the Edef Protocol Model Input—Element Units (2)

✤

✤

✤

✤

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT

N1 node 1; see Section 14.5 “Shell and Mesh-Transition Shell Elements” on
page 14-19

N2 node 2
N3 node 3
N4 node 4

KELT element code number (see Chapter 14 “The Element Library”)

IWALL wall fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL
>0 – shell wall configuration (fabrication) number in

the Wall Fabrication Table (K-1)
<0 – shell wall fabrication identifier in the GCP Fabrications Table (I-21a)

When , data below indicated by ✤ are defined in subroutine WALL;
they are automatically initialized to zero before WALL is called, thereby
superseding any nonzero values input here

ZETA angle between the wall-reference coordinate and the fabrication coordinate

; is a right-handed rotation about ; see Figure 8.2 on page 8-19

ECZ eccentricity in direction. ECZ is the coordinate of the shell wall middle

surface; refer to Figure 6.2 on page 6-28; in element units, are used in

place of , which do not exist in an element unit; see “Effects of
Eccentricity” on page 16-6

ILIN governs geometric nonlinearity

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

Note that with ILIN = 1, bifurcation buckling is suppressed in the shell unit

IPLAS governs material nonlinearity

0 – elastic behavior only

1 – plasticity included, with the material law satisfied
at each element integration point

2 – plasticity included, with the material law satisfied
at the element centroid (centroidal plasticity)

IWALL 0=

ζ xw

x ζ z

z′ z′

x′ y′ z′, ,()

X′ Y′ Z′, ,()
STAGS 5.0 User Manual April, 2009 8-21

Model Input—Element Units (2) Definition of “Quadrilateral” Elements via the Edef Protocol
INTEG integration type (see N-1)

0 – standard integration, or Gauss points for elements E410 & E411

1 – modified 5-point integration, previously referred to
as full integration

2 – full Gauss integration for E411 element

IPENL penalty option (see N-1)

0 – no penalty function on fourth-order terms in elements E410 and E411

1 – penalty function included in elements E410 and E411

IANG wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-4b)

USERELT user-specified element number, used only when IUWLE = 1 on H-1

if (KELT references an element with > 4 nodes)then go to T-4a
elseif (IANG = 1) then go to T-4b
else follow instructions at end of T-4c

2 2×

3 3×

xg yg, xw

rw xw
8-22 April, 2009 STAGS 5.0 User Manual

Definition of “Quadrilateral” Elements via the Edef Protocol Model Input—Element Units (2)
T-4a Extra Nodes

This record is provided only for elements having more than four nodes, and is used to input
nodes 5–n, where n is the total number of nodes in the element. The order in which the nodes
are given is according to the numbering shown in the sketches in Section 14.5 “Shell and Mesh-
Transition Shell Elements”. Some 4-node elements, like the E411, contain midside deviational
nodes that are added automatically without user input. Currently, only the 9-node E480 element
requires a T-4a record.

NODE(i), i=5,n

NODE(i) node i; see above

IANG (T-4) wall-reference option

if (IANG = 1) then go to T-4b
else follow instructions at end of T-4b
STAGS 5.0 User Manual April, 2009 8-23

Model Input—Element Units (2) Definition of “Quadrilateral” Elements via the Edef Protocol
T-4b Wall Reference Vector

RX RY RZ

RX, RY, RZ wall reference vector, , which is projected onto the element surface to

determine the direction of the wall-reference coordinate ; is

expressed in global coordinates

NT4 (H-1) number of quadrilateral shell elements
NT5 (H-1) element-command flag

if (fewer than NT4 quadrilaterals defined)return to T-4
elseif (NT5 = 1) then go to T-5
elseif (NT5 = 2) then go to T-5
elseif (NT5 = 3) then go to T-100
else go to U-1

rw

xw rw

xg yg zg, ,()
8-24 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
8.5 Definition of “Other” Elements via the Edef Protocol

If and only if the NT5 parameter is 1 or 2 on the H-1 record for the current element unit, STAGS

expects the analyst to continue using the Edef protocol to define zero or more type E810, E820
and/or E822 contact elements, then to define zero or more type E830, E840, E845, E847 and/
or E849 sandwich elements, and then to define zero or more E880-family solid elements via
additional type T-x and/or T-xx “regular” input records, as described below. A type T-5 control
record is required next to specify how many definitions are to be made for each of these types
or classes of elements.

T-5 Contact, Sandwich, and Solid Element Flags

This record is required next (with the Edef protocol) for specification of the number of “regular”
input definitions that STAGS must process to generate zero or more E810 (PAD) elements, then
to generate zero or more E820 (generalized contact) elements, then to generate zero or more
E822 (line-contact-interaction) definitions, then to generate zero or more E830, E840, E845,
E847 and/or E849 (sandwich) elements, and finally to generate zero or more E880-family (ANS-
type solid) elements.

Each type E810 PAD element to be generated may be defined explicitly with a single T-6 record,
which references eight user points that must have been defined with S-1/S-1a/S-2 or S-3/S-3a/
S-4 user point records within that element unit. Multiple PAD elements can be defined explicitly
with a T-6 record on which the PAD-element looping parameter (described below) is invoked,
using nodal incrementations specified on a companion T-6b record.

Specific type E820 “general-contact” elements in an element unit are constructed on-the-fly by
the STAGS program when contact occurs during the course of an analysis—utilizing “contact-
definition” information supplied here. Each contact definition identifies a set of one or more
contact points on one structural component that may come into contact with a specific contact
surface on another. Each such contact definition is specified with a single T-7 record set
(consisting of a T-7a record followed by as many T-7b or T-7c contact-surface-element-
specification records and by as many T-7d or T-7e contact-point-specification records as may
be required), as described below.

Similarly, specific line-contact elements are constructed on-the-fly by STAGS when edge-to-edge
contact occurs during the course of an analysis—using contact lines that have been specified as
STAGS 5.0 User Manual April, 2009 8-25

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
described earlier (with the S-5 and related records) and utilizing “line-contact-interaction-
definition” information that the analyst must supply here. Each line-contact-interaction
definition identifies a specific line on one structural component that may be contacted by a
specific contacting line on another. Each such line-contact-interaction definition is specified
with a single T-8 record.

Each E810-element-, each E820-element- and each E822-element specification references a
stiffness/displacement (penalty) function table that must have been defined via I-4a, I-4b, I-4c

and I-4d records.

Each individual E830 sandwich element in a STAGS element unit may be defined via its own
T-9/T-9a/T-9c/T-9e record set (plus T-9b, T-9d and/or T-9f records, if material-angle
transformations are required). Multiple E830 sandwich elements can be defined using the two
looping parameters on the T-9 record, with nodal incrementations specified on the T-9g and T-9h

companion records.

Each individual E840 sandwich element in a STAGS element unit may be defined via its own
T-10/T-10a/T-10c/T-10e record set (plus T-10b, T-10d and/or T-10f records, if material-angle
transformations are required). Multiple E840 sandwich elements can be defined via the two
looping parameters on T-10, with nodal incrementations specified on T-10g and T-10h.

Each individual E845 sandwich transition element in a STAGS element unit may be defined via
its own T-11/T-11a/T-11c/T-11e record set (plus T-11b, T-11d and/or T-11f records, if material-
angle transformations are required). Multiple E845 elements can be defined via the two looping
parameters on T-11, with nodal incrementations specified on T-11g and T-11h.

Each individual E847 sandwich transition element in a STAGS element unit may be defined via
its own T-12/T-12a/T-12c/T-12e record set (plus T-12b, T-12d and/or T-12f records, if material-
angle transformations are required). Multiple E847 elements can be defined via the two looping
parameters on T-12, with nodal incrementations specified on T-12g and T-12h.

Each individual E849 sandwich element in a STAGS element unit may be defined via its own
T-13/T-13a/T-13c/T-13e record set (plus T-13b, T-13d and/or T-13f records, if material-angle
transformations are required). Multiple E849 elements can be defined via the two looping
parameters on T-13, with nodal incrementations specified on T-13g and T-13h.

Each individual E880-family solid element in a STAGS element unit may be defined explicitly
via its own T-14/T-14a record set (plus a T-14b record, if a material-angle transformation is
required). Multiple E880-family solid elements can be defined via the two looping parameters
on T-14, with nodal incrementations specified on T-14c and T-14d.
8-26 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
The T-5 record contains three contact-element-definition flags (N810, N820 and N822), five
sandwich-element-definition flags (N830, N840, N845, N847 and N849), and one solid-element-
definition flag (N880):

N810 N820 N822 N830 N840 N845 N847 N849 N880

N810 number of PAD-element-definition records for the current element unit
N820 number of general-contact-definition records
N822 number of line-contact-interaction definition records

N830 number of 6-node-sandwich-element-definition records
N840 number of 8-node-sandwich-element-definition records
N845 number of 10-node-sandwich-transition-element-definition records
N847 number of 14-node-sandwich-transition-element-definition records
N849 number of 18-node-sandwich-element-definition records

N880 number of solid-element-definition records

if (N810 > 0) then go to T-6
elseif (N820 > 0) then go to T-7
elseif (N822 > 0) then go to T-8
elseif (N830 > 0) then go to T-9
elseif (N840 > 0) then go to T-10
elseif (N845 > 0) then go to T-11
elseif (N847 > 0) then go to T-12
elseif (N849 > 0) then go to T-13
elseif (N880 > 0) then go to T-14
else go to U-1
STAGS 5.0 User Manual April, 2009 8-27

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
Contact elements

The current version of STAGS has three “elements” that enable the user to perform analyses in
which three types of contact might occur.

The E810 PAD surface/surface contact “element” is designed to treat situations in which one
surface may come into contact with another, when the specific elements on one surface that may
come into contact with specific elements on the other surface are known a priori.

The E820 generalized contact “element” is designed to treat situations in which one surface may
come into contact with another surface, but where the specific elements that may come into
contact with each other are not known in advance and/or when they may change during the
course of the analysis to be performed. The E820 approach considers contact to be point/surface
phenomenon. Here, the user specifies a set of points on one surface and a set of elements on the
other, telling STAGS that one or more of the identified points may come into contact one or more
of the identified elements. STAGS digests this information and uses it to determine whether or
not point/surface contact has started (or is continuing) at each step of the analysis, and generates
one or more point/surface contact elements as and if required, for the specific points and surfaces
that are involved with that contact.

The E830 line/line contact “element” is designed to treat situations in which one line (edge) may
come into contact with another line (edge), but where the exact location at which that contact
may occur is not known in advance and/or when it may change during the course of the analysis.
The E830 approach considers this type of contact to be line/line phenomenon. Here, the user
specifies a set of two or more line segments in the model—and uses an E830 line/line contact
“element” to identify one line that may come into contact with another, for each line/line contact
situation that might occur. STAGS digests this information and uses it to determine whether or
not line/line contact has started (or is continuing) at each step of the analysis, and generates one
or more line/line contact elements as and if required.

The theoretical foundations of these three types of contact “elements” are described in Section
14.8 of this document and in the STAGS Elements Manual document. The input requirements
for these elements are described next.
8-28 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-6 E810 PAD Contact Element

The E810 8-node PAD contact element is basically a set of four independent nonlinear springs
connecting the nodes defining one E410 shell element to the corresponding nodes of a second
E410 element. It is intended for use in situations where those two PAD-connected elements—
which may be in the same or in different shell or element units—may come into contact with
each other. The E810 PAD element is suitable for use only in situations where the contact region
is known a priori, where the individual elements coming into contact with each other can be
readily identified and paired, and where no sliding along the contact surface occurs. The PAD
element can be used to treat (some) lap-joint and Hertzian impact problems, but it is not
designed for use in more general situations where the contact regions are not known a priori or
when sliding occurs or when friction is present. STAGS’ more general (E820) contact capabilities
must be used in those situations.

The nonlinear spring connecting each pair of nodes typically has a very low stiffness when the
gap separating the two nodes is positive (where the gap is defined as the distance of the upper-
element node from the lower-element reference plane) and to be very stiff when the gap is
extremely small or negative (indicating that at least some portions of the two parent elements are
in contact with each other): the large forces and stiffnesses that are produced by stiff PAD-
element springs helps to enforce the displacement compatibility constraints for the contact
problem.

Stiffness properties for PAD-element springs must be specified via one or more stiffness-
displacement tables (type I-4a through I-4d records). These stiffness profiles, each of which is

Figure 8.4 E810 PAD Element

N8

N7

N6

N5

N4

N3

N2

N1

Upper E410 Element

Lower E410 Element
STAGS 5.0 User Manual April, 2009 8-29

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
identified by its profile-definition table number, are currently assumed to be independent of
velocity (any velocity dependencies specified are ignored by the program).

Element-unit user point nodes employed in defining PAD elements are defined via type S-1 or
S-3 records (and type S-2 or S-4 records, if necessary): these user points are generally slaved
to nodes defining the E410 shell elements that are expected to come in contact with each other.
An additional OFFSET parameter can be used to account for thickness effects when the user point
nodes lie on parent-node reference surfaces within (rather than on the surfaces of) those parent
elements.

The T-6 record defines one or more E810 elements to be included in the current element unit.
The looping capabilities provided here, via NX and on T-6 and the incrementation parameters on
T-6a, can be used effectively in many situations.

N1 N2 N3 N4 N5 N6 N7 N8 KELT ITAB OFFSET NX USERELT

N1 first lower-surface pad-element node point
N2 second lower-surface pad-element node point
N3 third lower-surface pad-element node point
N4 fourth lower-surface pad-element node point

N5 first upper-surface pad-element node point, connected to N1

N6 second upper-surface pad-element node, connected to N2

N7 third upper-surface pad-element node, connected to N3

N8 fourth upper-surface pad-element node, connected to N4

KELT element code number 810 defines an 8-node PAD element

ITAB spring stiffness-displacement-table identifier (see record I–4a)

OFFSET offset parameter, to account for element thicknesses

NX looping parameter, set equal to unity by STAGS if omitted or nonpositive

USERELT user-specified element number, used only if IUWLE = 1 on H-1

if () go to T-6a
else follow instructions at the end of T-6a

NX 1>
8-30 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-6a PAD Element Incrementations

If the NX looping parameter is greater than 1 on T-6, a T-6a record is required to specify nine
incrementation variables to be used with the T-6 looping function.

I1 I2 I3 I4 I5 I6 I7 I8 I9

I1 incrementation for the N1 (PAD node) variable on the parent T-6 record
I2 incrementation for the N2 (PAD node) variable on the parent T-6 record
I3 incrementation for the N3 (PAD node) variable on the parent T-6 record
I4 incrementation for the N4 (PAD node) variable on the parent T-6 record
I5 incrementation for the N5 (PAD node) variable on the parent T-6 record
I6 incrementation for the N6 (PAD node) variable on the parent T-6 record
I7 incrementation for the N7 (PAD node) variable on the parent T-6 record
I8 incrementation for the N8 (PAD node) variable on the parent T-6 record
I9 incrementation for IUWLE

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-6/T-6a record combination:

10 20 30 40 50 60 70 80 810 7 0.0 3
 1 1 1 1 1 1 1 1

generates the same three PAD elements as the following three individual T-6 records:

10 20 30 40 50 60 70 80 810 7 0.0
11 21 31 41 51 61 71 81 810 7 0.0
12 22 32 42 52 62 72 82 810 7 0.0 1
STAGS 5.0 User Manual April, 2009 8-31

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
N810 (T-5) number of E810 definitions
N820 (T-5) number of E820 definitions
N822 (T-5) number of E822 definitions
N830 (T-5) number of E830 definitions
N840 (T-5) number of E840 definitions
N845 (T-5) number of E845 definitions
N847 (T-5) number of E847 definitions
N849 (T-5) number of E849 definitions
N880 (T-5) number of E880 definitions

if (N810 E810 definitions have been processed)return to T-6
elseif (N820 > 0) then go to T-7
elseif (N822 > 0) then go to T-8
elseif (N830 > 0) then go to T-9
elseif (N840 > 0) then go to T-10
elseif (N845 > 0) then go to T-11
elseif (N847 > 0) then go to T-12
elseif (N849 > 0) then go to T-13
elseif (N880 > 0) then go to T-14
else go to U-1

8-32 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-7 General Contact Definition

As noted in the preceding description, E810 PAD elements are defined explicitly and should

only be used in situations where particular E410 elements that may contact each other are known

a priori and can be paired, and where the contact regions (and E410-element pairings) do not

change during an analysis. STAGS’ more general point/surface contact capabilities must be used

in situations where contact is anticipated but it is not known where the contact will occur and/or

how the contact region changes as the analysis progresses.

It is convenient, here, for the analyst to view the contact problem as one in which one structure

is (perhaps arbitrarily) designated as the contacting structure and the other is considered to be

the contacted one. The current approach in STAGS to the general contact problem avoids many

of the complexities and inefficiencies of general surface-on-surface interactions by considering

one or more specific points on one structure that may come into contact with one or more shell

elements on the other structure—as shown schematically in Figure 8.5.

The general-contact capabilities in STAGS are invoked when the analyst, anticipating the

possibility that contact between two structural components may occur, includes one or more

E820 contact-definition specifications in an element unit of the STAGS model. Each contact

definition identifies a set of contact points on the contacting structure that may experience

contact with a particular contact surface on the contacted structure—where the contact surface

is a set of contiguous shell elements forming a convex region on the surface of the latter body.

Figure 8.5 Contact-Definition Specification in STAGS

Contact Point

Contact Surface

Contacting Structure

Contacted Structure

Contact Element
STAGS 5.0 User Manual April, 2009 8-33

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
STAGS uses these contact-definitions to check for contact and to construct actual contact
elements coupling contacting points with contacted shell elements on-the-fly, as and if required,
as the analysis progresses. In doing this, STAGS attempts to use penalty functions to enforce
displacement-compatibility constraints between each contacting point and each element with
which it is in contact—utilizing analyst-supplied stiffness-vs.-displacement information to
compute the forces and stiffnesses resulting from the (necessarily) small contact-surface
penetrations that occur.

An actual contact element is (conceptually) a nonlinear spring connecting the contacting point to
the surface of the contacted element. This nonlinear spring typically has a very low stiffness and
generates a small force when the contact-surface penetration is small, but it gets progressively
stiffer and generates a larger force as the penetration increases. Stiffness properties for these
springs must be specified via one or more stiffness-displacement tables (type I-4a through I-4d

records). These stiffness-displacement functions each of which is identified by its table number,
are currently assumed to be independent of velocity (any velocity dependencies specified are
ignored by the program).

The T-7 record defines a single E820 definition to be included in the current element unit. An
E820 contact-definition is made via a T-7 record (described immediately below) that is
followed first by as many T-7a or T-7b contact-surface-element-specification records, and then
by as many T-7c or T-7d contact-point-specification records as may be required—as described
farther below. Each of these contact-surface-specifications references a specific stiffness-
displacement (penalty) function table.
8-34 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
KELT NSRF NPTS

KELT element code number 820 identifies a contact-definition specification

NSRF parameter indicating the method to be used to identify the contiguous shell
elements that comprise the contact surface: set to use the row &
column method (to identify one or more elements in one or more shell units), or
set to use the element-number method (to identify one or more
elements in one or more shell units and/or one or more elements in the current or
previously-defined element units)

NPTS parameter indicating the method to be used to identify the specific points that may
come into contact with the contact surface: set to use the row &
column method (to identify one or more nodes in one or more shell units), or set

 to use the point-number method (to identify one or more nodes in one
or more shell units and/or one or more nodes in the current or previously-defined
element units)

if () then
go to T-7a

else go to T-7b

NSRF 0≥

NSRF 0<

NPTS 0≥

NPTS 0<

NSRF 0≥
STAGS 5.0 User Manual April, 2009 8-35

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-7a E820 Row & Column Contact-Element Specifications

NSRF ≥ 0 (T-7) indicates that the row & column method is to be used to identify the contiguous
shell elements that comprise the contact surface. This method clearly can only be used to
identify contact elements that are associated with one or more shell units, because there are no
row or column associations for elements in element units. With this method, the value of the
NSRF parameter indicates the minimum number of contact elements to be identified with the set
of one or more T-7a records included for the current contact-definition. The number of contact
elements identified by any given T-7a depends on the parameters on that record—as described
below:

USRF TYPE LI LJ ID NI NJ

USRF identifies the shell unit within which the element(s) identified by the LI and LJ

row & column parameters are defined; the element grid for this shell unit has
NROWS rows and NCOLS columns of quadrilateral domains—each of which
contains one E410 quadrilateral element or two E320 triangular elements

TYPE specifies the element type for this (or these) element(s): TYPE must currently be
either E410 or E320

LI,LJ row and column numbers identifying one or more elements: indicates
that all type TYPE elements of shell unit USRF are to be included; with

 identifies (and includes) all of the elements in row # LI of the element
grid; with identifies all of the elements in column LJ; and
with identifies one or more E410 element or the one or more pairs of E320
elements, starting at row LI and column LJ of the unit: if NI and NJ are absent, zero
or unity, a single element (or pair of elements) is defined; if NI and NJ are both
positive, then NIxNJ elements (or pairs of elements) are identified in a double
FORTRAN-like loop, starting with the element (or pair of elements) at (LI,LJ).

ID spring stiffness-displacement table identifier (see record I–4a)

NI,NJ element-identification looping parameters, as discussed in LI,LJ, above

NSRF (T-7) surface-method parameter
NPTS (T-7) point-method parameter

if (fewer than NSRF contact-surface elements have been identified)return to T-7a
elseif() then go to T-7c
else go to T-7d

LI LJ 0= =

LI 0>
LJ 0=

LJ 0> LI 0= LI 0>
LJ 0>

NPTS 0>
8-36 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-7b E820 Element-Number Contact-Element Specifications

NSRF < 0 (T-7) indicates that the element-number method is to be used to identify the
contiguous shell elements that comprise the contact surface. This method can (but generally
should not) be used to identify contact elements that are associated with shell units, and it must
be used to identify elements that are defined in STAGS element units. With this method, the
magnitude of the NSRF parameter indicates the minimum number of contact elements to be
identified with the set of one or more T-7b records included for the current contact-definition.

The number of contact elements identified by any given T-7b depends on the parameters on that
record—as described below.

USRF TYPE I1 I2 INC ID

USRF identifies the shell or element unit within which the element(s) identified by the
I1, I2 and INC parameters are defined

TYPE specifies the element type for this (or these) element(s): TYPE must currently be
either E410 or E320

I1,I2,INC element identifiers: , with and identifies element # I1 (in unit

USRF) as part of the contact surface for the current contact-definition; I1, I2, INC >
0 identifies I2 elements—starting with element I1 and incrementing by INC until I2
elements have been indicated (in unit USRF) as part of the contact surface for the
current contact-definition

ID spring stiffness-displacement table identifier (see record I–4a)

NSRF (T-7) surface-method parameter
NPTS (T-7) point-method parameter

if (fewer than NSRF contact-surface elements have been identified)return to T-7b
elseif () then go to T-7c
else go to T-7d

I1 0> I2 0= INC 0=

NPTS 0>
STAGS 5.0 User Manual April, 2009 8-37

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-7c Row & Column Contact-Point Specifications

 (T-7) indicates that the row & column method is to be used to identify the points that
may come into contact with the contact surface specified for the current contact-definition.
This method clearly can only be used to identify nodes that are associated with one or more shell
units, because there are no row or column associations for nodal points in element units. With
this method, the value of the NPTS parameter indicates the minimum number of contact points
to be identified with the set of one or more T-7c records included for the current contact-
definition. The number of contact points identified by any given T-7c depends on the parameters
on that record—as described below:

UNITP LI LJ RADIUS TOUCHE NI NJ

UNITP identifies the shell unit within which the contact point(s) identified by the LI and
LJ row & column parameters are defined; the nodal mesh for this shell unit has
NROWS rows and NCOLS columns of nodal points

LI,LJ row and column numbers identifying one or more contact points:
indicates that all of the node points of shell unit UNITP are to be considered as
contact points; with identifies all of the nodes in row LI of the nodal
grid; with identifies all of the nodes in column LJ; and with

 identifies one or more nodes, starting at row LI and column LJ of the unit: if
NI and NJ are absent, zero or unity, a single point (LI,LJ) is defined; if NI and NJ

are both positive, then NIxNJ points are identified in a double FORTRAN-like
loop, starting with the point at (LI,LJ).

RADIUS specifies a radial offset parameter to be used in determining whether or not the
point(s) identified by the current T-7c are in contact with the contact surface: this
parameter can be used to account for the thickness of material surrounding the
contact point(s) in much the same way as the thicknesses of contact elements on
the contact surface are taken into account

TOUCHE provides information required if the identified contact point(s) are in contact with
the contact surface at the outset of the problem: set if not; or set

 if the point(s) are contacting the surface from its positive side; or
set if the point(s) are contacting the surface from its negative
side—where the normal vector for the contact surface points out of the positive
side of the surface and away from the negative side

NI,NJ point-identification looping parameters, as discussed in LI,LJ, above

if (fewer than NPTS contact-points have been identified)go to T-7c
else follow instructions at the end of T-7d

NPTS 0≥

LI LJ 0= =

LI 0> LJ 0=

LJ 0> LI 0= LI 0>
LJ 0>

TOUCHE 0=

TOUCHE 1=

TOUCHE 1–=
8-38 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-7d Point-Number Contact-Point Specifications

NPTS < 0 (on T-7) indicates that the point-number method is to be used to identify the nodal

points that may come into contact with the contact surface. This method can (but generally

should not) be used to identify nodes that are associated with shell units, and it must be used to

identify points that are defined in STAGS element units. With this method, the magnitude of the

NPTS parameter indicates the minimum number of contact points to be identified with the set of

one or more T-7d records included for the current contact-definition. The number of contact

points identified by any given T-7d depends on the parameters on that record—as described

below.

UNITP I1 I2 INC RADIUS TOUCHE

UNITP identifies the shell or element unit within which the contact point(s) identified

by the I1, I2 and INC parameters are defined; the nodal mesh for this shell unit has

NROWS rows and NCOLS columns of node points

I1,I2,INC point identifiers: , with identifies point # I1 (in unit UNITP) as a

contact point for the current contact-definition; I1, I2, INC > 0 identifies I2

points—starting with point I1 and incrementing by INC until I2 points have been

indicated (in unit UNITP) as contact points for the current contact-definition

RADIUS specifies a radial offset parameter to be used in determining whether or not the

point(s) identified by the current T-7 definition are in contact with the contact

surface: this parameter can be used to account for the thickness of material

surrounding the contact point(s) in much the same way as the thicknesses of

contact elements on the contact surface are taken into account

TOUCHE provides information required if the identified contact point(s) are in contact with

the contact surface at the outset of the problem: set if not; or set

 if the point(s) are contacting the surface from its positive side; or

set if the point(s) are contacting the surface from its negative

side—where the normal vector for the contact surface points out of the positive

side of the surface and away from the negative side

I1 0> I2 INC 0= =

TOUCHE 0=

TOUCHE 1=

TOUCHE 1–=
STAGS 5.0 User Manual April, 2009 8-39

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
N820 (T-5) number of E820 definitions
N822 (T-5) number of E822 definitions
N830 (T-5) number of E830 definitions
N840 (T-5) number of E840 definitions
N845 (T-5) number of E845 definitions
N847 (T-5) number of E847 definitions
N849 (T-5) number of E849 definitions
N880 (T-5) number of E880 definitions

if (fewer than NPTS contact-points have been identified) return to T-7d
elseif (fewer than N820 E820 definitions have been processed) return to T-7
elseif (N822 > 0) then go to T-8
elseif (N830 > 0) then go to T-9
elseif (N840 > 0) then go to T-10
elseif (N845 > 0) then go to T-11
elseif (N847 > 0) then go to T-12
elseif (N849 > 0) then go to T-13
elseif (N880 > 0) then go to T-14
else go to U-1

8-40 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-8 Line-Contact Interaction Definition

The T-8 record specifies a pair of “contact” lines (which must have been defined via S-5 records,
as described on page 7-17) that may experience line-to-line contact with each other during the
course of the analysis that STAGS is to perform. The first line of each such pair must have one
or more type E410 elements associated with it (qualifying it to be a contacted line), as described
earlier. The second line, which may but does not need to have elements associated with it, is
treated as the contacting line. When contact occurs at one or more points along the two lines,
STAGS uses penalty information supplied by the analyst to generate stiffnesses and forces on the
fly to treat that contact.

LINE1 LINE2 IPEN NX INC1 INC2 INC3

LINE1 identifies the contacted line, which must have one or more elements associated
with it; this line must have been specified via an S-5 record, as described on page
7-17

LINE2 identifies the contacting line, which may (but is not required to) have one or more
elements associated with it; this line must also have been specified via an S-5
record

IPEN identifies the penalty function table (of stiffness as a function of penetration) that
STAGS is to use in calculating stiffnesses and forces that arise when contact
occurs between these two lines; the table identified must have been specified via
an I-4 record set, as described above

NX indicates the number of line contact interactions that are to be specified with
information on this T-8 record; STAGS sets NX = 1 if it is not positive

INC1 incrementation parameter for LINE1 (used only when NX > 0)
NC2 incrementation parameter for LINE2 (used only when NX > 0)
NC3 incrementation parameter for IPEN (used only when NX > 0)
STAGS 5.0 User Manual April, 2009 8-41

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
N822 (T-5) number of E822 definitions
N830 (T-5) number of E830 definitions
N840 (T-5) number of E840 definitions
N845 (T-5) number of E845 definitions
N847 (T-5) number of E847 definitions
N849 (T-5) number of E849 definitions
N880 (T-5) number of E880 definitions

if (fewer than N822 E822 definitions have been processed)return to T-8
elseif (N830 > 0) then go to T-9
elseif (N840 > 0) then go to T-10
elseif (N845 > 0) then go to T-11
elseif (N847 > 0) then go to T-12
elseif (N849 > 0) then go to T-13
elseif (N880 > 0) then go to T-14
else go to U-1

8-42 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
Sandwich elements

Sandwiche structures play such an important role in the design of many aerospace structures, so
it is necessary that their behavior be determined adequately. The classical approach to the
modeling of sandwiches is an extension of thin-shell-theory, in which the behavior of a three-
dimensional sandwich object is reduced to the behavior of a two-dimensional surface with in-
and out-of-plane stiffness properties. In some programs, a sandwich construction is idealized as
a pair of membranes that are held apart by a core that has a relatively large resistance against
transverse shear, is virtually inextensional in the transverse direction, and has virtually no
stiffness in the middle-surface plane. This type of model is called a sandwich of the first kind.
Finite element discretizations of this kind of classical model have been made in the past, but
successful applications have been confined primarily to linear or moderately nonlinear analyses.
A more general sandwich model emerges by considering the two faces to be shells (with bending
as well as the usual membrane stiffness) that are held apart by a lightweight core. The core may
have three dimensional elastic properties. This type of model is called a sandwich of the second
kind, and is the model that is implemented in STAGS.* A good example of a problem requiring
this model would be one with structural walls made of glass fiber faces and using polyurethane
foam as the core material.

The current version of STAGS has three “standard” sandwich elements (element types E830,
E840 and E849) and two mesh-transition sandwich elements (E845 and E847). STAGS input
requirements for each of these are described next.

* See, for example:
Riks, E. and C. C. Rankin, “Sandwich Modeling with an Application to the Residual Strength Analysis of
a Damaged Composite Compression Panel,” International Journal of Non-Linear Mechanics, Vol. 37, No.
4-5, June–July 2002, pp. 897–908 (also available as AIAA Paper No. 2001-1232, April 2001), and
Rose, C.A., D.F. Moore, N.F. Knight, Jr. and C.C. Rankin, “Finite Element Modeling of the Buckling
Response of Sandwich Panels,” AIAA Paper No. 2202-1517, April 2002
STAGS 5.0 User Manual April, 2009 8-43

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-9 E830 6-Node Sandwich Element Definition

The 6–node E830 sandwich element in STAGS is a construction of two triangular-shell face

elements that are held apart by a lightweight core, as shown in Figure 8.6. The core may have

three dimensional elastic properties.

Definition of one or more 6–node E830 sandwich elements is accomplished with the following

set of records:

T-9 to specify parameters used for all parts of the element

T-9a to specify information for the lower face sheet of the element

T-9b to specify lower face sheet transformation angles (optional)

T-9c to specify information for the upper face sheet

T-9d to specify upper face sheet transformation angles (optional)

T-9e to specify core parameters

T-9f to specify core transformation angles (optional)

T-9g for “x-direction” incrementation parameters

T-9h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 8.6 E830 6-Node Sandwich Element

N5N4
N3

N2N1

Upper Face-Sheet

Lower Face-Sheet

E330 Component

E330 Component

Core E830
Component

N6
8-44 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

KELT element code number (must be 830)

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

INTEG number of surface-integration points: set INTEG = 1, 3, 4 or 7;
if INTEG = 0, STAGS sets INTEG = 3

IPEN penalty option (see N-1)

0 – no penalty function on fourth-order terms in E330 elements

1 – penalty function included in E330 elements

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E830 elements in
the x direction, using nodal incrementation information given on the T-9g record

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E830 elements in
the y direction for each of the NX elements generated in the x-direction in the
current definition, using nodal incrementation information given on the T-9h

record

USERC user-specified element number for core component
(used only if IUWLE = 1 on H-1)

USER1 user-specified element number for lower face sheet, (if IUWLE = 1 on H-1)

USER2 user-specified element number for upper face sheet, (if IUWLE = 1 on H-1)

go to T-9a

NX 1>

NY 1>
STAGS 5.0 User Manual April, 2009 8-45

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-9a E830 Lower Face-Sheet Properties

A single T-9a record must be included immediately following the T-9 record, to specify the
nodes for the lower face sheet of the first E830 element and to specify other parameters for the
lower face sheet of each of the element(s) specified in the current definition.

N1 N2 N3 IFABL ZETAL ECZL IPLASL IANGL

N1 first lower face sheet node point

N2 second lower face sheet node point

N3 third lower face sheet node point

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E330 triangular elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL
(See the T-4 record description for more information about this)

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation

about ; see Figure 8.2 on page 8-19.

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an element
unit; see “Effects of Eccentricity” on page 16-6.

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied
at each element integration point

2 – plasticity included, with the material law satisfied
at the element centroid (centroidal plasticity)

ζ xw

x ζ

z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
8-46 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
IANGL lower face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-9b)

if () then
go to T-9b

else go to T-9c

xg yg, xw

rw xw

IANGL 0>
STAGS 5.0 User Manual April, 2009 8-47

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-9b E830 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL,RYL,RZL lower face sheet wall reference vector, , which is projected onto the

element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-9c

rw

xw rw xg yg zg, ,()
8-48 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-9c E830 Upper Face-Sheet Properties

A single T-9c record must be included immediately following the T-9a (or T-9b) record, to
specify the nodes for the upper face sheet of the first E830 element and to specify other
parameters for the upper face sheet of each of the element(s) specified in the current definition.

N4 N5 N6 IFABU ZETAU ECZU IPLASU IANGU

N4 first upper face sheet node point

N5 second upper face sheet node point

N6 third upper face sheet node point

IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the
WALL parameter for E330 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied at each element
integration point

2 – plasticity included, with the material law satisfied at the element
centroid (centroidal plasticity)

IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-9b)

if () then go to T-9d
else go to T-9e

ζ xw

x ζ z

z′ z′

xg yg, xw

rw xw

IANGU 0>
STAGS 5.0 User Manual April, 2009 8-49

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-9d E830 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected onto

the element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-9e

rw

xw rw xg yg zg, ,()
8-50 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-9e E830 Core Properties

A single T-9e record must be included immediately following the T-9c (or T-9d) record, to
specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-9b)

NX (T-9) x-direction looping parameter
NY (T-9) y-direction looping parameter

if () then go to T-9f
elseif () then go to T-9g
elseif () then go to T-9h
else follow instructions at end of T-9h

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>
NX 0>
NY 0>
STAGS 5.0 User Manual April, 2009 8-51

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-9f E830 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element surface to

determine the direction of the core-reference coordinate ; is

expressed in global coordinates

NX (T-9) x-direction looping parameter
NY (T-9) y-direction looping parameter

if () then go to T-9g
elseif () then go to T-9h
else follow instructions at end of T-9h

rw

xw rw

xg yg zg, ,()

NX 0>
NY 0>
8-52 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-9g E830 X-Direction Incrementations

A single record of type T-9g must be included immediately after the T-9e or T-9f record when
the NX “x-direction” looping parameter (T-9) is greater than unity. Eight nodal incrementation
variables are specified here for use with the “x-direction” looping function on the T-9 record. NX

E830 sandwich elements are generated in the “x-direction” with this information. Three
incrementation variables are also specified here for “x-direction” looping with the user-element-
number parameters on T-9.

I1 I2 I3 I4 I5 I6 I7 I8 I9

I1 incrementation for the N1 lower face sheet node on the T-9a record
I2 incrementation for the N2 lower face sheet node on the T-9a record
I3 incrementation for the N3 lower face sheet node on the T-9a record
I4 incrementation for the N4 upper face sheet node on the T-9c record
I5 incrementation for the N5 upper face sheet node on the T-9c record
I6 incrementation for the N6 upper face sheet node on the T-9c record
I7 incrementation for USERC on the T-9 record
I8 incrementation for USER1 on the T-9 record
I9 incrementation for USER2 on the T-9 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-9 / T-9a / T-9c / T-9g record combination:

830 1 0 0 3 $ T-9 with NX=3
10 20 30 ... $ T-9a lower face nodes
50 60 70 ... $ T-9c upper face nodes
...
1 1 1 2 2 2 $ T-9g increments

generates three E830 elements, with the following nodes:

10 20 30 50 60 70 Element #1
11 21 31 52 62 72 Element #2
12 22 32 54 64 74 Element #3

NY (T-9) y-direction looping parameter

if () then go to T-9h
else follow instructions at end of T-9h

NY 0>
STAGS 5.0 User Manual April, 2009 8-53

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-9h E830 Y-Direction Incrementations

A single type T-9h record must be included immediately after the T-9e or T-9f or T-9g record
when the NY “y-direction” looping parameter is greater than unity (T-9). Eight nodal
incrementation variables are specified here for use with the T-9 record “y-direction” looping
function. NY E830 sandwich elements are generated in the “y-direction”, for each E830 element
generated in the x-direction, with this information. The NX and NY looping parameters are usually
employed together to specify E830 elements in a single stroke.

J1 J2 J3 J4 J5 J6 J7 J8 J9

J1 incrementation for the N1 lower face sheet node on the T-9a record

J2 incrementation for the N2 lower face sheet node on the T-9a record

J3 incrementation for the N3 lower face sheet node on the T-9a record

J4 incrementation for the N4 upper face sheet node on the T-9c record

J5 incrementation for the N5 upper face sheet node on the T-9c record

J6 incrementation for the N6 upper face sheet node on the T-9c record

J7 incrementation for USERC on the T-9 record

J8 incrementation for USER1 on the T-9 record

J9 incrementation for USER2 on the T-9 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-9 / T-9a / T-9c / T-9g / T-9h record combination:

830 1 0 0 3 2 $ T-9 NX=3, NY=2
10 20 30 ... $ T-9a (lower face nodes)
50 60 70 ... $ T-9c (upper face nodes)
...
1 1 1 1 1 1 $ T-9g (x increments)
5 5 5 5 5 5 $ T-9h (y increments)

generates six E830 elements, with the following nodes:

10 20 30 50 60 70 Element #1
11 21 31 51 61 71 Element #2
12 22 32 52 62 72 Element #3
15 25 35 55 65 75 Element #4
16 26 36 56 66 76 Element #5
17 27 37 57 67 77 Element #6

NX NY×
8-54 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
N830 (T-5) number of E830 definitions
N840 (T-5) number of E840 definitions
N845 (T-5) number of E845 definitions
N847 (T-5) number of E847 definitions
N849 (T-5) number of E849 definitions
N880 (T-5) number of E880 definitions

if (fewer than N830 E830 definitions have been processed)return to T-9
elseif (N840 > 0) then go to T-10
elseif (N845 > 0) then go to T-11
elseif (N847 > 0) then go to T-12
elseif (N849 > 0) then go to T-13
elseif (N880 > 0) then go to T-14
else go to U-1

STAGS 5.0 User Manual April, 2009 8-55

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-10 E840 8-Node Sandwich Element Definition

The 8–node E840 sandwich element in STAGS is constructed with a pair of E410 quadrilateral

shells (with bending as well as the usual membrane stiffness) that are held apart by a lightweight

core that has three-dimensional elastic properties—as shown in Figure 8.7.

Definition of one or more 8–node E840 sandwich elements is accomplished with the following

set of records:

T-10 to specify parameters used for all parts of the element

T-10a to specify information for the lower face sheet of the element

T-10b to specify lower face sheet transformation angles (optional)

T-10c to specify information for the upper face sheet

T-10d to specify upper face sheet transformation angles (optional)

T-10e to specify core parameters

T-10f to specify core transformation angles (optional)

T-10g for “x-direction” incrementation parameters

T-10h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 8.7 E840 8-Node Sandwich Element

N8

N7N5

N4

N3

N2

N1

Upper Face-Sheet

Lower Face-Sheet

E410 Component

E410 Component

Core E840
Component

N6
8-56 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

KELT element code number (must be 840)

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

INTEG integration-type flag (see N-1):

0 – standard integration, or Gauss points for E410 elements

1 – modified 5-point integration, previously referred to
as full integration

IPEN penalty option (see N-1)

0 – no penalty function on fourth-order terms in E410 elements

1 – penalty function included in E410 elements

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E840 elements in
the x direction, using nodal incrementation information given on the T-10g record
described below

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E840 elements in
the y direction for each of the NX elements generated in the x-direction in the
current definition, using nodal incrementation information given on the T-10h

record described below

USERC user-specified element number for core component
(used only if IUWLE = 1 on H-1)

USER1 user-specified element number for lower face sheet, (if IUWLE = 1 on H-1)

USER2 user-specified element number for upper face sheet, (if IUWLE = 1 on H-1)

go to T-10a

2 2×

NX 1>

NY 1>
STAGS 5.0 User Manual April, 2009 8-57

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-10a E840 Lower Face-Sheet Properties

A single T-10a record must be included immediately following the T-10 record, to specify the
nodes for the lower face sheet of the first E840 element and to specify other parameters for the
lower face sheet of each of the element(s) specified in the current definition.

N1 N2 N3 N4 IFABL ZETAL ECZL IPLASL IANGL

N1 first lower face sheet node point

N2 second lower face sheet node point

N3 third lower face sheet node point

N4 fourth lower face sheet node point

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL
(See the T-4 record description for more information about this)

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation

about ; see Figure 8.2 on page 8-19.

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an element
unit; see “Effects of Eccentricity” on page 16-6.

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied
at each element integration point

2 – plasticity included, with the material law satisfied
at the element centroid (centroidal plasticity)

ζ xw

x ζ

z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
8-58 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
IANGL lower face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-10b)

if () then
go to T-10b

else go to T-10c

xg yg, xw

rw xw

IANGL 0>
STAGS 5.0 User Manual April, 2009 8-59

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-10b E840 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL,RYL,RZL lower face sheet wall reference vector, , which is projected onto the

element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-10c

rw

xw rw xg yg zg, ,()
8-60 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-10c E840 Upper Face-Sheet Properties

A single T-10c record must be included immediately following the T-10a (or T-10b) record, to
specify the nodes for the upper face sheet of the first E840 element and to specify other
parameters for the upper face sheet of each of the element(s) specified in the current definition.

N5 N6 N7 N8 IFABU ZETAU ECZU IPLASU IANGU

N5 first upper face sheet node point
N6 second upper face sheet node point
N7 third upper face sheet node point
N8 fourth upper face sheet node point

IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the
WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – shell wall properties are given in user-written subroutine WALL

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-10b)

if () then go to T-10d
else go to T-10e

ζ xw

x ζ z

z′ z′

xg yg, xw

rw xw

IANGU 0>
STAGS 5.0 User Manual April, 2009 8-61

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-10d E840 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected onto the

element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-10e

rw

xw rw xg yg zg, ,()
8-62 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-10e E840 Core Properties

A single T-10e record must be included immediately following the T-10c (or T-10d) record, to

specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-10b)

NX (T-10) x-direction looping parameter

NY (T-10) y-direction looping parameter

if () then go to T-10f

elseif () then go to T-10g
elseif () then go to T-10h

else follow instructions at end of T-10h

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>

NX 0>

NY 0>
STAGS 5.0 User Manual April, 2009 8-63

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-10f E840 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element surface to

determine the direction of the core-reference coordinate ; is

expressed in global coordinates

NX (T-10) x-direction looping parameter
NY (T-10) y-direction looping parameter

if () then go to T-10g
elseif () then go to T-10h
else return to T-10

rw

xw rw

xg yg zg, ,()

NX 0>
NY 0>
8-64 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-10g E840 X-Direction Incrementations

A single record of type T-10g must be included immediately after the T-10e or T-10f record
when the NX “x-direction” looping parameter (T-10) is greater than unity. Eight nodal
incrementation variables are specified here for use with the “x-direction” looping function on the
T-10 record. NX E840 sandwich elements are generated in the “x-direction” with this
information. Three incrementation variables are also specified here for “x-direction” looping
with the user-element-number parameters on T-10.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

I1 incrementation for the N1 lower face sheet node on the T-10a record
I2 incrementation for the N2 lower face sheet node on the T-10a record
I3 incrementation for the N3 lower face sheet node on the T-10a record
I4 incrementation for the N4 lower face sheet node on the T-10a record
I5 incrementation for the N5 upper face sheet node on the T-10c record
I6 incrementation for the N6 upper face sheet node on the T-10c record
I7 incrementation for the N7 upper face sheet node on the T-10c record
I8 incrementation for the N8 upper face sheet node on the T-10c record
I9 incrementation for USERC on the T-10 record
I10 incrementation for USER1 on the T-10 record
I11 incrementation for USER2 on the T-10 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-10 / T-10a / T-10c / T-10g record combination:
840 1 0 0 3 $ T-10 with NX=3
10 20 30 40 ... $ T-10a lower face nodes
50 60 70 80 ... $ T-10c upper face nodes
...
1 1 1 1 2 2 2 2 $ T-10g increments

generates three E840 elements, with the following nodes:
10 20 30 40 50 60 70 80 Element #1
11 21 31 41 52 62 72 82 Element #2
12 22 32 42 54 64 74 84 Element #3

NY (T-10) y-direction looping parameter

if () then go to T-10h
else follow instructions at end of T-10h

NY 0>
STAGS 5.0 User Manual April, 2009 8-65

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-10h E840 Y-Direction Incrementations

A single type T-10h record must be included immediately after the T-10e or T-10f or T-10g

record when the NY “y-direction” looping parameter is greater than unity (T-10). Eight nodal
incrementation variables are specified here for use with the T-10 record “y-direction” looping
function. NY E840 sandwich elements are generated in the “y-direction”, for each E840 element
generated in the x-direction, with this information. The NX and NY looping parameters are usually
employed together to specify E840 elements in a single stroke.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

J1 incrementation for the N1 lower face sheet node on the T-10a record

J2 incrementation for the N2 lower face sheet node on the T-10a record

J3 incrementation for the N3 lower face sheet node on the T-10a record

J4 incrementation for the N4 lower face sheet node on the T-10a record

J5 incrementation for the N5 upper face sheet node on the T-10c record

J6 incrementation for the N6 upper face sheet node on the T-10c record

J7 incrementation for the N7 upper face sheet node on the T-10c record

J8 incrementation for the N8 upper face sheet node on the T-10c record

J9 incrementation for USERC on the T-10 record

J10 incrementation for USER1 on the T-10 record

J11 incrementation for USER2 on the T-10 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-10 / T-10a / T-10c / T-10g / T-10h record combination:
840 1 0 0 3 2 $ T-10 NX=3, NY=2
10 20 30 40 ... $ T-10a (lower face nodes)
50 60 70 80 ... $ T-10c (upper face nodes)
...
1 1 1 1 1 1 1 1 $ T-10g (x increments)
5 5 5 5 5 5 5 5 $ T-10h (y increments)

generates six E840 elements, with the following nodes:
10 20 30 40 50 60 70 80 Element #1
11 21 31 41 51 61 71 81 Element #2
12 22 32 42 52 62 72 82 Element #3
15 25 35 45 55 65 75 85 Element #4
16 26 36 46 56 66 76 86 Element #5
17 27 37 47 57 67 77 87 Element #6

NX NY×
8-66 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
N840 (T-5) number of E840 definitions
N845 (T-5) number of E845 definitions
N847 (T-5) number of E847 definitions
N849 (T-5) number of E849 definitions
N880 (T-5) number of E880 definitions

if (fewer than N830 E840 definitions have been processed)return to T-10
elseif (N845 > 0) then go to T-11
elseif (N847 > 0) then go to T-12
elseif (N849 > 0) then go to T-13
elseif (N880 > 0) then go to T-14
else go to U-1

STAGS 5.0 User Manual April, 2009 8-67

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-11 E845 10-Node Sandwich Transition Element Definition

The 10–node E845 sandwich-transition element, shown in Figure 8.8, is used in shell units to
make a transition between one mesh of E840 elements and another mesh of E840 elements that
has nodes that are exactly half as far apart as the one in which the E845 element “resides.” It
can be used to accomplish the same objective in an element unit. A single T-11 definition may
specify one or more E845 sandwich transition elements, as described below.

Definition of one or more 10–node E845 sandwich transition elements is accomplished with the
following set of records:

T-11 to specify parameters used for all parts of the element
T-11a to specify information for the lower face sheet of the element
T-11b to specify lower face sheet transformation angles (optional)
T-11c to specify information for the upper face sheet
T-11d to specify upper face sheet transformation angles (optional)
T-11e to specify core parameters
T-11f to specify core transformation angles (optional)
T-11g for “x-direction” incrementation parameters
T-11h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 8.8 E845 10-Node Sandwich Transition Elements

N4

N3

N2

N1

Lower Face-Sheet

E415 Component

Core E845
Component

Upper Face-Sheet

N8

N7

N5

N6

N9

N10

E415 Component
8-68 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
KELT ILIN INTEG IPEN IEDGE NX NY USER

KELT element code number (must be 845)

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations
1 – linear strain-displacement relations

INTEG integration-type flag (see N-1):

0 – standard integration, or Gauss points for E410 elements

1 – modified 5-point integration, previously referred to
as full integration

IPEN penalty option (see N-1)

0 – no penalty function on fourth-order terms in E410 elements
1 – penalty function included in E410 elements

IEDGE identifies the E845 edge on which node N5 is located (N10 is above N5):

1 – node N5 is between N3 and N4

2 – node N5 is between N4 and N1

3 – node N5 is between N1 and N2

4 – node N5 is between N2 and N3

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E845 elements in
the x direction, using the increments given on the T-11g record described below

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E845 elements in
the y direction for each of the NX elements generated in the x-direction in the
current definition, using the increments given on the T-11h record described
below

USER user-specified element number for the first E845 element generated here
(used only if IUWLE = 1 on H-1)

go to T-11a

2 2×

NX 1>

NY 1>
STAGS 5.0 User Manual April, 2009 8-69

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-11a E845 Lower Face-Sheet Properties

A single T-11a record must be included immediately following the T-11 record, to specify the
nodes for the lower face sheet of the first E845 element and to specify other parameters for the
lower face sheet of each of the element(s) specified in the current definition.

N1 N2 N3 N4 N5 IFABL ZETAL ECZL IPLASL IANGL

N1 first lower face sheet node point
N2 second lower face sheet node point
N3 third lower face sheet node point
N4 fourth lower face sheet node point
N5 fifth lower face sheet node point

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL
(See the T-4 record description for more information about this)

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)
(this option is not operational yet and should not be used)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation

about ; see Figure 8.2 on page 8-19.

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an element
unit; see “Effects of Eccentricity” on page 16-6.

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied
at each element integration point

2 – plasticity included, with the material law satisfied
at the element centroid (centroidal plasticity)

ζ xw

x ζ

z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
8-70 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
IANGL lower face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-11b)

if () then
go to T-11b

else go to T-11c

xg yg, xw

rw xw

IANGL 0>
STAGS 5.0 User Manual April, 2009 8-71

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-11b E845 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL,RYL,RZL lower face sheet wall reference vector, , which is projected onto the

element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-11c

rw

xw rw xg yg zg, ,()
8-72 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-11c E845 Upper Face-Sheet Properties

A single T-11c record must be included immediately following the T-11a (or T-11b) record, to
specify the nodes for the upper face sheet of the first E845 element and to specify other
parameters for the upper face sheet of each of the element(s) specified in the current definition.

N6 N7 N8 N9 N10 IFABU ZETAU ECZU IPLASU IANGU

N6 first upper face sheet node point
N7 second upper face sheet node point
N8 third upper face sheet node point
N9 fourth upper face sheet node point
N10 fifth upper face sheet node point

IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the
WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – shell wall properties are given in user-written subroutine WALL

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-11b)

if () then go to T-11d
else go to T-11e

ζ xw

x ζ z

z′ z′

xg yg, xw

rw xw

IANGU 0>
STAGS 5.0 User Manual April, 2009 8-73

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-11d E845 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected onto the

element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-11e

rw

xw rw xg yg zg, ,()
8-74 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-11e E845 Core Properties

A single T-11e record must be included immediately following the T-11c (or T-11d) record, to
specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-11b)

NX (T-11) x-direction looping parameter
NY (T-11) y-direction looping parameter

if () then go to T-11f
elseif () then go to T-11g
elseif () then go to T-11h
else follow instructions at end of T-10h

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>
NX 0>
NY 0>
STAGS 5.0 User Manual April, 2009 8-75

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-11f E845 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element surface to

determine the direction of the core-reference coordinate ; is

expressed in global coordinates

NX (T-11) x-direction looping parameter
NY (T-11) y-direction looping parameter

if () then go to T-11g
elseif () then go to T-11h
else follow instructions at end of T-11h

rw

xw rw

xg yg zg, ,()

NX 0>
NY 0>
8-76 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-11g E845 X-Direction Incrementations

A single record of type T-11g must be included immediately after the T-11e or T-11f record
when the NX “x-direction” looping parameter (T-11) is greater than unity. Ten nodal
incrementation variables are specified here for use with the “x-direction” looping function on the
T-11 record. NX E845 sandwich transition elements are generated in the “x-direction” with this
information. One incrementation variable is also specified here for “x-direction” looping with the
user-element-number parameter on T-11.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

I1 incrementation for the N1 lower face sheet node on the T-11a record
I2 incrementation for the N2 lower face sheet node on the T-11a record
I3 incrementation for the N3 lower face sheet node on the T-11a record
I4 incrementation for the N4 lower face sheet node on the T-11a record
I5 incrementation for the N5 lower face sheet node on the T-11a record
I6 incrementation for the N6 upper face sheet node on the T-11c record
I7 incrementation for the N7 upper face sheet node on the T-11c record
I8 incrementation for the N8 upper face sheet node on the T-11c record
I9 incrementation for the N9 upper face sheet node on the T-11c record
I10 incrementation for the N10 upper face sheet node on the T-11c record
I11 incrementation for USER on the T-11 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-11 / T-11a / T-11c / T-11g record combination:
845 1 0 0 1 3 $ T-11 with NX=3
10 20 30 40 50 ... $ T-11a lower face nodes
60 70 80 90 100 ... $ T-11c upper face nodes
...
1 1 1 1 1 2 2 2 2 2 $ T-11g increments

generates three E845 elements, with the following nodes:
10 20 30 40 50 60 70 80 90 100Element #1
11 21 31 41 51 62 72 82 92 102Element #2
12 22 32 42 52 64 74 84 94 104Element #3

NY (T-11) y-direction looping parameter

if () then go to T-11h
else follow instructions at end of T-11h

NY 0>
STAGS 5.0 User Manual April, 2009 8-77

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-11h E845 Y-Direction Incrementations

A type T-11h record must be included immediately after the T-11e or T-11f or T-11g record
when the NY “y-direction” looping parameter is greater than unity (T-11). Ten nodal
incrementation variables are specified here for use with the T-11 record “y-direction” looping
function. NY E845 sandwich transition elements are generated in the “y-direction”, for each E845
element generated in the x-direction, with this information. The NX and NY looping parameters
are usually employed together to specify E845 elements in a single stroke.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

J1 incrementation for the N1 lower face sheet node on the T-11a record
J2 incrementation for the N2 lower face sheet node on the T-11a record
J3 incrementation for the N3 lower face sheet node on the T-11a record
J4 incrementation for the N4 lower face sheet node on the T-11a record
J5 incrementation for the N5 lower face sheet node on the T-11a record
J6 incrementation for the N6 upper face sheet node on the T-11c record
J7 incrementation for the N7 upper face sheet node on the T-11c record
J8 incrementation for the N8 upper face sheet node on the T-11c record
J9 incrementation for the N9 upper face sheet node on the T-11c record
J10 incrementation for the N10 upper face sheet node on the T-11c record
J11 incrementation for USER on the T-11 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-11 / T-11a / T-11c / T-11g / T-11h record combination:
845 1 0 0 1 3 2 $ T-11 NX=3, NY=2
10 20 30 40 50 ... $ T-11a (lower face nodes)
60 70 80 90 100 ... $ T-11c (upper face nodes)
...
1 1 1 1 1 1 1 1 1 1 $ T-11g (x increments)
5 5 5 5 5 5 5 5 5 5 $ T-11h (y increments)

generates six E845 elements, with the following nodes:
10 20 30 40 50 60 70 80 90 100 Element #1
11 21 31 41 51 61 71 81 91 101 Element #2
12 22 32 42 52 62 72 82 92 102 Element #3
15 25 35 45 55 65 75 85 95 105 Element #4
16 26 36 46 56 66 76 86 96 106 Element #5
17 27 37 47 57 67 77 87 97 107 Element #6

NX NY×
8-78 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
N845 (T-5) number of E845 definitions
N847 (T-5) number of E847 definitions
N849 (T-5) number of E849 definitions
N880 (T-5) number of E880 definitions

if (fewer than N845 E845 definitions have been processed)return to T-11
elseif (N847 > 0) then go to T-12
elseif (N849 > 0) then go to T-13
elseif (N880 > 0) then go to T-14
else go to U-1

STAGS 5.0 User Manual April, 2009 8-79

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-12 E847 14-Node Sandwich Transition Element Definition

The 14–node E847 sandwich-transition element, shown in Figure 8.9, is used in shell units to
make a transition between one mesh of E840 elements and two other meshes of E840 elements
that have nodes that are exactly half as far apart as the one in which the E847 element “resides.”
It can be used to accomplish the same objective in an element unit. A single T-12 definition may
specify one or more E847 sandwich transition elements, as described below.

Definition of one or more 14–node E847 sandwich transition elements is accomplished with the
following set of records:

T-12 to specify parameters used for all parts of the element
T-12a to specify information for the lower face sheet of the element
T-12b to specify lower face sheet transformation angles (optional)
T-12c to specify information for the upper face sheet
T-12d to specify upper face sheet transformation angles (optional)
T-12e to specify core parameters
T-12f to specify core transformation angles (optional)
T-12g for “x-direction” incrementation parameters
T-12h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 8.9 E847 14-Node Sandwich Transition Elements

N13

N11

N12

N4

N3

N2

N1

Lower Face-Sheet

E417 Component

Core E847
Component

Upper Face-Sheet

N8

N7

N5N6

N9

N10

E417 Component

N14
8-80 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
KELT ILIN INTEG IPEN IEDGE NX NY USER

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations
1 – linear strain-displacement relations

INTEG integration-type flag (see N-1):

0 – standard integration, or Gauss points for E410 elements
1 – modified 5-point integration, previously referred to

as full integration

IPEN penalty option (see N-1)

0 – no penalty function on fourth-order terms in E410 elements
1 – penalty function included in E410 elements

IEDGE identifies the E847 edges on which nodes N5 and N6 are located
nodes N12 and N13 are above N5 and N6, respectively:

1 – node N5 is between N3 and N4; node N6 is between N4 and N1

2 – node N5 is between N4 and N1; node N6 is between N1 and N2

3 – node N5 is between N1 and N2; node N6 is between N2 and N3

4 – node N5 is between N2 and N3; node N6 is between N3 and N4

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E847 elements in
the x direction, using the increments given on the T-12g record described below

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E847 elements in
the y direction for each of the NX elements generated in the x-direction in the
current definition, using the increments given on the T-12h record described
below

USER user-specified element number for the first E847 element generated here
(used only if IUWLE = 1 on H-1)

go to T-12a

2 2×

NX 1>

NY 1>
STAGS 5.0 User Manual April, 2009 8-81

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-12a E847 Lower Face-Sheet Properties

A single T-12a record must be included immediately following the T-12 record, to specify the
nodes for the lower face sheet of the first E847 element and to specify other parameters for the
lower face sheet of each of the element(s) specified in the current definition.

N1 N2 N3 N4 N5 N6 N7 IFABL ZETAL ECZL IPLASL IANGL

N1 first lower face sheet node point
N2 second lower face sheet node point
N3 third lower face sheet node point
N4 fourth lower face sheet node point
N5 fifth lower face sheet node point
N6 sixth lower face sheet node point
N7 seventh lower face sheet node point

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL
(See the T-4 record description for more information about this)

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation

about ; see Figure 8.2 on page 8-19.

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an element
unit; see “Effects of Eccentricity” on page 16-6.

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied
at each element integration point

2 – plasticity included, with the material law satisfied
at the element centroid (centroidal plasticity)

ζ xw

x ζ

z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
8-82 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
IANGL lower face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-12b)

if () then
go to T-12b

else go to T-12c

xg yg, xw

rw xw

IANGL 0>
STAGS 5.0 User Manual April, 2009 8-83

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-12b E847 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL,RYL,RZL lower face sheet wall reference vector, , which is projected onto the

element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-12c

rw

xw rw xg yg zg, ,()
8-84 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-12c E847 Upper Face-Sheet Properties

A single T-12c record must be included immediately following the T-12a (or T-12b) record, to
specify the nodes for the upper face sheet of the first E847 element and to specify other
parameters for the upper face sheet of each of the element(s) specified in the current definition.

N8 N9 N10 N11 N12 N13 N14 IFABU ZETAU ECZU IPLASU IANGU

N8 first upper face sheet node point

N9 second upper face sheet node point

N10 third upper face sheet node point

N11 fourth upper face sheet node point

N12 fifth upper face sheet node point

N13 sixth upper face sheet node point

N14 seventh upper face sheet node point

IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the
WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied at each element
integration point

2 – plasticity included, with the material law satisfied at the element
centroid (centroidal plasticity)

ζ xw

x ζ z

z′ z′
STAGS 5.0 User Manual April, 2009 8-85

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-12b)

if () then go to T-12d
else go to T-12e

xg yg, xw

rw xw

IANGU 0>
8-86 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-12d E847 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected onto the

element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-12e

rw

xw rw xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 8-87

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-12e E847 Core Properties

A single T-12e record must be included immediately following the T-12c (or T-12d) record, to
specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-12b)

NX (T-12) x-direction looping parameter
NY (T-12) y-direction looping parameter

if () then go to T-12f
elseif () then go to T-12g
elseif () then go to T-12h
else follow instructions at end of T-12h

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>
NX 0>
NY 0>
8-88 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-12f E847 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element surface to

determine the direction of the core-reference coordinate ; is

expressed in global coordinates

NX (T-12) x-direction looping parameter
NY (T-12) y-direction looping parameter

if () then go to T-12g
elseif () then go to T-12h
else follow instructions at end of T-12h

rw

xw rw

xg yg zg, ,()

NX 0>
NY 0>
STAGS 5.0 User Manual April, 2009 8-89

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-12g E847 X-Direction Incrementations

A single record of type T-12g must be included immediately after the T-12e or T-12f record
when the NX “x-direction” looping parameter (T-12) is greater than unity. Fourteen nodal
incrementation variables are specified here for use with the “x-direction” looping function on the
T-12 record. NX E847 sandwich elements are generated in the “x-direction” with this
information. One incrementation variable is also specified here for “x-direction” looping with the
user-element-number parameter on T-12.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

I1 incrementation for the N1 lower face sheet node on the T-12a record

I2 incrementation for the N2 lower face sheet node on the T-12a record

I3 incrementation for the N3 lower face sheet node on the T-12a record

I4 incrementation for the N4 lower face sheet node on the T-12a record

I5 incrementation for the N5 lower face sheet node on the T-12a record

I6 incrementation for the N6 lower face sheet node on the T-12a record

I7 incrementation for the N7 lower face sheet node on the T-12a record

I8 incrementation for the N8 upper face sheet node on the T-12c record

I9 incrementation for the N9 upper face sheet node on the T-12c record

I10 incrementation for the N10 upper face sheet node on the T-12c record

I11 incrementation for the N11 upper face sheet node on the T-12c record

I12 incrementation for the N12 upper face sheet node on the T-12c record

I13 incrementation for the N13 upper face sheet node on the T-12c record

I14 incrementation for the N14 upper face sheet node on the T-12c record

I15 incrementation for USER on the T-12 record

Any of these incrementation variables can be negative, zero, or positive, as required.

NY (T-12) y-direction looping parameter

if () then go to T-12h
else follow instructions at end of T-12h

NY 0>
8-90 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-12h E847 Y-Direction Incrementations

A type T-12h record must be included immediately after the T-12e or T-12f or T-12g record
when the NY “y-direction” looping parameter is greater than unity (T-12). Fourteen nodal
incrementation variables are specified here for use with the T-12 record “y-direction” looping
function. NY E847 sandwich elements are generated in the “y-direction”, for each E847 element
generated in the x-direction, with this information. The NX and NY looping parameters are usually
employed together to specify E847 elements in a single stroke.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15

J1 incrementation for the N1 lower face sheet node on the T-12a record
J2 incrementation for the N2 lower face sheet node on the T-12a record
J3 incrementation for the N3 lower face sheet node on the T-12a record
J4 incrementation for the N4 lower face sheet node on the T-12a record
J5 incrementation for the N5 lower face sheet node on the T-12a record
J6 incrementation for the N6 lower face sheet node on the T-12a record
J7 incrementation for the N7 lower face sheet node on the T-12a record
J8 incrementation for the N8 upper face sheet node on the T-12c record
J9 incrementation for the N9 upper face sheet node on the T-12c record
J10 incrementation for the N10 upper face sheet node on the T-12c record
J11 incrementation for the N11 upper face sheet node on the T-12c record
J12 incrementation for the N12 upper face sheet node on the T-12c record
J13 incrementation for the N13 upper face sheet node on the T-12c record
J14 incrementation for the N14 upper face sheet node on the T-12c record
J15 incrementation for USER on the T-12 record

Any of these incrementation variables can be negative, zero, or positive, as required.

N847 (T-5) number of E847 definitions
N849 (T-5) number of E849 definitions
N880 (T-5) number of E880 definitions

if (fewer than N847 E847 definitions have been processed)return to T-12
elseif (N849 > 0) then go to T-13
elseif (N880 > 0) then go to T-14
else go to U-1

NX NY×
STAGS 5.0 User Manual April, 2009 8-91

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-13 E849 18-Node Sandwich Element Definition

The 18–node E849 sandwich element in STAGS, shown in Figure 8.10, is constructed with a pair
of 9–node E480 quadrilateral shells (with bending as well as the usual membrane stiffness) that
are held apart by a lightweight core that has three-dimensional elastic properties. This type of
model is called a sandwich of the second kind. A good example of a problem requiring this
model would be one with structural walls made of glass fiber faces and using polyurethane foam
as the core material.

Definition of one or more 18–node E849 sandwich elements is accomplished with the following

set of records:

T-13 to specify parameters used for all parts of the element
T-13a to specify information for the lower face sheet of the element
T-13b to specify lower face sheet transformation angles (optional)
T-13c to specify information for the upper face sheet
T-13d to specify upper face sheet transformation angles (optional)
T-13e to specify core parameters
T-13f to specify core transformation angles (optional)
T-13g for “x-direction” incrementation parameters
T-13h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 8.10 E849 18-Node Sandwich Element

N8 N7

N5

N4

N3

N2

N1

Upper Face-Sheet

Lower Face-Sheet

E480 Component

E480 Component

Core E849
Component

N6

N13

N12

N11

N10

N9

N18

N17 N16

N15N14
8-92 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

KELT element code number (must be 849)

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

INTEG integration-type flag: not used for this element; set INTEG = 0

IPEN penalty option: not used for this element; set IPEN = 0

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E849 elements in
the x direction, using nodal incrementation information given on the T-13g record
described below

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E849 elements in
the y direction for each of the NX elements generated in the x-direction in the
current definition, using nodal incrementation information given on the T-13h

record described below

USERC user-specified element number for core component
(used only if IUWLE = 1 on H-1)

USER1 user-specified element number for lower face sheet, (if IUWLE = 1 on H-1)

USER2 user-specified element number for upper face sheet, (if IUWLE = 1 on H-1)

go to T-13a

NX 1>

NY 1>
STAGS 5.0 User Manual April, 2009 8-93

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-13a E849 Lower Face-Sheet Properties

A single T-13a record must be included immediately following the T-13 record, to specify the
nodes for the lower face sheet of the first E849 element (see Figure 8.10 on page 8-92) and to
specify other parameters for the lower face sheet of each of the element(s) specified in the
current definition.

N1 N2 N3 N4 N5 N6 N7 N8 N9 IFABL ZETAL ECZL IPLASL IANGL

N1 node # 1 of the lower face sheet
N2 node # 2 of the lower face sheet
N3 node # 3 of the lower face sheet
N4 node # 4 of the lower face sheet
N5 node # 5 of the lower face sheet
N6 node # 6 of the lower face sheet
N7 node # 7 of the lower face sheet
N8 node # 8 of the lower face sheet
N9 node # 9 of the lower face sheet

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E480 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – shell wall properties are given in user-written subroutine WALL

(See the T-4 record description for more information about this)
<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation
about ; see Figure 8.2 on page 8-19.

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an element
unit; see “Effects of Eccentricity” on page 16-6.

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied

at each element integration point
2 – plasticity included, with the material law satisfied

at the element centroid (centroidal plasticity)

ζ xw

x ζ
z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
8-94 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
IANGL lower face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-13b)

if () then
go to T-13b

else go to T-13c

xg yg, xw

rw xw

IANGL 0>
STAGS 5.0 User Manual April, 2009 8-95

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-13b E849 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL,RYL,RZL lower face sheet wall reference vector, , which is projected onto the

element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-13c

rw

xw rw xg yg zg, ,()
8-96 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-13c E849 Upper Face-Sheet Properties

A single T-13c record must be included immediately following the T-13a (or T-13b) record, to
specify the nodes for the upper face sheet of the first E849 element (see Figure 8.10 on page 8-
92) and to specify other parameters for the upper face sheet of each of the element(s) specified
in the current definition.

N10 N11 N12 N13 N14 N15 N16 N17 N18 IFABU ZETAU ECZU IPLASU IANGU

N10 node # 1 of the upper face sheet
N11 node # 2 of the upper face sheet
N12 node # 3 of the upper face sheet
N13 node # 4 of the upper face sheet
N14 node # 5 of the upper face sheet
N15 node # 6 of the upper face sheet
N16 node # 7 of the upper face sheet
N17 node # 8 of the upper face sheet
N18 node # 9 of the upper face sheet

IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the
WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – shell wall properties are given in user-written subroutine WALL

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-13b)

if () then go to T-13d
else go to T-13e

ζ xw

x ζ z

z′ z′

xg yg, xw

rw xw

IANGU 0>
STAGS 5.0 User Manual April, 2009 8-97

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-13d E849 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected onto the

element surface to determine the direction of the wall-reference

coordinate ; is expressed in global coordinates

go to T-13e

rw

xw rw xg yg zg, ,()
8-98 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-13e E849 Core Properties

A single T-13e record must be included immediately following the T-13c (or T-13d) record, to
specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-13b)

NX (T-13) x-direction looping parameter
NY (T-13) y-direction looping parameter

if () then go to T-13f
elseif () then go to T-13g
elseif () then go to T-13h
else follow instructions at end of T-13h

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>
NX 0>
NY 0>
STAGS 5.0 User Manual April, 2009 8-99

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-13f E849 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element surface to

determine the direction of the core-reference coordinate ; is

expressed in global coordinates

NX (T-13) x-direction looping parameter
NY (T-13) y-direction looping parameter

if () then go to T-13g
elseif () then go to T-13h
else follow instructions at end of T-13h

rw

xw rw

xg yg zg, ,()

NX 0>
NY 0>
8-100 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-13g E849 X-Direction Incrementations

A single record of type T-13g must be included immediately after the T-13e or T-13f record
when the NX “x-direction” looping parameter (T-13) is greater than unity. Eighteen nodal
incrementation variables are specified here for use with the “x-direction” looping function on the
T-13 record. NX E849 sandwich elements are generated in the “x-direction” with this
information. Three incrementation variables are also specified here for “x-direction” looping
with the user-element-number parameters on T-13.

(IX(k), k=1,18) iXC iX1 iX2

IX(k) x-direction incrementation for the kth node,which is
on the T-13a record (when), or
on the T-13c record (when)

IXC x-direction incrementation for USERC on the T-13 record

IX1 x-direction incrementation for USER1 on the T-13 record

IX2 x-direction incrementation for USER2 on the T-13 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-13 / T-13a / T-13c / T-13g record combination:

849 1 0 0 3 $ T-13 with NX=3
10 20 30 40 50 60 70 80 90 ... $ T-13a lower face nodes
15 25 35 45 55 65 75 85 95 ... $ T-13c upper face nodes
...
1 1 1 1 1 1 1 1 1 9*2 $ T-13g increments

generates three E849 elements, with the following nodes:

10 20 30 40 50 60 70 80 90 15 25 35 45 55 65 75 85 95Element #1
11 21 31 41 51 61 71 81 91 17 27 37 47 57 67 77 87 97Element #2
12 22 32 42 52 62 72 82 92 19 29 39 49 59 69 79 89 99Element #3

NY (T-13) y-direction looping parameter

if () then go to T-13h
else follow instructions at end of T-13h

1 k 9≤ ≤

10 k 18≤ ≤

NY 0>
STAGS 5.0 User Manual April, 2009 8-101

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-13h E849 Y-Direction Incrementations

A single type T-13h record must be included immediately after the T-13e or T-13f or T-13g
record when the NY “y-direction” looping parameter is greater than unity (T-13). Eighteen nodal
incrementation variables are specified here for use with the T-13 record “y-direction” looping
function. NY E849 sandwich elements are generated in the “y-direction”, for each E849 element
generated in the x-direction, with this information. The NX and NY looping parameters are usually
employed together to specify E849 elements in a single stroke.

(IY(k), k=1,18) IYC IY1 IY2

IY(k) y-direction incrementation for the kth node,which is
on the T-13a record (when), or
on the T-13c record (when)

IYC y-direction incrementation for USERC on the T-13 record
IY1 y-direction incrementation for USER1 on the T-13 record
IY2 y-direction incrementation for USER2 on the T-13 record

Any of these incrementation variables can be negative, zero, or positive, as required.

N849 (T-5) number of E849 definitions
N880 (T-5) number of E880 definitions

if (fewer than N849 E849 definitions have been processed)return to T-13
elseif (N880 > 0) then go to T-14
else go to U-1

NX NY×

1 k 9≤ ≤

10 k 18≤ ≤
8-102 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
Solid elements

The current version of STAGS gives the analyst a choice of four solid elements:

• E881 — an 8-node ANS solid element
• E882 — an 18-node ANS solid element
• E883 — a 27-node ANS solid element
• E885 — a 20-node BR20 displacement-based solid element

The elements and their node-numbering patterns are shown in Figure 8.11:

Figure 8.11 The E880 Family of Solid Elements

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9
10

11
12

13
14

15
16

17

18

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17 18

19
20

21

22

23

24

26
25

27

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17
18

19
20

E881 E882

E883 E885
STAGS 5.0 User Manual April, 2009 8-103

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-14 E880-Family Solid Element

The N880 parameter, on T-5, specifies the number of definitions that the analyst wishes to make
to include one or more of the E880-family solid elements in the current element unit. Each of
these definitions begins with a T-14 record, on which the KELT parameter, indicates which one
of these element types is being specified with any given solid-element definition:

KELT IFAB IANG ILIN IPLAS NX NY

KELT solid element type:

– 8-node ANS solid element

– 18-node ANS solid element

– 27-node ANS solid element

– 20-node BR20 displacement-based solid element

IFAB fabrication identifier for the element; this is equivalent to the WALL

parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – wall properties are given in user-written subroutine WALL

<0 – fabrication identifier in the GCP Fabrication Table (I-22a)

IANG wall-reference option:

0 – use default strategy of projecting to establish

1 – input , which is projected to establish

IPLAS material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied

at each element integration point
2 – plasticity included, with the material law satisfied

at the element centroid (centroidal plasticity)

NX number of elements to be generated in the x-direction;
STAGS sets NX = 1 if it is nonpositive

NY number of elements to be generated in the y-direction;
STAGS sets NY = 1 if it is nonpositive

go to T-14a

KELT 881=

KELT 882=

KELT 883=

KELT 885=

xg yg, xw

rw xw
8-104 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-14a E880 Solid Element Nodes

A single T-14a record must follow the T-14 record, to identify the user points that define the first
solid element of the set to be generated here. The number NPTS of user points required is 8 for
an E881 element, 18 for an E882 element, 27 for an E883 element, or 20 for an E885 element.
These user points must have been defined by appropriate S-1/S-1a/S-2 or S-3/S-3a/S-4 records,
as described in Chapter 7.

(NODE(k), k=1,NPTS) USERELT

NODE(k) kth of NPTS node points for the initial E881, E882, E883 or E884 solid element

USERELT user-specified element number, used only if IUWLE = 1 on H-1

The nodal orderings for E880-family elements correspond exactly to the nodal orderings that are
used in the PATRAN program.

NX (T-14) x-direction incrementation flag
NY (T-14) y-direction incrementation flag
IANG (T-14) wall-reference option

if (NX > 1) then go to T-14b
elseif (NY > 1) then go to T-14c
elseif () then go to T-14d
else follow instructions at end of T-14d

IANG 0>
STAGS 5.0 User Manual April, 2009 8-105

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-14b E880 X-Direction Incrementations

Nine x-direction incrementation variables are specified here for use with the NX looping function
invoked on the T-14 record and the initial node points established on T-14a.

IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8 IUX

IX1 x-direction incrementation variable for node N1 on T-14a
IX2 x-direction incrementation variable for node N2 on T-14a
IX3 x-direction incrementation variable for node N3 on T-14a
IX4 x-direction incrementation variable for node N4 on T-14a
IX5 x-direction incrementation variable for node N5 on T-14a
IX6 x-direction incrementation variable for node N6 on T-14a
IX7 x-direction incrementation variable for node N7 on T-14a
IX8 x-direction incrementation variable for node N8 on T-14a
IUX x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-14c
elseif (IANG = 1) then go to T-14d
else follow instructions at end of T-14d
8-106 April, 2009 STAGS 5.0 User Manual

Definition of “Other” Elements via the Edef Protocol Model Input—Element Units (2)
T-14c E880 Y-Direction Incrementations

Nine y-direction incrementation variables are specified here for use with the NY looping function
invoked on the T-14 record and the initial node points established on T-880a.

IY1 IY2 IY3 IY4 IY5 IY6 IY7 IY8 IUY

IY1 y-direction incrementation variable for node N1 on T-14a
IY2 y-direction incrementation variable for node N2 on T-14a
IY3 y-direction incrementation variable for node N3 on T-14a
IY4 y-direction incrementation variable for node N4 on T-14a
IY5 y-direction incrementation variable for node N5 on T-14a
IY6 y-direction incrementation variable for node N6 on T-14a
IY7 y-direction incrementation variable for node N7 on T-14a
IY8 y-direction incrementation variable for node N8 on T-14a
IUY y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-14d
else follow instructions at end of T-14d
STAGS 5.0 User Manual April, 2009 8-107

Model Input—Element Units (2) Definition of “Other” Elements via the Edef Protocol
T-14d E880 Material Orientation Record

If (T-14), a single T-14d record must follow the T-14a record (or T-880b or T-880c

record, if applicable) for the current E880 solid element. T-14d specifies the material orientation
for each of the E880 elements that are to be generated by the current T-14 element-definition set.

XFX XFY XFZ YFX YFY YFZ

XFX,XFY,XFZ vector components establishing the x orientation of the material

YFX,YFY,YFZ vector components establishing the x orientation of the material

N880 (T-5) number of E880 definitions

if (fewer than N880 E880 definitions have been processed)return to T-14
else go to U-1

IANG 0>
8-108 April, 2009 STAGS 5.0 User Manual

9
9
9 9

Model Input—Element Units (3)

This chapter describes the Ecom (element-command) protocol for specifying some or all of the
elements that are to be used in constructing an element unit in a STAGS model. As noted
earlier, this protocol is used if and only if the NT1, NT2, NT3, NT4 and NT5 parameters are all set
equal to 0 on the H-1 record for the current element unit—or if one or more of the NT1, NT2,
NT3 and/or NT4 parameters is positive and the NT5 parameter is 3. The Ecom protocol can be
used by itself to define all of the elements in the element unit, or in combination with the
(older) Edef protocol to define one or more additional elements after other elements have been
defined via T-x and/or T-xx records, as described in Chapter 8.

The Ecom protocol, as its name suggests, is a command-driven procedure (like the GCP facility
described in Chapter 5). STAGS responds to command and control information on the following
T-100 record, to read and process element-definition input or to stop doing so. The analyst uses
a typical command, here, to tell STAGS to process one or more record sets that define one or
more spring, beam, triangle, quadrilateral, contact, sandwich, solid or user-defined elements—as
described in this chapter. The analyst terminates Ecom-controlled element definitions with a
simple ‘END’ command.

After all Edef and Ecom protocol element definitions have been processed, STAGS calls user-
written subroutines to generate one or more additional elements (if IUELT is positive on H-1)—
and then moves forward to process loading and other input information, as required.
STAGS 5.0 User Manual April, 2009 9-1

Model Input—Element Units (3)
T-100 Ecom Control or Element-Specification Record

STAGS examines each T-100 record that it encounters to determine if it begins with a character
string (in which case STAGS interprets it as an Ecom control record) or if it begins with numeric
data (in which case STAGS interprets it as an Ecom element-specification record). For reasons
that will become clear as this narrative continues, the very first and the very last T-100 records
for any given element unit must be Ecom control records. One or more T-100 records of either
type can appear in any order between the first and last T-100 records for each element unit.

When the analyst’s current T-100 record is an Ecom control record (starting with a character
string called COMMAND), STAGS examines the first four “active” characters in COMMAND—
starting with the first non-blank character and continuing with the next three characters following
it—to determine whether or not they uniquely identify one or another of the following thirty
case-insensitive Ecom commands that STAGS recognizes:

Ecom command Action instruction

E110_Elements – specify one or more additional E110 spring element(s)
E120_Elements – specify one or more additional E120 rigid link element(s)
E121_Elements – specify one or more additional E121 soft link element(s)
E130_Elements – specify one or more additional E130 generalized fastener element(s)
E210_Elements – specify one or more additional E210 beam element(s)
E250_Elements – specify one or more additional E250 planar BC element(s)
E320_Elements – specify one or more additional E320 standard triangle element(s)
E330_Elements – specify one or more additional E330 MIN3 triangle element(s)
E410_Elements – specify one or more additional E410 4-node quadrilateral element(s)
E411_Elements – specify one or more additional E411 quadrilateral element(s)
E480_Elements – specify one or more additional E480 9-node quadrilateral element(s)
E510_Elements – specify one or more additional E510 5-node quad mesh transition element(s)
E710_Elements – specify one or more additional E710 7-node quad mesh transition element(s)
E810_Elements – specify one or more additional E810 PAD surface/surface contact element(s)
E820_Elements – specify one or more additional E820 generalized point/surface contact element(s)
E822_Elements – specify one or more additional E822 line/line contact element(s)
E830_Elements – specify one or more additional E830 6-node sandwich element(s)
E840_Elements – specify one or more additional E840 8-node sandwich element(s)
E845_Elements – specify one or more additional E845 10-node sandwich transition element(s)
E847_Elements – specify one or more additional E847 14-node sandwich transition element(s)
E849_Elements – specify one or more additional E849 18-node sandwich element(s)
E881_Elements – specify one or more additional E881 8-node ANS brick element(s)
E882_Elements – specify one or more additional E882 18-node ANS solid element(s)
E883_Elements – specify one or more additional E883 27-node ANS solid element(s)
E885_Elements – specify one or more additional E885 20-node displacement-based solid element(s)
E900_Elements – specify one or more additional E900 user-defined element(s)
E928_Elements – specify one or more additional E928 “built-in” 3-node curved-beam UEL(s)
E940_Elements – specify one or more additional E940 “built-in” MIN4 quadrilateral UEL(s)
E9XX_Elements – specify one or more additional E9xx UEL(s)

and
End – stop specifying elements!
9-2 April, 2009 STAGS 5.0 User Manual

Model Input—Element Units (3)
STAGS ignores the ‘_’ character in the user’s COMMAND string and the program’s matrix of
recognizable keywords, and everything after that character in both places, so the user can
abbreviate any of these keywords to four characters as and if he wishes to do so—except for the
3-character ‘End’ keyword, which he cannot abbreviate.

When the “active” part of the COMMAND string on the user’s current T-100 record “matches” the
first four characters of one of the twenty nine ‘Ennn_Elements’ Ecom commands that STAGS

recognizes and supports, STAGS understands that the analyst wants to add one or more type
‘nnn’ elements to the current element unit. Under these circumstances, the ‘nnn’ part of the
user’s COMMAND must be one or another of the twenty nine 3-digit element-type codes that the
current version of the STAGS program supports—one or another of the KELT values that are
specified in the nine element-type “groups” that are shown in the following Table:

These twenty nine element-type codes are arranged in “groups” like this because element-
specification input requirements tend to be similar from one type of element to another when the
elements are in the same group, and because they tend to be very different from each other when
the elements are in different element-type groups. It takes more input (of different kinds) for the
user to specify an E410 quadrilateral element, for example, than it does for him to specify any
type of “spring” element. It also takes more input to specify a set of 18-node E885 elements than
it does to specify a set of E881s.

The “real” reason for arranging these element-type codes in nine “groups” like this is to make it
easier for the user to specify the elements that he wants to add to his current element unit—by
relaxing the old rule that he had to warn STAGS each time he stopped specifying elements of one
type and started specifying elements of a different type (with a T-100 record specifying the new
type and the number of record sets needed to define those elements). The current version of
STAGS lets the user switch from one type of element to any other type of element in the same
element-type group—without using an Ecom record to specify the new type and without
counting the number of record sets to be used to define them.

Group Element-type code (KELT = nnn value)

100 110 120 121 130
200 210 250
300 320 330
400 410 411 480 510 710
800 810 820 822
830 830
840 840 845 847 849
880 881 882 883 885
900 900 928 940 9xx
STAGS 5.0 User Manual April, 2009 9-3

Model Input—Element Units (3)
With the previous version of STAGS, the Ecom-controlled part of the user’s element-specification
input stream might have looked like this (for example):

:
E220_Elements 1

T-220 record set # 1 (T-220/T-220a)
E221_Elements 1

T-221 record set # 1 (T-221/T-221a)
E410_Elements 2

T-410 record set # 1 (T-410/T-410a/T-410b/T-410c)
T-410 record set # 2 (T-410/T-410a/T-410b/T-410c)

E510_Elements 1
T-510 record set # 1 (T-510/T-510a/T-510b/T-510c)

E710_Elements 1
T-710 record set # 1 (T-710/T-710a/T-710b/T-710c)

E410_Elements 2
T-410 record set # 3 (T-410/T-410a/T-410b/T-410c)
T-410 record set # 4 (T-410/T-410a/T-410b/T-410c)

End

With the current version of STAGS, this user might want to take advantage of this new flexibility
by removing the “optional” ‘Ennn_Elements’ commands in his input stream and restraining
himself from counting the number of element-specification record sets that he needs to do the
job at hand—thusly:

:
E410_Elements

T-410 record set # 1 (T-410/T-410a/T-410b/T-410c)
T-410 record set # 2 (T-410/T-410a/T-410b/T-410c)
T-410 record set # 3 (T-410/T-410a/T-410b/T-410c)
T-410 record set # 4 (T-410/T-410a/T-410b/T-410c)
T-510 record set # 1 (T-510/T-510a/T-510b/T-510c)
T-710 record set # 1 (T-710/T-710a/T-710b/T-710c)

E120_Elements
T-220 record set # 1 (T-220/T-220a)
T-221 record set # 1 (T-221/T-221a)

End

In any event, the reader should take pains to note that the first record in both of these element-
specification streams must be an Ecom command that identifies the first type of element that the
user wants to add to the current element unit—and that the last Ecom record in both of these
element-specification streams must be the ‘END’ command, to stop specifying more elements
for that unit. It’s no big deal for the user to cut out four element-type Ecom commands in this
small and simple example, but it might make life much simpler and easier for him to do so
(without having to count his record sets) for larger and/or more complex cases.

This is a good point for us to remind the reader (again) that when the character string on the
analyst’s T-100 (Ecom) record gives STAGS the ‘END’ instruction, the program stops reading
element specifications for the current unit and starts reading the user’s U-1 (Loads Summary)
input.
9-4 April, 2009 STAGS 5.0 User Manual

Model Input—Element Units (3)
This is also a good point for us to tell (or remind) the reader that when the current T-100 record
starts with numeric data, STAGS considers that T-100 record to be the first record in the record
set that is needed to specify type-nnn elements. Initially (and typically), nnn is the KELT-
specification part of the user’s most recent Ecom control command. It will be different from that,
however, if the user has switched to a different type of element in the same element-type group.
STAGS expects to continue reading and processing one T-nnn record set after another—as
described below and in the remainder of this chapter—until the user gives it a new Ecom control
record that directs it to do otherwise.

The following “overview” navigation diagram describes that more succinctly than more
paragraphs in this “Model Input—Element Units” chapter can:

if (the T-100 record contains an Ecom control command) then

if (COMMAND := ‘Ennn’ --> valid STAGS element type) then

go to T-nnn to specify one or more type nnn elements to be

added to the current element unit

elseif (COMMAND := ‘End’) then

go to U-1 (stop specifying elements)

else

STOP gracefully (unrecognized command)

endif

elseif (the T-100 record contains numerical data) then

go to T-nnn and follow instructions there

endif

The following navigation diagram describes more precisely what STAGS expects the user to “do”
when he reaches (or returns to) this point in preparing his case.inp input file for the s1 program:
STAGS 5.0 User Manual April, 2009 9-5

Model Input—Element Units (3)
if (T-100 contains an Ecom control command) then

if (COMMAND := ‘Ennn’ --> valid STAGS element type) then

if (COMMAND = ’E110_Elements’) then go to T-110
elseif (COMMAND = ’E120_Elements’) then go to T-120
elseif (COMMAND = ’E121_Elements’) then go to T-121
elseif (COMMAND = ’E130_Elements’) then go to T-130
elseif (COMMAND = ’E210_Elements’) then go to T-210
elseif (COMMAND = ’E250_Elements’) then go to T-250
elseif (COMMAND = ’E320_Elements’) then go to T-320
elseif (COMMAND = ’E330_Elements’) then go to T-330
elseif (COMMAND = ’E410_Elements’) then go to T-410
elseif (COMMAND = ’E411_Elements’) then go to T-411
elseif (COMMAND = ’E480_Elements’) then go to T-480
elseif (COMMAND = ’E510_Elements’) then go to T-510
elseif (COMMAND = ’E710_Elements’) then go to T-710
elseif (COMMAND = ’E810_Elements’) then go to T-810
elseif (COMMAND = ’E820_Elements’) then go to T-820
elseif (COMMAND = ’E822_Elements’) then go to T-822
elseif (COMMAND = ’E830_Elements’) then go to T-830
elseif (COMMAND = ’E840_Elements’) then go to T-840
elseif (COMMAND = ’E845_Elements’) then go to T-845
elseif (COMMAND = ’E847_Elements’) then go to T-847
elseif (COMMAND = ’E849_Elements’) then go to T-849
elseif (COMMAND = ’E881_Elements’) then go to T-881
elseif (COMMAND = ’E882_Elements’) then go to T-882
elseif (COMMAND = ’E883_Elements’) then go to T-883
elseif (COMMAND = ’E885_Elements’) then go to T-885
elseif (COMMAND = ’E900_Elements’) then go to T-900
elseif (COMMAND = ’E928_Elements’) then go to T-928
elseif (COMMAND = ’E940_Elements’) then go to T-940
elseif (COMMAND = ’E9XX_Elements’) then go to T-900

elseif (COMMAND := ‘End’) then

go to U-1 (stop specifying elements)

endif

elseif (T-100 contains numerical data) then

go to T-100

endif
9-6 April, 2009 STAGS 5.0 User Manual

Definition of “Spring” Elements via the Ecom Protocol Model Input—Element Units (3)
9.1 Definition of “Spring” Elements via the Ecom Protocol

There are four so-called “spring” elements available in the current version of the STAGS

program.

The 2-node E110 Mount element is a special-purpose function (disguised as an element) that is
designed to model a user-specified displacement-velocity-force profile. One or more E110
elements (or additional E110 elements) can be defined with the T-110 record set. For more
information about the E110 element, see “I-4a Mount Element Table Size” on page 5-64 and
“E110 Mount element” on page 14-6.

The 2-node E120 rigid link element constrains the distance between two nodes to be invariant
during an analysis and the rotations at the two nodes to be equal. It is a traditional rigid link.
One or more E120 elements (or additional E120 elements) can be defined with the T-120 record
set. For more information about the E120 element, see “E120 Rigid link element” on page 14-7.

The 3-node E121 soft link element constrains three nodes to be colinear. The E121 element is
most useful in connecting shell units that are modeled with three-dimensional solid elements to
other shell units that are modeled with two-dimensional shell elements. One or more E121
elements (or additional E121 elements) can be defined with the T-121 record set. For more
information about the E121 element, see “E121 Soft link element” on page 14-7 and the STAGS

Elements Manual.

The 2-node E130 element is a special-purpose element that uses Mount Element Table and other
user-supplied information to model breakable fasteners. One or more E130 elements (or
additional E130 elements) can be defined with the T-130 record set. For more information about
the E130 element, see “E130 Generalized fastener element” on page 14-8.
STAGS 5.0 User Manual April, 2009 9-7

Model Input—Element Units (3) Definition of “Spring” Elements via the Ecom Protocol
T-110 Additional E110 Elements

This is the first record of the two-record T-110/T-110a Ecom protocol counterpart of the T-1/
T-1a record set that also defines one or more E110 mount elements. With this T-110 record (and
its T-110a companion), the user can specify one or more additional mount elements to be
included in the current element unit. The looping capability provided here via NX, INC1, INC2 and
INC3 can be used effectively in many situations.

N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

N1 node 1
N2 node 2
N3 node 3

KELT must = 110

NX number of mount elements to be specified; STAGS sets NX = 1
if it is nonpositive or omitted

INC1 incrementation variable for N1

INC2 incrementation variable for N2

INC3 incrementation variable for N3

USERELT user-specified element number (only used if IUWLE=1 on H-1)

INC4 incrementation variable for USERELT

go to T-110a
9-8 April, 2009 STAGS 5.0 User Manual

Definition of “Spring” Elements via the Ecom Protocol Model Input—Element Units (3)
T-110a E110 Element Data

The mount element is described fully in “E110 Mount element” on page 14-6 and in Chapter 8,
in connection with the T-1/T-1a record set. As noted there, it is a special nonlinear spring capable
of modeling a user-defined displacement-velocity-force profile. Rigid links with this element
provide a method for defining rotational stiffness in addition to axial spring stiffness.

IMNT1 IMNT2 RLX1 RLY1 RLZ1 RLX2 RLY2 RLZ2

IMNT1 required Mount Element Table identifier (I-4a)

IMNT2 optional additional mount table identifier: if IMNT2 is not zero, then IMNT1 and
IMNT2 must refer to tables consisting of a single row (displacement table,

, I-4a) or column (velocity table, , I-4a). There must be one
table of each type, or an error will result. If , the total mount force is the
sum of the force from the displacement table and the force from the velocity table.

RLX1, RLY1, RLZ1 coordinates of point RL1; see Figure 14.1 on page 14-6

RLX2, RLY2, RLZ2 coordinates of point RL2

if (the user wants to add another set of E110 elements) then

go to T-110

elseif (the user wants to add a set of E120 elements) then

go to T-120

elseif (the user wants to add a set of E121 elements) then

go to T-121

elseif (the user wants to add a set of E130 elements) then

go to T-130

else

return to T-100

endif

NRV 1= NRD 1=

IMNT2 0>

X1 Y1 Z1, ,()

X2 Y2 Z2, ,()
STAGS 5.0 User Manual April, 2009 9-9

Model Input—Element Units (3) Definition of “Spring” Elements via the Ecom Protocol
T-120 Additional E120 Elements

This is the first record of the two-record T-120/T-120a Ecom protocol counterpart of the T-1/
T-1b record set that also defines one or more E120 rigid link elements. With this record (and T-

120a), the user can specify one or more additional rigid link elements to be included in the
current element unit. The looping capability provided here via NX, INC1, INC2 and INC3 can be
used effectively in many situations.

N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

N1 node 1
N2 node 2
N3 node 3 — a reference node; a positive value enforces

rotational compatibility between N1 and N2)

KELT must = 120

NX number of rigid link elements to be specified; STAGS sets NX = 1
if it is nonpositive or omitted

INC1 incrementation variable for N1

INC2 incrementation variable for N2

INC3 incrementation variable for N3

USERELT user-specified element number (only used if IUWLE=1 on H-1)

INC4 incrementation variable for USERELT

The third node, N3, is a reference node that is used to enforce rotational compatibility between
N1 and N2. If N3 is zero, the freedoms on N2 are independent of those on N1—a condition that
simulates a ball joint at N2. If N3 is nonzero, total rotational compatibility is enforced between N1

and N2—a condition that simulates the ordinary rigid link. If N3 is positive, the rotational
constraint in enforced with a set of three Lagrange multipliers. For this option, computational
coordinates for each node in the link are completely independent (at the discretion of the user),
affording maximum flexibility. If N3 is negative, the rotational constraint is enforced using
partial compatibility (see G-2, with ID1 = -2). A restriction is introduced that forces the
computational coordinates of N2 to be the same as for the master node to which N1 refers. This
can have unforeseen consequences if rigid links cause new master/slave relationships to be
defined between other nodes in the model. It is recommended that a negative value for N3 be
used with caution.

go to T-120a
9-10 April, 2009 STAGS 5.0 User Manual

Definition of “Spring” Elements via the Ecom Protocol Model Input—Element Units (3)
T-120a E120 Element Data

The rigid link element is discussed in the STAGS Elements Manual. A rigid link element
constrains the distance between two nodes (N1 and N2) to be invariant during an analysis. The
displacements of node N2 are dependent on the displacements and rotations of node N1 through
a rigid-link constraint equation, which is enforced via Lagrange multipliers.

The potential energy for a rigid link element is given by

where is a vector of three Lagrange multipliers, and are the current global positions of
nodes N1 and N2, respectively, and is the directed position of N2 with respect to N1. The
magnitude of is the original distance between nodes N1 and N2. The user-specified element
scale factor is employed to make the magnitude of the stiffness contributions of the rigid link
element comparable in size to those of other elements in the configuration—this value is
typically on the order of the elastic modulus of the material.

Note that the rotations on N2 are unaffected unless the reference node N3 is nonzero, in which
case G-2 records are automatically generated to constrain the rotations on N1 to be the same as
on N2; separate G-2 records can always be generated to constrain the rotational freedoms as the
user may desire.

SCALE

SCALE element scale factor

if (the user wants to add another set of E120 elements) then

go to T-120

elseif (the user wants to add a set of E110 elements) then

go to T-110

elseif (the user wants to add a set of E121 elements) then

go to T-121

elseif (the user wants to add a set of E130 elements) then

go to T-130

else

return to T-100

endif

Π

Π φαT x1 r x2–+()=

α x1 x2

r

r

φ

STAGS 5.0 User Manual April, 2009 9-11

Model Input—Element Units (3) Definition of “Spring” Elements via the Ecom Protocol
T-121 Additional E121 Elements

The soft link element, which is described fully in the STAGS Elements Manual, uses Lagrange
multipliers to constrain the three nodes that are associated with it to be colinear.

T-121 is the first record of the two-record T-121/T-121a Ecom protocol counterpart of the T-1/
T-1b record set that also defines one or more E121 soft link elements. With this record (and
T-121a), the user can specify one or more additional soft link elements to be included in the
current element unit. The looping capability provided here via NX, INC1, INC2 and INC3 can be
used effectively in many situations.

N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

N1 active soft-link node # 1
N2 active soft-link node # 2
N3 active soft-link node # 3

KELT must = 121

NX number of soft link elements to be specified; STAGS sets NX = 1
if it is nonpositive or omitted

INC1 incrementation variable for N1

INC2 incrementation variable for N2

INC3 incrementation variable for N3

USERELT user-specified element number (only used if IUWLE=1 on H-1)

INC4 incrementation variable for USERELT

go to T-121a
9-12 April, 2009 STAGS 5.0 User Manual

Definition of “Spring” Elements via the Ecom Protocol Model Input—Element Units (3)
T-121a E121 Element Data

The basic scale factor for the Lagrange multipliers generated by the soft link element(s) defined
here is specified on this record.

SCALE

SCALE basic Lagrange multiplier scale factor

if (the user wants to add another set of E121 elements) then
go to T-121

elseif (the user wants to add a set of E110 elements) then
go to T-110

elseif (the user wants to add a set of E120 elements) then
go to T-120

elseif (the user wants to add a set of E130 elements) then
go to T-130

else
return to T-100

endif
STAGS 5.0 User Manual April, 2009 9-13

Model Input—Element Units (3) Definition of “Spring” Elements via the Ecom Protocol
T-130 Additional E130 Elements

The generalized fastener element is described fully in the STAGS Elements Manual.

T-130 is the first record of the two-record T-130/T-130a Ecom protocol counterpart of the T-1/
T-1c record set that also defines one or more E130 generalized fastener elements. With this
record (and T-130a), the user can specify one or more additional generalized fastener elements
to be included in the current element unit. The looping capability provided here via NX, INC1, INC2

and INC3 can be used effectively in many situations.

N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

N1 active soft-link node # 1
N2 active soft-link node # 2
N3 active soft-link node # 3

KELT must = 130

NX number of soft link elements to be specified; STAGS sets NX = 1
if it is nonpositive or omitted

INC1 incrementation variable for N1

INC2 incrementation variable for N2

INC3 incrementation variable for N3

USERELT user-specified element number (only used if IUWLE=1 on H-1)

INC4 incrementation variable for USERELT

go to T-130a
9-14 April, 2009 STAGS 5.0 User Manual

Definition of “Spring” Elements via the Ecom Protocol Model Input—Element Units (3)
T-130a E130 Element Data

The T-130a record identifies all of the Mount tables and breakage codes that are to be used for
all of the E130 mount element(s) that are defined on the current T-130 record.

IMNT1 IMNT2 IMNT3 IMNT4 IMNT5 IMNT6 PLAS1 PLAS2 PLAS3 PLAS4 PLAS5 PLAS6

IMNT1 Mount Table identifier (see I–4a) applied to the relative local x translation
IMNT2 Mount Table identifier (see I–4a) applied to the relative local y translation
IMNT3 Mount Table identifier (see I–4a) applied to the relative local z translation
IMNT4 Mount Table identifier (see I–4a) applied to the relative local rotation

IMNT5 Mount Table identifier (see I–4a) applied to the relative local rotation

IMNT6 Mount Table identifier (see I–4a) applied to the relative local rotation

PLAS1 breakage code for IMNT1: see discussion, below, for significance
PLAS2 breakage code for IMNT2: see discussion, below, for significance
PLAS3 breakage code for IMNT3: see discussion, below, for significance
PLAS4 breakage code for IMNT4: see discussion, below, for significance
PLAS5 breakage code for IMNT5: see discussion, below, for significance
PLAS6 breakage code for IMNT6: see discussion, below, for significance

The six breakage codes specified here control generalized fastener breakage modes for the
associated mount identifiers. Each breakage code may have one of the following five values:

PLASj = 1 ⇒ fastener j behaves elastically; its failure does not cause other fasteners to fail
PLASj = 2 ⇒ fastener j behaves elastically; its failure causes all of the fasteners to fail
PLASj = 3 ⇒ fastener j behaves elastically, and is unbreakable, throughout the analysis
PLASj = 4 ⇒ fastener j behaves plastically; its failure does not cause other fasteners to fail
PLASj = 5 ⇒ fastener j behaves plastically; its failure causes all of the fasteners to fail

if (the user wants to add another set of E130 elements) then

go to T-130

elseif (the user wants to add a set of E110 elements) then

go to T-110

elseif (the user wants to add a set of E120 elements) then

go to T-120
elseif (the user wants to add a set of E121 elements) then

go to T-121

else

return to T-100

endif

θx

θy

θz
STAGS 5.0 User Manual April, 2009 9-15

Model Input—Element Units (3) Definition of “Beam” Elements via the Ecom Protocol
9.2 Definition of “Beam” Elements via the Ecom Protocol

There are two standard “beam” elements in the current version of STAGS.

The standard 2-node E210 element is a multi-sectional straight beam that was implemented in
the earliest versions of STAGS several decades ago using traditional element-implementation
methodologies. One or more E210 elements (or additional E210 elements) can be defined with
the T-210 record set—as described on the following two pages. For more information about the
E210 element, please see “E210 Beam element” on page 14-13.

The standard 3-node E250 element is a special-purpose function (that is disguised as a “beam
element”) that can be used (in groups) to enforce planar boundary conditions. This “element”
was implemented in STAGS several lustra ago using traditional methodologies. One or more
E250 elements (or additional E250 elements) can be defined with the T-250 record set—as
described later in this section. For more information about the E250 element, see the STAGS
Elements Manual.

There is one user-developed “beam” element in the current version of STAGS.

The 3-node E928 curved beam element was originally implemented as a User-Defined STAGS

element using the STAGS UEL methodologies and standards that are described in Section 9.8 of
this chapter and in Chapter 13 of this document. In 2008, this E928 element was integrated into
the current version of STAGS as a “built-in” UEL that can be used by anyone who needs a curved
beam element that is compatible with STAGS’ standard 9-node E480 quad element. One or more
E928 elements can be defined with the T-900 record and the T-928 record set that are also
described in Section 9.8 of this chapter. For more information about the E928 element, please
see Chapter 14 in this document, the STAGS Elements Manual, and the STAGS Test Cases
Manual.
9-16 April, 2009 STAGS 5.0 User Manual

Definition of “Beam” Elements via the Ecom Protocol Model Input—Element Units (3)

✤

✤

✤

✤

✤

T-210 Additional E210 Elements

T-210 is the first record of the two-record T-210/T-210a Ecom protocol counterpart of the T-2/
T-2a record set that also defines one or more E210 beam elements. With this record (and
T-210a), the user can specify one or more additional generalized fastener elements to be included
in the current element unit. The looping capability provided here, via NX and the four
incrementation parameters on T-210a, can be used effectively in many situations.

N1 N2 N3 KELT ICROSS XSI ECY ECZ ILIN IPLAS NX USERELT

N1 active beam node # 1
N2 active beam node # 2
N3 node # 3 — a reference node used to generate the element coordinate system

KELT must = 210

ICROSS cross-section identifier, in the Cross Section Table: see the T-2 description, in
Chapter 8, for important information about ICROSS

XSI angle , in degrees, between the element normal and the cross section . is
a right-handed rotation about , the longitudinal axis of the beam, which is
parallel to .

ECY eccentricity in the direction. ECY is the coordinate of the pair
which positions the origin of the system.

ECZ eccentricity in the direction. ECZ is the coordinate of the pair
which positions the origin of the system.

ILIN geometric nonlinearity flag
0 – nonlinear strain-displacement relations
1 – linear strain-displacement relations

IPLAS material nonlinearity flag (see M-5)
0 – linear elastic constitutive relations
1 – plasticity included
2 – centroidal plasticity

NX number of beam elements to be generated via this T-210 record; set to unity by
STAGS if nonpositive or omitted

USERELT user-specified element number, used only if IUWLE = 1 on H-1

if (NX > 1) then go to T-210a
else follow the instructions at the end of T-210a

ξ z′ z ξ
x

x′

y′ y′ y′ z′,()
y z,()

z′ z′ y′ z′,()
y z,()
STAGS 5.0 User Manual April, 2009 9-17

Model Input—Element Units (3) Definition of “Beam” Elements via the Ecom Protocol
T-210a E210 Incrementations

Four incrementation variables are specified here for use with the T-210 record looping functions.

INC1 INC2 INC3 INC4

INC1 incrementation variable for use with the N1 (node 1) variable on T-210
INC2 incrementation variable for use with the N2 (node 2) variable on T-210
INC3 incrementation variable for use with the N3 (node 3) variable on T-210
INC4 incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (the user wants to add another set of E210 elements) then
go to T-210

elseif (the user wants to add a set of E250 elements) then
go to T-250

else
return to T-100

endif
9-18 April, 2009 STAGS 5.0 User Manual

Definition of “Beam” Elements via the Ecom Protocol Model Input—Element Units (3)
T-250 Additional E250 Elements

T-250 is the first record of the two-record T-250/T-250a Ecom protocol extension of the T-2

record that also defines an E250 planar boundary condition element. With this record (and
T-250a), the user can specify one or more additional planar boundary condition elements to be
included in the current element unit. The looping capability provided here, via NX and the four
incrementation parameters on T-250a, can be used effectively in many situations.

A moving plane boundary—which is like a symmetry boundary, except that the symmetry plane
itself is allowed to move as a rigid body—is defined in a STAGS element unit with a set of T-250

planar boundary condition elements that are modeled with “beams” that are strung along a user-
defined space curve forming the boundary. It is the user’s responsibility to make sure that curve
initially lies in a plane. If the constraint is violated initially, STAGS will complain. The reference
node N3 must also lie in the boundary plane.

N1 N2 N3 KELT ICROSS XSI ECY ECZ ILIN IPLAS NX USERELT

N1 active beam node # 1

N2 active beam node # 2

N3 node # 3 — reference node used to generate the element coordinate system;
N3 must lie in the boundary plane

KELT must = 250
ICROSS must = -1

XSI ignored

ECY scale factor used for the numerical conditioning of Lagrange constraints
introduced by the multipoint constraint; should be of the same order of magnitude
as entries in the stiffness matrix; a good guess is the modulus of elasticity of the
material

ECZ ignored

ILIN ignored

IPLAS ignored

NX number of planar boundary condition elements to be generated via this
T-250 record; set to unity by STAGS if nonpositive or omitted

USERELT user-specified element number, used only if IUWLE = 1 on H-1

if (NX > 1) then go to T-250a
else follow the instructions at the end of T-250a
STAGS 5.0 User Manual April, 2009 9-19

Model Input—Element Units (3) Definition of “Beam” Elements via the Ecom Protocol
T-250a E250 Incrementations

Four incrementation variables are specified here for use with the T-250 record looping functions.

INC1 INC2 INC3 INC4

INC1 incrementation variable for use with the N1 (node 1) variable on T-250
INC2 incrementation variable for use with the N2 (node 2) variable on T-250
INC3 incrementation variable for use with the N3 (node 3) variable on T-250
INC4 incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (the user wants to add another set of E250 elements) then
go to T-250

elseif (the user wants to add a set of E210 elements) then
go to T-210

else
return to T-100

endif
9-20 April, 2009 STAGS 5.0 User Manual

Definition of Triangular Elements via the Ecom Protocol Model Input—Element Units (3)
9.3 Definition of Triangular Elements via the Ecom Protocol

There are two triangular thin shell elements available in the current version of STAGS.

The 3-node E320 element is a traditional triangular thin shell element. One or more E320
elements (or additional E320 elements) can be defined with the T-320 record set. For more
information about the E320 element, see “E320 Triangular shell element” on page 14-20.

The 3-node E330 element is STAGS’ implementation of the MIN3 triangle element in the
COMET program. One or more E330 elements (or additional E330 elements) can be defined with
the T-330 record set. For more information about the E330 element, see “E330 Triangular shell
element” on page 14-21.
STAGS 5.0 User Manual April, 2009 9-21

Model Input—Element Units (3) Definition of Triangular Elements via the Ecom Protocol

✤

✤

✤

T-320 Additional E320 Elements

T-320 is the first record of the multi-record Ecom protocol extension of the T-3/T-3a record set
that also defines an E320 triangular shell element. With this record (and T-320a, T-320b and/or
T-320c companion records, as required), the user can specify one or more additional E320
triangular shell elements to be included in the current element unit. The looping capabilities
provided here, via NX, NY, and the incrementation parameters on T-320a and T-320b, can be used
effectively in many situations.

N1 N2 N3 KELT IWALL ZETA ECZ ILIN IPLAS IANG USERELT NX NY

N1 node 1

N2 node 2

N3 node 3

KELT must = 320

IWALL wall fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL

>0 – wall fabrication number, in the Wall Fabrication Table (K-1)

When , data below indicated by ✤ are defined in WALL and are
initialized to zero before WALL is called, superseding any values input here

ZETA angle between the wall-reference coordinate and the fabrication coordinate

; is a right-handed rotation about . see Figure 8.2 on page 8-19.

ECZ eccentricity in direction. ECZ is the coordinate of the shell wall middle

surface; see Figure 6.2 on page 6-28. In element units, are used in

place of , which do not exist in an element unit. See “Effects of
Eccentricity” on page 16-6.

ILIN governs geometric nonlinearity

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

IWALL 0=

ζ xw

x ζ z

z′ z′

x′ y′ z′, ,()

X′ Y′ Z′, ,()
9-22 April, 2009 STAGS 5.0 User Manual

Definition of Triangular Elements via the Ecom Protocol Model Input—Element Units (3)

✤
 IPLAS governs material nonlinearity

0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

IANG wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-320c)

USERELT user-specified element number, used only when IUWLE=1 on H-1

if (NX > 1) then go to T-320a
elseif (NY > 1) then go to T-320b
elseif (IANG = 1) then go to T-320c
else follow the instructions at the end of T-320c

xg yg, xw

rw xw
STAGS 5.0 User Manual April, 2009 9-23

Model Input—Element Units (3) Definition of Triangular Elements via the Ecom Protocol
T-320a E320 X-Direction Incrementations

Four x-direction incrementation variables are specified here for use with the T-320 record
looping functions.

IX1 IX2 IX3 IX4

IX1 x-direction incrementation variable for node N1 on T-320
IX2 x-direction incrementation variable for node N2 on T-320
IX3 x-direction incrementation variable for node N3 on T-320
IX4 x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-320b
elseif (IANG = 1) then go to T-320c
else follow the instructions at the end of T-320c
9-24 April, 2009 STAGS 5.0 User Manual

Definition of Triangular Elements via the Ecom Protocol Model Input—Element Units (3)
T-320b E320 Y-Direction Incrementations

Four y-direction incrementation variables are specified here for use with the T-320 record
looping functions.

IY1 IY2 IY3 IY4

IY1 y-direction incrementation variable for node N1 on T-320
IY2 y-direction incrementation variable for node N2 on T-320
IY3 y-direction incrementation variable for node N3 on T-320
IY4 y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-320c
else follow the instructions at the end of T-320c
STAGS 5.0 User Manual April, 2009 9-25

Model Input—Element Units (3) Definition of Triangular Elements via the Ecom Protocol
T-320c E320 Wall Reference Vector

RX RY RZ

RX, RY, RZ wall reference vector, , which is projected onto the element surface

to determine the direction of the wall-reference coordinate ;

 is expressed in global coordinates.

if (the user wants to add another set of E320 elements) then
go to T-320

elseif (the user wants to add a set of E330 elements) then
go to T-330

else
return to T-100

endif

rw

xw

rw xg yg zg, ,()
9-26 April, 2009 STAGS 5.0 User Manual

Definition of Triangular Elements via the Ecom Protocol Model Input—Element Units (3)

✤

✤

✤

T-330 Additional E330 Elements

T-330 is the first record of the multi-record Ecom protocol extension of the T-3/T-3a record set
that also defines an E330 triangular shell element. With this record (and T-330a, T-330b and/or
T-330c companion records, as required), the user can specify one or more additional E330 shell
elements to be included in the current element unit. The looping capabilities provided here, via
NX, NY, and the incrementation parameters on T-330a and T-330b, can be used effectively in
many situations.

N1 N2 N3 KELT IWALL ZETA ECZ ILIN IPLAS IANG USERELT NX NY

N1 node 1

N2 node 2

N3 node 3

KELT must = 330

IWALL wall fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL

>0 – wall fabrication number, in the Wall Fabrication Table (K-1)

<0 – shell fabrication identifier in the GCP Fabrications Table (I-21a)

When , data below indicated by ✤ are defined in subroutine WALL

and are set to zero before WALL is called, superseding any values input here

ZETA angle between the wall-reference coordinate and the fabrication coordinate

; is a right-handed rotation about . see Figure 8.2 on page 8-19.

ECZ eccentricity in direction. ECZ is the coordinate of the shell wall middle

surface; see Figure 6.2 on page 6-28. In element units, are used in

place of , which do not exist in an element unit.

ILIN governs geometric nonlinearity

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

IWALL 0=

ζ xw

x ζ z

z′ z′

x′ y′ z′, ,()

X′ Y′ Z′, ,()
STAGS 5.0 User Manual April, 2009 9-27

Model Input—Element Units (3) Definition of Triangular Elements via the Ecom Protocol

✤
 IPLAS governs material nonlinearity

0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

IANG wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-330c)

USERELT user-specified element number, used only when IUWLE = 1 on H-1

if (NX > 1) then go to T-330a
elseif (NY > 1) then go to T-330b
elseif (IANG = 1) then go to T-330c
else follow the instructions at the end of T-330c

xg yg, xw

rw xw
9-28 April, 2009 STAGS 5.0 User Manual

Definition of Triangular Elements via the Ecom Protocol Model Input—Element Units (3)
T-330a E330 X-Direction Incrementations

Four x-direction incrementation variables are specified here for use with the T-330 record
looping functions.

IX1 IX2 IX3 IX4

IX1 x-direction incrementation variable for node N1 on T-330
IX2 x-direction incrementation variable for node N2 on T-330
IX3 x-direction incrementation variable for node N3 on T-330
IX4 x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-330b
elseif (IANG = 1) then go to T-330c
else follow the instructions at the end of T-330c
STAGS 5.0 User Manual April, 2009 9-29

Model Input—Element Units (3) Definition of Triangular Elements via the Ecom Protocol
T-330b E330 Y-Direction Incrementations

Four y-direction incrementation variables are specified here for use with the T-330 record
looping functions.

IY1 IY2 IY3 IY4

IY1 y-direction incrementation variable for node N1 on T-330
IY2 y-direction incrementation variable for node N2 on T-330
IY3 y-direction incrementation variable for node N3 on T-330
IY4 y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-330c
else follow the instructions at the end of T-330c
9-30 April, 2009 STAGS 5.0 User Manual

Definition of Triangular Elements via the Ecom Protocol Model Input—Element Units (3)
T-330c E330 Wall Reference Vector

RX RY RZ

RX, RY, RZ wall reference vector, , which is projected onto the element surface

to determine the direction of the wall-reference coordinate ;

 is expressed in global coordinates.

if (the user wants to add another set of E330 elements) then
go to T-330

elseif (the user wants to add a set of E320 elements) then
go to T-320

else
return to T-100

endif

rw

xw

rw xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 9-31

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
9.4 Definition of Quad Elements via the Ecom Protocol

There are five “standard” quadrilateral thin shell elements available in the current version of
STAGS. Three of these (E410, E411 and E480) are traditional 4- and 9-node quadrilateral
elements. The other two (E510 and E710) are 5- and 7-node constructions (of two and four
E410s, respectively) that are most appropriately used in modeling transition zones where mesh
refinements are required.

The “standard” 4-node E410 element is a traditional thin shell quadrilateral element. One or
more E410 elements (or additional E410 elements) can be defined with the T-410 record set—
as described on the pages immediately following these introductory remarks. For more
information about the E410 element, please see “E410 4–Node quadrilateral shell element” on
page 14-22.

The “standard” E411 element is a thin shell quad element that is defined by its four corner node
points but which has additional (program-generated) mid-side nodes with supplementary
(program-generated) degrees of freedom. One or more E411 elements (or additional E411
elements) can be defined with the T-411 record set—as described later in this section. For more
information about the E411 element, please see “E411 4–Node quadrilateral shell element” on
page 14-23.

The “standard” 9-node E480 element is a traditional higher-order thin shell quadrilateral
element. One or more E480 elements (or additional E480 elements) can be defined with the
T-480 record set—as described later in this section. For more information about the E480
element, please see “E480 9–Node quadrilateral shell element” on page 14-24.

The “standard” 5-node E510 “quadrilateral” element has a (user-defined) mid-side node on one
of its four edges. It is typically used to connect two 4-node quadrilateral shell elements in a
finely-meshed region to a single 4-node quad shell element in another (more-coarsely-meshed)
region. One or more E510 elements (or additional E510 elements) can be defined with the T-510

record set—as described later in this section.

The “standard” 7-node E510 “quadrilateral” element has one (user-defined) mid-side node on
each of two adjacent edges and an extra (user-defined) internal node. It is typically used to
connect 4-node quads in a finely-meshed region to 4-node quads in two or three other (more-
coarsely-meshed) regions—at a corner where all of these regions come together. One or more
E710 elements (or additional E710 elements) can be defined with the T-710 record set—as
described later in this section.
9-32 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
There is one user-developed quadrilateral element in the current version of STAGS.

The 4-node E940 MIN4 quad element was originally implemented as a User-Defined STAGS

element using the STAGS UEL methodologies and standards that are described in Section 9.8 of
this chapter and in Chapter 13 of this document. In 2008, this E940 element was integrated into
the current version of STAGS as a “built-in” UEL that can be used by anyone who needs or wants
to use that element. One or more E940 elements can be defined with the T-900 record and the
T-940 record set that are also described in Section 9.8 of this chapter. For more information
about the E940 element, please see Chapter 14 in this document, the STAGS Elements Manual,
and the STAGS Test Cases Manual.
STAGS 5.0 User Manual April, 2009 9-33

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
T-410 Additional E410 Elements

T-410 is the first record of the multi-record Ecom protocol extension of the T-4/T-4b record set
that also defines an E410 4-node quadrilateral shell element. With this record (and T-410a,

T-410b and/or T-410c companion records, as required), the user can specify one or more
additional E410 shell elements to be included in the current element unit. The looping
capabilities provided here, via NX, NY, and the incrementation parameters on T-410a and T-410b,
can be used effectively in many situations.

A quadrilateral shell element is defined by specifying the four corner nodes in counterclockwise
order as viewed from above. In this context, “viewed from above” means looking down onto the
top surface of the element. As shown in Figure 6.2 on page 6-28, the top surface corresponds to

 (in an element unit). The four nodes that are input on T-410 determine
the element coordinate system.

The axis defines the direction in which pressure acts—a positive pressure
value acts in the positive direction, and a negative pressure value acts in
the negative direction.

In shell units, the wall-fabrication orientation is determined by ZETA & ECZ (M-5). Figure 6.2
shows how ECZ defines the eccentricity and how ZETA rotates the fabrication coordinates
to establish their directions relative to the wall-reference coordinates. Implicit in Figure
6.2 is the shell-unit convention that the wall-reference coordinates are defined to be
coincident with the shell coordinates. In element units, shell coordinate systems do not
exist. Instead, the user is given two options for establishing wall-reference coordinates.

In the default option, STAGS determines whether the or axis lies closer to the element
plane. If lies closer, it is projected onto the element surface to establish the axis. If lies
closer, it is projected to establish the axis. This means that when and both lie in the
plane of the element, the result will be the same regardless of which is chosen to be projected.

The other option is to input a wall reference vector, , that determines the direction of .
Although the user will in most cases try to make sure that this vector is tangent to the surface he
has in mind, the code makes no such assumption. STAGS will project this vector onto the element
surface to establish the axis.

After the axis is established, using either of the two options, the wall orientation is then
determined just as it is for shell units. Compare Figure 8.2 with Figure 6.2. ZETA has the same
meaning in both instances. The only difference is that for shell units, the wall-reference

Z′ Z′max= z′ z′max=

x′ y′ z′, ,()

☞ z′

z′

z′

x y,()

xw yw,()

xw yw,()

X′ Y′,()

xg yg

xg xw yg

yw xg yg

rw xw

xw

xw

xw yw,()
9-34 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
coordinates are uniquely defined by the shell coordinates, and for element units, one of
two user-selected options (IANG) is used to establish the wall-reference system.

This process often allows the user to specify all the wall angles with very simple input. For
example, some standard geometries such as cylinders or cones have an axis of revolution (the
generator) whose projection onto the element surface lies along the same direction, independent
of the element location. If user input specifies the generator as , or if the default is used (for
cone angles less than), a unique angle ZETA gives the proper offset for all elements in the
geometry. Figure 8.3 on page 8-20 shows an example where the generator of a cone is specified
as . It is usually straightforward to specify the global coordinates of a vector parallel to a
shell-of-revolution generator. The user should be careful for more complex geometries. It should
also be noted that the user need not know the shell element coordinate system.

For all quadrilaterals, the plane of the element is determined by the procedure outlined in Section
14.2 “Algorithm for Determining the Element Frame”. The result of this procedure is an element
reference plane that is the “best fit” to the four corner nodes. wall-reference coordinates,
and hence fabrication coordinates and material coordinates, all lie in this “average”
plane.

Note that the fabrication coordinate system is oriented by rotating the wall-
reference system through the angle ZETA. The material coordinate system for
each layer in a laminate is then determined by rotating the fabrication
system through a unique angle ZETL (K-2) (or ANGSHL (I-21d) for GCP input)
for the corresponding layer.

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX NY

N1 node 1

N2 node 2

N3 node 3

N4 node 4

KELT must = 410

IWALL wall fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL

>0 – shell wall fabrication number in the Wall Fabrication Table (K-1)

<0 – shell wall fabrication identifier in the GCP Fabrications Table (I-21a)

X′ Y′,()

rw
45°

rw

x′ y′ z′, ,()

xw yw,()

x y,() φ1 φ2,()

☞

STAGS 5.0 User Manual April, 2009 9-35

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol

✤

✤

✤

✤

When , data below indicated by ✤ are defined in WALL; they are
automatically initialized to zero before WALL is called, thereby superseding any
nonzero values input here.

ZETA angle between the wall-reference coordinate and the fabrication coordinate

; is a right-handed rotation about ; see Figure 8.2 on page 8-19

ECZ eccentricity in direction. ECZ is the coordinate of the shell wall middle
surface; refer to Figure 6.2 on page 6-28; in element units, are used
in place of , which do not exist in an element unit; see “Effects of
Eccentricity” on page 16-6

ILIN governs geometric nonlinearity

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

Note that with ILIN = 1, bifurcation buckling is suppressed in the shell unit

IPLAS governs material nonlinearity

0 – elastic behavior only

1 – plasticity included, with the material law satisfied at each element
integration point

2 – plasticity included, with the material law satisfied at the element
centroid (centroidal plasticity)

INTEG integration type (see N-1)

0 – standard integration, or Gauss points

1 – modified 5-point integration, previously referred to as full integration

IPENL penalty option (see N-1)

0 – no penalty function on fourth-order terms

1 – penalty function included in elements

IANG wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-410c)

USERELT user-specified element number, used only when IUWLE = 1 on H-1

if (NX > 0) then go to T-410a
elseif (NY > 0) then go to T-410b
elseif (IANG = 1) then go to T-410c
else follow the instructions at the end of T-410c

IWALL 0=

ζ xw

x ζ z

z′ z′
x′ y′ z′, ,()

X′ Y′ Z′, ,()

2 2×

xg yg, xw

rw xw
9-36 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
T-410a E410 X-Direction Incrementations

Five x-direction incrementation variables are specified here for use with the T-410 record
looping functions (if and only if NX > 0 on T-410).

IX1 IX2 IX3 IX4 IX5

IX1 x-direction incrementation variable for node N1 on T-410
IX2 x-direction incrementation variable for node N2 on T-410
IX3 x-direction incrementation variable for node N3 on T-410
IX4 x-direction incrementation variable for node N4 on T-410
IX5 x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-410b
elseif (IANG = 1) then go to T-410c
else follow the instructions at the end of T-410c
STAGS 5.0 User Manual April, 2009 9-37

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
T-410b E410 Y-Direction Incrementations

Five y-direction incrementation variables are specified here for use with the T-410 record
looping functions (if and only if NY > 0 on T-410).

IY1 IY2 IY3 IY4 IY5

IY1 y-direction incrementation variable for node N1 on T-410
IY2 y-direction incrementation variable for node N2 on T-410
IY3 y-direction incrementation variable for node N3 on T-410
IY4 y-direction incrementation variable for node N4 on T-410
IY5 y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-410c
else follow the instructions at the end of T-410c
9-38 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
T-410c E410 Wall Reference Vector

RX RY RZ

RX, RY, RZ wall reference vector, , which is projected onto the element surface

to determine the direction of the wall-reference coordinate ;

 is expressed in global coordinates.

if (the user wants to add another set of E410 elements) then
go to T-410

elseif (the user wants to add a set of E411 elements) then
go to T-411

elseif (the user wants to add a set of E480 elements) then
go to T-480

elseif (the user wants to add a set of E510 elements) then
go to T-510

elseif (the user wants to add a set of E710 elements) then
go to T-710

else
return to T-100

endif

rw

xw

rw xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 9-39

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol

✤

✤

✤

T-411 Additional E411 Elements

T-411 is the first record of the multi-record Ecom protocol extension of the T-4/T-4b/T-4c record
set that also defines an E411 quadrilateral shell element. With this record (and T-411a, T-411b

and/or T-411c companion records, as required), the user can specify one or more additional E411
shell elements to be included in the current element unit. The looping capabilities provided here,
via NX, NY, and the incrementation parameters on T-411a and T-411b, can be used effectively in
many situations.

For definition purposes, the E411 element is considered to be a 4-node quadrilateral, similar to
the E410 element. STAGS adds midside deviational nodes to the E411 element automatically,
without user input.

The methods that STAGS uses for determining the element coordinate system for this and other
quadrilateral elements are described earlier in this document, in connection with the T-4 and
T-410 element-definition records, and will not be repeated here.

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX NY

N1 node 1
N2 node 2
N3 node 3
N4 node 4

KELT must = 411

IWALL wall fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL
>0 – shell wall fabrication number in the Wall Fabrication Table (K-1)

When , data below indicated by ✤ are defined in WALL; they are
automatically initialized to zero before WALL is called, thereby superseding any
nonzero values input here.

ZETA angle between the wall-reference coordinate and the fabrication coordinate

; is a right-handed rotation about ; see Figure 8.2 on page 8-19

ECZ eccentricity in direction; ECZ is the coordinate of the shell wall middle
surface; refer to Figure 6.2 on page 6-28; in element units, are used
in place of , which do not exist in an element unit.

ILIN governs geometric nonlinearity
0 – nonlinear strain-displacement relations
1 – linear strain-displacement relations

IWALL 0=

ζ xw

x ζ z

z′ z′
x′ y′ z′, ,()

X′ Y′ Z′, ,()
9-40 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)

✤

Note that with ILIN = 1, bifurcation buckling is suppressed in the shell unit

IPLAS governs material nonlinearity
0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

INTEG integration type (see N-1)

0 – standard integration, or Gauss points
1 – modified 5-point integration, previously referred to as full integration

IPENL penalty option (see N-1)
0 – no penalty function on fourth-order terms
1 – penalty function included in elements

IANG wall-reference option; see discussion on page 8-18
0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-411c)

USERELT user-specified element number, used only when IUWLE = 1 on H-1

if (NX > 0) then go to T-411a
elseif (NY > 0) then go to T-411b
elseif (IANG = 1) then go to T-411c
else follow the instructions at the end of T-411c

2 2×

xg yg, xw

rw xw
STAGS 5.0 User Manual April, 2009 9-41

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
T-411a E411 X-Direction Incrementations

Five x-direction incrementation variables are specified here for use with the T-411 record
looping functions (if and only if NX > 0 on T-411).

IX1 IX2 IX3 IX4 IX5

IX1 x-direction incrementation variable for node N1 on T-411
IX2 x-direction incrementation variable for node N2 on T-411
IX3 x-direction incrementation variable for node N3 on T-411
IX4 x-direction incrementation variable for node N4 on T-411
IX5 x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-411b
elseif (IANG = 1) then go to T-411c
else follow the instructions at the end of T-411c
9-42 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
T-411b E411 Y-Direction Incrementations

Five y-direction incrementation variables are specified here for use with the T-411 record
looping functions (if and only if NY > 0 on T-411).

IY1 IY2 IY3 IY4 IY5

IY1 y-direction incrementation variable for node N1 on T-411
IY2 y-direction incrementation variable for node N2 on T-411
IY3 y-direction incrementation variable for node N3 on T-411
IY4 y-direction incrementation variable for node N4 on T-411
IY5 y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-411c
else follow the instructions at the end of T-411c
STAGS 5.0 User Manual April, 2009 9-43

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
T-411c E411 Wall Reference Vector

RX RY RZ

RX, RY, RZ wall reference vector, , which is projected onto the element surface

to determine the direction of the wall-reference coordinate .

 is expressed in global coordinates.

if (the user wants to add another set of E411 elements) then
go to T-411

elseif (the user wants to add a set of E410 elements) then
go to T-410

elseif (the user wants to add a set of E480 elements) then
go to T-480

elseif (the user wants to add a set of E510 elements) then
go to T-510

elseif (the user wants to add a set of E710 elements) then
go to T-710

else
return to T-100

endif

rw

xw

rw xg yg zg, ,()
9-44 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)

✤

✤

✤

T-480 Additional E480 Elements

T-480 is the first record of the multi-record Ecom protocol extension of the T-4/T-4b/T-4c record
set that also defines an E480 9-node quadrilateral shell element. With this record and T-480a

(and T-480b, T-480c and/or T-480d companion records, as required), the user can specify one or
more additional E480 9-node quadrilateral elements to be included in the current element unit.
The looping capabilities provided here, via NX, NY and the incrementation parameters on T-480b

and T-480c, can be used effectively in many situations.

The methods that STAGS uses for determining the element coordinate system for this and other
quadrilateral elements are described earlier in this document, in connection with the T-4 and
T-410 element-definition records, and will not be repeated here.

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX NY

N1 node 1
N2 node 2
N3 node 3
N4 node 4

KELT must = 480

IWALL wall fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL

>0 – shell wall fabrication number in the Wall Fabrication Table (K-1)
<0 – shell wall fabrication identifier in the GCP Fabrications Table (I-21a)

When , data below indicated by ✤ are defined in WALL; they are
automatically initialized to zero before WALL is called, thereby superseding any
nonzero values input here.

ZETA angle between the wall-reference coordinate and the fabrication coordinate

; is a right-handed rotation about .

ECZ eccentricity in direction. ECZ is the coordinate of the shell wall middle
surface; in element units, are used in place of , which do
not exist in an element unit.

ILIN governs geometric nonlinearity
0 – nonlinear strain-displacement relations
1 – linear strain-displacement relations

Note that with ILIN = 1, bifurcation buckling is suppressed in the shell unit

IWALL 0=

ζ xw

x ζ z

z′ z′
x′ y′ z′, ,() X′ Y′ Z′, ,()
STAGS 5.0 User Manual April, 2009 9-45

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol

✤
 IPLAS governs material nonlinearity
0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

INTEG integration type: not used for this element; set INTEG = 0

IPENL penalty option: not used for this element; set IPENL = 0

IANG wall-reference option; see discussion on page 8-18
0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-480d)

USERELT user-specified element number, used only when IUWLE = 1 on H-1

go to T-480a

xg yg, xw

rw xw
9-46 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
T-480a E480 Extra Nodes Specification

This record is required to specify the fifth, sixth, seventh, eighth and ninth nodes of the (first)
E480 element that is defined via the current T-480 record.

N5 N6 N7 N8 N9

N5 node 5
N6 node 6
N7 node 7
N8 node 8
N9 node 9

if (NX > 0) then go to T-480b
elseif (NY > 0) then go to T-480c
elseif (IANG = 1) then go to T-480d
else follow the instructions at the end of T-480d
STAGS 5.0 User Manual April, 2009 9-47

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
T-480b E480 X-Direction Incrementations

Ten x-direction incrementation variables are specified here for use with the T-480 record looping
functions (if and only if NX > 0 on T-480).

IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8 IX9 IXU

IX1 x-direction incrementation variable for node N1 on T-480
IX2 x-direction incrementation variable for node N2 on T-480
IX3 x-direction incrementation variable for node N3 on T-480
IX4 x-direction incrementation variable for node N4 on T-480
IX5 x-direction incrementation variable for node N5 on T-480a
IX6 x-direction incrementation variable for node N6 on T-480a
IX7 x-direction incrementation variable for node N7 on T-480a
IX8 x-direction incrementation variable for node N8 on T-480a
IX9 x-direction incrementation variable for node N9 on T-480a
IXU x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-480c
elseif (IANG = 1) then go to T-480d
else follow the instructions at the end of T-480d
9-48 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
T-480c E480 Y-Direction Incrementations

Ten y-direction incrementation variables are specified here for use with the T-480 record looping
functions (if and only if NY > 0 on T-480).

IY1 IY2 IY3 IY4 IY5 IY6 IY7 IY8 IX9 IYU

IY1 x-direction incrementation variable for node N1 on T-480
IY2 x-direction incrementation variable for node N2 on T-480
IY3 x-direction incrementation variable for node N3 on T-480
IY4 x-direction incrementation variable for node N4 on T-480
IY5 x-direction incrementation variable for node N5 on T-480a
IY6 x-direction incrementation variable for node N6 on T-480a
IY7 x-direction incrementation variable for node N7 on T-480a
IY8 x-direction incrementation variable for node N8 on T-480a
IY9 x-direction incrementation variable for node N9 on T-480a
IYU x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-480d
else follow the instructions at the end of T-411d
STAGS 5.0 User Manual April, 2009 9-49

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
T-480d E480 Wall Reference Vector

RX RY RZ

RX, RY, RZ wall reference vector, , which is projected onto the element surface

to determine the direction of the wall-reference coordinate ;

 is expressed in global coordinates.

if (the user wants to add another set of E480 elements) then
go to T-480

elseif (the user wants to add a set of E410 elements) then
go to T-410

elseif (the user wants to add a set of E411 elements) then
go to T-411

elseif (the user wants to add a set of E510 elements) then
go to T-510

elseif (the user wants to add a set of E710 elements) then
go to T-710

else
return to T-100

endif

rw

xw

rw xg yg zg, ,()
9-50 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)

✤

✤

✤

T-510 Additional E510 Elements

T-510 is the first record of the multi-record Ecom protocol extension of the T-4/T-4b/T-4c record
set that also defines an E510 5-node quadrilateral mesh transition element. With this record and
T-510a (and with T-510b and/or T-510c companion records, as required), the user can specify
one or more additional E510 5-node quadrilateral mesh transition elements to be included in the
current element unit. The looping capabilities provided here, via NX and the six incrementation
parameters on T-510b, can be used effectively in many situations.

The methods that STAGS uses for determining the element coordinate system for this and other
quadrilateral elements are described earlier in this document, in connection with the T-4 and
T-410 element-definition records, and will not be repeated here.

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX

N1 node 1
N2 node 2
N3 node 3
N4 node 4

KELT must = 510

IWALL wall fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL

>0 – shell wall fabrication number in the Wall Fabrication Table (K-1)
<0 – shell wall fabrication identifier in the GCP Fabrications Table (I-21a)

When , data below indicated by ✤ are defined in WALL; they are
automatically initialized to zero before WALL is called, thereby superseding any
nonzero values input here.

ZETA angle between the wall-reference coordinate and the fabrication coordinate

; is a right-handed rotation about .

ECZ eccentricity in direction. ECZ is the coordinate of the shell wall middle
surface; in element units, are used in place of , which
do not exist in an element unit.

ILIN governs geometric nonlinearity
0 – nonlinear strain-displacement relations
1 – linear strain-displacement relations

Note that with ILIN = 1, bifurcation buckling is suppressed in the shell unit

IWALL 0=

ζ xw

x ζ z

z′ z′
x′ y′ z′, ,() X′ Y′ Z′, ,()
STAGS 5.0 User Manual April, 2009 9-51

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol

✤
 IPLAS governs material nonlinearity
0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

INTEG integration type (see N-1)

0 – standard integration, or Gauss points
1 – modified 5-point integration, previously referred to as full integration

IPENL penalty option (see N-1)
0 – no penalty function on fourth-order terms
1 – penalty function included in elements

IANG wall-reference option; see discussion on page 8-18
0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-510c)

USERELT user-specified element number, used only when IUWLE = 1 on H-1

go to T-510a

2 2×

xg yg, xw

rw xw
9-52 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
T-510a E510 Extra Node Specification

This record is required to specify the fifth node of the first E510 element that is defined via the
current T-510 record (which defines NX E510 elements if NX > 0).

N5

N5 node 5

if (NX > 0) then go to T-510b
elseif (IANG = 1) then go to T-510c
else follow the instructions at the end of T-510c
STAGS 5.0 User Manual April, 2009 9-53

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
T-510b E510 Incrementations

Six incrementation variables are specified here for use with the T-510 record looping functions
(if and only if NX > 0 on T-510).

IX1 IX2 IX3 IX4 IX5 IXU

IX1 incrementation variable for node N1 on T-510
IX2 incrementation variable for node N2 on T-510
IX3 incrementation variable for node N3 on T-510
IX4 incrementation variable for node N4 on T-510
IX5 incrementation variable for node N5 on T-510a
IXU incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-510c
else follow the instructions at the end of T-510c
9-54 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
T-510c E510 Wall Reference Vector

RX RY RZ

RX, RY, RZ wall reference vector, , which is projected onto the element surface

to determine the direction of the wall-reference coordinate ;

 is expressed in global coordinates.

if (the user wants to add another set of E510 elements) then
go to T-510

elseif (the user wants to add a set of E410 elements) then
go to T-410

elseif (the user wants to add a set of E411 elements) then
go to T-411

elseif (the user wants to add a set of E490 elements) then
go to T-480

elseif (the user wants to add a set of E710 elements) then
go to T-710

else
return to T-100

endif

rw

xw

rw xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 9-55

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol

✤

✤

✤

T-710 Additional E710 Elements

T-710 is the first record of the multi-record Ecom protocol extension of the T-4/T-4b/T-4c record
set that also defines an E710 7-node quadrilateral mesh transition element. With this record and
T-710a (and with T-710b and/or T-710c companion records, as required), the user can specify
one or more additional E710 7-node quadrilateral mesh transition elements to be included in the
current element unit. The looping capabilities provided here, via NX and the eight incrementation
parameters on T-710b, can be used effectively in many situations.

The methods that STAGS uses for determining the element coordinate system for this and other
quadrilateral elements are described earlier in this document, in connection with the T-4 and
T-410 element-definition records, and will not be repeated here.

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX

N1 node 1
N2 node 2
N3 node 3
N4 node 4

KELT must = 710

IWALL wall fabrication identifier:

0 – shell wall properties are given in user-written subroutine WALL

>0 – shell wall fabrication number in the Wall Fabrication Table (K-1)
<0 – shell wall fabrication identifier in the GCP Fabrications Table (I-21a)

When , data below indicated by ✤ are defined in WALL; they are
automatically initialized to zero before WALL is called, thereby superseding any
nonzero values input here.

ZETA angle between the wall-reference coordinate and the fabrication coordinate

; is a right-handed rotation about .

ECZ eccentricity in direction. ECZ is the coordinate of the shell wall middle
surface; in element units, are used in place of , which do
not exist in an element unit.

ILIN governs geometric nonlinearity
0 – nonlinear strain-displacement relations
1 – linear strain-displacement relations

Note that with ILIN = 1, bifurcation buckling is suppressed in the shell unit

IWALL 0=

ζ xw

x ζ z

z′ z′
x′ y′ z′, ,() X′ Y′ Z′, ,()
9-56 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)

✤
 IPLAS governs material nonlinearity
0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

INTEG integration type (see N-1)

0 – standard integration, or Gauss points
1 – modified 5-point integration, previously referred to as full integration

IPENL penalty option (see N-1)
0 – no penalty function on fourth-order terms
1 – penalty function included in elements

IANG wall-reference option; see discussion on page 8-18
0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-710c)

USERELT user-specified element number, used only when IUWLE = 1 on H-1

go to T-710a

2 2×

xg yg, xw

rw xw
STAGS 5.0 User Manual April, 2009 9-57

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
T-710a E710 Extra Nodes Specification

This record is required to specify the fifth, six and seventh nodes of the first E710 element that
is defined via the current T-710 record (which defines NX E710 elements if NX > 0).

N5 N6 N7

N5 node 5
N6 node 6
N7 node 7

if (NX > 0) then go to T-710b
elseif (IANG = 1) then go to T-710c
else follow the instructions at the end of T-710c
9-58 April, 2009 STAGS 5.0 User Manual

Definition of Quad Elements via the Ecom Protocol Model Input—Element Units (3)
T-710b E710 Incrementations

Eight incrementation variables are specified here for use with the T-710 record looping functions
(if and only if NX > 0 on T-710).

IX1 IX2 IX3 IX4 IX5 IX6 IX7 IXU

IX1 incrementation variable for node N1 on T-710
IX2 incrementation variable for node N2 on T-710
IX3 incrementation variable for node N3 on T-710
IX4 incrementation variable for node N4 on T-710
IX5 incrementation variable for node N5 on T-710a
IX6 incrementation variable for node N6 on T-710a
IX7 incrementation variable for node N7 on T-710a
IXU incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-710c
else follow the instructions at the end of T-710c
STAGS 5.0 User Manual April, 2009 9-59

Model Input—Element Units (3) Definition of Quad Elements via the Ecom Protocol
T-710c E710 Wall Reference Vector

RX RY RZ

RX, RY, RZ wall reference vector, , which is projected onto the element surface

to determine the direction of the wall-reference coordinate ;

 is expressed in global coordinates.

if (the user wants to add another set of E710 elements) then
go to T-710

elseif (the user wants to add a set of E410 elements) then
go to T-410

elseif (the user wants to add a set of E411 elements) then
go to T-411

elseif (the user wants to add a set of E480 elements) then
go to T-480

elseif (the user wants to add a set of E510 elements) then
go to T-510

else
return to T-100

endif

rw

xw

rw xg yg zg, ,()
9-60 April, 2009 STAGS 5.0 User Manual

Definition of Contact Elements via the Ecom Protocol Model Input—Element Units (3)
9.5 Definition of Contact Elements via the Ecom Protocol

The current version of STAGS has three “elements” that enable the user to perform analyses in
which three types of contact might occur.

The E810 PAD surface/surface contact element is designed to treat situations in which one
surface may come into contact with another, when the specific elements on one surface that may
come into contact with specific elements on the other surface are known a priori.

The E820 generalized contact “element” is designed to treat situations in which one surface may
come into contact with another surface, but where the specific elements that may come into
contact with each other are not known in advance and/or when they may change during the
course of the analysis to be performed. The E820 approach considers contact to be point/surface
phenomenon. Here, the user specifies a set of points on one surface and a set of elements on the
other, telling STAGS that one or more of the identified points may come into contact one or more
of the identified elements. STAGS digests this information and uses it to determine whether or
not point/surface contact has started (or is continuing) at each step of the analysis, and generates
one or more point/surface contact elements as and if required, for the specific points and surfaces
that are involved with that contact.

The E822 line/line contact “element” is designed to treat situations in which one line (edge) may
come into contact with another line (edge), but where the exact location at which that contact
may occur is not known in advance and/or when it may change during the course of the analysis.
The E822 approach considers this type of contact to be line/line phenomenon. Here, the user
specifies a set of two or more line segments in the model—and uses an E822 line/line contact
“element” to identify one line that may come into contact with another, for each line/line contact
situation that might occur. STAGS digests this information and uses it to determine whether or
not line/line contact has started (or is continuing) at each step of the analysis, and generates one
or more line/line contact elements as and if required.

The theoretical foundations of these three types of contact “elements” are described in agonizing
detail in the STAGS Elements Manual document. The input requirements for these elements are
described next.
STAGS 5.0 User Manual April, 2009 9-61

Model Input—Element Units (3) Definition of Contact Elements via the Ecom Protocol
T-810 E810 PAD Contact Element

The E810 8-node PAD contact element is basically a set of four independent nonlinear springs
connecting the nodes defining one E410 shell element to the corresponding nodes of a second
E410 element. It is intended for use in situations where those two PAD-connected elements—
which may be in the same or in different shell or element units—may come into contact with
each other. The E810 PAD element is suitable for use only in situations where the contact region
is known a priori, where the individual elements coming into contact with each other can be
readily identified and paired, and where no sliding along the contact surface occurs. The PAD

element can be used to treat (some) lap-joint and Hertzian impact problems, but it is not
designed for use in more general situations where the contact regions are not known a priori or
when sliding occurs or when friction is present. STAGS’ more general (E820) contact capabilities
must be used in those situations.

The nonlinear spring connecting each pair of nodes typically has a very low stiffness when the
gap separating the two nodes is positive (where the gap is defined as the distance of the upper-
element node from the lower-element reference plane) and to be very stiff when the gap is
extremely small or negative (indicating that at least some portions of the two parent elements are
in contact with each other): the large forces and stiffnesses that are produced by stiff PAD-
element springs helps to enforce the displacement compatibility constraints for the contact
problem.

Stiffness properties for PAD-element springs must be specified via one or more stiffness-
displacement tables (type I-4a through I-4d records). These stiffness profiles, each of which is

Figure 9.1 E810 PAD Element

N8

N7

N6

N5

N4

N3

N2

N1

Upper E410 Element

Lower E410 Element
9-62 April, 2009 STAGS 5.0 User Manual

Definition of Contact Elements via the Ecom Protocol Model Input—Element Units (3)
identified by its profile-definition table number, are currently assumed to be independent of
velocity (any velocity dependencies specified are ignored by the program).

The user point nodes that are employed in defining PAD elements are defined via type S-1/S-1a/

S-2 record sets (or via type S-3/S-3a/S4 record sets): these user points are generally slaved to
nodes defining the E410 shell elements that are expected to come in contact with each other. An
additional OFFSET parameter can be used to account for thickness effects when the user point
nodes lie on parent-node reference surfaces within (rather than on the surfaces of) those parent
elements.

The T-810 record defines one or more E810 elements to be included in the current element unit.
The looping capabilities provided here, via NX and on T-810 and the incrementation parameters
on T-810a, can be used effectively in many situations.

N1 N2 N3 N4 N5 N6 N7 N8 KELT ITAB OFFSET NX USERELT

N1 first lower-surface PAD-element node point

N2 second lower-surface PAD-element node point

N3 third lower-surface PAD-element node point

N4 fourth lower-surface PAD-element node point

N5 first upper-surface PAD-element node point, connected to N1

N6 second upper-surface PAD-element node, connected to N2

N7 third upper-surface PAD-element node, connected to N3

N8 fourth upper-surface PAD-element node, connected to N4

KELT element code number 810 defines an 8-node PAD element

ITAB spring stiffness-displacement-table identifier (see record I–4a)

OFFSET offset parameter, to account for element thicknesses

NX looping parameter, set equal to unity by STAGS if omitted or nonpositive

USERELT user-specified element number, used only if IUWLE =1 on H-1

if () go to T-810a
else return to T-100

NX 1>
STAGS 5.0 User Manual April, 2009 9-63

Model Input—Element Units (3) Definition of Contact Elements via the Ecom Protocol
T-810a PAD Element Incrementations

If the NX looping parameter is greater than 1 on T-810, a T-810a record is required to specify
nine incrementation variables to be used with the T-810 looping function.

I1 I2 I3 I4 I5 I6 I7 I8 I9

I1 incrementation for the N1 (PAD node) variable on the parent T-810 record
I2 incrementation for the N2 (PAD node) variable on the parent T-810 record
I3 incrementation for the N3 (PAD node) variable on the parent T-810 record
I4 incrementation for the N4 (PAD node) variable on the parent T-810 record
I5 incrementation for the N5 (PAD node) variable on the parent T-810 record
I6 incrementation for the N6 (PAD node) variable on the parent T-810 record
I7 incrementation for the N7 (PAD node) variable on the parent T-810 record
I8 incrementation for the N8 (PAD node) variable on the parent T-810 record
I9 incrementation for IUWLE

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-810/T-810a record combination:

10 20 30 40 50 60 70 80 810 7 0.0 3
 1 1 1 1 1 1 1 1

generates the same three PAD elements as the following three individual T-810 records:

10 20 30 40 50 60 70 80 810 7 0.0
11 21 31 41 51 61 71 81 810 7 0.0
12 22 32 42 52 62 72 82 810 7 0.0 1

return to T-100
9-64 April, 2009 STAGS 5.0 User Manual

Definition of Contact Elements via the Ecom Protocol Model Input—Element Units (3)
T-820 General Contact Definition

As noted in the preceding description, E810 PAD elements are defined explicitly and should only

be used in situations where particular E410 elements that may contact each other are known a

priori and can be paired, and where the contact regions (and E410-element pairings) do not

change during an analysis. STAGS’ more general point/surface contact capabilities must be used

in situations where contact is anticipated but it is not known where the contact will occur and/or

how the contact region changes as the analysis progresses.

It is convenient, here, for the analyst to view the contact problem as one in which one structure

is (perhaps arbitrarily) designated as the contacting structure and the other is considered to be

the contacted one. The current approach in STAGS to the general contact problem avoids many

of the complexities and inefficiencies of general surface-on-surface interactions by considering

one or more specific points on one structure that may come into contact with one or more shell

elements on the other structure—as shown schematically in Figure 9.1:

The general-contact capabilities in STAGS are invoked when the analyst, anticipating the

possibility that contact between two structural components may occur, includes one or more

E820 contact-definition specifications in an element unit of the STAGS model. Each contact

definition identifies a set of contact points on the contacting structure that may experience

contact with a particular contact surface on the contacted structure—where the contact surface

is a set of contiguous shell elements forming a convex region on the surface of the latter body.

Figure 9.2 Contact-Definition Specification in STAGS

Contact Point

Contact Surface

Contacting Structure

Contacted Structure

Contact Element
STAGS 5.0 User Manual April, 2009 9-65

Model Input—Element Units (3) Definition of Contact Elements via the Ecom Protocol
STAGS uses these contact-definitions to check for contact and to construct actual contact
elements coupling contacting points with contacted shell elements on-the-fly, as and if required,
as the analysis progresses. In doing this, STAGS attempts to use penalty functions to enforce
displacement-compatibility constraints between each contacting point and each element with
which it is in contact—utilizing analyst-supplied stiffness-vs.-displacement information to
compute the forces and stiffnesses resulting from the (necessarily) small contact-surface
penetrations that occur.

An actual contact element is (conceptually) a nonlinear spring connecting the contacting point to
the surface of the contacted element. This nonlinear spring typically has a very low stiffness and
generates a small force when the contact-surface penetration is small, but it gets progressively
stiffer and generates a larger force as the penetration increases. Stiffness properties for these
springs must be specified via one or more stiffness-displacement tables (type I-4a through I-4d

records). These stiffness-displacement functions each of which is identified by its table number,
are currently assumed to be independent of velocity (any velocity dependencies specified are
ignored by the program).

The T-820 record defines a single E820 definition to be included in the current element unit. An
E820 contact-definition is made via a T-820 record (described next) that is followed first by as
many T-820a or T-820b contact-surface-element-specification records, and then by as many
T-820c or T-820d contact-point-specification records as may be required. Each of these
contact-surface-specifications references a specific stiffness-displacement (penalty) function
table.
9-66 April, 2009 STAGS 5.0 User Manual

Definition of Contact Elements via the Ecom Protocol Model Input—Element Units (3)
KELT NSRF NPTS

KELT element code number 820 identifies a contact-definition specification

NSRF parameter selecting the method that is to be used to identify the contiguous shell
elements defining the contact surface, and (optionally) to specify the minimum
number of elements required to define that surface (see Note 1, below):

— use the row & column method to identify one or more elements in
one or more shell units, or

— use the element-number method to identify one or more elements
in one or more shell units and/or one or more elements in the
current or previously-defined element units

NPTS parameter selecting the method that is to be used to identify the specific points
that may come into contact with the contact surface, and (optionally) to specify
the minimum number of points that are to be specified (see Note 2, below):

— use the row & column method to identify one or more nodes in
one or more shell units, or

— use the point-number method to identify one or more nodes in one
or more shell units and/or in the current or previously-defined
element units

Note 1: In the row & column method of defining contact elements, STAGS reads one or more type
T-820a records—each of which specifies one or more elements of the contact surface. STAGS keeps
a running count of the number of elements specified by each T-820a record—and stops processing
T-820a records as soon as NSRF or more elements have been specified. In the element-number
method of defining contact elements, STAGS reads one or more type T-820b records—each of which
specifies one or more elements of the contact surface. STAGS keeps a running count of the number
of elements specified by each T-820b record—and stops processing T-820b records as soon as

 or more elements have been specified.

Note 2: In the row & column method of defining contact points, STAGS reads one or more type
T-820c records—each of which specifies one or more contact points. STAGS keeps a running count
of the number of points specified by each T-820c record—and stops processing T-820c records as
soon as NPTS or more points have been specified. In the element-number method of defining contact
points, STAGS reads one or more type T-820d records—each of which specifies one or more contact
points. STAGS keeps a running count of the number of points specified by each T-820d record—and
stops processing T-820d records as soon as or more points have been specified.

if () then
go to T-820a

else go to T-820b

NSRF 0≥

NSRF 0<

NPTS 0≥

NPTS 0<

NSRF

NPTS

NSRF 0≥
STAGS 5.0 User Manual April, 2009 9-67

Model Input—Element Units (3) Definition of Contact Elements via the Ecom Protocol
T-820a E820 Row & Column Contact-Element Specifications

NSRF ≥ 0 (T-820) indicates that the row & column method is to be used to identify the
contiguous shell elements that comprise the contact surface. This method clearly can only be
used to identify contact elements that are associated with one or more shell units, because there
are no row or column associations for elements in element units. With this method, the value of
the NSRF parameter indicates the minimum number of contact elements to be identified with the
set of one or more T-820a records included for the current contact-definition (see Note 1 for the
T-820 record). The number of contact elements identified by any given T-820a depends on the
parameters on that record.

USRF TYPE LI LJ ID NI NJ

USRF identifies the shell unit within which the element(s) identified by the LI and LJ

row & column parameters are defined; the element grid for this shell unit has
NROWS rows and NCOLS columns of quadrilateral domains—each of which
contains one E410 quadrilateral element or two E320 triangular elements

TYPE specifies the element type for this (or these) element(s): TYPE must currently be
either E410 or E320

LI,LJ row and column numbers identifying one or more elements: indicates
that all type TYPE elements of shell unit USRF are to be included; with

 identifies (and includes) all of the elements in row # LI of the element
grid; with identifies all of the elements in column LJ; and
with identifies one or more E410 element or the one or more pairs of E320
elements, starting at row LI and column LJ of the unit: if NI and NJ are absent, zero
or unity, a single element (or pair of elements) is defined; if NI and NJ are both
positive, then NIxNJ elements (or pairs of elements) are identified in a double
FORTRAN-like loop, starting with the element (or pair of elements) at (LI,LJ).

ID spring stiffness-displacement table identifier (see record I–4a)

NI,NJ element-identification looping parameters, as discussed in LI,LJ, above

NSRF (T-820) surface-method parameter
NPTS (T-820) point-method parameter

if (NSRF contact-surface elements have been identified) then
if () then go to T-820c
else go to T-820d

else return to T-820a

LI LJ 0= =

LI 0>
LJ 0=

LJ 0> LI 0= LI 0>
LJ 0>

NPTS 0>
9-68 April, 2009 STAGS 5.0 User Manual

Definition of Contact Elements via the Ecom Protocol Model Input—Element Units (3)
T-820b E820 Element-Number Contact-Element Specifications

NSRF < 0 (T-820) indicates that the element-number method is to be used to identify the
contiguous shell elements that comprise the contact surface. This method can (but generally
should not) be used to identify contact elements that are associated with shell units, and it must
be used to identify elements that are defined in STAGS element units (see Note 1 for the T-820

record). With this method, the magnitude of the NSRF parameter indicates the minimum number
of contact elements to be identified with the set of one or more T-820b records included for the
current contact-definition. The number of contact elements identified by any given T-820b

depends on the parameters on that record.

USRF TYPE I1 I2 INC ID

USRF identifies the shell or element unit within which the element(s) identified by the
I1, I2 and INC parameters are defined

TYPE specifies the element type for this (or these) element(s): TYPE must currently be
either E410 or E320

I1,I2,INC element identifiers: , with and identifies element # I1 (in unit

USRF) as part of the contact surface for the current contact-definition; I1, I2, INC >
0 identifies I2 elements—starting with element I1 and incrementing by INC until I2
elements have been indicated (in unit USRF) as part of the contact surface for the
current contact-definition

ID spring stiffness-displacement table identifier (see record I–4a)

NSRF (T-820) surface-method parameter
NPTS (T-820) point-method parameter

if (fewer than NSRF contact-surface elements have been identified) then
return to T-820b

elseif () then go to T-820c
else go to T-820d

I1 0> I2 0= INC 0=

NPTS 0>
STAGS 5.0 User Manual April, 2009 9-69

Model Input—Element Units (3) Definition of Contact Elements via the Ecom Protocol
T-820c Row & Column Contact-Point Specifications

 (T-820) indicates that the row & column method is to be used to identify the points
that may come into contact with the contact surface specified for the current contact-
definition. This method clearly can only be used to identify nodes that are associated with one
or more shell units, because there are no row or column associations for nodal points in element
units. With this method, the value of the NPTS parameter indicates the minimum number of
contact points to be identified with the set of one or more T-820c records included for the current
contact-definition (see Note 2 for T-820). The number of contact points identified by any given
T-820c depends on the parameters on that record.

UNITP LI LJ RADIUS TOUCHE NI NJ

UNITP identifies the shell unit within which the contact point(s) identified by the LI and
LJ row & column parameters are defined; the nodal mesh for this shell unit has
NROWS rows and NCOLS columns of nodal points

LI,LJ row and column numbers identifying one or more contact points:
indicates that all of the node points of shell unit UNITP are to be considered as
contact points; with identifies all of the nodes in row LI of the nodal
grid; with identifies all of the nodes in column LJ; and with

 identifies one or more nodes, starting at row LI and column LJ of the unit: if
NI and NJ are absent, zero or unity, a single point (LI,LJ) is defined; if NI and NJ

are both positive, then NIxNJ points are identified in a double FORTRAN-like loop,
starting with the point at (LI,LJ).

RADIUS specifies a radial offset parameter to be used in determining whether or not the
point(s) identified by the current T-820c are in contact with the contact surface:
this parameter can be used to account for the thickness of material surrounding
the contact point(s) in much the same way as the thicknesses of contact elements
on the contact surface are taken into account

TOUCHE provides information required if the identified contact point(s) are in contact with
the contact surface at the outset of the problem: set if not; or set

 if the point(s) are contacting the surface from its positive side; or
set if the point(s) are contacting the surface from its negative
side—where the normal vector for the contact surface points out of the positive
side of the surface and away from the negative side

NI,NJ point-identification looping parameters, as discussed in LI,LJ, above

if (fewer than NPTS contact-points have been identified) then
go to T-820c

else return to T-100

NPTS 0≥

LI LJ 0= =

LI 0> LJ 0=

LJ 0> LI 0= LI 0>
LJ 0>

TOUCHE 0=

TOUCHE 1=

TOUCHE 1–=
9-70 April, 2009 STAGS 5.0 User Manual

Definition of Contact Elements via the Ecom Protocol Model Input—Element Units (3)
T-820d Point-Number Contact-Point Specifications

NPTS < 0 (on T-820) indicates that the point-number method is to be used to identify the nodal
points that may come into contact with the contact surface. This method can (but generally
should not) be used to identify nodes that are associated with shell units, and it must be used to
identify points that are defined in STAGS element units. With this method, the magnitude of the
NPTS parameter indicates the minimum number of contact points to be identified with the set of
one or more T-820d records included for the current contact-definition (see Note 2 for the T-820

record). The number of contact points identified by any given T-820d depends on the
parameters on that record.

UNITP I1 I2 INC RADIUS TOUCHE

UNITP identifies the shell or element unit within which the contact point(s) identified
by the I1, I2 and INC parameters are defined; the nodal mesh for this shell unit has
NROWS rows and NCOLS columns of node points

I1,I2,INC point identifiers: , with identifies point # I1 (in unit UNITP) as a

contact point for the current contact-definition; I1, I2, INC > 0 identifies I2

points—starting with point I1 and incrementing by INC until I2 points have been
indicated (in unit UNITP) as contact points for the current contact-definition

RADIUS specifies a radial offset parameter to be used in determining whether or not the
point(s) identified by the current T-820d are in contact with the contact surface:
this parameter can be used to account for the thickness of material surrounding
the contact point(s) in much the same way as the thicknesses of contact elements
on the contact surface are taken into account

TOUCHE provides information required if the identified contact point(s) are in contact with
the contact surface at the outset of the problem: set if not; or set

 if the point(s) are contacting the surface from its positive side; or

set if the point(s) are contacting the surface from its negative
side—where the normal vector for the contact surface points out of the positive
side of the surface and away from the negative side

if (fewer than NPTS contact-points have been identified) then
return to T-820d

else return to T-100

I1 0> I2 INC 0= =

TOUCHE 0=

TOUCHE 1=

TOUCHE 1–=
STAGS 5.0 User Manual April, 2009 9-71

Model Input—Element Units (3) Definition of Contact Elements via the Ecom Protocol
T-822 Line-Contact Interaction Definition

The T-822 record specifies a pair of “contact” lines (which must have been defined via S-5

records, as described on page 7-17) that may experience line-to-line contact with each other
during the course of the analysis that STAGS is to perform. The first line of each such pair must
have one or more type E410 elements associated with it (qualifying it to be a contacted line), as
described earlier. The second line, which may but does not need to have elements associated with
it, is treated as the contacting line. When contact occurs at one or more points along the two
lines, STAGS uses penalty information supplied by the analyst to generate stiffnesses and forces
on the fly to treat that contact.

LINE1 LINE2 IPEN NX INC1 INC2 INC3

LINE1 identifies the contacted line, which must have one or more elements associated
with it; this line must have been specified via an S-5 record, as described
on page 7-17

LINE2 identifies the contacting line, which may (but is not required to) have one or more
elements associated with it; this line must also have been specified via an S-5
record

IPEN identifies the penalty function table (of stiffness as a function of penetration)
that STAGS is to use in calculating stiffnesses and forces that arise when contact
occurs between these two lines; the table identified must have been specified
via an I-4 record set, as described above.

NX indicates the number of line contact interactions that are to be specified with
information on this T-822 record; STAGS sets NX = 1 if it is not positive

INC1 incrementation parameter for LINE1 (used only when NX > 0)
NC2 incrementation parameter for LINE2 (used only when NX > 0)
NC3 incrementation parameter for IPEN (used only when NX > 0)

return to T-100
9-72 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
9.6 Definition of Sandwich Elements via the Ecom Protocol

Sandwich structures play such an important role in the design of many aerospace structures, so
it is necessary that their behavior be determined adequately. The classical approach to the
modeling of sandwiches is an extension of thin-shell-theory, in which the behavior of a three-
dimensional sandwich object is reduced to the behavior of a two-dimensional surface with in-
and out-of-plane stiffness properties. Here, the sandwich construction is idealized as a pair of
membranes that are held apart by a core that has a relatively large resistance against transverse
shear. The core is virtually inextensional in the transverse direction, with virtually no stiffness in
the middle-surface plane. This type of model is called a sandwich of the first kind. Finite element
discretizations of this kind of classical model have been made in the past, but successful
applications have been confined primarily to linear or moderately nonlinear analyses. A more
general sandwich model emerges by considering the two faces to be shells (with bending as well
as the usual membrane stiffness) that are held apart by a lightweight core. The core may have
three dimensional elastic properties. This type of model is called a sandwich of the second kind,
and is the model that is implemented in STAGS.* A good example of a problem requiring this
model would be one with structural walls made of glass fiber faces and using polyurethane foam
as the core material.

There are five sandwich elements in the current version of STAGS. Three of these (E830, E840
and E849) are “standard” 6-, 8- and 18-node 3-layered (shell/solid/shell) counterparts of the
E330, E410 and E480 thin shell elements, respectively. The other two (E845 and E847) are 10-
and 14-node 3-layered counterparts of the E510 and E710 shell elements—most appropriately
used in modeling transition zones where E840 mesh refinements are required.

The 6-node E830 element is a “standard” sandwich element that is constructed with a pair of
E330 triangular thin shell elements that are held apart by a 6-node pentahedral solid core
component. One or more E830 elements (or additional E830 elements) can be defined with the
T-830 record set. For more information about the E830 element, see “E830 6–Node sandwich
element” on page 14-36.

The 8-node E840 element is a “standard” sandwich element that is constructed with a pair of 4-
node E410 quadrilateral thin shell elements that are held apart by an 8-node hexahedral solid

* See, for example:
Riks, E. and C. C. Rankin, “Sandwich Modeling with an Application to the Residual Strength Analysis of
a Damaged Composite Compression Panel,” International Journal of Non-Linear Mechanics, Vol. 37, No.
4-5, June–July 2002, pp. 897–908 (also available as AIAA Paper No. 2001-1232, April 2001), and
Rose, C.A., D.F. Moore, N.F. Knight, Jr. and C.C. Rankin, “Finite Element Modeling of the Buckling
Response of Sandwich Panels,” AIAA Paper No. 2202-1517, April 2002
STAGS 5.0 User Manual April, 2009 9-73

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
core component. One or more E840 elements (or additional E840 elements) can be defined with
the T-840 record set. For more information about the E840 element, see “E840 8–Node sandwich
element” on page 14-44.

The 10-node E845 element is the sandwich-element counterpart of the E510 thin-shell mesh-
transition “quadrilateral” element. An E845 element is constructed with a pair of 5-node E510
transition elements that are held apart by a 10-node solid-core mesh-transition component. One
or more E845 elements (or additional E845 elements) can be defined with the T-845 record set.
For more information about the E845 element, see “E845 and E847 mesh-transition sandwich
elements” on page 14-46.

The 14-node E847 element is the sandwich-element counterpart of the E710 thin-shell mesh-
transition “quadrilateral” element. An E847 element is constructed with a pair of 7-node E710
transition elements that are held apart by a 14-node solid-core mesh-transition component. One
or more E847 elements (or additional E847 elements) can be defined with the T-847 record set.
For more information about the E847 element, see “E845 and E847 mesh-transition sandwich
elements” on page 14-46.

The 18-node E849 element is a “standard” sandwich element that is constructed with a pair of
9-node E480 quadrilateral thin shell elements that are held apart by an 18-node hexahedral solid
core component. One or more E849 elements (or additional E849 elements) can be defined with
the T-849 record set. For more information about the E849 element, see “E849 18–Node
sandwich element” on page 14-45.
9-74 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-830 E830 6-Node Sandwich Element Definition

The E830 6-node sandwich element in STAGS is constructed with a pair of E330 triangular shells

(with bending as well as the usual membrane stiffness) that are held apart by a lightweight core

that has three-dimensional elastic properties.

Definition of one or more E830 6-node sandwich elements is accomplished with the following

set of records:

T-830 to specify parameters used for all parts of the element

T-830a to specify information for the lower face sheet of the element

T-830b to specify lower face sheet transformation angles (optional)

T-830c to specify information for the upper face sheet

T-830d to specify upper face sheet transformation angles (optional)

T-830e to specify core parameters

T-830f to specify core transformation angles (optional)

T-830g for “x-direction” incrementation parameters

T-830h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 9.3 E830 6-Node Sandwich Element

N5N4
N3

N2N1

Upper Face-Sheet

Lower Face-Sheet

E330 Component

E330 Component

Core E830
Component

N6
STAGS 5.0 User Manual April, 2009 9-75

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

KELT element code number (must be 830)

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

INTEG number of surface-integration points: set INTEG = 1, 3, 4 or 7;
if INTEG = 0, STAGS sets INTEG = 3

IPEN penalty option (see N-1)

0 – no penalty function on fourth-order terms in E330 elements

1 – penalty function included in E330 elements

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E830 elements in
the x direction, using nodal incrementation information given on T-830g

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E830 elements in
the y direction for each of the NX elements generated in the x direction in the
current definition, using nodal incrementation information given on T-830h

USERC user-specified element number for core component
(used only if IUWLE = 1 on H-1)

USER1 user-specified element number for lower face sheet, (if IUWLE = 1 on H-1)

USER2 user-specified element number for upper face sheet, (if IUWLE = 1 on H-1)

go to T-830a

NX 1>

NY 1>
9-76 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-830a E830 Lower Face-Sheet Properties

A single T-830a record must be included immediately following the T-830 record, to specify the
nodes for the lower face sheet of the first E830 element and to specify other parameters for the
lower face sheet of each of the element(s) specified in the current definition.

N1 N2 N3 IFABL ZETAL ECZL IPLASL IANGL

N1 first node point on lower face sheet

N2 second node point on lower face sheet

N3 third node point on lower face sheet

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E330 triangular elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL

(See the T-4 record description for more information about this)

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation

about ; see Figure 8.2 on page 8-19.

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an
element unit; see “Effects of Eccentricity” on page 16-6.

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied
at each element integration point

2 – plasticity included, with the material law satisfied
at the element centroid (centroidal plasticity)

ζ xw

x ζ

z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
STAGS 5.0 User Manual April, 2009 9-77

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
IANGL lower face sheet wall-reference option; see the discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-830b)

if () then
go to T-830b

else go to T-830c

xg yg, xw

rw xw

IANGL 0>
9-78 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-830b E830 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL, RYL, RZL lower face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-830c

rw

xw rw

xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 9-79

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-830c E830 Upper Face-Sheet Properties

A single T-830c record must be included immediately following the T-830a (or T-830b) record,
to specify the nodes for the upper face sheet of the first E830 element and to specify other
parameters for the upper face sheet of each of the element(s) specified in the current definition.

N4 N5 N6 IFABU ZETAU ECZU IPLASU IANGU

N4 first node point on upper face sheet

N5 second node point on upper face sheet

N6 third node point on upper face sheet

IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the
WALL parameter for E330 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied at each element
integration point

2 – plasticity included, with the material law satisfied at the element
centroid (centroidal plasticity)

IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-830d)

if () then go to T-830d
else go to T-830e

ζ xw

x ζ z

z′ z′

xg yg, xw

rw xw

IANGU 0>
9-80 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-830d E830 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-830e

rw

xw rw

xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 9-81

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-830e E830 Core Properties

A single T-830e record must be included immediately following the T-830c (or T-830d) record,
to specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-830f)

NX (T-830) x-direction looping parameter
NY (T-830) y-direction looping parameter

if () then go to T-830f
elseif () then go to T-830g
elseif () then go to T-830h
else return to T-100

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>
NX 0>
NY 0>
9-82 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-830f E830 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element surface to

determine the direction of the core-reference coordinate ; is

expressed in global coordinates

NX (T-830) x-direction looping parameter
NY (T-830) y-direction looping parameter

if () then go to T-830g
elseif () then go to T-830h
else return to T-100

rw

xw rw

xg yg zg, ,()

NX 0>
NY 0>
STAGS 5.0 User Manual April, 2009 9-83

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-830g X-Direction Incrementations

A single record of type T-830g must be included immediately after the T-830e or T-830f record
when the NX “x-direction” looping parameter (T-830) is greater than unity. Eight nodal
incrementation variables are specified here for use with the “x-direction” looping function on the
T-830 record. NX E830 sandwich elements are generated in the “x-direction” with this
information. Three incrementation variables are also specified here for “x-direction” looping
with the user-element-number parameters on T-830.

I1 I2 I3 I4 I5 I6 I7 I8 I9

I1 incrementation for the N1 lower face sheet node on the T-830a record
I2 incrementation for the N2 lower face sheet node on the T-830a record
I3 incrementation for the N3 lower face sheet node on the T-830a record
I4 incrementation for the N4 upper face sheet node on the T-830c record
I5 incrementation for the N5 upper face sheet node on the T-830c record
I6 incrementation for the N6 upper face sheet node on the T-830c record
I7 incrementation for USERC on the T-830 record
I8 incrementation for USER1 on the T-830 record
I9 incrementation for USER2 on the T-830 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-830 / T-830a / T-830c / T-830g record combination:

830 1 0 0 3 $ T-830 with NX=3
10 20 30 ... $ T-830a lower face nodes
50 60 70 ... $ T-830c upper face nodes
...
1 1 1 2 2 2 $ T-830g increments

generates three E830 elements, with the following nodes:

10 20 30 50 60 70 Element #1
11 21 31 52 62 72 Element #2
12 22 32 54 64 74 Element #3

NY (T-830) y-direction looping parameter

if () then go to T-830h
else return to T-100

NY 0>
9-84 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-830h Y-Direction Incrementations

A single type T-830h record must be included immediately after the T-830e or T-830f or T-830g

record when the NY “y-direction” looping parameter is greater than unity (T-830). Eight nodal
incrementation variables are specified here for use with the T-830 record “y-direction” looping
function. NY E830 sandwich elements are generated in the “y-direction”, for each E830 element
generated in the x direction, with this information. The NX and NY looping parameters are usually
employed together to specify E830 elements in a single stroke.

J1 J2 J3 J4 J5 J6 J7 J8 J9

J1 incrementation for the N1 lower face sheet node on the T-830a record
J2 incrementation for the N2 lower face sheet node on the T-830a record
J3 incrementation for the N3 lower face sheet node on the T-830a record
J4 incrementation for the N4 upper face sheet node on the T-830c record
J5 incrementation for the N5 upper face sheet node on the T-830c record
J6 incrementation for the N6 upper face sheet node on the T-830c record
J7 incrementation for USERC on the T-830 record
J8 incrementation for USER1 on the T-830 record
J9 incrementation for USER2 on the T-830 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-830 / T-830a / T-830c / T-830g / T-830h record combination:

830 1 0 0 3 2 $ T-830 NX=3, NY=2
10 20 30 ... $ T-830a (lower face nodes)
50 60 70 ... $ T-830c (upper face nodes)
...
1 1 1 1 1 1 $ T-830g (x increments)
5 5 5 5 5 5 $ T-830h (y increments)

generates six E830 elements, with the following nodes:

10 20 30 50 60 70 Element #1
11 21 31 51 61 71 Element #2
12 22 32 52 62 72 Element #3
15 25 35 55 65 75 Element #4
16 26 36 56 66 76 Element #5
17 27 37 57 67 77 Element #6

return to T-100

NX NY×
STAGS 5.0 User Manual April, 2009 9-85

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-840 E840 8-Node Sandwich Element Definition

The E840 8-node sandwich element in STAGS, shown in Figure 9.4, is constructed with a pair of

E410 quadrilateral shells (with bending as well as the usual membrane stiffness) that are held

apart by a lightweight core that has three-dimensional elastic properties.

Definition of one or more E840 8-node sandwich elements is accomplished with the following

set of records:

T-840 to specify parameters used for all parts of the element

T-840a to specify information for the lower face sheet of the element

T-840b to specify lower face sheet transformation angles (optional)

T-840c to specify information for the upper face sheet

T-840d to specify upper face sheet transformation angles (optional)

T-840e to specify core parameters

T-840f to specify core transformation angles (optional)

T-840g for “x-direction” incrementation parameters

T-840h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 9.4 E840 8-Node Sandwich Element

N8

N7N5

N4

N3

N2

N1

Upper Face-Sheet

Lower Face-Sheet

E410 Component

E410 Component

Core E840
Component

N6
9-86 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

KELT element code number (must be 840)

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

INTEG integration-type flag (see N-1):

0 – standard integration, or Gauss points for E410 elements

1 – modified 5-point integration, previously referred to
as full integration

IPEN penalty option (see N-1)

0 – no penalty function on fourth-order terms in E410 elements

1 – penalty function included in E410 elements

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E840 elements in
the x direction, using nodal incrementation information given on T-840g

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E840 elements in
the y direction for each of the NX elements generated in the x direction in the
current definition, using nodal incrementation information given on T-840h

USERC user-specified element number for core component
(used only if IUWLE = 1 on H-1)

USER1 user-specified element number for lower face sheet, (if IUWLE = 1 on H-1)

USER2 user-specified element number for upper face sheet, (if IUWLE = 1 on H-1)

go to T-840a

2 2×

NX 1>

NY 1>
STAGS 5.0 User Manual April, 2009 9-87

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-840a E840 Lower Face-Sheet Properties

A single T-840a record must be included immediately following the T-840 record, to specify the
nodes for the lower face sheet of the first E840 element and to specify other parameters for the
lower face sheet of each of the element(s) specified in the current definition.

N1 N2 N3 N4 IFABL ZETAL ECZL IPLASL IANGL

N1 first node point on lower face sheet

N2 second node point on lower face sheet

N3 third node point on lower face sheet

N4 fourth node point on lower face sheet

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL

(See the T-4 record description for more information about this)

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation

about ; see Figure 8.2 on page 8-19.

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an
element unit; see “Effects of Eccentricity” on page 16-6.

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied
at each element integration point

2 – plasticity included, with the material law satisfied
at the element centroid (centroidal plasticity)

ζ xw

x ζ

z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
9-88 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
IANGL lower face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-840b)

if () then
go to T-840b

else go to T-840c

xg yg, xw

rw xw

IANGL 0>
STAGS 5.0 User Manual April, 2009 9-89

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-840b E840 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL, RYL, RZL lower face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-840c

rw

xw rw

xg yg zg, ,()
9-90 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-840c E840 Upper Face-Sheet Properties

A single T-840c record must be included immediately following the T-840a (or T-840b) record,
to specify the nodes for the upper face sheet of the first E840 element and to specify other
parameters for the upper face sheet of each of the element(s) specified in the current definition.

N5 N6 N7 N8 IFABU ZETAU ECZU IPLASU IANGU

N5 first node point on upper face sheet
N6 second node point on upper face sheet
N7 third node point on upper face sheet
N8 fourth node point on upper face sheet

IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the
WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – shell wall properties are given in user-written subroutine WALL

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-840d)

if () then go to T-840d
else go to T-840e

ζ xw

x ζ z

z′ z′

xg yg, xw

rw xw

IANGU 0>
STAGS 5.0 User Manual April, 2009 9-91

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-840d E840 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-840e

rw

xw rw

xg yg zg, ,()
9-92 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-840e E840 Core Properties

A single T-840e record must be included immediately following the T-840c (or T-840d) record,

to specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-840f)

NX (T-840) x-direction looping parameter

NY (T-840) y-direction looping parameter

if () then go to T-840f

elseif () then go to T-840g
elseif () then go to T-840h

else return to T-100

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>

NX 0>

NY 0>
STAGS 5.0 User Manual April, 2009 9-93

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-840f E840 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element surface to

determine the direction of the core-reference coordinate ; is

expressed in global coordinates

NX (T-840) x-direction looping parameter
NY (T-840) y-direction looping parameter

if () then go to T-840g
elseif () then go to T-840h
else return to T-840

rw

xw rw

xg yg zg, ,()

NX 0>
NY 0>
9-94 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-840g X-Direction Incrementations

A single record of type T-840g must be included immediately after the T-840e or T-840f record
when the NX “x-direction” looping parameter (T-840) is greater than unity. Eight nodal
incrementation variables are specified here for use with the “x-direction” looping function on the
T-840 record. NX E840 sandwich elements are generated in the “x-direction” with this
information. Three incrementation variables are also specified here for “x-direction” looping
with the user-element-number parameters on T-840.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

I1 incrementation for the N1 lower face sheet node on the T-840a record
I2 incrementation for the N2 lower face sheet node on the T-840a record
I3 incrementation for the N3 lower face sheet node on the T-840a record
I4 incrementation for the N4 lower face sheet node on the T-840a record
I5 incrementation for the N5 upper face sheet node on the T-840c record
I6 incrementation for the N6 upper face sheet node on the T-840c record
I7 incrementation for the N7 upper face sheet node on the T-840c record
I8 incrementation for the N8 upper face sheet node on the T-840c record
I9 incrementation for USERC on the T-840 record
I10 incrementation for USER1 on the T-840 record
I11 incrementation for USER2 on the T-840 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-840 / T-840a / T-840c / T-840g record combination:
840 1 0 0 3 $ T-840 with NX=3
10 20 30 40 ... $ T-840a lower face nodes
50 60 70 80 ... $ T-840c upper face nodes
...
1 1 1 1 2 2 2 2 $ T-840g increments

generates three E840 elements, with the following nodes:
10 20 30 40 50 60 70 80 Element #1
11 21 31 41 52 62 72 82 Element #2
12 22 32 42 54 64 74 84 Element #3

NY (T-840) y-direction looping parameter

if () then go to T-840h
else return to T-100

NY 0>
STAGS 5.0 User Manual April, 2009 9-95

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-840h Y-Direction Incrementations

A single type T-840h record must be included immediately after the T-840e or T-840f or T-840g

record when the NY “y-direction” looping parameter is greater than unity (T-840). Eight nodal
incrementation variables are specified here for use with the T-840 record “y-direction” looping
function. NY E840 sandwich elements are generated in the y direction, for each E840 element
generated in the x direction, with this information. The NX and NY looping parameters are usually
employed together to specify E840 elements in a single stroke.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

J1 incrementation for the N1 lower face sheet node on the T-840a record
J2 incrementation for the N2 lower face sheet node on the T-840a record
J3 incrementation for the N3 lower face sheet node on the T-840a record
J4 incrementation for the N4 lower face sheet node on the T-840a record
J5 incrementation for the N5 upper face sheet node on the T-840c record
J6 incrementation for the N6 upper face sheet node on the T-840c record
J7 incrementation for the N7 upper face sheet node on the T-840c record
J8 incrementation for the N8 upper face sheet node on the T-840c record
J9 incrementation for USERC on the T-840 record
J10 incrementation for USER1 on the T-840 record
J11 incrementation for USER2 on the T-840 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-840 / T-840a / T-840c / T-840g / T-840h record combination:
840 1 0 0 3 2 $ T-840 NX=3, NY=2
10 20 30 40 ... $ T-840a (lower face nodes)
50 60 70 80 ... $ T-840c (upper face nodes)
...
1 1 1 1 1 1 1 1 $ T-840g (x increments)
5 5 5 5 5 5 5 5 $ T-840h (y increments)

generates six E840 elements, with the following nodes:
10 20 30 40 50 60 70 80 Element #1
11 21 31 41 51 61 71 81 Element #2
12 22 32 42 52 62 72 82 Element #3
15 25 35 45 55 65 75 85 Element #4
16 26 36 46 56 66 76 86 Element #5
17 27 37 47 57 67 77 87 Element #6

return to T-100

NX NY×
9-96 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-845 E845 10-Node Sandwich Transition Element Definition

The E845 10-node sandwich-transition element, shown in Figure 9.5, is used in sandwich shell
units to make a transition between one mesh and another that has nodes that are exactly half as
far apart as the one in which the E845 element “resides.” It can be used to accomplish the same
objective in an element unit. A single T-845 definition may specify one or more E845 sandwich
transition elements.

Definition of one or more E845 10-node sandwich transition elements is accomplished with the
following set of records:

T-845 to specify parameters used for all parts of the element
T-845a to specify information for the lower face sheet of the element
T-845b to specify lower face sheet transformation angles (optional)
T-845c to specify information for the upper face sheet
T-845d to specify upper face sheet transformation angles (optional)
T-845e to specify core parameters
T-845f to specify core transformation angles (optional)
T-845g for “x-direction” incrementation parameters
T-845h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 9.5 E845 10-Node Sandwich Transition Elements

N4

N3

N2

N1

Lower Face-Sheet

E510 Component

Core E845
Component

Upper Face-Sheet

N8

N7

N5

N6

N9

N10

E510 Component
STAGS 5.0 User Manual April, 2009 9-97

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
KELT ILIN INTEG IPEN IEDGE NX NY USER

KELT element code number (must be 845)

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

INTEG integration-type flag (see N-1):

0 – standard integration, or Gauss points for E410 elements

1 – modified 5-point integration, previously referred to
as full integration

IPEN penalty option (see N-1)

0 – no penalty function on fourth-order terms in E410 elements

1 – penalty function included in E410 elements

IEDGE identifies the E845 edge on which node N5 is located (N10 is above N5):

1 – node N5 is between N3 and N4

2 – node N5 is between N4 and N1

3 – node N5 is between N1 and N2

4 – node N5 is between N2 and N3

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E845 elements in
the x direction, using the increments given on the T-845g record

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E845 elements in
the y direction for each of the NX elements generated in the x direction in the
current definition, using the increments given on the T-845h record

USER user-specified element number for the first E845 element generated here
(used only if IUWLE = 1 on H-1)

go to T-845a

2 2×

NX 1>

NY 1>
9-98 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-845a E845 Lower Face-Sheet Properties

A single T-845a record must be included immediately following the T-845 record, to specify the
nodes for the lower face sheet of the first E845 element and to specify other parameters for the
lower face sheet of each of the element(s) specified in the current definition.

N1 N2 N3 N4 N5 IFABL ZETAL ECZL IPLASL IANGL

N1 first node point on lower face sheet
N2 second node point on lower face sheet
N3 third node point on lower face sheet
N4 fourth node point on lower face sheet
N5 fifth node point on lower face sheet

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL

(See the T-4 record description for more information about this)

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)
(this option is not operational yet and should not be used)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation

about ; see Figure 8.2 on page 8-19

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an
element unit; see “Effects of Eccentricity” on page 16-6

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied
at each element integration point

2 – plasticity included, with the material law satisfied
at the element centroid (centroidal plasticity)

ζ xw

x ζ

z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
STAGS 5.0 User Manual April, 2009 9-99

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
IANGL lower face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-845b)

if () then
go to T-845b

else go to T-845c

xg yg, xw

rw xw

IANGL 0>
9-100 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-845b E845 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL, RYL, RZL lower face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-845c

rw

xw rw

xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 9-101

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-845c E845 Upper Face-Sheet Properties

A single T-845c record must be included immediately following the T-845a (or T-845b) record,
to specify the nodes for the upper face sheet of the first E845 element and to specify other
parameters for the upper face sheet of each of the element(s) specified in the current definition.

N6 N7 N8 N9 N10 IFABU ZETAU ECZU IPLASU IANGU

N6 first node point on upper face sheet
N7 second node point on upper face sheet
N8 third node point on upper face sheet
N9 fourth node point on upper face sheet
N10 fifth node point on upper face sheet

IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the
WALL parameter for E410 quadrilateral elements:
>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL
<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:
0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)

IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-845d)

if () then go to T-845d
else go to T-845e

ζ xw

x ζ z

z′ z′

xg yg, xw

rw xw

IANGU 0>
9-102 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-845d E845 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-845e

rw

xw rw

xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 9-103

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-845e E845 Core Properties

A single T-845e record must be included immediately following the T-845c (or T-845d) record,
to specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-845f)

NX (T-845) x-direction looping parameter
NY (T-845) y-direction looping parameter

if () then go to T-845f
elseif () then go to T-845g
elseif () then go to T-845h
else return to T-100

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>
NX 0>
NY 0>
9-104 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-845f E845 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element

surface to determine the direction of the core-reference coordinate

; is expressed in global coordinates

NX (T-845) x-direction looping parameter
NY (T-845) y-direction looping parameter

if () then go to T-845g
elseif () then go to T-845h
else return to T-100

rw

xw rw xg yg zg, ,()

NX 0>
NY 0>
STAGS 5.0 User Manual April, 2009 9-105

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-845g E845 X-Direction Incrementations

A single record of type T-845g must be included immediately after the T-845e or T-845f record
when the NX “x-direction” looping parameter (T-845) is greater than unity. Ten nodal
incrementation variables are specified here for use with the “x-direction” looping function on the
T-845 record. NX E845 sandwich transition elements are generated in the x direction with this
information. One incrementation variable is also specified here for “x-direction” looping with the
user-element-number parameter on T-845.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

I1 incrementation for the N1 lower face sheet node on the T-845a record
I2 incrementation for the N2 lower face sheet node on the T-845a record
I3 incrementation for the N3 lower face sheet node on the T-845a record
I4 incrementation for the N4 lower face sheet node on the T-845a record
I5 incrementation for the N5 lower face sheet node on the T-845a record
I6 incrementation for the N6 upper face sheet node on the T-845c record
I7 incrementation for the N7 upper face sheet node on the T-845c record
I8 incrementation for the N8 upper face sheet node on the T-845c record
I9 incrementation for the N9 upper face sheet node on the T-845c record
I10 incrementation for the N10 upper face sheet node on the T-845c record
I11 incrementation for USER on the T-845 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-845 / T-845a / T-845c / T-845g record combination:
845 1 0 0 1 3 $ T-845 with NX=3
10 20 30 40 50 ... $ T-845a lower face nodes
60 70 80 90 100 ... $ T-845c upper face nodes
...
1 1 1 1 1 2 2 2 2 2 $ T-845g increments

generates three E845 elements, with the following nodes:
10 20 30 40 50 60 70 80 90 100Element #1
11 21 31 41 51 62 72 82 92 102Element #2
12 22 32 42 52 64 74 84 94 104Element #3

NY (T-845) y-direction looping parameter

if () then go to T-845h
else return to T-100

NY 0>
9-106 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-845h Y-Direction Incrementations

A type T-845h record must be included immediately after the T-845e or T-845f or T-845g record
when the NY “y-direction” looping parameter is greater than unity (T-845). Ten nodal
incrementation variables are specified here for use with the T-845 record “y-direction” looping
function. NY E845 sandwich transition elements are generated in the “y-direction”, for each E845
element generated in the x direction, with this information. The NX and NY looping parameters
are usually employed together to specify E845 elements in a single stroke.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

J1 incrementation for the N1 lower face sheet node on the T-845a record
J2 incrementation for the N2 lower face sheet node on the T-845a record
J3 incrementation for the N3 lower face sheet node on the T-845a record
J4 incrementation for the N4 lower face sheet node on the T-845a record
J5 incrementation for the N5 lower face sheet node on the T-845a record
J6 incrementation for the N6 upper face sheet node on the T-845c record
J7 incrementation for the N7 upper face sheet node on the T-845c record
J8 incrementation for the N8 upper face sheet node on the T-845c record
J9 incrementation for the N9 upper face sheet node on the T-845c record
J10 incrementation for the N10 upper face sheet node on the T-845c record
J11 incrementation for USER on the T-845 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-845 / T-845a / T-845c / T-845g / T-845h record combination:
845 1 0 0 1 3 2 $ T-845 NX=3, NY=2
10 20 30 40 50 ... $ T-845a (lower face nodes)
60 70 80 90 100 ... $ T-845c (upper face nodes)
...
1 1 1 1 1 1 1 1 1 1 $ T-845g (x increments)
5 5 5 5 5 5 5 5 5 5 $ T-845h (y increments)

generates six E845 elements, with the following nodes:
10 20 30 40 50 60 70 80 90 100 Element #1
11 21 31 41 51 61 71 81 91 101 Element #2
12 22 32 42 52 62 72 82 92 102 Element #3
15 25 35 45 55 65 75 85 95 105 Element #4
16 26 36 46 56 66 76 86 96 106 Element #5
17 27 37 47 57 67 77 87 97 107 Element #6

return to T-100

NX NY×
STAGS 5.0 User Manual April, 2009 9-107

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-847 14-Node Sandwich Transition Element Definition

The E847 14-node sandwich-transition element, shown in Figure 9.6, is used in sandwich shell
units to make a transition between one mesh and two other meshes that have nodes that are
exactly half as far apart as the one in which the E847 element “resides.” It can be used to
accomplish the same objective in an element unit. A single T-847 definition may specify one or
more E847 sandwich transition elements.

Definition of one or more E847 14-node sandwich transition elements is accomplished with the
following set of records:

T-847 to specify parameters used for all parts of the element
T-847a to specify information for the lower face sheet of the element
T-847b to specify lower face sheet transformation angles (optional)
T-847c to specify information for the upper face sheet
T-847d to specify upper face sheet transformation angles (optional)
T-847e to specify core parameters
T-847f to specify core transformation angles (optional)
T-847g for “x-direction” incrementation parameters
T-847h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 9.6 E847 14-Node Sandwich Transition Elements

N13

N11

N12

N4

N3

N2

N1

Lower Face-Sheet

E710 Component

Core E847
Component

Upper Face-Sheet

N8

N7

N5N6

N9

N10

E710 Component

N14
9-108 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
KELT ILIN INTEG IPEN IEDGE NX NY USER

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

INTEG integration-type flag (see N-1):

0 – standard integration, or Gauss points for E410 elements

1 – modified 5-point integration, previously referred to
as full integration

IPEN penalty option (see N-1)

0 – no penalty function on fourth-order terms in E410 elements

1 – penalty function included in E410 elements

IEDGE identifies the E847 edges on which nodes N5 and N6 are located
nodes N12 and N13 are above N5 and N6, respectively:

1 – node N5 is between N3 and N4; node N6 is between N4 and N1

2 – node N5 is between N4 and N1; node N6 is between N1 and N2

3 – node N5 is between N1 and N2; node N6 is between N2 and N3

4 – node N5 is between N2 and N3; node N6 is between N3 and N4

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E847 elements in
the x direction, using the increments given on T-847g

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E847 elements in
the y direction for each of the NX elements generated in the x direction in the
current definition, using the increments given on T-847h

USER user-specified element number for the first E847 element generated here
(used only if IUWLE = 1 on H-1)

go to T-847a

2 2×

NX 1>

NY 1>
STAGS 5.0 User Manual April, 2009 9-109

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-847a E847 Lower Face-Sheet Properties

A single T-847a record must be included immediately following the T-847 record, to specify the
nodes for the lower face sheet of the first E847 element and to specify other parameters for the
lower face sheet of each of the element(s) specified in the current definition.

N1 N2 N3 N4 N5 N6 N7 IFABL ZETAL ECZL IPLASL IANGL

N1 first node point on lower face sheet
N2 second node point on lower face sheet
N3 third node point on lower face sheet
N4 fourth node point on lower face sheet
N5 fifth node point on lower face sheet
N6 sixth node point on lower face sheet
N7 seventh node point on lower face sheet

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL

(See the T-4 record description for more information about this)

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation

about ; see Figure 8.2 on page 8-19.

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an
element unit; see “Effects of Eccentricity” on page 16-6.

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied
at each element integration point

2 – plasticity included, with the material law satisfied
at the element centroid (centroidal plasticity)

ζ xw

x ζ

z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
9-110 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
IANGL lower face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-847b)

if () then
go to T-847b

else go to T-847c

xg yg, xw

rw xw

IANGL 0>
STAGS 5.0 User Manual April, 2009 9-111

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-847b E847 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL, RYL, RZL lower face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-847c

rw

xw rw

xg yg zg, ,()
9-112 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-847c E847 Upper Face-Sheet Properties

A single T-847c record must be included immediately following the T-847a (or T-847b) record,
to specify the nodes for the upper face sheet of the first E847 element and to specify other
parameters for the upper face sheet of each of the element(s) specified in the current definition.

N8 N9 N10 N11 N12 N13 N14 IFABU ZETAU ECZU IPLASU IANGU

N8 first node point on upper face sheet

N9 second node point on upper face sheet

N10 third node point on upper face sheet

N11 fourth node point on upper face sheet

N12 fifth node point on upper face sheet

N13 sixth node point on upper face sheet

N14 seventh node point on upper face sheet

IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the
WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL

<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included, with the material law satisfied at each element
integration point

2 – plasticity included, with the material law satisfied at the element
centroid (centroidal plasticity)

ζ xw

x ζ z

z′ z′
STAGS 5.0 User Manual April, 2009 9-113

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-847d)

if () then go to T-847d
else go to T-847e

xg yg, xw

rw xw

IANGU 0>
9-114 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-847d E847 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-847e

rw

xw rw

xg yg zg, ,()
STAGS 5.0 User Manual April, 2009 9-115

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-847e E847 Core Properties

A single T-847e record must be included immediately following the T-847c (or T-847d) record,
to specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-847f)

NX (T-847) x-direction looping parameter
NY (T-847) y-direction looping parameter

if () then go to T-847f
elseif () then go to T-847g
elseif () then go to T-847h
else return to T-100

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>
NX 0>
NY 0>
9-116 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-847f E847 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element

surface to determine the direction of the core-reference coordinate

; is expressed in global coordinates

NX (T-847) x-direction looping parameter
NY (T-847) y-direction looping parameter

if () then go to T-847g
elseif () then go to T-847h
else return to T-100

rw

xw rw xg yg zg, ,()

NX 0>
NY 0>
STAGS 5.0 User Manual April, 2009 9-117

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-847g X-Direction Incrementations

A single record of type T-847g must be included immediately after the T-847e or T-847f record
when the NX “x-direction” looping parameter (T-847) is greater than unity. Fourteen nodal
incrementation variables are specified here for use with the “x-direction” looping function on the
T-847 record. NX E847 sandwich elements are generated in the x direction with this information.
One incrementation variable is also specified here for “x-direction” looping with the user-
element-number parameter on T-847.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

I1 incrementation for the N1 lower face sheet node on the T-847a record

I2 incrementation for the N2 lower face sheet node on the T-847a record

I3 incrementation for the N3 lower face sheet node on the T-847a record

I4 incrementation for the N4 lower face sheet node on the T-847a record

I5 incrementation for the N5 lower face sheet node on the T-847a record

I6 incrementation for the N6 lower face sheet node on the T-847a record

I7 incrementation for the N7 lower face sheet node on the T-847a record

I8 incrementation for the N8 upper face sheet node on the T-847c record

I9 incrementation for the N9 upper face sheet node on the T-847c record

I10 incrementation for the N10 upper face sheet node on the T-847c record

I11 incrementation for the N11 upper face sheet node on the T-847c record

I12 incrementation for the N12 upper face sheet node on the T-847c record

I13 incrementation for the N13 upper face sheet node on the T-847c record

I14 incrementation for the N14 upper face sheet node on the T-847c record

I15 incrementation for USER on the T-847 record

Any of these incrementation variables can be negative, zero, or positive, as required.

NY (T-847) y-direction looping parameter

if () then go to T-847h
else return to T-100

NY 0>
9-118 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-847h E847 Y-Direction Incrementations

A type T-847h record must be included immediately after the T-847e or T-847f or T-847g record
when the NY “y-direction” looping parameter is greater than unity (T-847). Fourteen nodal
incrementation variables are specified here for use with the T-847 record “y-direction” looping
function. NY E847 sandwich elements are generated in the y direction, for each E847 element
generated in the x direction, with this information. The NX and NY looping parameters are usually
employed together to specify E847 elements in a single stroke.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15

J1 incrementation for the N1 lower face sheet node on the T-847a record

J2 incrementation for the N2 lower face sheet node on the T-847a record

J3 incrementation for the N3 lower face sheet node on the T-847a record

J4 incrementation for the N4 lower face sheet node on the T-847a record

J5 incrementation for the N5 lower face sheet node on the T-847a record

J6 incrementation for the N6 lower face sheet node on the T-847a record

J7 incrementation for the N7 lower face sheet node on the T-847a record

J8 incrementation for the N8 upper face sheet node on the T-847c record

J9 incrementation for the N9 upper face sheet node on the T-847c record

J10 incrementation for the N10 upper face sheet node on the T-847c record

J11 incrementation for the N11 upper face sheet node on the T-847c record

J12 incrementation for the N12 upper face sheet node on the T-847c record

J13 incrementation for the N13 upper face sheet node on the T-847c record

J14 incrementation for the N14 upper face sheet node on the T-847c record

J15 incrementation for USER on the T-847 record

Any of these incrementation variables can be negative, zero, or positive, as required.

return to T-100

NX NY×
STAGS 5.0 User Manual April, 2009 9-119

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-849 E849 18-Node Sandwich Element Definition

The E849 18-node sandwich element in STAGS, shown in Figure 9.7, is constructed with a pair

of E480 9–node quadrilateral shells (with bending as well as the usual membrane stiffness) that

are held apart by a lightweight core that has three-dimensional elastic properties.

Definition of one or more E849 18-node sandwich elements is accomplished with the following

set of records:

T-849 to specify parameters used for all parts of the element

T-849a to specify information for the lower face sheet of the element

T-849b to specify lower face sheet transformation angles (optional)

T-849c to specify information for the upper face sheet

T-849d to specify upper face sheet transformation angles (optional)

T-849e to specify core parameters

T-849f to specify core transformation angles (optional)

T-849g for “x-direction” incrementation parameters

T-849h for “y-direction” incrementation parameters

These are described sequentially in the following text.

Figure 9.7 E849 18-Node Sandwich Element

N8 N7

N5

N4

N3

N2

N1

Upper Face-Sheet

Lower Face-Sheet

E480 Component

E480 Component

Core E849
Component

N6

N13

N12

N11

N10

N9

N18

N17 N16

N15N14
9-120 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

KELT element code number (must be 849)

ILIN geometric-linearity flag:

0 – nonlinear strain-displacement relations

1 – linear strain-displacement relations

INTEG integration-type flag: not used for this element; set INTEG = 0

IPEN penalty option: not used for this element; set IPEN = 0

NX x-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NX type E849 elements in
the x direction, using nodal incrementation information given on T-849g

NY y-direction looping parameter, set equal to unity by STAGS if omitted or
nonpositive; instructs STAGS to generate a set of NY type E849 elements in
the y direction for each of the NX elements generated in the x direction in the
current definition, using nodal incrementation information given on T-849h

USERC user-specified element number for core component
(used only if IUWLE = 1 on H-1)

USER1 user-specified element number for lower face sheet, (if IUWLE = 1 on H-1)

USER2 user-specified element number for upper face sheet, (if IUWLE = 1 on H-1)

go to T-849a

NX 1>

NY 1>
STAGS 5.0 User Manual April, 2009 9-121

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-849a E849 Lower Face-Sheet Properties

A single T-849a record must be included immediately following the T-849 record, to specify the
nodes for the lower face sheet of the first E849 element (see Figure 9.7 on page 9-120) and to
specify other parameters for the lower face sheet of each element that is specified in the current
definition.

N1 N2 N3 N4 N5 N6 N7 N8 N9 IFABL ZETAL ECZL IPLASL IANGL

N1 node # 1 on the lower face sheet
N2 node # 2 on the lower face sheet
N3 node # 3 on the lower face sheet
N4 node # 4 on the lower face sheet
N5 node # 5 on the lower face sheet
N6 node # 6 on the lower face sheet
N7 node # 7 on the lower face sheet
N8 node # 8 on the lower face sheet
N9 node # 9 on the lower face sheet

IFABL fabrication identifier for the lower face sheet element(s); this is equivalent
to the WALL parameter for E480 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – shell wall properties are given in user-written subroutine WALL

(See the T-4 record description for more information about this)
<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAL angle between the wall-reference coordinate and the fabrication

coordinate , for the lower face sheet; is a right-handed rotation
about ; see Figure 8.2 on page 8-19.

ECZL eccentricity in direction, for the lower face sheet; ECZL is the coordinate of
the shell wall middle surface; please refer to Figure 6.2 on page 6-28; in element
units, are used in place of , which do not exist in an
element unit; see “Effects of Eccentricity” on page 16-6.

IPLASL lower face sheet material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied

at each element integration point
2 – plasticity included, with the material law satisfied

at the element centroid (centroidal plasticity)

ζ xw

x ζ
z

z′ z′

x′ y′ z′, ,() X′ Y′ Z′, ,()
9-122 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
IANGL lower face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-849b)

if () then
go to T-849b

else go to T-849c

xg yg, xw

rw xw

IANGL 0>
STAGS 5.0 User Manual April, 2009 9-123

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-849b E849 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

RXL, RYL, RZL lower face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-849c

rw

xw rw

xg yg zg, ,()
9-124 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-849c E849 Upper Face-Sheet Properties

A single T-849c record must be included immediately following the T-849a (or T-849b) record,
to specify the nodes for the upper face sheet of the first E849 element (see Figure 9.7 on page
9-120) and to specify other parameters for the upper face sheet of each element that is specified
in the current definition.

N10 N11 N12 N13 N14 N15 N16 N17 N18 IFABU ZETAU ECZU IPLASU IANGU

N10 node # 1 on the upper face sheet
N11 node # 2 on the upper face sheet
N12 node # 3 on the upper face sheet
N13 node # 4 on the upper face sheet
N14 node # 5 on the upper face sheet
N15 node # 6 on the upper face sheet
N16 node # 7 on the upper face sheet
N17 node # 8 on the upper face sheet
N18 node # 9 on the upper face sheet
IFABU fabrication identifier for the upper face sheet element(s); this is equivalent to the

WALL parameter for E410 quadrilateral elements:
>0 – wall configuration number in the Wall Fabrication Table (K-1)

0 – shell wall properties are given in user-written subroutine WALL
<0 – shell fabrication identifier in the GCP Fabrication Table (I-21a)

ZETAU angle between the wall-reference coordinate and the fabrication coordinate

, for the upper face sheet; is a right-handed rotation about

ECZU eccentricity in direction, for the upper face sheet; ECZL is the coordinate of
the shell wall middle surface

IPLASU upper face sheet material-nonlinearity flag:
0 – elastic behavior only
1 – plasticity included, with the material law satisfied at each element

integration point
2 – plasticity included, with the material law satisfied at the element

centroid (centroidal plasticity)
IANGL upper face sheet wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-849d)

if () then go to T-849d
else go to T-849e

ζ xw

x ζ z

z′ z′

xg yg, xw

rw xw

IANGU 0>
STAGS 5.0 User Manual April, 2009 9-125

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-849d E849 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

RXU, RYU, RZU upper face sheet wall reference vector, , which is projected

onto the element surface to determine the direction of the

wall-reference coordinate ; is expressed in

 global coordinates

go to T-849e

rw

xw rw

xg yg zg, ,()
9-126 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-849e E849 Core Properties

A single T-849e record must be included immediately following the T-849c (or T-849d) record,
to specify parameters for the core component of the element(s) specified in the current definition.

IFABC ZETAC IPLASC IANGC

IFABC core fabrication identifier:

>0 – wall configuration number in the Wall Fabrication Table (K-1)

<0 – solid fabrication identifier in the GCP Fabrication Table (I-22a)

ZETAC angle between the wall-reference coordinate and the fabrication coordinate

, for the core component; is a right-handed rotation about

IPLASC core material-nonlinearity flag:

0 – elastic behavior only

1 – plasticity included (not operational with GCP fabrications, yet)

IANGC core wall-reference option; see discussion on page 8-18

0 – use default strategy of projecting to establish

1 – input , which is projected to establish ; see (T-849f)

NX (T-849) x-direction looping parameter
NY (T-849) y-direction looping parameter

if () then go to T-849f
elseif () then go to T-849g
elseif () then go to T-849h
else return to T-100

ζ xw

x ζ z

xg yg, xw

rw xw

IANGC 0>
NX 0>
NY 0>
STAGS 5.0 User Manual April, 2009 9-127

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-849f E849 Core Reference Vector

RXC RYC RZC

RXC, RYC, RZC core reference vector, , which is projected onto the element surface

to determine the direction of the core-reference coordinate ;

is expressed in global coordinates

NX (T-849) x-direction looping parameter
NY (T-849) y-direction looping parameter

if () then go to T-849g
elseif () then go to T-849h
else return to T-100

rw

xw rw

xg yg zg, ,()

NX 0>
NY 0>
9-128 April, 2009 STAGS 5.0 User Manual

Definition of Sandwich Elements via the Ecom Protocol Model Input—Element Units (3)
T-849g X-Direction Incrementations

A single record of type T-849g must be included immediately after the T-849e or T-849f record
when the NX “x-direction” looping parameter (T-849) is greater than unity. Eighteen nodal
incrementation variables are specified here for use with the “x-direction” looping function on the
T-849 record. NX E849 sandwich elements are generated in the x direction with this information.
Three incrementation variables are also specified here for “x-direction” looping with the user-
element-number parameters on T-849.

(IX(k), k=1,18) IXC IX1 IX2

IX(k) x-direction incrementation for the kth node,which is
on the T-849a record (when), or
on the T-849c record (when)

IXC x-direction incrementation for USERC on the T-849 record

IX1 x-direction incrementation for USER1 on the T-849 record

IX2 x-direction incrementation for USER2 on the T-849 record

Any of these incrementation variables can be negative, zero, or positive, as required.

Example: the following T-849 / T-849a / T-849c / T-849g record combination:

849 1 0 0 3 $ T-849 with NX=3
10 20 30 40 50 60 70 80 90 ... $ T-849a lower face nodes
15 25 35 45 55 65 75 85 95 ... $ T-849c upper face nodes
...
1 1 1 1 1 1 1 1 1 9*2 $ T-849g increments

generates three E849 elements, with the following nodes:

10 20 30 40 50 60 70 80 90 15 25 35 45 55 65 75 85 95Element #1
11 21 31 41 51 61 71 81 91 17 27 37 47 57 67 77 87 97Element #2
12 22 32 42 52 62 72 82 92 19 29 39 49 59 69 79 89 99Element #3

NY (T-849) y-direction looping parameter

if () then go to T-849h
else return to T-100

1 k 9≤ ≤

10 k 18≤ ≤

NY 0>
STAGS 5.0 User Manual April, 2009 9-129

Model Input—Element Units (3) Definition of Sandwich Elements via the Ecom Protocol
T-849h Y-Direction Incrementations

A single type T-849h record must be included immediately after the T-849e or T-849f or T-849g
record when the NY “y-direction” looping parameter is greater than unity (T-849). Eighteen
nodal incrementation variables are specified here for use with the T-849 record “y-direction”
looping function. NY E849 sandwich elements are generated in the y direction, for each E849
element generated in the x direction, with this information. The NX and NY looping parameters
are usually employed together to specify E849 elements in a single stroke.

(IY(k), k=1,18) IYC IY1 IY2

IY(k) y-direction incrementation for the kth node,which is
on the T-849a record (when), or
on the T-849c record (when)

IYC y-direction incrementation for USERC on the T-849 record
IY1 y-direction incrementation for USER1 on the T-849 record
IY2 y-direction incrementation for USER2 on the T-849 record

Any of these incrementation variables can be negative, zero, or positive, as required.

return to T-100

NX NY×

1 k 9≤ ≤

10 k 18≤ ≤
9-130 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
9.7 Definition of Solid Elements via the Ecom Protocol

The current version of STAGS has four conventional solid elements that are fully operational and
“hooks” for an as-yet-undetermined number of unconventional solid elements that are not “ready
for prime time” yet. The four operational solid elements—members of the E880 “family” of
elements—are shown in Figure 9.8. The other solid elements—members of the E860 family—
were originally implemented in and are being transferred into STAGS from the tetrahedral,
pentahedral and hexahedral constructions in the ORACLE program.

In the Edef protocol (which was described in Chapter 8), the number of E880-element-family
definitions to be made for the current element unit was specified via the N880 parameter on the
T-5 record and that the element type for any given definition was specified by the value of KELT

in that definition. In the Ecom protocol (which is being described here), the command keyword
(on T-100) specifies the element type explicitly.

Figure 9.8 The E880 Family of Solid Elements

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9
10

11
12

13
14

15
16

17

18

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17 18

19
20

21

22

23

24

26
25

27

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17
18

19
20

E881 E882

E883 E885
STAGS 5.0 User Manual April, 2009 9-131

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
The 8-node E881 ANS solid element has 4 nodes on its lower face and 4 nodes on its upper face.
One or more E881 elements (or additional E881 elements) can be defined with the T-881 record
set. For more information about the E881 element, see “E881 8-Node ANS solid element” on
page 14-47.

The 18-node E882 ANS solid element has 9 nodes on its lower face and 9 nodes on its upper
face. One or more E882 elements (or additional E882 elements) can be defined with the T-882

record set. For more information about the E882 element, see “E882 18-Node solid element” on
page 14-48.

The 27-node E883 ANS solid element, has 9 nodes on its lower face, 9 nodes on its mid-surface,
and 9 nodes on its upper face. One or more E883 elements (or additional E883 elements) can be
defined with the T-883 record set. For more information about the E883 element, see “E883 27-
Node solid element” on page 14-49.

The 20-node E885 displacement-based solid element has 8 nodes on its lower face, 4 nodes on
its mid-surface, and 8 nodes on its upper face. One or more E885 elements (or additional E885
elements) can be defined with the T-885 record set. For more information about the E885
element, see “E885 20-Node displacement-based solid element” on page 14-50.
9-132 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-860 E860 ORACLE Solid Element

The E860 (ORACLE solid) element in STAGS, shown in Figure 9.9, is based on the general
tetrahedral, pentahedral, or hexahedral element that was implemented in the ORACLE program.

The T-860 record is the first record of a multi-record set that defines one or more E860 solid
elements to be included in the current element unit. The looping capabilities provided here, via
NX and NY on T-860 and the incrementation parameters on T-860b and T-860c, can be used
effectively in many situations.

Figure 9.9 E860 ORACLE Solid Element
STAGS 5.0 User Manual April, 2009 9-133

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
KELT NNODES IFAB IANG ILIN IPLAS NX NY

KELT must = 860

NNODES number of node points required to define the current E860 element(s);
NNODES must be greater than or equal to 4

IFAB fabrication identifier for the element:

<0 – fabrication identifier in the GCP Fabrication Table (I-22a)

IANG wall-reference option:

0 – use default strategy of projecting to establish

1 – input , which is projected to establish

ILIN geometric-nonlinearity flag:

0 – use nonlinear strain-displacement relations
1 – use linear strain-displacement relations

IPLAS material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied

at each element integration point
2 – plasticity included, with the material law satisfied

at the element centroid (centroidal plasticity)

NX number of elements to be generated in the x direction;
STAGS sets NX = 1 if it is nonpositive

NY number of elements to be generated in the y direction;
STAGS sets NY = 1 if it is nonpositive

go to T-860b

xg yg, xw

rw xw
9-134 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-860a E860 Solid Element Nodes

A single T-860a record must follow the T-860 record, to identify the NNODES (T-860) nodes
(S-1) that define the first ORACLE solid element of the set to be generated here.

(NODE(k), k=1,NNODES) USERELT

NODE(k) kth of NNODES node points for the initial E860 solid element

USERELT user-specified element number, used only if IUWLE = 1 on H-1

NX (T-860) x-direction incrementation flag
NY (T-860) y-direction incrementation flag
IANG (T-860) wall-reference option

if (NX > 1) then go to T-860b
elseif (NY > 1) then go to T-860c
elseif () then go to T-860d
else return to T-100

IANG 0>
STAGS 5.0 User Manual April, 2009 9-135

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-860b E860 X-Direction Incrementations

NNODES+1 (T-860) x-direction incrementation variables are specified here for use with the NX

looping function invoked on the T-860 record and the initial node points established on T-860a.

(IX(k), k=1,NNODES) IXU

IX(k) x-direction incrementation variable for node NODE(k) on T-883a
IXU x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-860c
elseif (IANG = 1) then go to T-860d
else return to T-100
9-136 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-860c E860 Y-Direction Incrementations

NNODES+1 (T-860) y-direction incrementation variables are specified here for use with the NY

looping function invoked on the T-860 record and the initial node points established on T-860a.

(IY(k), k=1,NNODES) IYU

IY(k) y-direction incrementation variable for node NODE(k) on T-883a
IYU y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-860d
else return to T-100
STAGS 5.0 User Manual April, 2009 9-137

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-860d E860 Material Orientation Record

If (T-860), a single T-860d record must follow the T-860a record (or T-860b or T-860c

record, if applicable) for the current E860 solid element. T-860d specifies the material
orientation for each of the E860 elements that are to be generated by the current T-860 element-
definition set.

XFX XFY XFZ YFX YFY YFZ

XFX, XFY, XFZ vector components establishing the x orientation of the material

YFX, YFY, YFZ vector components establishing the y orientation of the material

return to T-100

IANG 0>
9-138 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-881 E881 8-Node Solid Element

The E881 8-node ANS solid element, in STAGS, is shown in Figure 9.10:

The nodal ordering for E881 corresponds exactly to the ordering used in the PATRAN program.

The T-881 record is the first record of a multi-record set that defines one or more E881 8-node
solid elements to be included in the current element unit. The looping capabilities provided here,
via NX and NY on T-881 and the incrementation parameters on T-881b and T-881c, can be used
effectively in many situations.

Figure 9.10 E881 8-Node ANS Solid Element

1

2

3

4

5

6

7

8

STAGS 5.0 User Manual April, 2009 9-139

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
KELT IFAB IANG ILIN IPLAS NX NY

KELT must = 881

IFAB fabrication identifier for the element; this is equivalent to
the WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – wall properties are given in user-written subroutine WALL

<0 – fabrication identifier in the GCP Fabrication Table (I-22a)

IANG wall-reference option:

0 – use default strategy of projecting to establish

1 – input , which is projected to establish

ILIN geometric-nonlinearity flag:

0 – use nonlinear strain-displacement relations
1 – use linear strain-displacement relations

IPLAS material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied

at each element integration point
2 – plasticity included, with the material law satisfied

at the element centroid (centroidal plasticity)

NX number of elements to be generated in the x direction;
STAGS sets NX = 1 if it is nonpositive

NY number of elements to be generated in the y direction;
STAGS sets NY = 1 if it is nonpositive

go to T-881b

xg yg, xw

rw xw
9-140 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-881a E881 Solid Element Nodes

A single T-881a record must follow the T-881 record, to identify the 8 user nodes (S-1) that
define the first solid element of the set to be generated here.

(NODE(k), k=1,8) USERELT

NODE(k) kth of 8 node points for the initial E881 solid element

USERELT user-specified element number, used only if IUWLE = 1 on H-1

NX (T-881) x-direction incrementation flag
NY (T-881) y-direction incrementation flag
IANG (T-881) wall-reference option

if (NX > 1) then go to T-881b
elseif (NY > 1) then go to T-881c
elseif () then go to T-881d
else return to T-100

IANG 0>
STAGS 5.0 User Manual April, 2009 9-141

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-881b E881 X-Direction Incrementations

Nine x-direction incrementation variables are specified here for use with the NX looping function
invoked on the T-881 record and the initial node points established on T-881a.

IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8 IUX

IX1 x-direction incrementation variable for node N1 on T-881a
IX2 x-direction incrementation variable for node N2 on T-881a
IX3 x-direction incrementation variable for node N3 on T-881a
IX4 x-direction incrementation variable for node N4 on T-881a
IX5 x-direction incrementation variable for node N5 on T-881a
IX6 x-direction incrementation variable for node N6 on T-881a
IX7 x-direction incrementation variable for node N7 on T-881a
IX8 x-direction incrementation variable for node N8 on T-881a
IUX x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-881c
elseif (IANG = 1) then go to T-881d
else return to T-100
9-142 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-881c E881 Y-Direction Incrementations

Nine y-direction incrementation variables are specified here for use with the NY looping function
invoked on the T-881 record and the initial node points established on T-881a.

IY1 IY2 IY3 IY4 IY5 IY6 IY7 IY8 IUY

IY1 y-direction incrementation variable for node N1 on T-881a
IY2 y-direction incrementation variable for node N2 on T-881a
IY3 y-direction incrementation variable for node N3 on T-881a
IY4 y-direction incrementation variable for node N4 on T-881a
IY5 y-direction incrementation variable for node N5 on T-881a
IY6 y-direction incrementation variable for node N6 on T-881a
IY7 y-direction incrementation variable for node N7 on T-881a
IY8 y-direction incrementation variable for node N8 on T-881a
IUY y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-881d
else return to T-100
STAGS 5.0 User Manual April, 2009 9-143

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-881d E881 Material Orientation Record

If (T-881), a single T-881d record must follow the T-881a record (or T-881b or T-881c

record, if applicable) for the current E881 solid element. T-881d specifies the material
orientation for each of the E881 elements that are to be generated by the current T-881 element-
definition set.

XFX XFY XFZ YFX YFY YFZ

XFX, XFY, XFZ vector components establishing the x orientation of the material

YFX, YFY, YFZ vector components establishing the y orientation of the material

return to T-100

IANG 0>
9-144 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
 T-882 E882 18-Node Solid Element

The E882 18-node ANS solid element, in STAGS, is shown in Figure 9.11:

The nodal ordering for E882 corresponds exactly to the ordering used in the PATRAN program.

The T-882 record is the first record of a multi-record set that defines one or more E882 18-node
solid elements to be included in the current element unit. The looping capabilities provided here,
via NX and NY on T-882 and the incrementation parameters on T-882b and T-882c, can be used
effectively in many situations.

Figure 9.11 E882 18-Node ANS Solid Element

1

2

3

4

5

6

7

8

9
10

11
12

13
14

15
16

17

18
STAGS 5.0 User Manual April, 2009 9-145

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
KELT IFAB IANG ILIN IPLAS NX NY

KELT must = 882

IFAB fabrication identifier for the element:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – wall properties are given in user-written subroutine WALL

<0 – fabrication identifier in the GCP Fabrication Table (I-22a)

IANG wall-reference option:

0 – use default strategy of projecting to establish

1 – input , which is projected to establish

ILIN geometric-nonlinearity flag:

0 – use nonlinear strain-displacement relations
1 – use linear strain-displacement relations

IPLAS material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied

at each element integration point
2 – plasticity included, with the material law satisfied

at the element centroid (centroidal plasticity)

NX number of elements to be generated in the x direction;
STAGS sets NX = 1 if it is nonpositive

NY number of elements to be generated in the y direction;
STAGS sets NY = 1 if it is nonpositive

go to T-882b

xg yg, xw

rw xw
9-146 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-882a E882 Solid Element Nodes

A single T-882a record must follow the T-882 record, to identify the 18 user nodes (S-1) that
define the first solid element of the set to be generated here.

(NODE(k), k =1,18) USERELT

NODE(k) kth of 18 node points for the initial E882 solid element

USERELT user-specified element number, used only if IUWLE = 1 on H-1

NX (T-882) x-direction incrementation flag
NY (T-882) y-direction incrementation flag
IANG (T-882) wall-reference option

if (NX > 1) then go to T-882b
elseif (NY > 1) then go to T-882c
elseif () then go to T-882d
else return to T-100

IANG 0>
STAGS 5.0 User Manual April, 2009 9-147

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-882b E882 X-Direction Incrementations

Nineteen x-direction incrementation variables are specified here for use with the NX looping
function invoked on the T-882 record and the initial node points established on T-882a.

(IX(k), k=1,18) IXU

IX(k) x-direction incrementation variable for node NODE(k) on T-882a
IXU x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-882c
elseif (IANG = 1) then go to T-882d
else return to T-100
9-148 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-882c E882 Y-Direction Incrementations

Nineteen y-direction incrementation variables are specified here for use with the NY looping
function invoked on the T-882 record and the initial node points established on T-882a.

(IY(k), k=1,18) IYU

IY(k) y-direction incrementation variable for node NODE(k) on T-882a
IYU y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-882d
else return to T-100
STAGS 5.0 User Manual April, 2009 9-149

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-882d E882 Material Orientation Record

If (T-882), a single T-882d record must follow the T-882a record (or T-882b or T-882c

record, if applicable) for the current E882 solid element. T-882d specifies the material
orientation for each of the E882 elements that are to be generated by the current T-882 element-
definition set.

XFX XFY XFZ YFX YFY YFZ

XFX, XFY, XFZ vector components establishing the x orientation of the material

YFX, YFY, YFZ vector components establishing the y orientation of the material

return to T-100

IANG 0>
9-150 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-883 E883 27-Node Solid Element

The E883 27-node ANS solid element, in STAGS, is shown in Figure 9.12:

The nodal ordering for E883 corresponds exactly to the ordering used in the PATRAN program.

The T-883 record is the first record of a multi-record set that defines one or more E883 27-node
solid elements to be included in the current element unit. The looping capabilities provided here,
via NX and NY on T-883 and the incrementation parameters on T-883b and T-883c, can be used
effectively in many situations.

Figure 9.12 E883 27-Node ANS Solid Element

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17 18

19
20

21

22

23

24

26
25

27
STAGS 5.0 User Manual April, 2009 9-151

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
KELT IFAB IANG ILIN IPLAS NX NY

KELT must = 883

IFAB fabrication identifier for the element:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – wall properties are given in user-written subroutine WALL

<0 – fabrication identifier in the GCP Fabrication Table (I-22a)

IANG wall-reference option:

0 – use default strategy of projecting to establish

1 – input , which is projected to establish

ILIN geometric-nonlinearity flag:

0 – use nonlinear strain-displacement relations
1 – use linear strain-displacement relations

IPLAS material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied

at each element integration point
2 – plasticity included, with the material law satisfied

at the element centroid (centroidal plasticity)

NX number of elements to be generated in the x direction;
STAGS sets NX = 1 if it is nonpositive

NY number of elements to be generated in the y direction;
STAGS sets NY = 1 if it is nonpositive

go to T-883b

xg yg, xw

rw xw
9-152 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-883a E883 Solid Element Nodes

A single T-883a record must follow the T-883 record, to identify the 27 user nodes (S-1) that
define the first solid element of the set to be generated here.

(NODE(k), k=1,27) USERELT

NODE(k) kth of 27 node points for the initial E883 solid element

USERELT user-specified element number, used only if IUWLE = 1 on H-1

NX (T-883) x-direction incrementation flag
NY (T-883) y-direction incrementation flag
IANG (T-883) wall-reference option

if (NX > 1) then go to T-883b
elseif (NY > 1) then go to T-883c
elseif () then go to T-883d
else return to T-100

IANG 0>
STAGS 5.0 User Manual April, 2009 9-153

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-883b E883 X-Direction Incrementations

Twenty eight x-direction incrementation variables are specified here for use with the NX looping
function invoked on the T-883 record and the initial node points established on T-883a.

(IX(k), k=1,27) IXU

IX(k) x-direction incrementation variable for node NODE(k) on T-883a
IXU x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-883c
elseif (IANG = 1) then go to T-883d
else return to T-100
9-154 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-883c E883 Y-Direction Incrementations

Twenty eight y-direction incrementation variables are specified here for use with the NY looping
function invoked on the T-883 record and the initial node points established on T-883a.

(IY(k), k=1,27) IYU

IY(k) y-direction incrementation variable for node NODE(k) on T-883a
IYU y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-883d
else return to T-100
STAGS 5.0 User Manual April, 2009 9-155

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-883d E883 Material Orientation Record

If (T-883), a single T-883d record must follow the T-883a record (or T-883b or T-883c

record, if applicable) for the current E883 solid element. T-883d specifies the material
orientation for each of the E883 elements that are to be generated by the current T-883 element-
definition set.

XFX XFY XFZ YFX YFY YFZ

XFX, XFY, XFZ vector components establishing the x orientation of the material

YFX, YFY, YFZ vector components establishing the y orientation of the material

return to T-100

IANG 0>
9-156 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-885 E885 20-Node Solid Element

The E885 20-node displacement-based solid element, in STAGS, is shown in Figure 9.13:

The nodal ordering for E885 corresponds exactly to the ordering used in the PATRAN program.

The T-885 record is the first record of a multi-record set that defines one or more E885 20-node
solid elements to be included in the current element unit. The looping capabilities provided here,
via NX and NY on T-885 and the incrementation parameters on T-885b and T-885c, can be used
effectively in many situations.

Figure 9.13 E885 20-Node Solid Element

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17
18

19
20
STAGS 5.0 User Manual April, 2009 9-157

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
KELT IFAB IANG ILIN IPLAS NX NY

KELT must = 885

IFAB fabrication identifier for the element; this is equivalent to
the WALL parameter for E410 quadrilateral elements:

>0 – wall configuration number in the Wall Fabrication Table (K-1)
0 – wall properties are given in user-written subroutine WALL

<0 – fabrication identifier in the GCP Fabrication Table (I-22a)

IANG wall-reference option:

0 – use default strategy of projecting to establish

1 – input , which is projected to establish

ILIN geometric-nonlinearity flag:

0 – use nonlinear strain-displacement relations
1 – use linear strain-displacement relations

IPLAS material-nonlinearity flag:

0 – elastic behavior only
1 – plasticity included, with the material law satisfied

at each element integration point
2 – plasticity included, with the material law satisfied

at the element centroid (centroidal plasticity)

NX number of elements to be generated in the x direction;
STAGS sets NX = 1 if it is nonpositive

NY number of elements to be generated in the y direction;
STAGS sets NY = 1 if it is nonpositive

go to T-885b

xg yg, xw

rw xw
9-158 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-885a E885 Solid Element Nodes

A single T-885a record must follow the T-885 record, to identify the 20 user nodes (S-1) that
define the first solid element of the set to be generated here.

(NODE(k), k=1,20) USERELT

NODE(k) kth of 20 node points for the initial E885 solid element

USERELT user-specified element number, used only if IUWLE = 1 on H-1

NX (T-885) x-direction incrementation flag
NY (T-885) y-direction incrementation flag
IANG (T-885) wall-reference option

if (NX > 1) then go to T-885b
elseif (NY > 1) then go to T-885c
elseif () then go to T-885d
else return to T-100

IANG 0>
STAGS 5.0 User Manual April, 2009 9-159

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-885b E885 X-Direction Incrementations

Twenty one x-direction incrementation variables are specified here for use with the NX looping
function invoked on the T-885 record and the initial node points established on T-885a.

(IX(k), k=1,20) IXU

IX(k) x-direction incrementation variable for node NODE(k) on T-885a
IXU x-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (NY > 1) then go to T-885c
elseif (IANG = 1) then go to T-885d
else return to T-100
9-160 April, 2009 STAGS 5.0 User Manual

Definition of Solid Elements via the Ecom Protocol Model Input—Element Units (3)
T-885c E885 Y-Direction Incrementations

Twenty one y-direction incrementation variables are specified here for use with the NY looping
function invoked on the T-885 record and the initial node points established on T-885a.

(IY(k), k=1,20) IYU

IY(k) y-direction incrementation variable for node NODE(k) on T-885a
IYU y-direction incrementation variable for use with USERELT

Any of these incrementation variables can be negative, zero or positive.

if (IANG = 1) then go to T-885d
else return to T-100
STAGS 5.0 User Manual April, 2009 9-161

Model Input—Element Units (3) Definition of Solid Elements via the Ecom Protocol
T-885d E885 Material Orientation Record

If (T-885), a single T-885d record must follow the T-885a record (or T-885b or T-885c

record, if applicable) for the current E885 solid element. T-885d specifies the material
orientation for each of the E885 elements that are to be generated by the current T-885 element-
definition set.

XFX XFY XFZ YFX YFY YFZ

XFX, XFY, XFZ vector components establishing the x orientation of the material

YFX, YFY, YFZ vector components establishing the y orientation of the material

return to T-100

IANG 0>
9-162 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
9.8 Definition and Utilization of User Elements

Recently-developed User element capabilities in STAGS 5.0 give advanced analysts and program
developers powerful new tools for solving problems that lie beyond the scope of those that
STAGS has traditionally treated. The process by which User elements are defined in STAGS is
described briefly in the following Subsection, in somewhat greater detail in Chapter 13 of this
document, and much more fully in the STAGS Elements Manual. The basic input records with
which User elements may be utilized in constructing a STAGS model are described after that.

9.8.1 The User–element definition process

There are two distinct (but strongly coupled) operations that must be performed to define a User
element for use in the construction of STAGS models and for use in conducting analyses with
those models.

The first operation (which must be performed in generating the INP file that STAGS’ s1
processor reads and processes to construct the STAGS model for a given problem) is the analyst’s
definition of certain critical information about the User element—the element–type identifier by
which it is to be referenced, the number of node points that are required to specify any given
element of this type, the names and characteristics of data associated with all elements of this
type, etc. This is easily accomplished by including a set of User-element-definition directives
at any appropriate point in the analyst’s INP file prior to any input records that command the
inclusion of one or more User elements of that type in the model being constructed.

The second operation (which must generally be performed prior to executing any STAGS

processor) is the analyst’s (or developer’s) generation of FORTRAN and/or C–language routines
that STAGS processors must employ in the specification, analysis and postprocessing operations
that are to be performed for any STAGS model in which these User elements are employed—and
the successful linking of each of these User-element-enhanced processors.

Before getting into either of these operations, it is appropriate to pause briefly and note that the
principal goal of the STAGS User element framework is to provide a set of features that enable
element researchers to add new element types to STAGS without having to be concerned with
details of the STAGS element integration process—focusing only on the development of their
new elements. To provide an almost transparent element integration environment, the STAGS

User element framework provides the following features:
STAGS 5.0 User Manual April, 2009 9-163

Model Input—Element Units (3) Definition and Utilization of User Elements
• Arbitrary User element types are represented in the standard STAGS element
description scheme as element types .

• Any number (less than or equal to one hundred) of User element types and their
associated data descriptions may be specified.

• Any number of User elements of any User element type may be defined in STAGS

models.

• Each User element type definition specifies a set of named data that are available
for every element of that type.

• User element program code can retrieve and store the values of individual User
element data items by their names, or can access an element's integer and floating-
point data blocks in the ABAQUS style.

• An arbitrary number of user-described Property Sets can be defined that specify a
collection of named data that may be arbitrarily associated with one or more
elements of any user-defined type.

• User element wrapper routines are invoked automatically by STAGS as required by
a solution process. Users implementing new elements need not be concerned with
the details of the STAGS solution process.

An arbitrary number of user-defined element types can be specified using a free field description
of the nodal and data specifications for each element. These descriptions are entered directly into
the STAGS model input file and provide the user the ability to describe the element type and its
data requirements in any manner that facilitates the most natural ordering. Comments and
flexible line spacing are allowed for enhanced readability.

Each User element type description may specify a collection of named integer and/or floating-
point variables associated with each User element defined in a STAGS model. Naming User
element variables greatly increases a user's understanding of both simple and complex datasets
and reduces the likelihood of confusing data values required by different element types. This is
a general capability; the developer or researcher is not restricted by the kind or amount of data
that can be associated with each User element type.

The User element framework also introduces a new STAGS feature called Property Sets. A
developer or researcher may define any number of property sets, each of which is identified by
a meaningful name and a unique numeric identifier. The property items in a property set, entered
by the user in free field format (much like User element type descriptions), collect integer and/
or floating-point data that are best described when grouped together. This feature provides a
general and flexible technique for describing data required by any new capabilities added by
developers or researchers. The creation of new, user-defined element types is just one example.

900 type 999≤ ≤
9-164 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
Directives for User element definitions

Returning to the subject of directives for definition of User elements, we note that each User

element type is described in the INP file for a STAGS model by a set of four required directives

and two optional directives (within square brackets)—that are ordered as follows:

*userElement... — initiate userElement specifications
 *dofOrdering... — specify number and types of DOF at each node

 *nodeSequence... — specify nodal sequence for transformations

 [*floatVariables...] — specify float-type variables (if any)

 [*integerVariables...] — specify integer-type variables (if any)

*end userElement — terminate userElement specifications

Directive formatting is free-field. String values that contain one or more spaces must be enclosed

in matching single or double quotes. Directive names and directive attribute names are case-

insensitive. Empty (blank) lines and lines containing only $-initiated comments are ignored

during parsing of directives.

The *floatVariables and *integerVariables data groups are both optional. They

may appear in any order and may be repeated as many times as required. All float variable items

are collected sequentially as they are defined and are placed in a single logical group of data type

float. All integer variable items are collected sequentially as they are defined and are placed in

a single logical group of type integer.

Example of User element definition

Rather than going through a long-winded presentation of directive syntax and conventions, let us

simplify this by looking at a straightforward example that shows how a user might define a User

element—to be referenced as a type 901 element—for a simple 3-node beam. The end nodes of

this beam are identified as node number 1 and node number 2, and the internal node is identified

as node number 3. A fourth node is associated with the element in order to compute the

element’s orientation matrix. Associated with this element type is a set of named floating-point

variables and a set of named integer variables. These named data will be defined for each user-

defined element created by STAGS and can be manipulated by developers and by the element

researcher using utility routines that are described in Chapter 13 of this document and in greater

detail in Chapter 9 of the STAGS Elements Manual.
STAGS 5.0 User Manual April, 2009 9-165

Model Input—Element Units (3) Definition and Utilization of User Elements
*userElement name = "Beam Element" type = 901 nodes = 4

*dofOrdering
$ Node DOF...
$ ----------------
 1 1 2 3 4 5 6
 2 1 2 3 4 5 6
 3 1 2 3 4 5 6
 4 0

*nodeSequence
$ Nodes...

$ --------
 1 2 4

*floatVariables
$ Name Size
$ ----------------
 MaxStress 1
 MaxStressLoc 3
 SectionData 5
 ShearFactor 1
 OtherStuff 15

*integerVariables
$ Name Size
$ ----------
 NIPS 1
 List 10

*end userElement

The following points about this example are generally true for all User element type definitions.

• User element type names must have string values and are used for descriptive
purposes only.

• User element type names are limited to 40 characters in length.

• User element type numbers must be in the range , inclusive;
and they must be unique (i.e., a User element type must be defined only once).

• Some of the type numbers in the cannot be used for new User
elements because they are reserved for (already being used by) “built-in” STAGS

UELs (by the E928 and E940 elements, for example).

• A User element type may have any number of nodes.

• The DOF ordering for each node must be specified in a single group.

• All nodes are expected to have either zero (0), three (3) or six (6) degrees of
freedom. DOF must currently be defined in agreement with STAGS’ DOF-ordering
convention:

1 : x–displacement 4 : x–rotation
2 : y–displacement 5 : y–rotation
3 : z–displacement 6 : z–rotation

900 type 999≤ ≤

900 type 999≤ ≤
9-166 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
• Element reference nodes are specified as having zero degrees of freedom (as for
node 4 in this example).

• Nodes used to define an element’s orientation matrix are identified by a single,
required *nodeSequence directive. Either three (3) or four (4) nodes in the
*dofOrdering group are referenced by index in this directive. If three nodes are
referenced, the element’s x–axis is directed from the first to the second node. The
element’s z–axis is directed as the vector cross product of the x–axis and the vector
from the first to the third node. The element’s y–axis follows from the right-hand
rule with respect to the x–axis and the z–axis. If four nodes are referenced, the
element’s x–axis is directed from the first to the second node. The element’s z–
axis is directed as the vector cross product of the vector from the first to the third
node and the vector from the second tor the fourth node. The element’s y–axis
follows from the right-hand rule with respect to the x–axis and the z–axis.

• User element variable names are limited to 40 characters in length.

• Variable names containing one or more spaces must be enclosed in matching
single or double quotes.

• Variable names are case-insensitive for comparison and must be unique within
their User element type definition.

• A variable's size (logical length) must be specified and must be an integer number
greater than zero.

Directives for User property set definitions

User property sets are described (during STAGS s1 processing) through a set of directives as
shown in the following example. Directives defining a User property set are ordered as follows:

*userProperty... — initiate userProperty specifications
 [*floatProps...] — define one or more float-type data parameters

 [*integerProps...] — define one or more integer-type data parameters

*end userProperty — initiate userProperty specifications

As with the User-element-definition directives described above, empty (blank) lines and lines
containing only $-initiated comments are ignored during parsing of directives; and directive
names and directive attribute names are case-insensitive. Directive formatting is free-field. String
values that contain one or more spaces must be enclosed in matching single or double quotes.

The *floatProps data group is optional, and *floatProps data groups may appear in any
order and may be repeated as many times as required. All float property items are collected
sequentially as they are defined and are placed in a single logical group of data type float.
STAGS 5.0 User Manual April, 2009 9-167

Model Input—Element Units (3) Definition and Utilization of User Elements
The *integerProps data group is optional when the analyst/developer chooses not to use
STAGS’ GCP processor to specify material properties and fabrications; it is mandatory when he/
she uses the GCP to do that. When needed, *integerProps data groups may appear in any
order and may be repeated as many times as required. All integer property items are collected
sequentially as they are defined and are placed in a single logical group of data type integer.
Parameters that must be specified in the *integerProps data group when the GCP is used
are described briefly in Chapter 13 of this document and more completely in Chapter 9 of the
STAGS Elements Manual.

Examples of User property set definitions

These examples build on the previous example that showed how an element researcher might
define a new element type for a 3-node beam with a single internal node. In addition to the
element type’s set of named integer and floating-point element variables, there may be several
User property sets defined to complete the specification of an element. These property sets
contain collections of related property items and can be logically associated with any number of
elements or referenced from any number of appropriate contexts. User property sets can be
manipulated by developers and element researchers using utility routines that are described
briefly in Chapter 13 of this document and more completely in Chapter 9 of the STAGS
Elements Manual.

*userProperty name = "Beam Element" id = 901

*integerProps
$ Required Standard Data
$ ----------------------
 ActiveNodes 2
 SamplingCount 10
 StrainCount 6
 StressCount 6

*end userProperty

*userProperty name = "Aluminum 6061-T6" id = 6061

*floatProps
E 10.00e+6
G 3.75e+6
MassDensity 2.54e-4
PoissonRatio 0.3
TensileUltimateStrength 38.00e+3
TensileYieldStrength 35.00e+3
CompresiveYieldStrength 35.00e+3
ShearYieldStrength 20.00e+3
ThermalExpansion 1.30e-5

*end userProperty
9-168 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
Notes for User property set definition examples

The following points made about these examples are generally true for all User property set
definitions:

• For each User element type definition there must be one property set with an
identifier (id) that matches the identifier of the type definition. In addition to any
other properties this property set may contain, the following integer property items
must be specified: ActiveNodes (the number of active nodes for the element
type), SamplingCount (the number of locations where stresses and strains will
be evaluated), StrainCount (the number of strain components associated with
the element type), StressCount (the number of stress components associated
with the element type). Failure to provide these property items in a property set
associated with an element type definition will lead to a run-time error.

• User property set names must have string values and must be unique across all
User property sets.

• Property set names are limited to 40 characters in length.

• User property set identifiers (IDs) must have numeric values and must be unique
across all User property sets.

• Property item names containing one or more spaces must be enclosed in matching
single or double quotes

• Property item names are limited to 40 characters in length.

• Property item names are case-insensitive for comparison and must be unique
within their property set definition.

Subroutines facilitating User element implementations

When one or more types of User elements are to be employed in a STAGS model, it is sometimes
necessary for the analyst (or developer) to generate a User-element-enhanced version of STAGS’
s1 (model-definition) processor. It is always necessary for him (or her) to generate User-
element-enhanced versions of STAGS’ s2 (analysis) processor and of any of the STAGS–system
post–analysis processor(s) that are to be used with that model. The broad outlines of how this
may be done are sketched in the following paragraphs. The interested reader should consult
Chapter 13 of this document for more information and should see Chapter 9 of the STAGS
Elements Manual for all of the gory details.
STAGS 5.0 User Manual April, 2009 9-169

Model Input—Element Units (3) Definition and Utilization of User Elements
It is sufficient to note here that when STAGS’ s1 processor encounters a User element, s1 calls
a number of generic User-element definition routines to perform operations that are required
universally; and it also calls three other User-element “dispatch” routines to perform additional,
nonstandard model–definition operations for that User element—as and if they are required. The
primary function of each of these dispatch routines is evident by its name: UelEltDef,
UelLoadDef and UelPressDef. Each of these dispatch routines calls one or more next–
level program– or developer–supplied routines that perform nonstandard definition operations
that are appropriate for each type of User element. The “program–supplied” qualifier is
appropriate when no special operations are required; the “developer–supplied” qualifier applies
when special operations are required. In any event, the program “architecture” within which this
is done is shown in the following Table:

The names of these nine User-element-type-specific subroutines (for hypothetical user types
900, 901 and 902) are arbitrary (within the constraint that each unique User element type
number must lie in the range from 900 to 999, inclusive) and may be changed to reflect the
user’s particular choice. A do-nothing “starter” template is provided for each of these particular
routines. The three s1-processor dispatch routines and their type-specific children are described
more fully in Chapter 13 of this document and are fully documented in Chapter 9 of the STAGS
Elements Manual. A comprehensive set of FORTRAN and C–language utility routines that is
provided with STAGS to facilitate their implementation and use in s1 and other STAGS processors
is also documented there.

Similarly, when the STAGS’ s2 processes encounters a User element, it also calls a number of
User-element “dispatch” routines to perform initialization and computation operations for that
User element—as required. Depending on the type of analysis to be performed, s2 may call some
or all of the twelve User-element dispatch routines that are listed in the following Table:

Subroutine calls subroutine

UelEltDef UelEltDef900 for a type 900 element
UelEltDef UelEltDef901 for a type 901 element
UelEltDef

:
UelEltDef902

:
for a type 902 element

UelLoadDef UelLoadDef900 for a type 900 element
UelLoadDef UelLoadDef901 for a type 901 element
UelLoadDef

:
UelLoadDef902

:
for a type 902 element

UelPressDef UelPressDef900 for a type 900 element
UelPressDef UelPressDef901 for a type 901 element
UelPressDef

:
UelPressDef902

:
for a type 902 element
9-170 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
Each of these top-level dispatch routines in turn calls a corresponding lower-level, user-defined
routine that is specific to a particular user-defined element type. For example, UelPvDef calls
the provided templates UelPvDef900, UelPvDef901 and UelPvDef902. Similar template
routines are provided for the other dispatch routines. The names of these user element type-
specific routines (for hypothetical user types 900, 901 and 902) are arbitrary and may be changed
to reflect the user’s particular choice. These s2–processor dispatch routines and their User-
element-type-specific children are described in Chapter 13 of this document and are fully
documented in Chapter 9 of the STAGS Elements Manual.

9.8.2 Utilization of User element(s) in STAGS

The basic input requirements for User elements are similar to those for other elements in the
STAGS program. The reader can verify this by studying the following pages carefully.

subroutine raison d’ étre

UelPvDef Perform pre-variation operations for User elements
UelMassDef Perform mass-computation operations for User elements

UelFiDef Compute internal forces for User elements
UelFlDef Compute live-loading forces for User elements
UelKmDef Compute the material stiffness of the User elements
UelKgDef Compute the geometric stiffness of the User elements

UelStrainDef Determine the User-element strains
UelStressDef Determine the User-element stresses

UelResultantDef Determine the User-element resultants
UelPrintStrainDef Print the User-element strains
UelPrintStressDef Print the User-element stresses

UelPrintResultantDef Print the User-element resultants
STAGS 5.0 User Manual April, 2009 9-171

Model Input—Element Units (3) Definition and Utilization of User Elements
T-900 E9XX User-Defined Element

In the current version of STAGS, the T-900 record is used to identify the type of UEL that the
user wants to add to his current element unit (via the KELT variable) and to specify the values of
of eight other variables that STAGS uses to specify one or more UELs of that type. In the
“general” case, the user can specify any type of UEL here that the program “recognizes” and
“understands.” This description of T-900 is intended to be used by developers and analysts who
want to use STAGS’ UEL-definition framework to develop, test, and use new types of User
Written elements in and with the program. A STAGS developer/user who is doing that will
typically be dealing with a new element that looks something like this

where the black dots are nodes, where the element is defined in an element coordinate system
that looks something like the one shown here, and where the developer/user’s element typically
looks like something other than a potato shown here. The developer or user who wants to
develop or use this element in STAGS (as a User-Written element) will typically assign it a UEL

type code (KELT identity) that lies somewhere in the range . He should not
use 910 or 928 or 940 as the type code for his UEL because those three type codes are not
available to him. STAGS uses those three type codes for User Written elements that have been
implemented in the program as “built-in” UELs that anyone can use—the program’s type-910
“actuator” element, its type-928 “3-node curved beam” element, and its type-940 “4-node MIN4
quadrilateral” element.

The user who wants to add one or more of STAGS’ “built-in” UELs to his current element unit
should stop reading this description of the T-900 record and turn his attention to its E910, E928,
and/or E940 counterparts later in this section.

Figure 9.14 E9XX User-Written Element

x

y

z

900 type 999≤ ≤
9-172 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
The user who is developing or using other types of STAGS UELs should know that, whatever
unique input requirements there may be for specifying one or more UELs of any given type, he
must first specify the most basic things that STAGS needs to know about that type of UEL—by
including the appropriate type-definition directives for it in his case.inp file at an appropriate
point before he adds any element of that type to any element unit. The user must also specify the
(floating point and/or integer) values that he wants STAGS to use for properties and/or control
variables in any property sets that his UEL uses—by including the appropriate property-set
directive(s) in his case.inp file somewhere before STAGS needs that information.

Then... finally... the user must navigate to and use the T-900 record described here (a) to specify
the type of UEL that he wants to add to his current element unit, (b) to specify the “element
number” of the first UEL of this type to be added at this time, (c) to specify four input and control
flags, and to specify three incrementation variables—via the KELT, ID, IFAB, IANG, ILIN, IPLAS,
NX, NY and NZ variables on the following record:

KELT ID IFAB IANG ILIN IPLAS NX NY NZ

KELT User-element type; : see Note 1, below

ID starting UEL element number

IFAB fabrication identifier: see Note 2, below
> 0 – wall configuration number in the Wall Fabrication Table (K-1)
< 0 – fabrication identifier in the GCP Fabrication Table (I-22a)
= 0 – fabrication properties are specified via UEL directives

IANG wall-reference option: see Note 2, below

0 – use default strategy of projecting to establish
1 – specify an x-direction vector for use in establishing the

material orientation matrix
2 – specify x- and y-direction vectors for use in establishing the

material orientation matrix

ILIN geometric-nonlinearity flag: see Note 2, below
0 – use nonlinear strain-displacement relations
1 – use linear strain-displacement relations

IPLAS material-nonlinearity flag: see Note 2, below
0 – elastic behavior only

> 0 – plasticity included

NX # of elements to be generated in the x direction (default=1) see Note 3, below
NY # of elements to be generated in the y direction (default=1) see Note 3, below
NZ # of elements to be generated in the z direction (default=1) see Note 3, below

900 KELT 999≤ ≤

xg yg, xw
STAGS 5.0 User Manual April, 2009 9-173

Model Input—Element Units (3) Definition and Utilization of User Elements
Note 1: If KELT = 910 on this T-900 record, the contents of this record are more accurately
described on the T-910 record that is discussed later in this section.

If KELT = 928 on this T-900 record, the contents of this record are more accurately
described on the T-928 record that is discussed later in this section.

If KELT = 940 on this T-900 record, the contents of this record are more accurately
described on the T-940 record that is discussed later in this section.

Note 2: The current version of STAGS’ E928 3-node curved beam element—its “built-in”
type-928 UEL—“ignores” the IFAB, IANG, ILIN and IPLAS variables on this record
because that element gets all of its fabrication and material property data from
UEL directives; when KELT=928 on this record, the user must currently set each
of these “place-holder” variables equal to 0 — at least until STAGS’ E928 UEL is
upgraded to use the program’s more flexible GCP facilities.

The current version of STAGS’ E940 MIN4 quadrilateral element—its “built-in”
type-940 UEL—uses STAGS’ GCP facilities exclusively (and does not use its older
fabrication and material specification and computation methodologies); when
KELT=940 on this record, the user must set IFAB equal to a negative number (in
accord with the GCP fabrication that the current E940 elements use), and he must
also set IANG=ILIN=IPLAS=0 (for the time being, at least).

Note 3: The NX variable on this record can be used (with most types of UELs) to generate
a “string” of elements in the string’s “row” space; the NX and NY variables can be
used together (with many types of UELs) to generate a “patch” of elements in its
“row/column” space; and the NX, NY and NZ variables can be used (with a few
types of UELs) to generate a “block” of elements in its “row/column/layer” space.

The current version of STAGS’ E928 element “ignores” the NY and NZ variables
on this record; when KELT=928 on this record, the user should set NY=NZ=0 (or 1).

The current version of STAGS’ E940 element “ignores” the NZ variable on this
record; when KELT=940 on this record, the user should set NZ=0 (or 1).

if (KELT = 928) then

go to T-928a
elseif (KELT = 940) then

go to T-940a
else

go to T-900a
endif
9-174 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-900a E9XX User-Element Nodes

For most types of UELs, a single T-900a record must follow the T-900 record—to identify the
user nodes (S-1 or S-3) that define the first element of the set to be generated here. Type-specific
equivalents to this record are described later in this section for “built-in” UELs: those records
should be used instead of T-900a for “built-in” UELs.

(NODE(k), k = 1, NNODES)

NODE(k) the kth of NNODES node points for the initial type-KELT UEL, where NNODES is
specified by the *UserElement directive with which a type KELT User element
is defined

NX (T-900) x-direction incrementation flag
NY (T-900) y-direction incrementation flag
NZ (T-900) z-direction incrementation flag
IANG (T-900) wall-reference option

if (NX > 1) then
go to T-900b

elseif (NY > 1) then
go to T-900c

elseif (NZ > 1) then
go to T-900d

elseif (IANG = 1) then
go to T-900e

elseif (IANG = 2) then
go to T-900f

else
follow the instructions at the end of T-900f

endif
STAGS 5.0 User Manual April, 2009 9-175

Model Input—Element Units (3) Definition and Utilization of User Elements
T-900b User-Element X-Direction Incrementations

NNODES incrementation variables are specified here for use with the NX (x-direction) looping
function invoked on the T-900 record and the initial node points established on T-900a.

(IX(k), k = 1, NNODES) IXU

IX(k) x-direction incrementation variable for node NODE(k) on T-900a
IXU x-direction incrementation variable for use with the ID parameter on T-900a

Any of the IX(k) incrementation variables can be negative, zero or positive. IXU must be nonzero.

NY (T-900) y-direction incrementation flag
NZ (T-900) z-direction incrementation flag
IANG (T-900) wall-reference option

if (NY > 1) then
go to T-900c

elseif (NZ > 1) then
go to T-900d

elseif (IANG = 1) then
go to T-900e

elseif (IANG = 2) then
go to T-900f

else
follow the instructions at the end of T-900f

endif
9-176 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-900c User-Element Y-Direction Incrementations

NNODES incrementation variables are specified here for use with the NY (y-direction) looping
function invoked on the T-900 record and the initial node points established on T-900a.

(IY(k), k = 1, NNODES) IYU

IY(k) y-direction incrementation variable for node NODE(k) on T-900a
IYU y-direction incrementation variable for use with the ID parameter on T-900a

Any of the IY(k) incrementation variables can be negative, zero or positive. IYU must be nonzero.

NZ (T-900) z-direction incrementation flag
IANG (T-900) wall-reference option

if (NZ > 1) then
go to T-900d

elseif (IANG = 1) then
go to T-900e

elseif (IANG = 2) then
go to T-900f

else
follow the instructions at the end of T-900f

endif
STAGS 5.0 User Manual April, 2009 9-177

Model Input—Element Units (3) Definition and Utilization of User Elements
T-900d User-Element Z-Direction Incrementations

NNODES incrementation variables are specified here for use with the NZ (z-direction) looping
function invoked on the T-900 record and the initial node points established on T-900a.

(IZ(k), k = 1, NNODES) IZU

IZ(k) z-direction incrementation variable for node NODE(k) on T-900a
IZU z-direction incrementation variable for use with the ID parameter on T-900a

Any of the IZ(k) incrementation variables can be negative, zero or positive. IZU must be nonzero.

IANG (T-900) wall-reference option

if (IANG = 1) then
go to T-900e

elseif (IANG = 2) then
go to T-900f

else
follow the instructions at the end of T-900f

endif
9-178 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-900e User-Element Material Orientation Vector

If IANG = 1 (T-900), a single T-900e record must follow T-900a (or T-900b or T-900c or T-900d)
for the current set of User elements. T-900e specifies a single x-direction vector that is used to
establish the material orientation triad for each of the User elements that are to be generated by
the current T-900 element-definition set.

XFX XFY XFZ

XFX, XFY, XFZ vector components establishing the x orientation of the material

follow the instructions at the end of T-900f
STAGS 5.0 User Manual April, 2009 9-179

Model Input—Element Units (3) Definition and Utilization of User Elements
T-900f User-Element Material Orientation Vectors

If IANG = 2 (T-900), a single T-900f record must follow T-900a (or T-900b or T-900c or T-900d)
for the current set of User elements. T-900f specifies an x-direction and a y-direction vector that
are both used to establish the material orientation triad for each of the User elements that are to
be generated by the current T-900 element-definition set.

XFX XFY XFZ YFX YFY YFZ

XFX, XFY, XFZ vector components establishing the x orientation of the material

YFX, YFY, YFZ vector components establishing the y orientation of the material

if (the user wants to add another set of E900 elements) then
go to T-900

elseif (the user wants to add a set of E928 elements) then
go to T-928

elseif (the user wants to add a set of E940 elements) then
go to T-940

else
return to T-100

endif
9-180 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-928 E928 3-Node Curved Beam UEL

STAGS’ E928 3-node curved beam element—shown in the following Figure—is fully compatible
with its classic E480 9-node ANS quadrilateral shell element and its E849 18-node sandwich
element (which uses E480 elements for its top and bottom face sheets). STAGS’ E928 element
was originally implemented in the program as a User-Defined Element, in accord with the UEL

specifications and conventions that are described here and in Chapter 13 of this document. After
testing this User-Defined element successfully, it was incorporated into STAGS as a “built-in”
UEL that anyone can use without having to re-make s1, s2 and other STAGS processors to do so.

This T-928 element-specification record (set) should be used instead of the T-900 record (set)
described earlier in this section when the user wants to add one or more “built-in” type-928 UELs
to his current element unit. STAGS uses the same subroutines—and the same data spaces—to
read and process all of the “generic” and type-specific input records that are needed for any type
of UEL, so what we are calling the T-928 record here is actually a T-900 record that should be
used as described here.

Figure 9.15 E928 3-Node Curved Beam Element

N3

N2

N4

N1

u
v

w rurv

rw

x’

y’

z’
STAGS 5.0 User Manual April, 2009 9-181

Model Input—Element Units (3) Definition and Utilization of User Elements
Before we turn our attentions to this record (and the other records in the T-928 record set), we
need to remind the user whose model has one or more E928 UELs in it that he must include the
following *userElement and *userProperty UEL-definition directives somewhere in his
case.inp file for that model prior to his first use of any E928 element:

*userElement name = ”Uniform Beam Element” type = 928 nodes = 4

*dofOrdering

 $ Node DOF
 $ ---- ---
 1 1 2 3 4 5 6
 2 1 2 3 4 5 6
 3 1 2 3 4 5 6
 4 0

*nodeSequence

 $ Nodes...
 $ --------
 1 3 4 2

*floatVariables

 $ Name Size
 $ ---- ----
 Area 1
 Iy 1
 Iz 1
 J 1
 Material 1
 ShearFactorY 1
 ShearFactorZ 1
 Ecc 2
 Scc 2

*end userElement

*userProperty name = ”Standard Data -- Uniform Beam Element” id = 928

*integerProps

 $ Required Standard Data
 $ ----------------------
 ActiveNodes 3
 SamplingCount 10
 StrainCount 6
 StressCount 6
 Beam 1

*floatProps

 $ Nodal Stress/Strain Sampling Points
 $ -----------------------------------
 y1 -0.075
 z1 -0.500

 y2 0.075
 z2 -0.500

 y3 0.075
 z3 0.500

 y4 -0.075
 z4 0.500

 y5 0.0
 z5 0.0

*end userProperty
9-182 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
These directives replicate the “standard” element-type properties that the developer of this UEL

specified when he implemented his 3-node curved beam element in STAGS as a type-928
element. These element-definition directives are printed in Blue to remind the user that they
must be included in his case.inp file “precisely” as they are shown here—with no substantive
changes.

When the user’s model has one or more E928 elements in it, he must also include at least one
*userProperty directive like the one that follows this paragraph—to specify the physical
properties of each of the different materials that those elements use. Each of these
*userProperty directives must have a unique name and a unique id, and each of them must
be included in the user’s case.inp file prior to its first use by any UEL of any type.

*userProperty name = ”Aluminum 6061-T6” id = 6061

*floatProps
 E 11.00000e+6
 G 4.13534e+6
 MassDensity 2.540e-4
 PoissonRatio 0.33
 TensileUltimateStrength 38.0e+3
 TensileYieldStrength 35.0e+3
 CompressiveYieldStrength 35.0e+3
 ShearYieldStrength 20.0e+3
 ThermalExpansion 1.3e-5

*end userProperty

The Blue items in this directive define “standard” parts of any E928 material specification data
set and should be included “as is” in the analyst’s case.inp file. Each of the Red entries in this
directive defines the value that the user specifies for the variable that precedes it — a short
character string for the name variable, a (unique) integer value for the property identification
variable (id), or a floating point value for one of the material-property variables (E = 11.0e+6,
for example). The user can and should change the values of the Red entries whenever he needs
to do so to construct the model that he needs for the case at hand. In many “simple” cases, all
of the E928 elements in the user’s model use the same material properties: and he only needs to
put one directive like this in his case.inp file. In more complex cases, where the model has E928
elements that use different materials from group to group or from element to element, he will
need to define each different material via its own material-property-definition directive—before
using that material in any UEL.

In any event... with a case.inp that has all of the directives in it that are needed to define what
a type-928 element is and to specify the material properties that it needs, the user can (finally)
use the T-928 record that is described below (a) to specify his intention to add one or more E928
elements to the current element unit, (b) to specify the “element number” of the first element in
this set of elements, to specify “place-holder” values for the four input and control flags, and to
STAGS 5.0 User Manual April, 2009 9-183

Model Input—Element Units (3) Definition and Utilization of User Elements
specify one incrementation variable—via the KELT, ID, IFAB, IANG, ILIN, IPLAS and NX
variables on this T-928 record:

KELT ID IFAB IANG ILIN IPLAS NX

KELT must = 928 for this E928 UEL . see Note 1, below

ID starting element number for first element in this element set

IFAB must = 0 (fabrication identifier) . see Note 2, below
IANG must = 0 (wall-reference option) . see Note 2, below
ILIN must = 0 (geometric-nonlinearity flag) see Note 2, below
IPLAS must = 0 (material-nonlinearity flag) see Note 2, below

NX # of elements to be generated in the x direction (default=1) . see Note 3, below

Note 1: Any KELT value other than 928 on this record tells STAGS that the user wants to
stop adding E928 elements and start adding one or more type-KELT UELs to the
current element unit. In this case, the user should follow the prescriptions given
elsewhere in this section for that type of UEL (instead of following the
prescription given here for type-928 elements).

Note 2: E928 elements get all of the fabrication and material property information that
they can use from UEL directives (currently), and they do not use IFAB, IANG, ILIN

or IPLAS; the prudent user should set each of these variables equal to 0—
especially if he uses the NX variable to generate a “string” of E928 UELs.

Note 3: The user can generate a string of E928 UELs using the NX incrementation variable
on this record, but he cannot (currently) generate 2- or 3-dimensional sets of
strings by using the NY and NZ parameters that T-900 accommodates; the prudent
user should refrain from using T-900’s NY and NZ variables—or set both of them
equal to 1 if he cannot bear to do that.

go to T-928a
9-184 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-928a E928 UEL Nodes

This is where the user specifies the four node points that define the first E928 element that he
wants to add to the current element unit via the current T-928 record set. STAGS “knows” that
he must specify four nodes here because the *userElement directive that defines what a type-
928 element “is” specified that each type-928 element in any given element unit must have four
nodes—each of which is a node that is included in the nodal point list that he constructed via his
S-1 or S-3 specifications for that unit.

Each T-928 record must be followed by a single T-928a E928 UEL NODES record:

N1 N2 N3 N4

N1 node # 1, at end “A” of the beam
N2 node # 2, at the “center” of the beam
N3 node # 3, at end “B” of the beam

N4 reference node

NX (T-928) x-direction incrementation flag

if (NX > 1) then
go to T-928b

else
go to T-928c

endif
STAGS 5.0 User Manual April, 2009 9-185

Model Input—Element Units (3) Definition and Utilization of User Elements
T-928b E928 UEL X-Direction Incrementations

Incrementation variables are specified here for use with the NX (x-direction) looping function
invoked on the T-928 record and the initial node points established on T-928a.

IX1 IX2 IX3 IX4 IXU

IX1 x-direction incrementation variable for node N1 on T-928a
IX2 x-direction incrementation variable for node N2 on T-928a
IX3 x-direction incrementation variable for node N3 on T-928a
IX4 x-direction incrementation variable for node N4 on T-928a

IXU x-direction incrementation variable for use with the ID parameter on T-928a

Any of the first four of these incrementation variables can be negative, zero or positive. IXU must
be nonzero.

go to T-928c
9-186 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-928c E928 UEL floatVariables

This is where the user must specify the numeric value(s) of each of the nine floating point input
variables that the developer of this type-928 UEL “created” for it (by defining the name and size
of each of those variables in the *floatVariables part of his *userElement directive for
that UEL (see the T-928 record description, above).

A single T-928c record must follow T-928a (or T-928b) for the current set of type-928 UELs.

Area Iy Iz J Material
ShearFactorY ShearFactorZ

ECC(1) ECC(2) SCC(1) SCC(2)

Area cross section area (uniform along the beam)

Iy area moment of inertia about the element’s y axis

Iz area moment of inertia about the element’s z axis

J polar moment of inertia, about the element’s x axis

Material material property-set identifier

ShearFactorY shear-correction factor for the beam’s y-direction

ShearFactorZ shear-correction factor for the beam’s z-direction

ECC(1) eccentricity in the y-direction for each of the active nodes

ECC(2) eccentricity in the z-direction for each of the active nodes

SCC(1) shear center offset in the y-direction along the uniform cross section

SCC(2) shear center offset in the z-direction along the uniform cross section

if (the user wants to add another set of E928 elements) then

go to T-928

elseif (the user wants to add a set of E940 elements) then

go to T-940

elseif (the user wants to add a set of E900 elements) then

go to T-900

else

return to T-100

endif
STAGS 5.0 User Manual April, 2009 9-187

Model Input—Element Units (3) Definition and Utilization of User Elements
T-940 E940 MIN4 Quadrilateral UEL

STAGS’ E940 4-node quadrilateral element—shown in the following Figure—was originally
implemented in the program as a User-Defined Element, in accord with the UEL specifications
and conventions that are described here and in Chapter 13 of this document. After testing this
User-Defined element successfully, it was incorporated into STAGS as a “built-in” UEL that
anyone can use without having to re-make s1, s2 and other STAGS processors to do so.

This T-940 element-specification record (set) should be used instead of the T-900 record (set)
described earlier in this section when the user wants to add one or more “built-in” type-940 UELs
to his current element unit. STAGS uses the same subroutines—and the same data spaces—to
read and process all of the “generic” and type-specific input records that are needed for any type
of UEL, so what we are calling the T-940 record here is actually a T-900 record that should be
used as described here.

Before we turn our attentions to this record (and the other records in the T-940 record set), we
need to remind the user whose model has one or more E940 UELs in it that he must include the
following *userElement and *userProperty UEL-definition directives somewhere in his
case.inp file for that model prior to his first use of any E940 element:

Figure 9.16 E940 4-Node MIN4 Quadrilateral Element

N3

N2

N4

N1

u

v

w

ru

rv

rw

x’

y’

z’

1

2

3

4

1

2

3

4

5

9-188 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
*userElement name =”Uniform Plate Element” type=940 nodes=4

*dofOrdering

 $ Node DOF ...
 $ ---- -----------
 1 1 2 3 4 5 6
 2 1 2 3 4 5 6
 3 1 2 3 4 5 6
 4 1 2 3 4 5 6

*nodeSequence

 $ Nodes...
 $ --------
 1 2 3 4

*floatVariables

 $ Name Size
 $ ---- ----
 UniformPressure 2

*integerVariables

 $ Name Size
 $ ---- ----
 IntegOrder 1
 LoadType 1

*end userElement

*userProperty name =”Standard Data -- Uniform Plate Element” id=940

*integerProps

 $ Required Standard Data
 $ ----------------------
 ActiveNodes 4
 SamplingCount 1
 StrainCount 8
 StressCount 8

 $ Data for GCP Interface
 $ ----------------------
 Class 2
 Kintype 1

*end userProperty

These directives replicate the “standard” properties that the developer of this UEL specified when
he implemented his 4-node MIN4 quad element in STAGS as a type-940 element. These element-
definition directives are printed in Blue here to remind the user that they must be included in
his case.inp file “precisely” as they are shown here (with no substantive changes) somewhere in
that file before the first E840 element in the model is specified. The user does not have to
include *userProperty directives in his case.inp file to specify geometric and/or material
properties for those E840 elements because STAGS gets all of the material and fabrication
information that it needs for those elements from the program’s comprehensive GCP facilities.

That done, the analyst can then use a single T-940 record (which is in fact a UEL-type-specific
T-900 record) to specify that he wants to add one or more E940 elements to the current element
unit—and to specify the “element number” for the first element in this set, the four input and
control flags, and the two incrementation variables that he can use with E940 UELs:
STAGS 5.0 User Manual April, 2009 9-189

Model Input—Element Units (3) Definition and Utilization of User Elements
KELT ID IFAB IANG ILIN IPLAS NX NY

KELT must = 940 for this E940 UEL . see Note 1, below

ID starting element number for first element in this element set

IFAB fabrication identifier: must be < 0 for this E940 UEL, to identify a fabrication in
the GCP Fabrication Table (I-22a)

IANG wall-reference option:

0 – use default strategy of projecting to establish

1 – specify an x-direction vector for use in establishing the
material orientation matrix

2 – specify x- and y-direction vectors for use in establishing the
material orientation matrix

ILIN geometric-nonlinearity flag:

0 – use nonlinear strain-displacement relations
1 – use linear strain-displacement relations

IPLAS material-nonlinearity flag:

0 – elastic behavior only

> 0 – plasticity included

NX # of E940s to be generated in the x direction (default=1) . . . see Note 2, below

NY # of E940s to be generated in the y direction (default=1) . . . see Note 2, below

Note 1: Any KELT value other than 940 on this record tells STAGS that the user wants to
stop adding E940 elements and start adding one or more type-KELT UELs to the
current element unit. In this case, the user should follow the prescriptions given
elsewhere in this section for that type of UEL (instead of following the
prescriptions given here for type-940 elements).

Note 2: The user can generate a 2-dimensional “patch” of E940 UELs using the NX and NY

incrementation variables on this record, but he cannot (currently) generate a
“layered” set of 2-dimensional patches by using all three of the incrementation
variables that the T-900 record offers; the prudent user should refrain from using
T-900’s NZ variable—or set it equal to 1 if he cannot bear to do that.

go to T-940a

xg yg, xw
9-190 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-940a E940 UEL Nodes

This is where the user specifies the four node points that define the first E940 element that he

wants to add to the current element unit via the current T-940 record set. STAGS “knows” that

he must specify four nodes here because the *userElement directive that defines the attributes

of a type-940 element specifies that each type-940 element in any given element unit must have

four nodes—each of which is included in the nodal point list that he constructed via his S-1 or

S-3 specifications for that unit.

Each T-940 record must be followed by a single T-940a E940 UEL NODES record:

N1 N2 N3 N4

N1 node # 1

N2 node # 2

N3 node # 3

N4 node # 4

NX (T-940) x-direction incrementation flag
NY (T-940) y-direction incrementation flag
IANG (T-940) wall-reference option

if (NX > 1) then
go to T-940b

elseif (NY > 1) then
go to T-940c

elseif (IANG = 1) then
go to T-940d

elseif (IANG = 2) then
go to T-940e

else
follow the instructions at the end of T-940g

endif
STAGS 5.0 User Manual April, 2009 9-191

Model Input—Element Units (3) Definition and Utilization of User Elements
T-940b E940 UEL X-Direction Incrementations

Incrementation variables are specified here for use with the NX (x-direction) looping function
invoked on the T-900 record and the initial node points established on T-940a.

IX1 IX2 IX3 IX4 IXU

IX1 x-direction incrementation variable for node N1 on T-940a
IX2 x-direction incrementation variable for node N2 on T-940a
IX3 x-direction incrementation variable for node N3 on T-940a
IX4 x-direction incrementation variable for node N4 on T-940a

IXU x-direction incrementation variable for use with the ID parameter on T-940a

Any of the first four of these incrementation variables can be negative, zero or positive. IXU must
be nonzero.

NY (T-940) y-direction incrementation flag
IANG (T-940) wall-reference option

if (NY > 1) then
go to T-940c

elseif (IANG = 1) then
go to T-940d

elseif (IANG = 2) then
go to T-940e

else
go to T-940f

endif
9-192 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-940c E940 UEL Y-Direction Incrementations

Incrementation variables are specified here for use with the NY (y-direction) looping function
invoked on the T-900 record and the initial node points established on T-940a.

IY1 IY2 IY3 IY4 IYU

IY1 y-direction incrementation variable for node N1 on T-940a
IY2 y-direction incrementation variable for node N2 on T-940a
IY3 y-direction incrementation variable for node N3 on T-940a
IY4 y-direction incrementation variable for node N4 on T-940a

IYU y-direction incrementation variable for use with the ID parameter on T-940a

Any of the first four of these incrementation variables can be negative, zero or positive. IYU must
be nonzero.

IANG (T-940) wall-reference option

if (IANG = 1) then
go to T-940d

elseif (IANG = 2) then
go to T-940e

else
go to T-940f

endif
STAGS 5.0 User Manual April, 2009 9-193

Model Input—Element Units (3) Definition and Utilization of User Elements
T-940d E940 UEL Material Orientation Vector

If IANG = 1 (T-940), a single T-940d record must follow T-940a (or T-940b or T-940c) for the
current set of E940 User elements. T-940d specifies a single x-direction vector that is used to
establish the material orientation triad for each of the User elements that are to be generated by
the current T-940 element-definition set.

XFX XFY XFZ

XFX, XFY, XFZ vector components establishing the x orientation of the material

go to T-940f
9-194 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-940e E940 UEL Material Orientation Vectors

If IANG = 2 (T-940), a single T-940e record must follow T-940a (or T-940b or T-940c) for the
current set of E940 User elements. T-940e specifies an x-direction and a y-direction vector that
are both used to establish the material orientation triad for each of the User elements that are to
be generated by the current T-940 element-definition set.

XFX XFY XFZ YFX YFY YFZ

XFX, XFY, XFZ vector components establishing the x orientation of the material

YFX, YFY, YFZ vector components establishing the y orientation of the material

go to T-940f
STAGS 5.0 User Manual April, 2009 9-195

Model Input—Element Units (3) Definition and Utilization of User Elements
T-940f E940 UEL floatVariable

This is where the user must specify the numeric values of the two floating point input variables
that the developer of this type-940 UEL “created” for it (by defining their names and sizes in the
*floatVariables part of his *userElement directive for that UEL (see the T-940 record
description, above).

A single T-940f record must follow T-940a (or T-940b or T-940c or T-940d or T-940e) for the
current set of type-940 UELs.

UniformPressure(1) UniformPressure(2)

UniformPressure(1) P1 component of uniform pressure loading (positive in the +z direction
in the element’s local coordinate system); see T-940g, on the
following page

UniformPressure(2) P2 component of uniform pressure loading (positive in the +z direction
in the element’s local coordinate system); see T-940g, on the
following page

go to T-940g
9-196 April, 2009 STAGS 5.0 User Manual

Definition and Utilization of User Elements Model Input—Element Units (3)
T-940g E940 UEL integerVariables

This is where the user must specify the numeric values of the two integer input variables that the
developer of this type-940 UEL “created” for it (by defining their names and sizes in the
*integerVariables part of his *userElement directive for that UEL (see the T-940 record
description, above).

A single T-940g record must follow the T-940f record for the current set of type-940 UELs.

IntegOrder LoadType

IntegOrder integration order flag:

= 0 – stabilized reduced integration strategy that works very well
in practice (strongly recommended)

= 1 – single (centroidal) integration point (never recommended)
= 4 – full integration

LoadType load type flag:

= -1 – ignore the P1 and P2 pressure loadings specified on the
T-940f record; apply pressure loading(s) via the UPRESS
user-written subroutine

= 0 – apply the P1 pressure loading via the Pa loading system
= 1 – apply the P1 pressure loading via the Pa loading system

= 2 – apply the P1 pressure loading via the Pa loading system and
apply the P2 pressure loading via the Pb loading system

Note 1: The P1 and P2 uniform pressure loading components are specified via the
UniformPressure(1) and UniformPressure(2) variables on the
T-940f record (which is described on the preceding page)

if (the user wants to add another set of E940 elements) then
go to T-940

elseif (the user wants to add a set of E928 elements) then
go to T-928

elseif (the user wants to add a set of E900 elements) then
go to T-900

else
return to T-100

endif
STAGS 5.0 User Manual April, 2009 9-197

10
10
10 10

Model Input—Element Units (4)

This chapter contains descriptions of STAGS input requirements for specification of loadings that
can be applied to an element unit, of specifications that can be made to control output produced
by the program in generating and in processing an element unit, and of specifications that may
be made to include externally-generated linear stiffness matrices in the model (after all of the
element units in the model have been defined).

10.1 Element unit loadings

Element-unit loadings are in many ways similar to shell-unit loadings, which are described in
Section 6.5 “Loads”. The following discussion of element-unit loadings contains frequent
references to Section 6.5 in lieu of repeating documentation presented there. Differences between
element-unit and shell-unit loadings are pointed out, where they occur—as are features which are
unique to element units. For the most part, however, the user may simply refer to the indicated
shell-unit loading documentation. Other information which will be found particularly useful in a
study of element-unit loading techniques is summarized below:

• Coordinate systems—Section 4.1 “Coordinate Systems” on page 4-1, and Section
14.2 “Algorithm for Determining the Element Frame” on page 14-2.

• Element node-numbering and edge-numbering conventions—Chapter 14 “The
Element Library”.

• Distributed loading—Section 4.6 “Loads” on page 4-11.
• Shell-units loads—Section 6.5 “Loads” on page 6-64.

The only type of surface traction that is permissible on shell elements is normal pressure, which
may be input either as dead pressure (LT=4, U-3), which remains normal to the undeformed
STAGS 5.0 User Manual April, 2009 10-1

Model Input—Element Units (4) Element unit loadings
surface, or as live pressure (LT=5), which remains normal to the deformed surface throughout
large deformations. The user must be aware that the element normal determines the
direction of pressure. That normal, in turn, is determined by the element node numbering (T-3,

T-4). A complete discussion of node numbering can be found with those records. For line loads
(LT=2), the situation is more complicated. The user is asked to provide the load direction (LD,
U-3), the element number, and the element edge number. The user may select from three
coordinate systems for expressing load directions— computational coordinates,

 nodal-global coordinates, and element-edge coordinates. Choice of
coordinate system is independently specified for each load record (LAX, U-3). As explained in
Section 4.1 “Coordinate Systems”, the user may optionally (IAUX, S-1) define a nodal-
auxiliary coordinate system at each node. Where a nodal-auxiliary system is defined, it
determines the computational system at that node. Otherwise, the nodal-global system is used.
It is the user’s responsibility to define sensible auxiliary systems in order for the loading to be
physically meaningful.

Prestress for a linear eigenvalue analysis (bifurcation buckling or small vibrations) may be
defined for element units by two methods. As for shell units, a uniform stress state is defined on
a U-5 record (cf. Q-5, shell unit). The prestress state is defined in fabrication coordinates
and is applied to all shell elements in the unit. A non-uniform prestress field can be defined using
U-3 records, LT=3, again in fabrication coordinates. Both options are allowed within each
element unit. It is important to note that if both U-5 and U-3 prestress are specified, the U-3

records override the constant field for those elements where they have been defined.

For the element unit, it is possible to specify incremental boundary conditions for bifurcation
buckling that are different from those applied to the prebuckling state. See Section 6.4
“Boundary Conditions” on page 6-57. The discussion there pertaining to basic/incremental BCs
in shell units is also applicable to element units, with dof constraints imposed via specified
displacements on U-3 . As for shell units, the value of the displacement (P, U-3) is
ignored, and a dof constraint (i.e., specified zero) is applied to the incremental BCs.

z′()

x″ y″ z″, ,()

xg yg zg, ,() xe ye ze, ,()

xa ya za, ,()

x y,()

LT 1–=()
10-2 April, 2009 STAGS 5.0 User Manual

Element unit loadings Model Input—Element Units (4)
U-1 Loads Summary

This record summarizes the load data to be defined for the element unit. It is always included in
each of the element units. Element-unit loading is similar to shell-unit loading. For information
about that, see Section 10.1 “Element unit loadings” on page 10-1, and “Q-1 Loads Summary”
on page 6-67.

NSYS NICS NAMS NUSS NHINGE NMOMNT NLEAST IPRESS

NSYS number of load systems

NICS number of sets of initial conditions

NAMS number of attached masses

NUSS indicates that a uniform basic stress state will be defined on U-5 for
vibration or bifurcation buckling

NHINGE number of cable hinge restraint vectors

NMOMNT number of cable hinge moment loading vectors (must be 0, currently)

NLEAST number of least-squares loading sets

IPRESS 0 – no UPRESS

1 – UPRESS is included

User-written subroutine UPRESS defines pressure–surface loading which acts
normal to the element surface. The inclusion of UPRESS precludes the definition
of pressure loading in the INP file. When IPRESS = 1, any pressure loads defined
on Q-3/U-3 records (LT = 4 or 5) are ignored.

if ((NSYS > 0) or (NICS > 0)) then go to U-2
elseif (NAMS > 0) then go to U-4
elseif (NUSS > 0) then go to U-5
elseif (NHINGE > 0) then go to U-6
elseif (NMOMNT > 0) then go to U-7
elseif (NLEAST > 0) then go to U-8a
else go to V-1

NUSS 0>
STAGS 5.0 User Manual April, 2009 10-3

Model Input—Element Units (4) Element unit loadings
U-2 Load Set Summary

Element-unit loading is similar to shell-unit loading. For information about that, see Section
10.1 “Element unit loadings” on page 10-1, and “Q-2 Load Set Summary” on page 6-69.

The number of loadsets, , is defined as (U-1), where ;
therefore . Each of the load sets is defined in a U-2/ U-3 series. The order in which they
are defined is established as:

• load system A

• load system B

• initial displacement

• initial velocity

All four load sets are optional. Each load set which is present must be completely defined
via a U-2/3 series before moving on to the next set in the order specified above.

ISYS NN IFLG

ISYS for load systems:

1 – load system A

2 – load system B

for initial conditions:

0 – initial displacements

-1 – initial velocities

NN number of U-3 records needed to describe the loads or initial conditions

IFLG 0 – no USRLD

1 – loads defined in user-written subroutine USRLD are included

if (NN > 0) then go to U-3
else follow instructions at end of U-3

Sl Sl NSYS NICS+= NSYS 2≤ NICS 2≤,

Sl 4≤ Sl
10-4 April, 2009 STAGS 5.0 User Manual

Element unit loadings Model Input—Element Units (4)
U-3 Load Definition

This record is included only if NN > 0 (U-2); it is repeated NN times. Element-unit loading is
similar to shell-unit loading. For information about that, see Section 10.1 “Element unit
loadings” on page 10-1, and “Q-3 Load Definition” on page 6-70.

Distributed loads are uniform over an element or over an element boundary. The location of a
line load is given by the element edge number and the unit element number. Location of a
surface traction is given by unit element number. Elements are automatically numbered by unit
in the order that they are defined on the T records. The user can verify unit element numbering
by referring to the OUT1 (model output) file.

P LT LD LI LJ LAX NDEFS INC1 INC2 INC3

P magnitude of load, displacement, or velocity; the load type and
direction are determined by LT and LD, respectively.

LT -1 – prescribed displacement (translation or rotation), or
initial condition (initial displacement or initial velocity)

1 – point force/moment
2 – line load/moment
3 – initial prestress
4 – dead pressure—normal to the undeformed element surface
5 – live pressure—normal to the deformed element surface

throughout geometrically-nonlinear deformations
6 – velocity dependent forces (see E-1) — INACTIVE
7 – surface traction — INACTIVE

Note that when , any uniform prestress defined on U-5

is overridden for the corresponding element.

LD load direction; interpretation of is dependent upon LAX, below.
LD must be set to 3 when .

1 – u; force/translation in the X direction. prestress if LT = 3

2 – v; force/translation in the Y direction. prestress if LT = 3

3 – w; force/translation in the Z direction. prestress if LT = 3

4 – ru; moment/rotation, right-handed about the X axis
5 – rv; moment/rotation, right-handed about the Y axis
6 – rw; moment/rotation, right-handed about the Z axis

☞ LT 3=

X Y Z, ,()
LT 4≥

Nxx

Nyy

Nxy
STAGS 5.0 User Manual April, 2009 10-5

Model Input—Element Units (4) Element unit loadings
LI load location identifier

: node number

: element edge number

: not used

LJ element number; irrelevant when . LJ = 0 applies pressure

to all elements for .

LAX load axes, determining the interpretation of LD, above

0 – correspond to computational coordinates

1 – correspond to nodal-global coordinates

2 – correspond to element-edge coordinates

LAX = 0 is required for LT = -1
LAX = 2 is permitted for line loads only
For , the prestress state is defined in fabrication coordinates.
The element normal defines the direction of pressure

NDEFS number of loading definitions specified via the current U-3 record;
set equal to unity by STAGS if less than 2 or if omitted

INC1 incrementation parameter for use with the LD variable

INC2 incrementation parameter for use with the LI variable

INC3 incrementation parameter for use with the LJ variable

NAMS (U-1) number of attached masses
NUSS (U-1) uniform basic stress state option for eigenanalysis
NHINGE (U-1) number of cable hinge restraint vectors
NMOMNT (U-1) number of cable hinge moment loading vectors
NLEAST (U-1) number of least-squares loading sets

if (NAMS > 0) then go to U-4
elseif (NUSS > 0) then go to U-5
elseif (NHINGE > 0) then go to U-6
elseif (NMOMNT > 0) then go to U-7
elseif (NLEAST > 0) then go to U-8a
else go to V-1

LT 1≤

LT 2=

LT 3≥

LT 1≤

LT 4≥

X Y Z, ,() x″ y″ z″, ,()

X Y Z, ,() xg yg zg, ,()

X Y Z, ,() xe ye ze, ,()

LT 3= x y,()
z′()
10-6 April, 2009 STAGS 5.0 User Manual

Element unit loadings Model Input—Element Units (4)
U-4 Attached Mass

The U-4 records allow the user to define attached masses at any node point in the element unit.
The record is repeated NAMS (U-1) times.

GM NM NDEFS INC

GM weight of attached mass, in units of force

NM node number of attached mass

NDEFS number of masses to be attached

INC incrementation parameter for the NM variable

NUSS (U-1) uniform basic stress state option for eigenanalysis
NHINGE (U-1) number of cable hinge restraint vectors
NMOMNT (U-1) number of cable hinge moment loading vectors
NLEAST (U-1) number of least-squares loading sets

if (NAMS attached-mass records have been defined) then
if (NUSS > 0) then go to U-5
elseif (NHINGE > 0) then go to U-6
elseif (NMOMNT > 0) then go to U-7
elseif (NLEAST > 0) then go to U-8a
else go to V-1

else continue defining U-4
STAGS 5.0 User Manual April, 2009 10-7

Model Input—Element Units (4) Element unit loadings
U-5 Uniform Stress State for Eigenanalysis

This record may be used to define the stress resultants in a uniform basic stress state for
bifurcation buckling or small vibration analysis. When a U-5 record is included, the only type of
loading allowed is specified displacements (LT = -1, U-3). Any other loading (mechanical or
thermal) which may be defined is ignored, not only in the current unit, but in all units. The stress
resultants defined on this record are multiplied by the load factors STLD(1),STLD(2) (C-1) for load
systems A and B, respectively.

The prestress state is defined in fabrication coordinates.

PNXA PNYA PNXYA PNXB PNYB PNXYB

PNXA value of the stress resultant in the direction, load system A

PNYA value of the stress resultant in the direction, load system A

PNXYA value of the shear resultant, load system A

PNXB value of the stress resultant in the direction, load system B

PNYB value of the stress resultant in the direction, load system B

PNXYB value of the shear resultant, load system B

NHINGE (U-1) number of cable hinge restraint vectors
NMOMNT (U-1) number of cable hinge moment loading vectors
NLEAST (U-1) number of least-squares loading sets

if (NHINGE > 0) then go to U-6
elseif (NMOMNT > 0) then go to U-7
elseif (NLEAST > 0) then go to U-8a
else go to V-1

x y,()

x

y

x

y

10-8 April, 2009 STAGS 5.0 User Manual

Element unit loadings Model Input—Element Units (4)
U-6 Cable Hinge Restraint

This record is included only if (U-1); it is repeated NHINGE times.

See discussion of cable hinge restraints under U-1. The vector described below gives the
direction of the constraint in computational coordinates. Although the magnitude of
this vector does not theoretically influence the result, this is a multipoint constraint imposed by
Lagrange multipliers. The new equation (automatically) produced by this constraint is assembled
into the stiffness matrix along with the other freedoms. To avoid numerical problems, the
magnitude of this vector is converted to a scaling constant to help the conditioning of the
stiffness matrix. See the general discussion of Lagrange constraints under G-3 for more details.

IHND HRU HRV HRW NDEFS INC

IHND node number where constraint is applied

HRU, HRV, HRW the direction vector, in computational coordinates, along which
rotation is prevented; the magnitude of this vector should be of the same order as
the element torsional stiffness

NDEFS number of constraints to be applied

IHND incrementation parameter for the IHND variable

NHINGE (U-1) number of cable hinge restraint vectors
NMOMNT (U-1) number of cable hinge moment loading vectors
NLEAST (U-1) number of least-squares loading sets

if (NHINGE cable hinge restraint vectors have been defined) then
if (NMOMNT > 0) then go to U-7
elseif (NLEAST > 0) then go to U-8a
else go to V-1

else continue defining U-6

NHINGE 0>

x′′ y′′ z′′, ,()

x′′ y′′ z′′, ,()
STAGS 5.0 User Manual April, 2009 10-9

Model Input—Element Units (4) Element unit loadings
U-7 Cable Hinge Moment

NOTE: This feature is currently disabled, and the user must set (U-1). STAGS

automatically introduces cable moments for all applied moment loadings.

This record is included only if (U-1); it is repeated NMOMNT times.

See discussion of cable hinge moment loads under U-1. The vector described below gives the
direction and magnitude of the applied moment in computational coordinates.

IMND MSYS RUM RVM RWM NDEFS INC

IMND node number where moment is applied

MSYS 1 – load applies to the A system
2 – load applies to the B system

RUM, RVM, RWM moment vector components in computational coordinates

NDEFS number of moments to be applied

IMND incrementation parameter for the IMND variable

NMOMNT (U-1) number of cable hinge moment loading vectors
NLEAST (U-1) number of least-squares loading sets

if (NMOMNT cable hinge moment loading vectors have been defined) then
if (NLEAST > 0) then go to U-8a
else go to V-1

else continue defining U-7

NMOMNT 0=

NMOMNT 0>

x′′ y′′ z′′, ,()

x′′ y′′ z′′, ,()
10-10 April, 2009 STAGS 5.0 User Manual

Element unit loadings Model Input—Element Units (4)
U-8a Least Squares Loading Summary

There are NLEAST sets of U-8 records. Record U-8a is used to define the number NSQR of U-8b

special loading records to follow, to define the reference node for the application of the least-
squares summary loads or reactions, and to provide an overall scale factor SCALE for the six
Lagrange constraints introduced automatically for each least-squares load set. The reference
node must have been defined in the current or a previous unit. If any nodes not yet defined are
referenced in any U-8 records, an error will result; to avoid this, postpone the definition of this
least-squares set until after all pertinent nodes have been defined. As with all other Lagrange
constraints that contribute to the stiffness matrix (see, for example, record G–3 and the ones that
follow it), numerical roundoff considerations require that the values of the Lagrange unknowns
not differ from other unknowns by too many orders of magnitude. This in turn means that the
stiffness contributions should be near the same order as other members, or a SCALE value set to
about equal to some average thickness times a modulus. The user should remember that this is
only an order-of-magnitude estimate for numerical conditioning.

NSQR IUNIT IROW ICOL SCALE

NSQR number of U-8b data records required to define the edges involved in this least-
squares load set.

IUNIT unit number for the reference node.

IROW row number for the reference node; if the reference node is in an element unit,
IROW is the user point number (IUPT, S–1).

ICOL column number for the reference node; zero if node is in an element unit.

SCALE scale factor for numerical conditioning; we suggest something of the order of
magnitude of the material modulus times a representative shell thickness.

go to U-8b
STAGS 5.0 User Manual April, 2009 10-11

Model Input—Element Units (4) Element unit loadings
U-8b Least Squares Load Definition

A least-squares constraint loading condition is specified by defining the following three
components:

• A reference node with section weighting (see U-8a)

• A curve consisting of one or more arc segments and/or single nodes (U-8b).

• Loads on the reference node (see U-1, U-2, U-3 records)

U-8b input records define a curve consisting of one or more arc segments, or alternatively,
individual nodes. There are a total of NSQRS U-8b records. A sequence of U-8b records, all with
(LU, LR, LC) defining actual nodes, specifies one arc segment. Additional arc segments may then
be defined by adding a U-8b record with (LU, LR, LC) = 0 followed by more U-8b records defining
the next arc segment. If a segment consists of a single node, the node weight P is used
unchanged. An individual U-8b record can specify several nodes at once in two ways:

• For shell units, LR=0 and LC>0 means the entire column LC, while LR>0 and LC=0
means the entire row LR.

• For either shell or element units, items LNDA, LNDB, and LNDINC may be used to
describe a range of nodes.

P LU LR LC LNDA LNDB LNDINC

P Nodal weight. For sections of uniform composition, input 1.0. When the defining
curve belongs to several distinct wall types, we suggest using 1.0 for the nodes in
the stiffest structural areas and choosing other weights so that the set of P values
are proportional to the modulus times the effective thickness ().

LU Unit number of node (shell unit; or element unit if LU > NUNITS, B–2). If LU = 0,
terminate the arc segment. Any U–8b records that follow describe a new arc
segment to be added to this load set.

LR Row number of first node (not used in element unit)

LC Column number of first node (not used in element unit)

LNDA First node of (row if LR = 0) or (column if LC = 0) in shell unit. First node in
element unit (LR = 0). If 0 for a shell unit, the first node on the row or column is
chosen. Must be nonzero for an element unit.

Eh
10-12 April, 2009 STAGS 5.0 User Manual

Element unit loadings Model Input—Element Units (4)
LNDB Last node of (row if LR=0) or (column if LC=0) in shell unit. Last node in element
unit (LR=0). If 0 for a shell unit, the last node on the row or column is chosen.
Must be nonzero for an element unit. If LNDB=LNDA>0, then only one node is
specified by this record.

LNDINC Increment for nodes from LNDA to LNDB. Increasing or decreasing ranges are
allowed. If LNDINC=0, an increment of +1 is used for increasing ranges, and -1
for decreasing ranges.

NSQR (U-8a) number of U-8b records
NLEAST (U-1) number of least-squares loading sets

if (NSQR U-8b records have been defined) then
if (NLEAST loading sets have been defined) then go to V-1
else return to U-8a

else continue defining U-8b
STAGS 5.0 User Manual April, 2009 10-13

Model Input—Element Units (4) Output Control
10.2 Output Control

The last information required for an element unit is the small set of type V records on which
output-control parameters are specified for the unit. As with shell units, the values of these
output-control parameters (and the number of V-type records) can vary from element unit to
element unit.
10-14 April, 2009 STAGS 5.0 User Manual

Output Control Model Input—Element Units (4)
V-1 Output Control—Record 1

This record is always included for each unit. The constants governing the output can differ from
one unit to another.

Element-unit output control is similar to that for shell units. For more information about this,
please refer to “R-1 Output Control—Record 1” on page 6-89.

IPRD IPRR IPRE IPRS IPRP IPRF NSELD NSELS IPRDSP IPRSTR ISL ISS ISD

IPRD 0 – do not print displacements

>0 – displacements are printed at every IPRDth load or time step

IPRR 0 – do not print stress resultants

>0 – stress resultants are printed at every IPRRth load or time step
(elastic analysis only)

IPRE 0 – do not print strains

>0 – strains are printed at every IPREth load or time step

IPRS 0 – do not print stresses

>0 – stresses are printed at every IPRSth load or time step

Stress output is obtained only where indicated for the corresponding shell wall or
beam cross-section. Please check LSOL (K-2), NSOYZ (J-1), ISP (J-3a), and ISOC (J-

3b). Also, see ISL, ISS, and ISD, below.

IPRP 0 – no additional stress output for points with yield

>0 – stresses and strains are printed at all points with yield
at every IPRPth load or time step

IPRF 0 – do not print nodal point forces (internal force vector)

>0 – nodal point forces are printed at every IPRFth load or time step

NSELD number of records defining selected displacements (one record
may correspond to a node, a row, or a column)

NSELS number of records defining selected stresses

☞

STAGS 5.0 User Manual April, 2009 10-15

Model Input—Element Units (4) Output Control
IPRDSP 0 – print selected displacements at every load or time step
>0 – print selected displacements at every IPRDSPth load or time step

IPRSTR 0 – print selected stresses at every load or time step
>0 – print selected stresses at every IPRSTRth load or time step (disabled)

ISL 0 – element results are computed at centroids
1 – element results are computed at integration points

ISS 0 – no transverse shear stresses
1 – compute transverse shear stresses — INACTIVE

ISD 0 – print stress and strain components in
fabrication coordinates

1 – print stress components in both fabrication coordinates

and material coordinates

2 – print stress components in both fabrication coordinates
and the principal directions (includes angle of orientation)

NUNITE (B-2) number of element units
NSTIFS (B-2) number of linear-stiffness-matrix contributions

if (NSELD > 0) then go to V-2
elseif (NSELS > 0) then go to V-3
else

if (less than NUNITE element units have been defined) then
return to S-1

elseif (NSTIFS > 0) then go to W-1
else data deck is complete

endif

x y,()

x y,()

φ1 φ2,()

x y,()
10-16 April, 2009 STAGS 5.0 User Manual

Output Control Model Input—Element Units (4)
V-2 Output Control—Record 2

This record defines a number of nodes at which displacement are to be printed at each load or
time step. It is repeated NSELD times (V-1).

INOD1 INOD2 INODI

INOD1 node number of first node in group

INOD2 node number of last node in group

INODI node number increment

NSELD (V-1) number of selected displacements
NSELS (V-1) number of selected stresses
NUNITE (B-2) number of element units
NSTIFS (B-2) number of linear-stiffness-matrix contributions

if (less than NSELD V-2 records have been defined) then
continue defining V-2

elseif (NSELS > 0) then go to V-3
elseif (less than NUNITE shell units have been defined) then

return to S-1
elseif (NSTIFS > 0) then go to W-1
else data deck is complete
endif
STAGS 5.0 User Manual April, 2009 10-17

Model Input—Element Units (4) Output Control
V-3 Output Control—Record 3

This record defines a number of locations at which stresses will be printed at each load or time
step. It is repeated NSELS times (V-1).

IELS1 IELS2 IELSI

IELS1 element number of first element in group
IELS2 element number of last element in group
IELSI element number increment

NSELS (V-1) number of selected stresses
NUNITE (B-2) number of element units
NSTIFS (B-2) number of linear-stiffness-matrix contributions

if (less than NSELS V-3 records have been defined) then
continue defining V-3

elseif (less than NUNITE element units have been defined) then
return to S-1

elseif (NSTIFS > 0) then go to W-1
else data deck is complete
10-18 April, 2009 STAGS 5.0 User Manual

Linear-Stiffness Contributions Model Input—Element Units (4)
10.3 Linear-Stiffness Contributions

This information is required if and only if the NSTIFS parameter is positive on the user’s B-2

record. A positive value for NSTIFS tells STAGS that NSTIFS externally-generated “linear-stiffness
contribution” definitions are required to complete the model—where each such contribution is a
supermatrix of linear stiffness matrices coupling all of the freedoms at each of the nodes with
which they are associated.

A single W-1 record is required for each linear-stiffness contribution definition.

This W-1 record must be followed by any required W-2a/W-2b or W-3 records, as described
below.

All of the linear-stiffness-contribution definition records are read after the last (output control)
record for the final element unit in the user’s model.
STAGS 5.0 User Manual April, 2009 10-19

Model Input—Element Units (4) Linear-Stiffness Contributions
W-1 Linear-Stiffness Contribution—Record 1

This record is required for each of the NSTIFS (B-2) “linear-stiffness contributions” used for the
entire model. A linear-stiffness contribution in this context is an externally-generated,

 [K] supermatrix, each submatrix KIJ of which contains linear
stiffness values for the Ith and Jth of the NRNOD nodes to which [K] contributes. Each of these
nodes must have NRDOF degrees of freedom, where NRDOF is typically 3 or 6.

NRDOF NRNOD NRKIJ KLSTF NRDIS NRFOR

NRDOF number of freedoms at each of the nodes to which [K] contributes; typically,
NRDOF = 3 or 6;

NRNOD number of nodes to which [K] contributes

NRKIJ connectivity control flag (see the note for the KLSTF parameter, below):
 read connectivity and stiffness data for this contribution
 read connectivity data only

KLSTF connectivity and (optionally) contribution control flag:

 read nodal connectivities and stiffness-contribution values;

 (where this is the Nth of NSTIFS W-1 records) use the values
given for [K] matrix number KLSTF for the current case (where contribution values
must have been specified explicitly for case KLSTF); read nodal
connectivities and stiffness-contribution values

Note: STAGS sets if KLSTF is not equal to N

NRDIS identifier of reduced-displacement vector (not implemented yet)

NRFOR identifier of reduced-force vector (not implemented yet)

NSTIFS (B-2) number of linear-stiffness-matrix contributions

if (NSTIFS W-1 records have been defined) then
data deck is complete

else
if (NRKIJ > 0) then go to W-2a
else go to W-3

endif

NRNOD NRNOD× NRDOF NRDOF×

NRDOF 6≤

NRKIJ 0≥

NRKIJ 0<

KLSTF 0=

0 KLSTF N< < ⇒

KLSTF N=

NRKIJ 1–=
10-20 April, 2009 STAGS 5.0 User Manual

Linear-Stiffness Contributions Model Input—Element Units (4)
W-2a Linear-Stiffness Contribution—Record 2a

A W-2a record and its companion W-2b record are required to specify the nodal connectivity and
stiffness values for each of the active submatrices KIJ that comprise the [K] supermatrix for the
current linear stiffness contribution.

The two nodes I = (IUNIT,IROW,ICOL) and J = (JUNIT,JROW,JCOL) for each active
submatrix in the upper or lower triangular part of [K] are specified via the W-2a record, and the
stiffness values are specified via W-2b. A submatrix is active if it has one or more nonzero
stiffness values. Since the number of active submatrices is not known a priori, STAGS expects
to read a user-controlled sequence of W-2a records—each followed by a companion W-2b

record—with the user terminating the sequence via the IUNIT parameter, as described below.

IUNIT IROW ICOL JUNIT JROW JCOL

IUNIT unit number for node I; terminates the reading of W-2a input records

IROW row number for node I, if IUNIT is a shell unit; or I node number, if IUNIT is an
element unit

ICOL column number for node I, if IUNIT is a shell unit; or ignored, if IUNIT is an element
unit

JUNIT unit number for node J, if JUNIT is a shell unit; or J node number, if JUNIT is an
element unit

JROW row number for node J, if JUNIT is a shell unit; or J node number, if JUNIT is an
element unit

JCOL column number for node J, if JUNIT is a shell unit; or ignored, if JUNIT is an
element unit

NSTIFS (B-2) number of linear-stiffness-matrix contributions

if (IUNIT>0) then go to W-2b
elseif (NSTIFS linear-stiffness-contributions have been defined)then

data deck is complete
else go to W-1
endif

IUNIT 0≤
STAGS 5.0 User Manual April, 2009 10-21

Model Input—Element Units (4) Linear-Stiffness Contributions
W-2b Linear-Stiffness Contribution—Record 2b

A W-2b record is required to specify the stiffness values for the active submatrix KIJ that is
identified by its above-described W-2a record.

((KIJ(m,n), n=1,NRDOF), m=1,NRDOF)

KIJ ... submatrix of linear-stiffness-contribution values

go to W-1

NRDOF × NRDOF
10-22 April, 2009 STAGS 5.0 User Manual

Linear-Stiffness Contributions Model Input—Element Units (4)
W-3 Linear-Stiffness Contribution—Record 3

A set of NRNOD (W-1) W-3 records is required to specify the nodal connectivities of a linear-
stiffness contribution that uses the same stiffness values as a previously-specified contribution.

IUNIT(n) IROW(n) ICOL(n) n = 1,2,3, ..., NRNOD

IUNIT(n) unit number for node n

IROW(n) row number for node n, if IUNIT(n) is a shell unit; or node number, if IUNIT(n) is an
element unit

ICOL(n) column number for node n, if IUNIT(n) is a shell unit; or ignored, if IUNIT(n) is an
element unit

go to W-1
STAGS 5.0 User Manual April, 2009 10-23

11
11
11 11

Solution Input

11.1 Solution Options

Linear solutions require only the computation and assembly of the stiffness matrix and the
solution of a linear system of algebraic equations with the displacements d as unknowns:

 (11.1)

where is the external force or load vector.

STAGS has two independent load sets that are combined using load-factors input on the Load
Multiplier record, C-1 described on page 11-11. For a linear solution, the total load on the system
is . Except for thermal loads, no other
information on the C-1 record is relevant. Setting on record B-1 causes a linear stress
analysis to be carried out.

There are two types of eigenvalue analyses: bifurcation buckling and vibration. To give the user
more flexibility, eigenvalue strategy records are provided, which include data that controls the
error or iterative change in the eigenvalue tolerance, the range and number of eigenvalue-
eigenvector pairs, how much diagnostic data to print, and how much computer time can be spent
during the run. Bifurcation analyses require a stress state, which can be linear or nonlinear. A
linear bifurcation analysis will be performed if on record B-1. In this case, STAGS will
first perform a linear stress analysis using the loading case A. The linear stress state from that
analysis is then used in generating the stability matrix required for the eigenanalysis.
Alternatively, a uniform stress state can be specified for the shell elements and the stability
matrix formed using that uniform state. Critical loading combinations are also output for each
eigenvalue computed. For nonlinear bifurcation, the stress state from a previously-computed
nonlinear static solution is used for the stiffness and stability matrices. The second type of
eigenproblem treated by STAGS is the small vibration problem, which can be conducted either
from a stress-free state , or from a pre-stressed state .

Kd fe=

fe

“load set A” STLD 1()×() “load set B” STLD 2()×()+

INDIC 0=

INDIC 1=

INDIC 2=() INDIC 5=()
STAGS 5.0 User Manual April, 2009 11-1

Solution Input Solution Options
Nonlinear static solutions derive their nonlinearity from four sources. First, displacements may
be so large that the force generated from deflections is no longer proportional to these
deflections. This type of geometric nonlinearity arises from the kinematics of the problem, i.e.,
from the strain-displacement relations. The second source of nonlinearity stems from non-
proportional material behaviors and can include hyperelasticity, plastic flow, creep, and
progressive damage. The third source of nonlinearity comes from follower loading, including
“live” pressures, where the direction of the loading depends on the displacement unknowns. The
fourth source of nonlinearity stems from changing boundary conditions—otherwise known as
contact and slip. Whatever the cause of nonlinearity, instead of a simple set of linear equations
to solve, the program must solve the nonlinear equilibrium equations

 (11.2)

where the vector is the internal force, with a component for each freedom in the system,
and where dependence on the system displacements d is indicated. Since there is no direct way
to solve such a system, the final solution must be obtained in steps. These equations are typically
solved with an incremental-iterative procedure such as the Newton-Raphson method using the
two basic techniques

• load incrementation

• iteration from a linearized equation system

Load parameter incrementation involves the choice of the independent state variable that
controls the loading environment of the structure. In load control, both the A and B load systems
are independently varied, using load steps whose magnitude depends on the success or failure
to obtain a converged solution. For cases where the load reaches some maximum (limit) point
along the solution path, load control breaks down and must be replaced by a state variable that
more closely reflects the system response.

The preferred method for nonlinear static analysis is the so called path-parameter strategy, where
an increment of arc-length along the solution path replaces load as the independent variable. The
A system load factor PA is used as the new unknown. The B system is tied to the A system, and
“floats” along with the A system until it reaches one of the set limits, after which it is frozen. If
the A system is fixed, the B system load factor PB is used as the independent path parameter. The
constant of proportionality between the A and B systems is determined by the increments input
on the C-1 record. Users need to understand that the phrase “load factor” is used in a generic
sense. STAGS provides a capability to apply external loads as well as specified displacements.
The solution control strategy (see NSTRAT on the D-1 record for both cases is referred to as “load
control” even though in the latter case it is actually “displacement control.”

In all cases, nonlinear solutions are initiated from a linear solution, and load or arc-length
increments are automatically adjusted as functions of the solution behavior.

fi d() fe d()– 0=

fi d()
11-2 April, 2009 STAGS 5.0 User Manual

Solution Options Solution Input
Once a loading is chosen, a trial solution is selected by extrapolating the previous solutions based
on the increments selected. Usually, this trial vector will not satisfy equilibrium equations, and
a better approximation must then be computed. STAGS does this by linearizing the problem
about the trial state and beginning with a modified- or true-Newton iteration sequence. If the trial
solution is close enough, the sequence of approximate solutions will converge, as evidenced by
a small value of the norm of both the displacement increment and the residual error.

For modified Newton, the stiffness matrix is computed only occasionally, often at the beginning
of the solution step or when the solution fails to converge; the user has control of how often this
is done (via record D-1).

For true Newton, a new stiffness is computed at each iteration. Even for modest systems, this
is generally very expensive. There are instances, however, where because of sudden changes in
system response, the only way out of difficulty is to take advantage of the enhanced quadratic
convergence that the true-Newton iteration method yields. The most common strategy in these
situations is to use the true-Newton method for a few steps, and then switch back to less
intensive methods when the system settles down.

In any case, iteration stops either when the relative equilibrium and displacement norm ratios are
within a specified error tolerance, DELX on record D-1, or after either divergence occurs or too
many iterations are required. If no convergence is obtained, STAGS will compute a new tangent
stiffness matrix based on the best available estimate of the solution. If that procedure fails, the
code will try to solve the system using a smaller load or arc-length increment. After a specified
number of repetitions (or cuts), also under user control, the code will give up and save results
for subsequent restart.

Transient analyses involve the time integration of the initial value problem in time using a
numerical time integrator. There are two types of time integrators:

• explicit INACTIVE

• implicit

Although explicit integrators have the advantage of not requiring a solution of an equation
system (no stiffness matrix necessary), they suffer the usually severe numerical stability limit
on the time increment, often making explicit integration much more expensive than the more
complex implicit integration. Because explicit integrators track the response well throughout the
frequency spectrum, they are very effective for early-time response. Currently, explicit time
integration is not supported in STAGS.

Implicit integrators involve the solution of a nonlinear system that closely resembles its static
analysis counterpart, requiring the complexity of a nonlinear solution iteration sequence. The
advantage is that most implicit integrators are unconditionally stable, allowing much larger time
STAGS 5.0 User Manual April, 2009 11-3

Solution Input Summary and Control Parameters
increments suitable for the typical late-time response of a damped system dominated by lower
vibration modes. With the E-1 and E-2 records, the user has considerable control over the
integration strategy.

Solution-branch-switching algorithms offer the user the opportunity to jump from one solution
path to another in the vicinity of a bifurcation point. Unlike simple limit points, bifurcation
points are places where more than one solution exists for a given load state. If the desired
response is on one of these alternate solution branches, one must be able to switch to it without
convergence difficulties. One method is to introduce initial geometric imperfections. Most of the
time, the imperfections will smooth out the solution, permitting a straightforward analysis along
the minimum energy solution path. If branch switching is required, the Equivalence
Transformation bifurcation processor (ET) can be used. ET avoids convergence problems by
removing the variable that has the greatest magnitude in the local bifurcation mode and replacing
it by an unknown scale factor times the eigenvector. In the majority of cases, the switch to the
alternate path proceeds smoothly and efficiently.

Finally, STAGS provides the Load Relaxation option. If for some reason the system is left in a
state far from equilibrium (as happens with the opening of a crack or with the switch from a
transient to a static analysis), it is usually impossible to obtain a converged solution using the
standard nonlinear solution techniques. Load relaxation allows the gradual transition from the
non-equilibrium state to the desired equilibrium solution using the same solution methods that
are available for ordinary static analysis.

11.2 Summary and Control Parameters

Two records in this group (A-1 and B-1) are always included, and a third record (B-2) is optional.
The A-1 and B-1 records that appear in the BIN (solution input) file are similar to—but can and
frequently do contain different information from—the A-1 and B-1 records for the INP (model
input) file. The B-2 record, here, is very different from that in the INP file.

A-1, the Case Title record, contains a “case-title” character string that is included strictly for the
user’s convenience. The B-1 (Analysis Type Definition) record contains parameters that define
the type of analysis to be performed and (optionally) solution information to be saved and/or
printed and (also optionally) whether or not the user exercises choice or control over the equation
solver to be used.

The B-1 and B-2 records in the BIN file are not interchangeable with the B-1
and B-2 records in the INP file: they contain different input data altogether.

☞

11-4 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
A-1 Case Title

The case title is read on the first line, which may contain any alphanumeric characters. This
text is printed at the beginning of the output for the case and for identification on any disk
file saved for possible restart. Subsequently any number of comment records can be added
provided they begin with a “$” character in column 1. Comments can also be included at the
end of a data line—a “$” character terminating data, and the comment following. A list of
the complete input file, including any comment records, is printed at the beginning of the
case.out2 text output file. The user is urged to use this record as a way to document the
analysis.

COMMENT

COMMENT case title

go to B-1
STAGS 5.0 User Manual April, 2009 11-5

Solution Input Summary and Control Parameters
B-1 Analysis Type Definition and High-Level-Control Data

The B-1 record for the BIN (solution input) file contains basic analysis-type- and high-level-
control-definition information and is not interchangeable with the B-1 record for the INP
(model input) file: they contain different input data altogether.

INDIC IPOST ILIST ICOR IMPTHE ICHIST IFLU ISOLVR NFABC

INDIC analysis-type definition parameter:

0 – linear analysis
1 – bifurcation buckling analysis (linear stress state)
2 – small vibrations (stress free state)
3 – nonlinear static analysis
4 – provide nonlinear solutions at specified load levels
5 – small vibrations (linear or nonlinear stress state)
6 – transient response analysis (geometrically nonlinear)
7 – transient response analysis (geometrically linear)
8 – special purpose (experimental)
9 – special purpose (experimental)

IPOST displacement data archival switch:

0 – do not save displacement data

– save displacement data every IPOSTth step.

ILIST data printout option:

0 – normal printout
1 – full printout

ICOR corotation option:

0 – corotational procedure is used
1 – non–corotational procedure is used

-1 – approximate corotation (no rigid-body correction,
the corotational projection operator is not used)

IMPTHE 0 – higher-order initial strain imperfections are used

1 – only perturbed initial geometry is used

0>
11-6 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
ICHIST crack archive read option:

0 – update crack status using archived data
1 – use crack status and definitions from S1 only

IFLU fluid-interaction option:

0 – no fluid interaction
1 – underwater shock (USA–STAGS) analysis — INACTIVE

ISOLVR equation-solver-choice option:

0 – assemble the matrix in STAGS’ SKYLINE format; use STAGS’
SKYLINE solver

-1 – assemble the matrix system in STAGS’ compact format; use the
VSS sparse matrix solver

1 – specify the system-matrix format and the equation solver to use,
plus additional control parameters, via the B-2 record,
described next

NFABC number of gradient fabrication specification records to process

if (ISOLVR = 1) then go to B-2
elseif (NFABC > 0) then go to B-3
else go to C-1
endif
STAGS 5.0 User Manual April, 2009 11-7

Solution Input Summary and Control Parameters
B-2 Solver Options

With this record, the user can specify the format in which system stiffness and stability
matrices are to be assembled and can choose the equation solver to be used for the analysis
to be performed.

With on the B-1 record, a future version of STAGS will choose the format and
solver using basic system-size and/or solution-cost data; the current version of STAGS will
use the program’s SKYLINE format and solver.

The following Solver-Options record is required if on record B-1:

ICPACT IITER IPRIM IPRIS ISAVE

ICPACT compact-format-selection parameter:
0 – use the SKYLINE system-matrix format and solver

>0 – use STAGS’ row-based COMPACT system-matrix format

IITER iterative-solution-method switch (ignored if):
0 – use the (NASA/GSP) VSS compact-format equation solver

>0 – use STAGS’ (experimental) iterative solver

IPRIM assembled-matrix printout switch (ignored if):
0 – do not print the assembled matrix

>0 – print the assembled matrix

IPRIS intermediate-solution-data printout switch (ignored if):
0 – do not print intermediate solution data

>0 – print intermediate solution data

ISAVE save-system-and-stop switch (ignored if):
0 – proceed normally to obtain solutions within STAGS (default)

>0 – assemble the system matrix and RHS vector but do not solve the
system within STAGS; save the matrix and RHS vector on ASCII-
formatted output files, for examination and/or for solution
operations outside STAGS), then stop

NFABC (B-1)

if (NFABC > 0) then go to B-3
else go to C-1
endif

ISOLVR 0=

ISOLVR 1=

ICPACT 0=

ICPACT 0=

ICPACT 0=

ICPACT 0=
11-8 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
B-3 Gradient Fabrication Specification Records

If and only if the NFABC parameter is positive on record B-1, NFABC records of this type are
required to specify the beam, shell and/or solid fabrication(s) for which gradient
computations are to be performed by the program. For more information about this process,
please see Appendix E of this document.

KFABTP KFB

KFABTP fabrication-class specification parameter:

- 1 – beam-class GCP fabrication (not active in the current version of STAGS)

 - 2 – shell-class GCP fabrication

- 3 – solid-class GCP fabrication

1 – beam-class wall fabrication

2 – shell-class wall fabrication

3 – solid-class wall fabrication

KFAB fabrication-identification parameter:

0 – use all fabrications of the specified class

>0 – identifies a specific KFABTP-class fabrication for which
gradient computations are to be performed

NFABC (B-1)

if (fewer than NFABC records have been processed)then
go to B-3

else

go to C-1

endif
STAGS 5.0 User Manual April, 2009 11-9

Solution Input Summary and Control Parameters
Computational Strategy Parameters

The following is a summary of the input record sequence for each of the basic types of analysis
that STAGS currently performs.

Linear Analysis

• C-1, C-5

Eigenanalysis

• C-1, C-5

• D-2, D-3

Nonlinear Static Analysis

• C-1, C-3, C-4, C-5

• D-1

• ET-1

Transient Analysis

• C-1, C-5

• D-1

• E-1–E-5

Solution Branching

• C-1, C-5

• D-1

• ET-1

Load Relaxation

• C-1, C-3, C-4, C-5

• D-1

• ET-1
11-10 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
C-1 Load Multipliers

This record is always included. The load factors specified here are meaningless with
 (B-1).

STAGS has two load systems, load system A and load system B. In each of these load systems,
the actual load on the structure is equal to a load factor (or load multiplier) times a load
distribution. For load system A, the load factor is called , and for load system B, the factor
is called . The total load on the structure, , is equal to

where and are the two independent load distributions, which can be quite general;
these distributions are determined by the Q records or by the user-written subroutines
USRLD and UPRESS.

The first increments for each load system are determined by the load steps STEP(1) for system
A and STEP(2) for system B. For arc-length solution control (see the discussion above), the
first two load steps are performed using simple load control, after which the initial arc-length
increments are adjusted based on convergence characteristics. The load increments can be
positive, negative or zero, depending on the strategy chosen.

For a restart analysis under arc-length control, STEP(1) can be interpreted to mean arc length.
If one selects (D-1), STEP(1) is applied as a scale factor to the arc length derived
from the previous solutions. This is the variable labeled DETA in the OUT2 file, and can be
found with the iteration summary that is always printed. For a continuation of the solution
without interruption, set STEP(1) to unity, which means that the program will use the same
DETA that it had on the last load step. The user is free to change STEP(1) to greater or less than
unity to obtain better convergence.

A maximum load step is included for both load systems. Using this maximum, it is possible
to “freeze” the load factor for either of the A and B systems at some level.

The initial load in a nonlinear analysis is STLD times the base load.

INDIC 2=

PA

PB LTOT

LTOT PA LA⋅ PB LB⋅+=

LA LB

NSTRAT 0<
STAGS 5.0 User Manual April, 2009 11-11

Solution Input Summary and Control Parameters
• For linear analysis the total equals the initial load.

• For bifurcation buckling analysis the critical load combination is the initial load for
system B plus the eigenvalue times the initial load for system A.

• For nonlinear static analysis the first load level at which solution is attempted is given
by the initial load.

• For arc-length (Riks) load control, load system B “floats” with load system A,
according to the relation

which makes the initial B load equal to STLD(2) and the next B load value
 (see below), as would be the case with pure load control for the

first two steps.

Boundary and loading conditions may be changed at restart. To avoid difficulties in
converging to the new nonlinear solution state, the user should be careful to introduce such
changes gradually.

In transient analysis , load parameters that are read on the E-2 record override
the C-1 load factors. In order to permit the user to restart a transient analysis at the
completion of a static analysis, the user can omit the time-dependent loading (E-2) and allow
the C-1 factors to operate. For the most common application of a transient analysis restart at
a fixed load level, STLD and FACM should be equal, and STEP should be zero for both load
systems.

PB STLD 2() STEP 2()
STEP 1()
----------------------- PA STLD 1()–[]×

⎩ ⎭
⎨ ⎬
⎧ ⎫

+=

STLD 1() STLD 2()+

INDIC 6 or 7=()
11-12 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
STLD(1) STEP(1) FACM(1) STLD(2) STEP(2) FACM(2) ITEMP NFIX

STLD(1) starting load factor for system A.* Not relevant for
(see comments above).

STEP(1) load factor increment for system A. The load increment is STEP(1) times the base
load. Meaningful only for nonlinear analysis INDIC = 3, 4, 5, 6, or linear transient
analysis, INDIC = 7 (B-1). If it is positive, the increment will be added to STLD(1);
if negative, the absolute value of STEP will be subtracted from STLD. In an initial
run under arc-length control, the solution will be executed under load control
for the first two load steps, and the path parameter DETA will be adjusted
according to the solution convergence characteristics. For load control restarts,
STEP serves the same purpose as in the initial run. For arc-length control
restarts, STEP will be a scale factor applied to the last path length step. For
example, if STEP is 1.0, the previous path parameter value DETA will be taken
from the restart file; if it is 0.5, half the previous DETA will be used. If a
negative value of STEP is used, the solution will go in the reverse direction (or
back up). It should be remembered that the previous path step may have
corresponded to a decrease in the load factors.

FACM(1) maximum load factor for system A. The maximum load is FACM times the base
load (this is meaningful only for a nonlinear analysis). If

, the run is terminated when the load exceeds FACM(1). If

, the run is terminated when the load is less than FACM(1). If

, the B load set takes over, even under arc-length control. In

that case, solution stops only when .

STLD(2) starting load factor for system B. For a creep analysis, (on any I-1
record in the INP file), STLD(2) is the initial creep time.

STEP(2) load factor increment for system B (meaningful only for nonlinear analysis
). For a creep analysis, STEP(2) is the creep time increment.

* On restart, the value of this parameter must correspond to a solution saved from a previous run.
(Compare ISTART, D-1).

INDIC 2 or 6=

3 INDIC 5≤ ≤

STLD 1() FACM 1()<

STLD 1() FACM 1()>

FACM 1() STLD 1()=

PB FACM 2()≥

ICREEP 1=

3 INDIC 5≤ ≤
STAGS 5.0 User Manual April, 2009 11-13

Solution Input Summary and Control Parameters
FACM(2) maximum load factor for system B in a nonlinear analysis. For a creep analysis,
this is the final creep time. When the B system load factor reaches FACM(2), it
becomes fixed. Analysis continues until the A system has reached FACM(1). (But,
see special use described under FACM(1).)

ITEMP thermal-loading option; user-written subroutine TEMP is required when
.

0 – No thermal loads
1 – Thermal loading is generated and associated with load system A
2 – Thermal loading is generated and associated with load system B

NFIX if nonzero, the number of freedoms to be fixed, specified as
logical freedom numbers with the C-5 record

INDIC (B-1)
0 – linear static
1 – bifurcation buckling
2 – small vibrations (stress free state)
3 – nonlinear static
4 – nonlinear solutions at specified load levels
5 – small vibrations (linear or nonlinear stress state)
6 – transient response analysis (geometrically nonlinear)
7 – transient response analysis (geometrically linear)

if (NFIX > 0) then
if (INDIC=4 or INDIC=5) then go to C-3
else go to C-5
endif

elseif (INDIC=0) then
data deck is complete

elseif (INDIC=1 or INDIC=2) then go to D-2
elseif (INDIC=3 or INDIC=6 or INDIC=7) then go to D-1
elseif (INDIC=4 or INDIC=5) then go to C-3
endif

ITEMP 0>
11-14 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
C-3 Nonlinear Stress State

This record is included only for bifurcation buckling analysis based on a nonlinear stress state
or vibration analysis with initial stress, (B-1).

Eigenvalues (bifurcation buckling load factor or vibration frequencies) and corresponding
modes may be computed at a number of load steps. This choice allows use of boundary
conditions and other constraints in the eigenvalue analysis that differs from those used in the
analysis of the basic stress state. The load levels at which data are saved or used in
eigenvalue analysis are specified in terms of the load factor corresponding to System A. Note
that the deinstallation parameters are automatically selected for ; therefore, the
data on records D-2 and D-3 are not read in.

This record can also be used to extract solutions at specified load steps when using the arc-
length control strategy. Since the load factors are part of the solution, there is no guarantee
that a solution will be computed at particular desired load level. Setting solves the
problem by switching to load control when near any load in the list (C-4).

NLDS IXEV

NLDS number of load factors for system A at which nonlinear stress states may be
used as basis for an eigenvalue analysis (directly or in a subsequent run),

; if , then the load factor list will be generated
automatically by STAGS using data on the C-4 record.

IXEV 0 – do not execute eigenvalue solution
>0 – number of modes desired

go to C-4

INDIC 4 or 5=

INDIC 4 or 5=

INDIC 4=

NLDS 20≤ NLDS 1–=
STAGS 5.0 User Manual April, 2009 11-15

Solution Input Summary and Control Parameters
C-4 Load Factors

This record is included only if (B-1). It gives the value of the load factor at
which eigenvalue solutions are desired (buckling loads or vibration frequencies). The
automatic choice of step size in the nonlinear analysis is overridden as necessary so that
solutions are obtained for the specific set of NLDS values (C-3). The critical load factor in the
case of bifurcation buckling from a nonlinear stress state is computed for load factor i as

 where is the eigenvalue defined in the output. The result is rigorously
valid only when the computed eigenvalue equals zero. This option works with arc-length
solution control as well.

PLDS(i), i = 1, NLDS

PLDS(i) load factor values for system A at which nonlinear prestress solutions are
desired; may be used as basis for an eigenvalue analysis (directly or in a
subsequent run)

If on the C-3 record, then read three variables (PLDA, PLDB and PLDSTEP) on the
C-4 record, where PLDA is the starting load factor, PLDB is the ending load factor and PLDSTEP

is the desired load step size between these values. The number of solution steps is NLDS, which
is defined as

This option is useful to obtain a series of solutions at evenly-spaced load steps over all or only
a portion of the solution space. The load factor may be adjusted due to convergence difficulties.

Note: Because of the possible complexity of load paths when using arc-length control, it is
important to choose the list of load factors in the order expected for the problem at
hand. Such a choice may become complicated for strongly-nonlinear cases.

NFIX (C-1) freedom-suppression flag

if (NFIX=0) then go to C-5
else go to D-1
endif

INDIC 4 or 5=

PLDS i() 1 λ+()× λ

NLDS 1–=

NLDS NINT
PLDB PLDA–

PLDSTEP
--=
11-16 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
C-5 Suppress Selected Freedoms

The C-5 record provides the user with a mechanism to suppress nonstandard freedoms such
as Lagrange constraints and other specialized freedoms that are generated automatically by
the STAGS code. These freedoms are in contrast to ordinary nodal freedoms that are defined
by the user and known in advance. Any type of freedom can be suppressed in the model input
data with Q and/or U records. Sometimes, however, specialized freedoms turn out to be
singular or ill-conditioned during system-matrix decomposition. This happens most often
when Lagrange constraints are found to be redundant—when partial compatibilities and/or
other constraints are also applied for the same freedoms.

If STAGS detects that any freedom is singular, it prints an informative message containing the
logical freedom number and the model freedom designation for that freedom. If that freedom
is a translational freedom, execution is stopped (because the user has not restrained rigid-
body motion). If it is a rotational or a specialized freedom, that freedom is suppressed for the
remainder of the current run and any subsequent continuation runs. Under some
circumstances (when planar boundary conditions are applied to a not-quite-planar boundary,
for example) this automatic deletion process fails, leading to erroneous results. Fortunately,
STAGS also prints informative messages when any freedom is found to be ill-conditioned
during the decomposition process. This provides the user with the information that is required
to revise the model-definition input or to use this C-5-record mechanism in the solution phase
to suppress those freedoms in subsequent runs.

IFIX(i), i = 1, NFIX

IFIX(i) logical freedoms to be suppressed

INDIC (B-1)

0 – linear static
1 – bifurcation buckling
2 – small vibrations (stress free state)
3 – nonlinear static
4 – nonlinear solutions at specified load levels
5 – small vibrations (linear or nonlinear stress state)
6 – transient response analysis (geometrically nonlinear)
7 – transient response analysis (geometrically linear)

if (INDIC=0) then
data deck is complete

elseif (INDIC=1 or INDIC=2)then go to D-2
else go to D-1
endif
STAGS 5.0 User Manual April, 2009 11-17

Solution Input Summary and Control Parameters
D-1 Strategy Parameters

This record is included only for nonlinear analysis (including nonlinear stress states for
bifurcation buckling or vibration analysis) and transient response analysis, (B-1).

For nonlinear analysis and transient response analysis, intermediate data can be saved on the
file casename.rst, and retrieved in a subsequent run so that the analysis can be restarted and
continued. If (B-1), the last 3 displacement solutions obtained in a run are saved
on file casename.rst to provide the solution algorithm with enough data to extrapolate to the
next solution state, just as if the solution were continuing without interruption. If ,
displacements are saved every IPOST, , and steps, which means that if

, all displacements are saved. For an example where , let ; then
steps 8, 9, and 10; 18, 19, and 20; and so on are saved. For this case a smooth restart can be
attempted at steps 10, 20, and so on.

When the analysis is restarted, it is important that the starting load factors (C-1) correspond
to the displacement on the record from which restart is attempted.

If convergence difficulties are encountered during the nonlinear iteration, STAGS will form
and factor the stiffness matrix before continuing the iterations. The variable NEWT sets an
upper limit on the number of refactorings allowed. If NEWT is set less than zero, refactoring
is performed on every ith load step, where , no matter how quickly the iterations
lead to convergence, with no limit on the number of refactorings. If , the true
Newton method is used (refactoring on all iterations). This method can lead to accelerated
convergence rates, but it can be very costly (see the introduction to this section for more
detail).

If convergence difficulties persist, the increment that controls the arc length or load step will
be cut. The size of this cut is a function of the iteration history leading up to the convergence
failure. The variable NCUT puts an upper limit on how often the program can cut the step.
Without this limit, the program can labor endlessly with unreasonably small increments;
when NCUT is exceeded, the program exits gracefully, saving data for restart. When this
happens, the user should examine the model and its loading environment carefully for
important changes in the nature of the response. It is often necessary to initiate a bifurcation
analysis at this point and switch to an alternate solution path.

Alternately, it may be necessary to initiate a new analysis, with a more refined imperfection
pattern, or to switch to a transient analysis strategy (E-1–E-5).

The solution control strategy for static analysis is set by the variable NSTRAT. If
(default), then arc-length control takes effect after the load step has been
computed under load control. Thus, for the initial run, two solutions are computed under load

3 INDIC 6≤ ≤

IPOST 0=

IPOST 0>
IPOST 1– IPOST 2–

IPOST 3≤ IPOST 3> IPOST 10=

i NEWT=

NEWT 20–=

NSTRAT 0=

STLD STEP+
11-18 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
control: STLD and . These variables are found on record C-1, with the B load
computed according to the formula on page 8-12. For a restart run, only the solution

 is computed, because the solution for STLD already exists. All subsequent
solutions are computed using arc-length control. For an initial run with , the
result is the same as for . For a restart, however, the user input values of STLD(1)

and STLD(2) (C-1) are checked with those stored with the restart step ISTART (see below). If
they are different, execution terminates with an error message. If they are the same to within
a very small tolerance, the STEP(1) parameter (C-1) is interpreted as a scale factor applied to
the arc-length parameter DETA (C-1). For an ordinary restart with continuity expected from
step ISTART to , this is the most efficient mode of operation. If , all
subsequent steps are executed under load control.

The error tolerance for convergence (DELX) gives the error tolerance of the residual norm or
displacement norm, whichever is larger. The residual error norm is normalized to the applied
load and reaction forces from the initial solution step. If DELX is set to zero or left blank, a
default value of 0.001 is used. If WUND is zero or blank, an initial relaxation of 1.0 is used.
The relaxation factor is increased (automatically), if convergence is monotonic but slow, and
it is decreased if convergence is oscillatory. If a nonzero value of WUND is specified, this
value will be used regardless of the convergence behavior. It is uncommon to reset WUND.

Sometimes, especially during adaptive refinement or during a crack growth simulation, other
software will generate a new mesh (essentially a different model) of the same physical
system. In that case, it is advantageous to estimate the displacements at the nodal positions
using interpolation from the previous converged solution. It is well known that these
displacements, although not satisfying equilibrium for the new mesh, may in fact be an
excellent initial guess for a nonlinear iteration to a subsequent solution and continuation with
the new model. A special provision has been provided for that case. A STAR routine has been
provided to place the initial guess displacement field into the database with a loadstep
number, n. n is selected for the user’s convenience. To tell STAGS to use these displacements
instead of an ordinary restart, choose below. An error will be reported if the
special vector has not been installed in the STAGS database via STAR.

STLD STEP+

STLD STEP+

NSTRAT 1–=

NSTRAT 0=

ISTART 1+ NSTRAT 1=

ISTART n–=
STAGS 5.0 User Manual April, 2009 11-19

Solution Input Summary and Control Parameters
ISTART NSEC NCUT NEWT NSTRAT DELX WUND

ISTART starting code:

0 – begin new case

n – a positive integer specifies restart from the nth load step. Make sure that
corresponding data have been saved (see IPOST, B-1). n must correspond
to the same load step as STLD (C-1).

-n – a negative integer specifies restart from the special vector identified by
the positive integer n, where vector n was installed in the STAGS database
via STAR; used most commonly during nonlinear adaptive refinement
or crack growth simulation.

NSEC number of CPU seconds at which run will be terminated and data saved on
restart file; permits unlimited time

NCUT total number of times the step size may be cut

NEWT total number of refactorings allowed; use of is discussed above

NSTRAT 0 – execute the first step(s) under load control, and then switch to arc-length
control (see discussion above)

-1 – for initial run, proceed as for ; otherwise, interpret STEP(1)

(C-1) as a scale factor for the arc-length parameter DETA. See the C-1

description for more complete information.

1 – execute under load control

NSTRAT is ignored for a transient analysis

DELX error tolerance; the default value for DELX is 0.001

WUND relaxation factor; the default value is 0.001

INDIC (B-1)
6 – transient response analysis (geometrically nonlinear)
7 – transient response analysis (geometrically linear)

if (INDIC=6 or INDIC=7) then go to E-1
else go to ET-1

NSEC 0=

NEWT 0<

NSTRAT 0=
11-20 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
D-2 Eigenvalue Control

The record is included only for linear buckling or vibration analysis.

If DELEV is zero or blank, a default value of 0.00001 is used. When the CPU time limit NSEC

is reached, current estimates for eigenvalues and modes are printed and saved on the restart
file as specified by IPRINT even if the convergence criterion is not satisfied. Use

 unless there is a good reason to suppress the extra output. Eigenmodes are
also saved on a special casename.imp file for possible use as initial bucking imperfections on
a subsequent run.

NSEC DELEV IPRINT

NSEC number of CPU seconds at which eigenvalue analysis will be terminated;
 permits unlimited time

DELEV eigenvalue error tolerance; the default value for DELEV is 0.001

IPRINT 0 – print eigenvalues, modes and intermediate iteration data
1 – print eigenvalues and intermediate iteration data; suppress printout of the

modes

2 – print the eigenvalues and modes, but suppress printout of intermediate
iteration data (which are not bulky and may provide useful approximate
information about eigenvalues beyond those requested on the D-3

record)

3 – print eigenvalues only

go to D-3

IPRINT 0 or 1=

NSEC 0=
STAGS 5.0 User Manual April, 2009 11-21

Solution Input Summary and Control Parameters
D-3 Cluster Definition

If , a number (NEIG) of eigenvalues closest to (above or below) a specified value
(SHIFT) will be determined. If , SHIFT is ignored and the NEIG eigenvalues closest
to the center of the interval (EIGA, EIGB) are determined. Computations terminate when all
eigenvalues in the interval have been found, even if their number is less than NEIG.

For buckling problems, (B-1), SHIFT, EIGA, EIGB relate to critical load factors
(the load factors at which the Jacobian determinant vanishes). For vibration problems
(, they relate to frequencies (in cps). In this case (vibration analysis) the
“center” c of the interval (EIGA, EIGB) is chosen to satisfy:

If rigid body modes are to be included in a vibration analysis (), an eigenvalue
shift must be used (SHIFT, D-3) to prevent matrix singularities.

NEIG SHIFT EIGA EIGB

NEIG maximum number of eigenvalues to be computed,

SHIFT initial eigenvalue shift; for vibration analysis of a free body, it is necessary to
specify a non-zero shift

EIGA lower bound of eigenvalue range

EIGB upper bound of eigenvalue range

data deck is complete

EIGA EIGB=

EIGA EIGB<

INDIC 1 or 4=

INDIC 2 or 5=

c2
EIGA

2
EIGB

2
+() 2⁄=

INDIC 2 or 5=

NEIG 20≤
11-22 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
E-1 Time Integration—Record 1

The E-1 and E-2 records are included only for transient analysis, when (B-1).
The user has the option of using a fixed or an automatically-controlled variable time step
(IERRF, E-2). A maximum expected value of the displacement SUP is used in connection with
the automatic step size control. Load systems A and B are used to define two independent
loading histories, analogous to the static analysis option.

In the equation , D represents a damping vector. Its elements are
determined by . The diagonal matrix represents external, velocity
dependent forces. The velocity-dependent base loads are defined in the sequence Q-1 through
Q-3 in the same way as the regular forces on the structure. The damping matrix is obtained
through multiplication by the “damping factor” .

TMIN TMAX DT SUP ALPHA BETA GAMMA THOLD

TMIN time, t, at which transient analysis begins

TMAX time, t, at which transient analysis terminates;

NOTE: The temporal variation of load factors is defined on E-2 as

, where f and g can have one of several standard forms (see

Figure 11.1 on page 11-28). Also note that a transient analysis can be restarted
and that the load-factor history can be defined independently for a restart. Basic
loading on the structure can also be changed for restart.

DT time step; initial time step if variable step selected (IERRF, E-2)

SUP maximum expected displacement; relevant only with variable time step

ALPHA mass damping factor

BETA stiffness damping factor

GAMMA damping factor , which multiplies the velocity-dependent forces to give the
“external damping” — INACTIVE

THOLD the value of the problem time at which changes of the time step first are
allowed. THOLD can be used to suppress automatic time step increases during the
initial phase so that the loading history may be accurately defined.

go to E-2

INDIC 6 or 7=

Mu·· D u·() S u()+ + f t()=
D αMu· βS· γPu·+ += γP

γ

TMIN TMAX≤

PA , PB()

PA f t()= , PB g t()=

α

β

γ

STAGS 5.0 User Manual April, 2009 11-23

Solution Input Summary and Control Parameters
E-2 Time Integration—Record 2

Include only for transient analysis (B-1).

With simple input data, a load-factor history is independently-defined for each of the load
systems A and B. The temporal variation of load factors is defined

, where t is time, and f and g are of the forms illustrated in Figure 11.1 on
page 11-28. Note also that a transient analysis can be restarted and that the load-factor history
can be defined independently for a restart. Basic loading on the structure can also be changed
for restart. As the examples below demonstrate, clever definition of the A/B load histories,
combined with effective restarting strategies, provides tremendous power and flexibility for
applying arbitrary transient loading.

A “box wave,” for example, can be obtained from the linearly-varying load-factor history
case (a) by setting

Trigonometric variation is specified by load-factor history case (b) according to

 (11.3)

where A is the amplitude, T is the period, is a phase shift, and C is a constant. The half-
period, p, is defined as , and STAGS input describing (11.3) is

Therefore, (11.3) can be rewritten in terms of input data as

A cosine function is defined by

To define a sine function, the cosine function is shifted by 1/4 period, . Therefore,
a sine function is defined as

INDIC 6 or 7=

PA , PB()
PA f t()= , PB g t()=

CA2 CA3 0= = CA4 CA5=

P A αcos C+= α 2π
T

------ t ϕ–()=

ϕ
p T 2⁄=

CA1 A= CA2 C= CA3 p= CA4 ϕ=

P CA1
2π

2 CA3⋅
------------------- t CA4–()

⎩ ⎭
⎨ ⎬
⎧ ⎫

cos⋅ CA2+=

CA1 A= CA2 0= CA3 p= CA4 0=

T 4⁄ p 2⁄=

CA1 A= CA2 0= CA3 p= CA4 p 2⁄=
11-24 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
Though not readily apparent, (11.3) can be used to specify a (cosine squared) function
defined by

where A is the amplitude, and T is the period. By noting that is periodic in
, rather than ; and that the range of is , rather than ; and by taking

advantage of the trigonometric power relation ; it follows that (11.3)
defines a function when

For each of the load-factor history types, the duration of the corresponding loading event is
determined by specification of both an initial time, , and a final time, ; thus, the domain
of t is . Referring to (11.3) and Figure 11.1, the duration of the loading event
represented by load-factor history case (b) is defined by

For example, a single-wave cosine history starting at time and ending at time is
defined by

Note that the initial/final times for load-factor histories are defined independently of the
starting/stopping times for the transient analysis (TMIN/TMAX, E-1). For example, in load-factor
history case (b), if , the structure is unloaded for . If , the
structure is unloaded for .

Additional examples follow to illustrate the flexibility provided by creative definition of
load-factor histories together with judicious combination of histories for the A/B systems.
Keeping in mind that a transient analysis can be restarted and that the load-factor history, as
well as the basic loading on the structure, can be defined independently for a restart, it can
be seen that transient-loading capabilities are quite general in STAGS.

An impulse consisting of a single-wave (sine squared) form with an amplitude of A and
a duration of one period, T, starting at time t = 0 at a load factor of , increasing to
at , then falling back to at , is obtained from case (b) with:

Note that is shifted by one half-period, p, to obtain .

cos2

P A αcos2 C+= α π
T
--- t ϕ–()=

cos2 cos2 cos2

π 2π cos2 0 A,[] A– A,[]
αcos2 1 2⁄ 2αcos 1+()=

cos2

CA1 A 2⁄= CA2 A 2⁄= CA3 p= CA4 0=

ti tf

ti t tf≤ ≤

CA5 ti= CA6 tf=

t 0= t T=

CA1 A= CA2 0= CA3 p= CA4 0= CA5 0= CA6 T=

TMIN CA5< t CA5< CA6 TMAX<
t CA6>

sin2

P 0= P A=

t T 2⁄ p= = P 0= t T=

CA1 A 2⁄= CA2 A 2⁄= CA3 p= CA4 p= CA5 0= CA6 T=

cos2 sin2
STAGS 5.0 User Manual April, 2009 11-25

Solution Input Summary and Control Parameters
The load factor may be increased from at to a value of at with a
 form, and then held constant if is determined from case (b) with:

and is determined from case (a) with:

The load factor may be linearly increased from at to a value of at ,
and then exponentially decayed to at if is determined from case (a) with:

and is determined from case (c) with:

P 0= t 0= P A= t t1=

sin2 PA

CA1 A 2⁄= CA2 A 2⁄= CA3 t1= CA4 t1= CA5 0= CA6 t1=

PB

CA1 A= CA2 CA3 t1= = CA4 CA5 TMAX≥=

P 0= t 0= P A= t t1=

P A 2⁄= t t2= PA

CA1 A= CA2 0= CA3 CA4 CA5 t1= = =

PB

CA1 A= CA2 t1= CA3 t2 t1–= CA4 A 2⁄=
11-26 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
IMPL METHOD IERRF IVELO IFORCE IPA IPB

IMPL 0 – implicit integration
1 – explicit integration INACTIVE

METHOD indicates type of implicit integration
1 – trapezoidal formula
2 – Gear’s second-order formula INACTIVE

3 – Gear’s third-order formula INACTIVE

4 – K. C. Park’s formula*

IERRF 0 – constant time step
1 – variable (automatically-controlled) time step

IVELO number of weighted modal velocities, defined on E-5 records

IFORCE 0 – no user written FORCET
1 – user written FORCET

IPA load-factor history option for system A; see Figure 11.1
0 – load system A not included
1 – linear variation, case (a)
2 – trigonometric variation, case (b)
3 – exponential decay, case (c)

IPB load-factor history option for system B; see Figure 11.1
0 – load system B not included
1 – linear variation, case (a)
2 – trigonometric variation, case (b)
3 – exponential decay, case (c)

if (IPA > 0) then go to E-3
elseif (IPB > 0) then go to E-4
elseif (IVELO > 0)then go to E-5
else data deck is complete

* Park, K.C., “An Improved Stiffly Stable Method for Direct Integration of Nonlinear Struc-
tural Dynamics,” ASME Journal of Applied Mechanics, Vol. 42, 1975, pp. 464–470
STAGS 5.0 User Manual April, 2009 11-27

Solution Input Summary and Control Parameters
Case (a) Linear variation of load factor

Case (b) Trigonometric variation of load factor

Case (c) Exponential decay of load factor

Figure 11.1 Load-factor histories.

CA3

CA5

CA1

CA2
TIME (t)

CA4

PA , PB

TIME (t) A

CA3 = p CA1 = A

CA2 = C

PA , PB

CA4 = ϕ

CA5 = ti

CA6 = tf

CA4

CA3
CA2

CA1

TIME (t)

PA , PB
11-28 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
E-3 Load History—Record 1

This record defines constants to be used in the definition of the load-factor history
corresponding to system A. It is only included if (E-2).

CA1 CA2 CA3 CA4 CA5 CA6

CA1, CA2, CA3, CA4, CA5, CA6 variables defined in Figure 11.1.

IPB (E-2) load factor variation for system B
IVELO (E-2) number of weighted modal velocities

if (IPB > 0) then go to E-4
elseif (IVELO > 0) then go to E-5
else data deck is complete

IPA 0>
STAGS 5.0 User Manual April, 2009 11-29

Solution Input Summary and Control Parameters
E-4 Load History—Record 2

This record defines constants to be used in the definition of the load-factor history
corresponding to system B. It is only included if (E-2).

CB1 CB2 CB3 CB4 CB5 CB6

CB1, CB2, CB3, CB4, CB5, CB6 variables defined in Figure 8.1

IVELO (E-2) number of weighted modal velocities

if (IVELO > 0) then go to E-5
else data deck is complete

IPB 0>
11-30 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
E-5 Weighted Modal Initial Velocity

These records are included only when specified by setting (E-2). STAGS is set up
to allow the user to include initial velocities from a number of executions of the same case.
For example, one may have initially performed a linear bifurcation analysis, followed by a
nonlinear collapse analysis, followed by an eigenanalysis base upon a nonlinear stress state.
Another execution could be run from the beginning, including all the modes accumulated so
far. STAGS always produces two files, the IMP file (casename.imp) and the EGV file
(casename.egv), that contain all the modes computed during the entire history of the case.
Each mode is identified by a unique combination of values for the data IMSTEP, IMMODE, and
IMRUN. These data are written to the STAGS database when modes are saved. The user can
generate an initial velocity field from a linear combination of these modes, specifying
amplitudes with EIGA.

Remember, for each of the eigenmodes that is computed by STAGS, the largest translational
component is normalized to unity.

EIGA IMSTEP IMMODE IMRUN

EIGA buckling mode amplitude; may be .

IMSTEP load step number

IMMODE mode number

IMRUN eigenvalue-execution ID number

IVELO (E-2) number of weighted modal velocities

if (IVELO modes have been defined) then

data deck is complete

else

continue defining E-5
endif

IVELO 0>

0<
STAGS 5.0 User Manual April, 2009 11-31

Solution Input Summary and Control Parameters
ET-1 Solution Control

The most common choice for the variable NPATH (below) is 0.

If (D-1), load control is used throughout the analysis. If , the path
parameter method is used except for special starting or restarting procedures (which may also
be affected by NSOL, ET-1).

For all values of NSTRAT and NSOL, the starting procedure (, D-1) is identical. The
linear solution with load factors PA and PB is computed as step 0 and saved on file—if

 (B-1). A non-linear solution is then obtained with the same load factors and saved
as step 1. The second non-linear solution, step 2, is computed with values of PA and PB

incremented by the load increments on the C-1 record. For , the remaining
analysis continues under load control. However if , the solution procedure shifts
to the path parameter method using the initial two nonlinear solutions to establish a path.

Restarting procedures are fundamentally more complex. The input variable NSOL (ET-1) is
introduced to provide greater flexibility. implies that restart is continuous with
respect to loading and boundary conditions and therefore solutions stored on the restart file
may be used in determining initial values for the next solution. If , the solution is
assumed discontinuous and only the restart step is used in the new solution. In either case,
the restart step may not be in equilibrium because of changes in input loading or boundary
conditions. Significant difficulties in convergence behavior could result from this situation.
To help the user, the program evaluates equilibrium for the restart step and prints a warning
message when a serious state of non-equilibrium is noted. An experimental option
is being introduced to take special measures when the equilibrium test fails; more will be said
about this option after further testing. If one is far from equilibrium and convergence fails,
the relaxation procedure (, ET-1) should be used first to return to equilibrium. A
description of this option is found below.

If , restart begins with one step under load control; values of PA and PB are
incremented by STEP (C-1). The solution procedure then reverts to the path parameter method
for the remainder of the analysis. The operation of the load incrementation algorithm is also
described in record C-1.

If , restart begins as a continuation of the path procedure. This requires the
existence of at least two solutions on the restart file. The STEP increment on record C-1 is
then interpreted as a path increment factor. This factor scales the new path step based on the
last path length on the restart file. Thus if , the path continues with the same arc
length used in the restart. The increment in path length may be doubled or halved, etc. as
seems desirable. The value of STEP may also be negative which would reverse the path
direction for restart. This is a convenient method for difficult unloading situations such as

NSTRAT 1= NSTRAT 1<

ISTART 0=

IPOST1 0>

NSTRAT 1=

NSTRAT 1<

NSOL 0=

NSOL 1=

NSOL 2=

NPATH 5=

NSTRAT 0=

NSTRAT 0<

STEP 1.0=
11-32 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
elastic unloading from a state of plastic deformation. After the first new solution is obtained.
the analysis continues with the standard path parameter method. See “C-1 Load Multipliers”
on page 11-11.

A special option is provided that switches the solution to an experimental
“tangent” Equivalence Transformation method. Although this option helps in some cases, it
is not recommended for ordinary analyses. The options and are the
Equivalence Transformation options for branching on bifurcation. These options are
described in Section 11.3.

The option allows for “Load Relaxation” in which the solution is to be relaxed
from a nonequilibrium state. This is the only option provided for doing this. If
(and , B-1). Although ISTART (on D-1), and STLD(1) and STLD(2) (on C-1) govern the
load state where the new equilibrium will be computed, the remainder of the information on
the C-1 record controls the behavior after load relaxation has been completed, just as in a
regular nonlinear run. This means that STAGS first executes the load relaxation process, and
upon successful convergence to a new equilibrium state, continues with the execution after
load relaxation is complete, automatically producing new solutions as directed by the user.
The program internally determines what load relaxation parameters to use based on an
estimate of how far from equilibrium the current state is. The interested reader is encouraged
to obtain the references cited in the footnote.*

A special option NPATH = -1 has been provided to use the solution at restart to define the
nonlinear stress state, stiffness and stability matrices for a buckling analysis. No new
solutions are computed, and the analysis terminates after NEV eigenmodes have been found.
Restart boundary conditions and load values can be altered as in any other restart. The ability
to change boundary conditions offers the user a capability similar to the alternate buckling
boundary conditions permitted for a linear bifurcation.

* See
Riks, E, C.C. Rankin and F.A. Brogan, “On the Solution of Mode Jumping Phenomena in
Thin-Walled Shell Structures,” Computer Methods in Applied Mechanics and Engineering,
Vol. 136, Nos. 1–2, September 1996, pp. 59–92
and
Riks, E. and C.C. Rankin, “Computer Simulation of the Buckling Behavior of Thin Shells
Under Quasi-Static Loads,” Archives of Computational Methods in Engineering, Vol. 4, No.
4, 1997, pp. 325–351

NPATH 1=

NPATH 2= NPATH 3=

NPATH 5=

NPATH 5=

INDIC 3=
STAGS 5.0 User Manual April, 2009 11-33

Solution Input Summary and Control Parameters
NPATH NEV NSOL IE IGNORE LDMAX IUPLDA IUPLDB

NPATH 0 – use option chosen by NSTRAT (D-1)

1 – use the “tangent” ET method (experimental method)

-1 – compute NEV buckling modes on restart at load step ISTART (D-1), and PA
and PB loads at STLD(1) and STLD(2) (C-1), respectively

2 – single mode branch switching (see 11.3 on page 11-36)

3 – special ET option, see next section — INACTIVE

5 – load relaxation (see explanation above)

NEV 0 – do not compute eigenmodes at run termination

>0 – compute NEV eigenmodes at run termination

NSOL 0 – assume the solution is continuous on restart, and perform quadratic
extrapolation to estimate a new solution wherever possible

1 – assume that the solution is discontinuous, and do not extrapolate to
estimate the next solution. In this case, the previous solution is used as
the initial estimate, and the solution will be checked for equilibrium. If
equilibrium is satisfied, proceed to full extrapolation after enough
solutions have been accumulated. If equilibrium is not satisfied, print a
warning message and attempt to find a new solution. If convergence is
obtained, proceed to full extrapolation after enough solutions have been
accumulated.

2 – special experimental option under development

3 – use the previous solution vector to start the first two iterations of each
solution step; this option is particularly useful during progressive failure
analysis.

Please see the next section for the role NSOL plays for the ET Bifurcation
Processor special options

IE mode number for branch switching. Used only for special ET Bifurcation
Processor options described in the next section.

IGNORE ignored; included for compatibility with old casename.bin files

LDMAX 0 – continue solution beyond any limit points found
(points of maximum load, load system A only)

1 – stop solution upon reaching a maximum load
(load system A only)
11-34 April, 2009 STAGS 5.0 User Manual

Summary and Control Parameters Solution Input
IUPLDA if nonzero, interpret the A load system as follower loads,
or loads that rotate with each node

IUPLDB if nonzero, interpret the B load system as follower loads,
or loads that rotate with each node

data deck is complete
STAGS 5.0 User Manual April, 2009 11-35

Solution Input The Equivalence Transformation Bifurcation Processor (ET)
11.3 The Equivalence Transformation Bifurcation Processor (ET)

The Equivalence Transformation bifurcation processor (ET) provides a means to branch to
alternate solution paths during the analysis of structures well into the postbuckling regime*. In
many cases routine analysis fails because the equation system becomes ill conditioned near the
critical limit and bifurcation points. Whereas path continuation methods offer help for limit point
analyses, bifurcation points have proved more difficult. ET allows the user to select a solution
branch in the direction of growth of a bifurcation mode that has been computed for the nonlinear
stress state near the critical point. Combined with the usual arc-length control algorithms, the
user can in principle turn from one solution branch to the next as part of an investigation of the
solution space of lowest energy most likely to be seen in physical systems.

In order to use the ET options, the user must first decide very carefully what he wants to do in
the vicinity of the bifurcation point. Typically, a bifurcation point is detected either by a change
in sign of the determinant of the stiffness matrix, or by serious convergence difficulties near the
critical point. In either case, the user can detect the presence of one or more closely-spaced
modes in the area of interest. NEV modes are automatically computed at run termination when

 (ET-1) (see above). To proceed further always involves a restart.

The variable NPATH (ET-1) controls what ET does, as follows:

NPATH -1 – modal analysis and computation of higher-order
expansion coefficients — INACTIVE

0 – ordinary arc-length (Riks) path continuation algorithm.
go to “ET-1 Solution Control” on page 11-32.

1 – primary path (Equivalence Transformation ET) using the
“path tangent” vector as the equivalence vector.
go to “ET-1 Solution Control” on page 11-32.

2 – branch to alternate path using single mode ET.
go to “ET-1 Solution Control” on page 11-38.

* See, for example:
Thurston, G.A., F.A. Brogan and P. Stehlin, “Postbuckling Analysis Using a General-Pur-
pose Code,” AIAA Journal, Vol. 24, No. 6, June 1986, pp. 1013–1020
and
Rankin, C.C. and F.A. Brogan, “Application of the Thurston Bifurcation Solution Strategy
to Problems with Modal Interaction,” AIAA Paper No. 88-2286, April 1988

NEV 0>
11-36 April, 2009 STAGS 5.0 User Manual

The Equivalence Transformation Bifurcation Processor (ET) Solution Input
Simple branch switching

The simplest branch-switching option is a restart using . In this case, the user wishes
to branch to an alternate path in the direction of a particular mode (specified by IE, below). This
mode is held constant, and the load factor is adjusted to make the residual vanish. The restart
file must contain the mode specified by IE. The A-1, B-1, C-1, and D-1 records are input in the
same way as an ordinary restart. Remember that load step ISTART (D-1) must have been saved,
along with the mode number IE. One can save the desired modes by setting (ET-1) for
any run with , and (B-1), nonlinear analysis.

For simple mode switching, record ET-1 must be input as follows:

NPATH 2=

NEV 0>

NPATH 0 or 1= INDIC 3 4 or 5, ,=
STAGS 5.0 User Manual April, 2009 11-37

Solution Input The Equivalence Transformation Bifurcation Processor (ET)
ET-1 Solution Control

NPATH NEV NSOL IE IGNORE LDMAX IUPLDA IUPLDB

described above

NEV ignored

NSOL 0 – assume the solution is continuous on restart, and perform quadratic
extrapolation to estimate a new solution wherever possible

1 – assume the solution is discontinuous, and do not extrapolate to estimate
the next solution. In this case, the previous solution is used as the initial
estimate, and the solution will be checked for equilibrium. If equilibrium
is not satisfied, stop the execution with a message; otherwise, proceed to
full extrapolation after enough solutions have been accumulated.

2 – proceed as if NSOL = 1, except attempt to obtain a new solution even if
the equilibrium test fails. Users should be cautious with this option.

3 – use the previous solution vector to start the first two iterations of each
solution step; this option is particularly useful during progressive failure
analysis.

IE mode number used in single-mode ET. Note that the amplitude of the mode IE

is taken to be STEP(1) (D-1) times the eigenmode IE. The modes are always
normalized such that their largest component is unity.

IGNORE ignored by the program; included for compatibility with old input files

LDMAX 0 – continue solution beyond any limit points found
(points of maximum load, load system A only)

1 – stop solution upon reaching a maximum load
(load system A only)

IUPLDA if nonzero, interpret the A load system as follower loads,
or loads that rotate with each node

IUPLDB if nonzero, interpret the B load system as follower loads,
or loads that rotate with each node

If the solution converges, s2 continues the execution using the option (see above)
until either the maximum load or some other limit is exceeded.

 data deck is complete

NPATH 2=

NPATH 1=
11-38 April, 2009 STAGS 5.0 User Manual

12

12

12 12
User-Written Subroutines

User-written subroutines can be used in very basic ways as elegant alternatives to lengthy input
decks; or, they can be used in more sophisticated ways to extend the generality of STAGS. For
example, user-written subroutines can define arbitrary functional relationships, such as spatial
variation of constitutive properties in a wall fabrication, or temporal variation of loading for
transient analysis. In fact, nearly all aspects of model definition, from the most basic operations
to extremely complex ones, can be performed via user-written subroutines.

Important details concerning applicability of user-written subroutines, along with functional and
alphabetical summaries, comprise the remainder of this introduction. Conventions for passing
input data to user-written subroutines and for returning output data to STAGS are described next,
in Section 12.1. A practical example problem utilizing several routines is presented in Section
12.3. In between, Section 12.2 describes each of the routines, in alphabetical order.

CAUTION: Users should check documentation carefully before attempting to use
any existing user-written subroutines with his or her version of STAGS.

 CROSS

 DIMP

 FORCET

 LAME

 TEMP

 UCONST

 UPRESS

page 12-9

page 12-14

page 12-18

page 12-19

page 12-25

page 12-29

page 12-30

 USRDGD

 USRELT

 USRFAB

 USRFPF

 USRLD

 USRPT

 WALL

page 12-32

page 12-38

page 12-40

page 12-32

page 12-55

page 12-57

page 12-59
STAGS 5.0 User Manual April, 2009 12-1

User-Written Subroutines
Table 12.1 presents a functional summary of the user-written subroutines. Table 12.2 lists them
alphabetically, summarizing the conditions under which each is applicable. Also indicated in
Table 12.2 are the analysis phases for which each subroutine is needed. Note that some user-
written subroutines are required in the model definition phase, some are required in the primary
solution phase, and some are required in the secondary solution phase. Some routines are needed
for more than one phase of analysis.

Table 12.1 Functional summary of user-written subroutines.

category name description

Shell Unit Geometry LAME Reference surface geometry

Shell Unit Initial
Geometric Imperfections

 DIMP Imperfections by discrete values

Element Unit Discretization USRPT Nodes, coordinates and DOF definitions

 USRELT Elements connectivities and properties

Beam Cross Sections CROSS Beam cross section properties

Fabrications USRFAB Fabrication properties, via GCP

 WALL Shell wall fabrication properties

Loads FORCET Load factor history for transient analysis

 TEMP Thermal loadings

 UPRESS Pressure loadings

 USRLD General loadings

Displacement Constraints UCONST Lagrange constraints

Material Degradation
and Failure

 USRDGD Material degradation (template)

 USRFPF Material failure (template)

Discontinued SKEWS

 UGRID

 WIMP

Skew stiffeners

Grid generation

Imperfections by functional definition
12-2 April, 2009 STAGS 5.0 User Manual

User-Written Subroutines
Table 12.2 Alphabetical summary, showing analysis options that indicate
user-written subroutines.

name analysis option location where defined model
primary
solution

secondary
solution

CROSS O-1a, O-2a, T-2, USRELT,
K-6, WALL

 ✘ ✘

DIMP M-5
H-1

 ✘

FORCET E-2 ✘

LAME M-5 ✘ ✘

TEMP C-1 ✘ ✘

UCONST B-2 ✘

UPRESS Q-1, U-1 ✘

USRDGD I-5a, I-10a ✘ ✘ ✘

USRELT H-1 ✘

USRFAB I-5a, T-3xx, T-4xx, USRELT ✘ ✘

USRFPF I-5a, I-10a ✘ ✘ ✘

USRLD Q-2, U-2 ✘

USRPT H-1 ✘

WALL M-5, T-3, T-4, USRELT ✘ ✘

User-written subroutines must be linked with relevant STAGS processors to create
application-specific executable code; refer to “Creating custom STAGS executables with
makeuser (UNIX)” on page 2-14.

 ✔ Subroutines which are applicable in the model definition phase, such as
USRPT, must be linked with the model executable, s1.

 ✔ Subroutines which are applicable in the primary solution phase, such as
FORCET, must be linked with the solution executable, s2.

ICROSS 0=

ICROSM 0=

IWIMP 1–=

IUDIMP 1=

IFORCE 1=

ISHELL 1=

ITEMP 0>

NCONST 0>

IPRESS 1=

IDGRD 99=

IUWE 1=

FABID 0<

IFAIL 99=

IFLG 1=

IUWP 1=

IWALL 0=
STAGS 5.0 User Manual April, 2009 12-3

User-Written Subroutines Input/Output Data Conventions
The example user-written subroutines shown in this chapter are
available in the $STAGSHOME/examples/usersub directory. Input files
and user-written subroutines from Section 12.3 “Example Problem” are
available in $STAGSHOME/examples/cylinder.

12.1 Input/Output Data Conventions

User-written subroutines are FORTRAN subroutines which receive input and produce output. This
section discusses the various methods by which input data are passed to a called user-written
subroutine from a calling STAGS program module and by which output data are returned to
STAGS.

May user-written subroutines be coded in C?

Yes. While STAGS is a FORTRAN program, user-written subroutines may be coded
in C provided that the user adheres to the conventions described in this section,
and provided that the user’s programming environment supports calling C

program modules from FORTRAN program modules. In fact, STAGS executables
contain C code linked with FORTRAN code.

 ✔ User-written subroutines (such as WALL) which are applicable in the
secondary solution phase must be linked with any processor that generates
secondary solution data. For example, if the translator/post-processor
xytrans is to be used to compute stresses in shell elements defined using
WALL, then xytrans must be linked with the user-written WALL subroutine.
If xytrans is to be used to provide primary solution data (such as nodal
displacements) only, then it need not be linked with any user-written
subroutines.

Table 12.2 Alphabetical summary, showing analysis options that indicate
user-written subroutines.

name analysis option location where defined model
primary
solution

secondary
solution

☞

12-4 April, 2009 STAGS 5.0 User Manual

Input/Output Data Conventions User-Written Subroutines
Data types

User-written subroutine input/output utilizes only two FORTRAN data types—INTEGER and REAL.
The type for each data item is indicated in the corresponding description. Of course, other data
types may be used for local data within each subroutine.

Input/output methods

Input/output functions in user-written subroutines utilize parameter lists, argument lists, and
common blocks.

parameter lists

A parameter list is the list in a FORTRAN “subroutine” statement. For example, in
the FORCET statement

subroutine FORCET (t, k, Pf)

“(t, k, Pf)” is the parameter list. The call by reference technique is used
exclusively for data in this category. For example, Pf refers to the data address
where the contents of Pf are stored.

Parameter lists may be employed for both input and output functions. Not all
user-written subroutines contain parameter lists.

argument lists

An argument list is the list in a FORTRAN “call” statement. For example, in the
UCONST statement

call UCONST (n, iu, ix, iy, id, cc)

“(n, iu, ix, iy, id, cc)” is the argument list. The call by reference
technique generally applies here. However, call by value may be used where
appropriate. For example, n may be a constant in the above list (see “UCONST
Lagrange Constraints” on page 12-29). If in doubt, use a variable rather than a
constant, as variables are always appropriate.

Obviously, call statements perform output only. The output data in the argument
list are passed down to the called subroutine, rather than back up to the calling
routine, as through parameter lists. Not all user-written subroutines output data
via call statements.
STAGS 5.0 User Manual April, 2009 12-5

User-Written Subroutines Input/Output Data Conventions
common blocks

A FORTRAN common block contains global data, and may be employed for both
input and output. For example, in subroutine USRPT

COMMON / NEWSY / xax, xay, xaz, yax, yay, yaz

is used to output the nodal-auxiliary coordinate system.

A special use of common blocks is for input of User Parameters;
see “L-1 User Parameters Summary” on page 5-143. The statements

COMMON / UPI / UserInt(200)
COMMON / UPF / UserFlo(200)

provide access to User Parameters in any STAGS subroutine.

Not all user-written subroutines utilize common blocks.

User-written subroutines may call other user-provided subroutines.
Subroutine TEMP, for example, could call a heat transfer processor to
determine temperatures; or subroutine WALL could call a constitutive
processor to compute constitutive properties. There are no hard limits
on the allowable complexity of user-written subroutines or on the
number of user-provided lower-level routines that they may call. Be
careful, however, to avoid subroutine and common block name conflicts
with STAGS code.

☞

12-6 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
12.2 Subroutine Specifications

User-written subroutines are described in alphabetical order in this section. Some conventions
that are used in the subroutine specifications are explained in the following.

User-written subroutines may be loosely grouped into three categories. Some have exact
counterparts in input data records. Subroutine USRPT, for example, combines the functionalities
of “S-1 User Points (upts protocol)”, “S-2 Auxiliary Coordinate System (upts protocol)”, and
“U-4 Attached Mass”. Each output data item in USRPT corresponds to one from those three data
records. Therefore, USRPT is used either as an alternative to, or in combination with, those input
records.

Other user-written subroutines extend the generality of STAGS by providing capabilities that do
not exist in the input records. For example, subroutine TEMP represents the only method for
applying thermal loading in a STAGS model. Finally, there are those subroutines that combine
additional capabilities with the option of specifying data just as is done on input records. For
example, subroutine WALL may describe a shell wall fabrication by specifying input as in the
Wall Fabrication Table (K records). In addition, WALL may define fabrication properties which
vary over the surface of a shell unit, something that cannot be done with input records. Another
example involves the use of subroutines USRFPF and USRDGD for users to define their own
failure criteria and material degradation models.

Subroutine structure

A template is provided for each subroutine—including the necessary coding to perform I/O
functions. The user need only provide the coding to perform required computations and data
assignments. The source for the subroutine templates is found in the directory $STAGSHOME/
examples/usersub.

Common blocks

Some subroutines utilize FORTRAN common blocks for I/O; see “common blocks” on page 12-6.
In general, not all of the common blocks shown for a specific subroutine will be required for a
particular application. Only those common blocks that are pertinent to the application at hand
need be included in the corresponding user-written subroutine. Of course, it does no harm to
include unused common data. Just be sure not to make data assignments to those items which
are not applicable.
STAGS 5.0 User Manual April, 2009 12-7

User-Written Subroutines Subroutine Specifications
Data description

Tabular descriptions are given for all I/O data for each subroutine. Where user-written subroutine
output data are identical to data on a corresponding input record, that record is referenced in the
subroutine specification in lieu of including redundant documentation. For example, in
subroutine USRPT (see page 12-58), the table entry

indicates that “category C” USRPT output data are exact counterparts of data on an S-2 input
record. Referring to the S-2 record description on page 7-8, it is obvious that the implied
description of category C output data are

xax = XAX xay = XAY xaz = XAZ

yax = YAX yay = YAY yaz = YAZ

and that defining COMMON/NEWSY/ is equivalent to defining an S-2 record with the same data.
This compact notation provides insight into the relationships that exist between user-written
subroutines and input records.

C

COMMON/NEWSY/

xax xay xaz

yax yay yaz

S-2 (p. 7-8)
12-8 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
CROSS Beam Cross Section Properties

Subroutine CROSS is called at each integration point on the reference axis of each beam
having ICROSS = 0 (O-1a, O-2a, T-2, USRELT), and at each integration point on the reference
surface of each shell element having a fabrication which contains smeared stiffeners having
ICROSM=0 (K-6 or WALL). CROSS enables the user to define both geometric and material cross
section properties as a function of position on the reference axis or surface. This is effected by
reference to the Cross Section Table and/or by definition of data directly. As an example, the
basic cross section properties can be defined with a Cross Section Table ID, and eccentricity can
then be defined directly as a function of position on the beam axis.

Shell-unit rings

Rings are numbered locally within each shell unit, from 1 to NRGS (F-2), in the order defined on
O-1a/1b. Subroutine CROSS is called for each discrete ring having ICROSS = 0.

Shell-unit stringers

Stringers are numbered locally within each shell unit, from 1 to NSTR (F-2), in the order defined
on O-2a/2b. CROSS is called for each discrete stringer having ICROSS = 0.

Element-unit beams

Elements are numbered sequentially as they are defined in each element unit, from 1 to ,
where is the number of elements defined on T records, and is the number of elements
defined in USRELT. This establishes local element numbering within each element unit.
Subroutine CROSS is called for each element-unit beam element having ICROSS=0 (defined either
on a T-2 record or in USRELT).

Smeared stiffeners

Smeared stiffeners are identified by a set ID, numbered locally within each applicable shell wall
fabrication from 1 to NSMRS (K-1/WALL), in the order defined on K-6 records or in WALL.
Subroutine CROSS is called for each smeared stiffener having ICROSM=0. Smeared stiffeners are
applicable in both shell units and element units.

nT nU+

nT nU
STAGS 5.0 User Manual April, 2009 12-9

User-Written Subroutines Subroutine Specifications
CROSS Structure

 subroutine CROSS (iunit, ielt, kelt, itype, XYZg, XYs,
 : xsi, ecy, ecz, ilin, iplas)

 INTEGER maxSUB
 PARAMETER (maxSUB = 10)

 INTEGER iunit, ielt, kelt, itype,
 : ilin, iplas
 REAL XYZg(3), XYs(2), xsi, ecy, ecz

 COMMON/CROSSX/ itab, kcross, matb, nsub,
 : torj, scy, scz, nsoyz,
 : kapy, kapz
 INTEGER itab, kcross, matb, nsub, nsoyz
 REAL torj, scy, scz, kapy, kapz

 COMMON/CROSS1/ ba, biy, biz, biyz,
 : soy(4), soz(4)
 REAL ba, biy, biz, biyz,
 : soy, soz

 COMMON/CROSS2/ sa (maxSUB), sy (maxSUB), sz (maxSUB),
 : siy(maxSUB), siz(maxSUB), siyz(maxSUB),
 : isp(maxSUB)
 INTEGER isp
 REAL sa, sy, sz,
 : siy, siz, siyz

 COMMON/CROSS3/ y1 (maxSUB), y2 (maxSUB),
 : z1 (maxSUB), z2 (maxSUB), isoc(maxSUB)
 INTEGER isoc
 REAL y1, y2, z1, z2

 COMMON/CROSS4/ ccc(4,4), bma
 REAL ccc, bma

 COMMON/CROSSM/ eb, gb, rhob, alb
 REAL eb, gb, rhob, alb

***** Define cross section properties. *****

 return
 end

$STAGSHOME/examples/usersub/cross.F contains the code shown in
“CROSS Structure”.
12-10 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
CROSS Data

Input

iunit unit number

ielt (Refer to p. 12-9)

Shell-unit ring: unit local ring ID

Shell-unit stringer: unit local stringer ID

Element-unit beam: unit local element number

Smeared stiffener: smeared stiffener set ID

kelt beam element code; e.g., 210.

Irrelevant for smeared stiffeners.

itype beam type: 0 – element-unit beam
1 – shell-unit ring
2 – shell-unit stringer
3 – skew stiffener
4 – smeared stiffener

XYZg(3) global coordinates

XYs(2) surface coordinates; relevant for shell
units only.

Output

A

xsi ecy ecz

ilin iplas
ring: O-1a (p. 6-50)

stringer: O-2a (p. 6-54)

beam: T-2 (p. 8-9)

B

COMMON/CROSSX/

itab kcross matb

nsub torj scy

scz nsoyz kapy

kapz

J-1 (p. 5-118)

xg yg zg, ,()

X Y,()
STAGS 5.0 User Manual April, 2009 12-11

User-Written Subroutines Subroutine Specifications
Restrictions on variation of cross-section properties

ilin, iplas (A data) and kcross (B data) must be constant within each element.

When plasticity is included , all data must be constant within each element.

If either of the two above restrictions is violated by CROSS (called at each integration point),
STAGS will resolve the discrepancies by resetting conflicting data to the values given for
integration point 1.

Cross section table selection

Set itab > 0. The remaining B data are irrelevant.

C

COMMON/CROSS1/

ba biy biz

biyz soy(4)
soz(4)

J-2a (p. 5-121)J-2b (p. 5-123)

D

COMMON/CROSS2/

sa sy sz

siy siz siyz

isp

J-3a (p. 5-124)

E

COMMON/CROSS3/

y1 y2 z1

z2 isoc

J-3b (p. 5-125)

F
COMMON/CROSS4/

ccc(4,4) bma
J-4a (p. 5-126)J-4b (p. 5-127)

G

COMMON/CROSSM/

eb gb rhob

alb

E Young’s modulus

G shear modulus

weight density

coefficient of thermal expansion

 ✔ A data are always defined, except for smeared stiffeners,
for which it is irrelevant.

ρ

α

iplas 1≥()
12-12 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
General cross section

Set itab = 0 and kcross = 1. Define B, C data.

General subelement cross section

Set itab = 0 and kcross = 2. Define B, D data.

Rectangular subelement cross section

Set itab = 0 and kcross = 3. Define B, E data.

Arbitrary cross section

Set itab = 0 and kcross = 4. Define B, F data.

Define elastic material properties

When itab = 0 only: set matb = 0 and define G data.

Note that nonlinear material properties may be defined indirectly only, by
reference to a Cross Section Table entry (see “Cross section table selection” on
page 12-12).
STAGS 5.0 User Manual April, 2009 12-13

User-Written Subroutines Subroutine Specifications
DIMP Imperfections by Discrete Values

Subroutine DIMP is called for each node point in each shell unit with IWIMP = -1 on the associated
M-5 record and in each element unit with IUDIMP = 1 on the associated H-1 record.

DIMP defines initial geometric imperfections by specifying discrete nodal displacements
representing perturbations of the idealized geometry. Ordinarily, only need be defined.
However, to include higher-order strain imperfections, should also be defined. For
shell units, are translations in the shell coordinate directions, and
are the corresponding rotations. This holds for all shell types, including the user-generated shell
unit (, M-1). Figure 6.6 on page 6-58 shows the positive directions for the

 components. For element units, displacements are in the
computational coordinate directions; refer to Figure 7.1 on page 7-6.

For the E410 and E411 shell elements, imperfections can be generated in two ways: either by
perturbing the geometry alone, or by combining perturbed geometry with initial strain
imperfections. The latter allows a more refined definition because the high-order cubic
displacement element interpolation is made available. For most other elements, only the initial
geometry is perturbed by adding the displacements from DIMP to the idealized initial geometry.
It is sufficient for the great majority of applications to define only a suitable initial geometry. If
IMPTHE = 1 (B-1, BIN file), only initial geometry is used in any case; otherwise, STAGS will
attempt to raise the order of the imperfections using slope information from DIMP.

For element units, the only way to generate the higher-order information is to have access to the
type of shell solid model idealization that created the model. This means access to some type of
parametric surface coordinates for the surface from which the slope information can be derived.
It is a safe bet that for most any model generated by an element unit, a simple perturbed initial
geometry will suffice, with zero input for the rotations.

Shell units are defined analytically, according to equation (4.1) on page 4-8. Because this
relationship exists, slopes can be computed, allowing rotations to be defined as

Specific formulas for the so-called bending numbers , , and for each STAGS shell type
(ISHELL, M-1) are given in Appendix K. It should be noted that STAGS uses this information
automatically when trigonometric expansions are input on the M-6 records.

u v w, ,()

ru rv rw, ,()

u v w, ,() X′ Y′ Z′, ,() ru rv rw, ,()

ISHELL 1=

u v w ru rv rw, , , , ,() x′′ y′′ z′′, ,()

ru βy= rv βx–= rw γ=

βx βy γ
12-14 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
$STAGSHOME/examples/usersub/dimp.F contains the code shown in “DIMP Structure”.

DIMP Structure

 subroutine DIMP (iunit, inode, prop, XYZg, XYs, U)

 INTEGER
 : iunit, inode
 REAL
 : prop(8), XYZg(3), XYs(2), U(6)

***** Define U(1:6) = (u,v,w,ru,rv,rw). *****

 return
 end

DIMP Data

Input

iunit unit number

inode unit local node number

prop(8) M-2 (p. 6-16);
relevant for shell units only.

XYZg(3) global coordinates

XYs(2) surface coordinates;
relevant for shell units only.

Output

U(6)

xg yg zg, ,()

X Y,()

u v w ru rv rw, , , , ,()
STAGS 5.0 User Manual April, 2009 12-15

User-Written Subroutines Subroutine Specifications
Example problem: cylinder with harmonic imperfections

A cylinder with an imperfection defined as the product of an n = 2 (ovalizing) mode and a axial
half-wave mode is described in the following example. The maximum amplitude of the
imperfections is 0.01. Although this example makes rigorous use of the information in Appendix
K, the user will see from the comments that many of the terms are quite small and should be
omitted in a real analysis. Consult Appendix K for more details.

The example subroutine shown below is the default subroutine DIMP.

 SUBROUTINE DIMP (IUNIT, INODE, PROP, XYZg, XYs, VV)

C

C DIMP requires the user to provide output in the array VV.

C Imperfections in VV form the imperfection displacement vector

C at a given node as follows:

C

C VV(1) -- U

C VV(2) -- V

C VV(3) -- W

C VV(4) -- 0 or Ru (beta_y)

C VV(5) -- 0 or Rv (-beta_x)

C VV(6) -- 0 or Rw (gamma or drilling freedom)

C

C INPUTS

C

C IUNIT -- Shell Unit Number

C INODE -- Local (user's) Unit Node #

C PROP -- PROP array from STAGS Manual

C XYZg -- Global coordinate of node

C XYs -- Surface coordinates

C

C OUTPUT

C

C VV -- Array of six displacements. Translations are in

C units of length and rotations are in radians.

C

#include “keydefs.h”

c

 INTEGER IUNIT, INODE

 REAL PROP(8), XYZg(3), XYs(2), VV(6)
12-16 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
C

C Example User Input for trigonometric representation of

C imperfection vector for a cylinder of length 15, radius 25.

C For general DIMP, user programming replaces example below.

C

 X = XYs(1)

 y = XYs(2)

 SPAN = PROP(2) - PROP(1)

 PI = 3.1415927

 RADIUS = PROP(5)

 Y1 = PI*Y/180.

 WMAX = .01

 CX = COS(PI*X/SPAN)

 CY = COS(2.*Y1)

 SX = SIN(PI*X/SPAN)

 SY = SIN(2.*Y1)

 WX = -WMAX*(PI/SPAN)*SX*CY

 WY = -2.*WMAX*CX*SY

 WXY = 2.*WMAX*(PI/SPAN)*SX*SY

C

C TRANSLATIONS (NOTE HOW SMALL VV(1) AND VV(2) ARE)

C

 VV(1) = WX**2*SPAN/2.

 VV(2) = WY**2/(2.*RADIUS)

 VV(3) = WMAX*CX*CY

C

C IN-PLANE DERIVATIVES (NOTE HOW VERY SMALL!)

C

 U_Y = WX*SPAN*WXY

 V_X = WY*WXY/RADIUS

C

C ROTATIONS, FROM FORMULAS (2.24 and 2.57)

C

 BETAX = WX

 BETAY = (WY-VV(2))/RADIUS

 GAMMA = 0.5*(V_X - U_Y/RADIUS)

 VV(4) = BETAY

 VV(5) = -BETAX

 VV(6) = GAMMA

C

C End Example

C

 RETURN

 END
STAGS 5.0 User Manual April, 2009 12-17

User-Written Subroutines Subroutine Specifications
FORCET Load Factor History for Transient Analysis

Subroutine FORCET is called when IFORCE = 1 on the E-2 record.

$STAGSHOME/examples/usersub/forcet.F contains the code shown in “FORCET Structure”.

FORCET Structure

 subroutine FORCET (t, k, Pf)

 INTEGER
 : k
 REAL
 : t, Pf

***** Define load factor. *****

 return
 end

FORCET Data

Input

t time

k load set ID 1 – load system A
2 – load system B

Output

Pf load factor
12-18 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
LAME Reference Surface Geometry

Subroutine LAME is called for each node point in each shell unit with ISHELL = 1 on the
associated M-1 record. It specifies:

• the position of the node in branch coordinates given the
surface coordinates

• the tangents (also in branch coordinates) to the coordinate lines
generated by the surface coordinates

• a degree-of freedom (dof) option, relevant only when are non-
orthogonal

If the radius vector r from the origin of the branch (shell unit) to a given nodal point is defined
by a relation of the type

then the tangent vectors and are

The user must provide the radius vector and its partial derivatives at each node

By default, PROP (M-2, p. 6-16) is used to set the range of as

However, when IUGRID = 1 (N-1, p. 6-34), the range of is set to

PROP remains intact, but is not used to set the range of when IUGRID = 1;
see M-2, p. 6-16, and N-1, p. 6-34.

x y z, ,() X Y,()

x y z, ,()
X Y,()

X Y,()

r
x
y
z⎩ ⎭

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ f X Y,()

g X Y,()
h X Y,()⎩ ⎭

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

= =

r,X r,Y

r,X

f,X
g,X
h,X

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

X∂
∂r= = r,Y

f,Y
g,Y
h,Y

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

Y∂
∂r= =

r X Y,()
X∂

∂r
Y∂

∂r

X Y,()

PROP 1() X PROP 2()≤ ≤ PROP 3() Y PROP 4()≤ ≤

X Y,()

0 X 1≤ ≤ 0 Y 1≤ ≤

X Y,()
STAGS 5.0 User Manual April, 2009 12-19

User-Written Subroutines Subroutine Specifications
STAGS uses the tangent vectors and to generate the shell coordinates. The
shell normal direction is defined by the cross product .

Non-orthogonal surface coordinates

When the surface coordinates are non-orthogonal, the user selects either or to
determine one of . The remaining axis is chosen to complete a right-handed orthogonal
system. If islam is set to 1, is in the direction defined by . If islam is set to 2, is in
the direction defined by . For most shell definitions, the direction vectors are naturally
orthogonal, and the choice of islam is immaterial. If the direction vectors are not orthogonal,
the choice of islam may be important, since the model boundary conditions and specified
displacements depend on this choice. It will always be possible to define the commonly-used
boundary conditions such as symmetry and simple support with a suitable choice of islam.

$STAGSHOME/examples/usersub/lame.F contains the code shown in “LAME Structure”.

LAME Structure

 subroutine LAME (iunit, prop, XYs, islam)

 COMMON / LAMEX / f, g, h,
 & fX, gX, hX,
 & fY, gY, hY
 INTEGER iunit, islam
 REAL prop(8), XYs(2),
 & f g, h,
 & fX, gX, hX,
 & fY, gY, hY

*** Define f g h fX gX hX fY gY hY ***
*** ***
*** Set islam when (X,Y) surface coordinates are nonorthogonal ***

 return
 end

r,X r,Y X′ Y′,() Z′
X′ Y′×

X Y,() r,X r,Y
X′ Y′,()

X′ r,X Y′
r,Y
12-20 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
Example problem: quadrilateral plate with shell coordinates derived from directions

In the Quadrilateral Plate (ISHELL = 3, M-1), the shell coordinates are parallel to the
 branch coordinates (see “Standard Shell Surfaces” on page 6-2). This can be

inconvenient when loading and boundary conditions require that on the boundary be
aligned with the edge (see Figure 6.6 on page 6-58). This example solves this problem by
assigning to the tangent line generated by the surface coordinate (islam=1) for all interior
points plus boundary lines 2 and 4. For those points lying along boundary lines 1 and 3,
islam=2 is set, meaning that the surface tangent will be aligned with the shell coordinate.

In this example, IUGRID = 1 (N-1, p. 6-34) must be set. This option defines the range of the
surface coordinates as

PROP(1:8) (M-2, p. 6-16) are used to define the branch coordinates of the four corner points
according to the conventions used for the Quadrilateral Plate (ISHELL = 3, M-1).

LAME Data

Input

iunit shell unit number

prop(8) M-2 (p. 6-16)

XYs(2) surface coordinates

Output

islam dof option: 1 – is parallel to X

2 – is parallel to Y

relevant when are non-orthogonal

COMMON/LAMEX/

f g h

fX gX hX

fY gY hY

X Y,()

X′

Y′

X Y,()

r

r,X

r,Y

ξ η,()

X′ Y′ Z′, ,()
x y z, ,()

u v w, ,()

X′ X

Y Y′

X Y,()

0 X 1≤ ≤ 0 Y 1≤ ≤

x y,()
STAGS 5.0 User Manual April, 2009 12-21

User-Written Subroutines Subroutine Specifications
The example subroutine shown below is the default subroutine LAME.

 subroutine LAME (IUNIT, PROP, XYs, ISLAM)

 Integer

 : IUNIT, ISLAM, init

 save init

 Real

 : XS, YS, PROP(*),

 : F, G, H,

 : FX, GX, HX,

 : FY, GY, HY, XYs(2)

#include “stndcm.h”

 Common /LAMEX /

 : F, G, H,

 : FX, GX, HX,

 : FY, GY, HY

 data init/1/

C

C Given Shell Unit No. IUNIT, and surface coordinates XYs

C compute branch coordinates F, G, H of the point.

C

C Compute the First Fundamental Form, or the derivative of the

C position vector F, G, H as a function of XYs(1) (FX, GX, HX) or of

C XYs(2) (FY, GY, HY). If ISLAM = 1, STAGS aligns the local x axis

C along the vector (FX, GX, HX); if ISLAM = 2, STAGS aligns the

C local y axis along the vector (FY, GY, HY). The z axis is

C always perpendicular to both base vectors (FX, GX, HX) and

C (FY, GY, HY)

C

C In this example, create a grid for the quadrilateral plate (ISHELL=3,

C see STAGS Manual), except this time align the X' shell coordinate

C direction along the (FX, GX, HX) direction, and assign the Y' axis

C to complete a right-hand orthogonal system. Only Boundary Lines 1 and

C 3, (XS = 0. or XS = 1.), align the Y' axis with (FY, GY, HY) so that

C the local coordinates line up with the boundary lines (for loads and

C boundary conditions).

C

C *** NOTE: TO RUN THIS ROUTINE, ASSIGN IUGRD = 1, Record N-1. This causes

C *** 0<=XS<=1.;0<=YS<=1. Also, assign PROP array in the same manner as

C *** in ISHELL = 3 (Quadrilateral Plate).
12-22 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
C

C Begin Execution

C

 XS = XYs(1)

 YS = XYs(2)

 if (init .eq. 1) then

 init = 0

 write(not, 1)

 endif

 1 format(/,1x,'************* WARNING!! ************',/

 & 1x,'Default Lame for quadrilateral plate used.',/)

C

C Compute reduced coordinate functions

C

 f1 = (1.-XS)*(1.-YS)

 f2 = (1.-XS)*YS

 f3 = XS*YS

 f4 = XS*(1.-YS)

C

C Compute position coordinates of point at XS,YS

C

 F = f1*PROP(1) + f2*PROP(3) + f3*PROP(5) + f4*PROP(7)

 G = f1*PROP(2) + f2*PROP(4) + f3*PROP(6) + f4*PROP(8)

 H = 0.

C

C Compute X' direction vector

C

 f1x = -(1.-YS)

 f2x = -YS

 f3x = YS

 f4x = -f1x

 FX = f1x*PROP(1) + f2x*PROP(3) + f3x*PROP(5) + f4x*PROP(7)

 GX = f1x*PROP(2) + f2x*PROP(4) + f3x*PROP(6) + f4x*PROP(8)

 HX = 0.

C

C Compute the Y' direction vector

C

 f1y = -(1.-XS)

 f2y = -f1y

 f3y = XS

 f4y = -XS

 FY = f1y*PROP(1) + f2y*PROP(3) + f3y*PROP(5) + f4y*PROP(7)

 GY = f1y*PROP(2) + f2y*PROP(4) + f3y*PROP(6) + f4y*PROP(8)

 HY = 0.
STAGS 5.0 User Manual April, 2009 12-23

User-Written Subroutines Subroutine Specifications
C
C Check if on boundary line (to within real * 4 accuracy)
C
 if (XS .lt. 1.e-5 .or. ABS(XS -1.) .lt. 1.e-5) then
C
C You are on boundary line 1 or 3: set Y' = (FY, GY, HY)
C by setting ISLAM = 2 (STAGS does the rest)
C
 ISLAM = 2

 ELSE
C
C You are in the interior, or on lines 2 and 4: default is OK
C
 ISLAM = 1

 ENDIF
C
C End computation
C
 return
 end
12-24 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
TEMP Thermal Loading

Subroutine TEMP is applicable if and only if ITEMP > 0 on the C-1 record (indicating that thermal
loadings are to be taken into account during analysis and post-processing operations). When
thermal loadings are taken into account, subroutine TEMP is called at each integration point
on the reference surface for shell elements and for each point on the reference axis for beams.
Nodal points are used instead of integration points for E48X and E8XX elements. At each
reference point, TEMP is called once for each through-thickness integration point in shell wall
fabrications. TEMP is also called once at the centroid of each subelement in beam cross sections
(where thermal loading is permitted only for , J-1). TEMP is also called during the
post-processing phase at each point selected for stress output. See the notes subsection, below,
for information about thermal analysis capabilities in the current version of STAGS.

By convention, the stress-free temperature is taken as zero in STAGS. It is incumbent upon the
user to define relative temperatures in TEMP: if the actual environmental condition at integration
point i is and the corresponding stress-free temperature is , the temperature defined by TEMP

should be .

Thermal loading is added to mechanical loading as part of the base loads, which are scaled by
the load factors and (see Section 6.5 “Loads” on page 6-64). Thermal loading is added
exclusively to either Load System A or Load System B, as specified by ITEMP, C-1.

$STAGSHOME/examples/usersub/temp.F contains the code shown in “TEMP Structure”.

TEMP Structure

 subroutine TEMP (iunit, ielt, kelt, itype,
 : XYZg, XYs, Zfab, YZsec, h, T)

 INTEGER iunit, ielt, kelt, itype
 REAL XYZg(3), XYs(2), Zfab, YZsec(2), h, T

***** Define temperature, T. *****

 return
 end

KCROSS 3≤

Ti T

T Ti T–=

PA PB
STAGS 5.0 User Manual April, 2009 12-25

User-Written Subroutines Subroutine Specifications
TEMP Data

Input

iunit unit number

ielt element number (unit local element ID)

kelt element code; e.g., 410

itype element type: 1 – shell element
2 – element-unit beam
3 – shell-unit ring
4 – shell-unit stringer

XYZg(3) global coordinates

XYs(2) surface coordinates

Zfab , fabrication normal coordinate

YZsec(2) cross-section coordinates

h shell wall thickness

• XYs is relevant for shell units only.

• Zfab and h are relevant for shell elements only.

• YZsec is relevant for beam elements only.

• The remaining data are always relevant.

Output

T temperature

xg yg zg, ,()

X Y,()

z

y z,()
12-26 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
Example problem: linear through-thickness shell-wall temperature gradient

A linear thermal gradient through the thickness of a shell wall may be expressed as

where is the fabrication normal coordinate, h is the wall thickness, is the temperature at
 (i.e., the middle-surface temperature), is the top-surface temperature, and is the

bottom-surface temperature (see Figure 5.6 on page 5-130).

Utilizing User Parameters (see “L-1 User Parameters Summary” on page 5-143) to input the top-
surface and bottom-surface temperatures,

Ttop = and Tbot = ,

TEMP can define a linear temperature variation as in the code shown below.

The example subroutine shown above is the default subroutine TEMP.

 subroutine TEMP (iunit, ielt, kelt, itype,
 : XYZg, XYs, Zfab, YZsec, h, T)

 COMMON
 : / UPF / Ttop, Tbot, UserFlo(198)
 INTEGER
 : iunit, ielt, kelt, itype
 REAL
 : XYZg(3), XYs(2), Zfab, YZsec(2),
 : h, T,
 : Ttop, Tbot, UserFlo,
 : Tmid, delT, Tgrad

 Tmid = (Ttop + Tbot)/2
 delT = Ttop - Tbot
 Tgrad = delT/h
 T = Tmid + Tgrad*Zfab

 return
 end

T0 Ttop Tbot+() 2⁄= ΔT Ttop Tbot–= T T0
ΔT
h

-------z+=

z T0

z 0= Ttop Tbot

Ttop Tbot
STAGS 5.0 User Manual April, 2009 12-27

User-Written Subroutines Subroutine Specifications
Notes:

In a recent effort to evaluate thermal analysis capabilities in the current version of STAGS for
shell and solid elements and in doing so to correct “simple” errors that were found, the following
observations about STAGS’ thermal analysis capabilities and shortcomings were reported:

Test cases for free thermal expansion provide excellent indications that the
machinery in STAGS for thermal loading is working. Standard free thermal
expansion analysis cases were run—using “historical” material and fabrication
specification options and using GCP (Generalized Constitutive Processor)
material and fabrication specification options—for all of the basic shell and solid
elements in the current version of STAGS. For shell elements, the default plane-
stress material response should yield zero energy for free expansion. All of the
shell and solid elements in the current version of STAGS passed this test.

The E330, E430 and E480 shell elements must be defined with GCP material and
fabrication specifications when thermal loadings are applied: these elements do
not take thermal loadings into account when the historical material- and
fabrication-specification methods are used. To obtain correct energy printouts
with these elements, three or more integration points must be used through the
thickness of each layer. This is needed for accuracy anyway, when thermal
gradients are present. A single integration point may be used in each layer of a
fabrication with many layers—if the analyst’s user-written TEMP subroutine
takes that into account.

With the E320, E410 and E420 shell elements in the current version of STAGS,
the plane-strain material option is only available for ISOTROPIC materials that are
specified via the “historical” procedures. This option is not implemented via the
GCP, yet. Results obtained for these elements (with historical plane-strain
specifications) were identical with results obtained with STAGS’ solid elements
(with responses in the thickness direction suppressed).

To implement a plane-strain option in the GCP, a new kinematic class must be
added. The new kinematic class (which can be implemented with a few weeks of
funded effort) is essential for the E330, E430 and E480 shell elements. It is not
critically required for STAGS’ E8XX sandwich elements, though: plane strain
behavior can be modeled via boundary conditions, with them.

There is not enough information in the “historical” material and fabrication
specification procedures in the current version of STAGS to specify generalized
plane-strain materials: material properties in the thickness direction are not
defined. That information could be added to the historical procedures, but the
cost/benefit figures for doing so are unattractive (at best). Much better results are
anticipated from enhancements to the GCP.
12-28 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
UCONST Lagrange Constraints

Subroutine UCONST is called when NCONST > 0 on the B-2 record.

$STAGSHOME/examples/usersub/uconst.F contains the code shown in “UCONST Structure”. See
Section 12.3 “Example Problem” on page 12-66 for a practical example of UCONST.

UCONST Structure

 subroutine UCONST

 INTEGER maxN
 PARAMETER (maxN = 100)

 INTEGER iu(maxN), ix(maxN), iy(maxN), iz(maxN), id(maxN)
 REAL cc(maxN)

 INTEGER nterms

***** Repeat for each constraint. *****

 call CONSTR (nterms, iu, ix, iy, iz, id, cc)

 return
 end

UCONST Data

Output

nterms G-3 (p. 5-40)

iu ix iy iz id cc G-4 (p. 5-43)
STAGS 5.0 User Manual April, 2009 12-29

User-Written Subroutines Subroutine Specifications
UPRESS Pressure Loading

Subroutine UPRESS is called at each integration point on the reference surface of each shell
element where on the associated Q-1 (shell unit) or U-1 (element unit) record.
(Nodal points are used instead of integration points for elements E480 and E6XX.)

Applied loads are normally computed as the product of base loads and load factors, summed for
load systems A and B (see Section 6.5 “Loads” on page 6-64). UPRESS provides a more
generalized pressure-loading feature. Input arguments include time (t) and load factors (pA,pB),
and output is a pressure value (p) which is added directly to the applied loads (i.e., UPRESS

output is not placed in either load system and is not scaled). Normally, UPRESS should define the
pressure, p, as

where , are the load factors for load systems A and B; and , are the base load
pressure values for the two load systems. UPRESS permits more general pressure loading,
however.

Subroutine UPRESS is called at each load/time step, and may allow pressure distribution (base
loading) to vary during the analysis history in any arbitrary way. UPRESS is the only means by
which base loads may be varied during an analysis. For all other loading features, only load
factors vary, with base loads held constant.

When subroutine UPRESS is utilized, any pressure loads defined in the INP file (LT = 4 or 5,
Q-3/U-3) are ignored.

$STAGSHOME/examples/usersub/upress.F contains the code shown below:

UPRESS Structure

 subroutine UPRESS (t, pA, pB, iunit, ielt, kelt,
 : XYZg, XYs, live, press)

 INTEGER iunit, ielt, kelt, live
 REAL t, pA, pB, XYZg(3), XYs(2), press

***** Define pressure. *****

 return
 end

IPRESS 1=

p PA pA⋅ PB pB⋅+=

PA PB pA pB
12-30 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
UPRESS Data

Input

t time

pA load factor for load system A

pB load factor for load system B

iunit unit number

ielt element number (unit local element ID)

kelt element code; e.g., 410

XYZg(3) global coordinates

XYs(2) surface coordinates

 ✔ XYs is relevant for shell units only.

 ✔ The remaining data are relevant for shell units and element units.

Output

live pressure type 0 – dead pressure
1 – live pressure

press pressure value

xg yg zg, ,()

X Y,()
STAGS 5.0 User Manual April, 2009 12-31

User-Written Subroutines Subroutine Specifications
USRDGD Material Degradation Model

Subroutine USRDGD allows the STAGS user to implement his or her own material degradation
model or to modify one of the existing degradation models (which are implemented in the
current version of STAGS in DEGRADi.F subroutines). The existing first–ply failure models
(which are implemented in STAGS in FPFi.F routines) can be utilized with the user’s USRDGD

subroutine if they fit the user’s model. It will be necessary for the user to write his or her own
USRFPF subroutine to implement a new failure model if they do not fit. Subroutine USRDGD is
called [by STAGS’ Generic Constitutive Processor (GCP) facility] for each element that is
fabricated with an orthotropic elastic brittle GCP material for which on the I-10a
(ORT_EL_BR_MATERIAL) record that defines that material.

As a template for adventuresome STAGS users, a material degradation model using the
maximum strain criteria has been implemented in the USRDGD subroutine that is distributed with
the program (and which is listed below for the reader’s convenience). The calling arguments to
USRDGD are documented in this listing and will not be further described here.

c=deck usrdgd
c=purpose Material degradation model using a user-written routine
c=author Norm Knight/Veridian
c=version January 2000

#include “keydefs.h”

* ***
* * This routine is provided as a template for a user that wants to *
* * install a personal material degradation model. It is called iff *
* * the IDGRD parameter in the ORT_EL_BR_MATERIAL GCP material *
* * model data is set equal to 99 *
* ***

#if _usage_
* --
* CALLING SEQUENCE:
*
* call USRDGD (iCMtyp, mpd, oldhmd, newhmd,
* & nwold, nwnew, flag, status)
*
* INPUT ARGUMENT TYPE DESCRIPTION
*
* iCMtyp [I] Kinematic option for material processing
* mpd(*) [R] Material property data
* nwold [I] Number of words of old historical data
* oldhmd(*) [R] Historical data (from previous converged soln)
* flag(*) [I] Failure flag vector
*
* OUTPUT ARGUMENTS:
*
* nwnew [I] Number of words of new historical data
* newhmd(*) [R] New historical data

USRDGD Template

IDGRD 99=
12-32 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
* status [I] Return status: (OK==>status=qOK)
* --
#endif

 subroutine USRDGD (iCMtyp, mpd, oldhmd, newhmd,
 & nwold, nwnew, flag, status)

 _implicit_none_

#include “cs4xxx.h”
#include “qgcp.h”
#include “stndcm.h”
#include “upfi.h”

 integer iCMtyp
 real mpd(*)
 float oldhmd(*)
 float newhmd(*)
 integer nwold
 integer nwnew
 integer flag(*)
 integer status

* The original input material data are stored in the mpd array
* in the order given in the ORT_EL_BR_MATERIAL material data
* input line for the GCP data

* --
* I N T E R N A L D E C L A R A T I O N S
* --

 integer numcol

 float E1, E2, E3
 float G23, G13, G12
 float nu23, nu13, nu12

* dfactr is equivalent to beta in the write-ups and
* it is used to degrade the material properties

 float dfactr

* ... BETA=dfactr ...
*
* If beta (which is mpd(39)) is less than zero, then degrade by
* beta only once on initial failure; if beta is positive, then
* degrade recursively on each solution step

 dfactr = ABS(mpd(39))

* --
* L O G I C
* --
*
* Set up nwnew and the newhmd array with new
* data based on element type

 if (iCMtyp.eq.1) then

* 1D CONTINUUM (ROD OR BAR ELEMENT)
* =================================
 numcol = 1

 elseif (iCMtyp.eq.2) then

* C0/C1 BEAM
* ==========
 numcol = 3
STAGS 5.0 User Manual April, 2009 12-33

User-Written Subroutines Subroutine Specifications
 elseif (iCMtyp.eq.3) then

* C0 SHELL
* ========
 numcol = 5

 elseif (iCMtyp.eq.4) then

* C1 SHELL (PLANE STRESS)
* =======================
 numcol = 3

* First load in constitutive data into local variables
* using original data if nwold=0 and historical data
* if nwold .ne. 0

 if (nwold.eq.0) then

* Set original material data values in
* elastic constant variables

 E1 = mpd(1)
 E2 = mpd(2)
 E3 = mpd(3)
 G23 = mpd(4)
 G13 = mpd(5)
 G12 = mpd(6)
 nu23 = mpd(7)
 nu13 = mpd(8)
 nu12 = mpd(9)

 else

* Set saved historical data values in elastic constant
* variables (values from the last previously converged
* and archived set)

 E1 = oldhmd(1)
 E2 = oldhmd(2)
 E3 = oldhmd(3)
 G23 = oldhmd(4)
 G13 = oldhmd(5)
 G12 = oldhmd(6)
 nu23 = oldhmd(7)
 nu13 = oldhmd(8)
 nu12 = oldhmd(9)

 endif

* Degrade properties if failure criterion indicates failure

 if (flag(1) .ne. 0) then

* Fiber failure

 if (mpd(39).lt.0.0 .and. NINT(oldhmd(10)).ne.0) then
 E1 = oldhmd(1)
 nu12 = oldhmd(9)
 else

 E1 = dfactr*E1
 nu12 = dfactr*nu12
 endif

 endif

 if (flag(2).ne.0) then

* Matrix failure
12-34 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
 if (mpd(39).lt.0.0 .and. NINT(oldhmd(11)).ne.0) then
 E2 = oldhmd(2)
 nu12 = oldhmd(9)
 else

 E2 = dfactr*E2
 nu12 = dfactr*nu12

 endif

 endif

 if (flag(3).ne.0) then

* In-plane shear failure

 if (mpd(39).lt.0.0 .and. NINT(oldhmd(12)).ne.0) then
 G12 = oldhmd(6)
 else
 G12 = dfactr*G12
 endif

 endif

* Set nwnew = number of words of constitutive historical data

 nwnew = 12

* Store new properties for this point

 newhmd(1) = E1
 newhmd(2) = E2
 newhmd(3) = E3
 newhmd(4) = G23
 newhmd(5) = G13
 newhmd(6) = G12
 newhmd(7) = nu23
 newhmd(8) = nu13
 newhmd(9) = nu12
 newhmd(10) = flag(1)
 newhmd(11) = flag(2)
 newhmd(12) = flag(3)

 elseif (iCMtyp.eq.5) then

* 2D PLANE STRAIN CONTINUUM
* =========================
 numcol = 3

 elseif (iCMtyp.eq.6) then

* 2D axisymmetric continuum
* =========================

 numcol = 4

 elseif (iCMtyp.eq.7) then

* 3D CONTINUUM
* ============
 numcol = 6

 endif

* SET STATUS VARIABLE
* ===================
 status = qOK

 end
STAGS 5.0 User Manual April, 2009 12-35

User-Written Subroutines Subroutine Specifications
The user may include data in addition to that which is transmitted to and from subroutine
USRDGD through its calling sequence via STAGS’ user parameter input facility—using L-2a and/
or L-2b records as required (for integers and real variables, respectively). This may be
accomplished by including the upfi.h header file or by including the following explicit
declarations and common statements:

integer userint
common / upi / userint(200)

and

real userflo
common / upf / userflo(200)

The csrxxx.h header file that is included in this version of USRDGD contains four integer
variables that are used to identify which material point is being examined:

idelt Element number within a unit

eltip Element surface integration point number

layer Layer number within the laminate

layip Through-the-thickness integration point within a layer

On entry into the routine, a check is made to identify the kinematics option for the element by
testing the value of the parameter iCMtyp. For C1 shell elements, iCMtyp equals 3, and there are
three stress values (σxx, σyy, τxy). Similarly there are three strain values.

Next, the value of nwold is checked. If nwold is zero, then no failure at this material point has
occurred previously (i.e., at a previous solution step, not at a previous iteration); and the original
values for the elastic constants from the mpd array are loaded into local variables for these
material constants. For convenience, local variables for a three-dimensional elastic system are
stored. If nwold is nonzero, however, then failure at this material point has occurred previously;
and the degraded elastic constants from the previous solution step are loaded from the oldhmd

array into the local variables.

The next step is to test to determine if failure in the fiber (or 1) direction has occurred during
this step (if flag(1) is not zero) or if no failure has yet occurred (flag(1) equals zero). If flag(1) is
not zero, then the material properties are degraded in a manner that depends on whether the
failure is tensile (flag(1) = +1) or compressive (flag(1) = -1). Before the properties are degraded,
the type of degradation to use is determined based on the sign of mpd(37) that corresponds to the
variable β in the ORT_EL_BR_MATERIAL input for GCP. If this value is negative, then the
degradation factor is applied only once. If it is positive, then the degradation factor is applied
recursively for each solution step. As such, the properties may be degraded instantaneously to
nearly zero, or they may be gradually reduced over several solution steps. If flag(1) equals zero,
then no material degradation is done. A check is also made to determine if failure occurred
during the previous solution step so that an initial degradation of the material properties is
12-36 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
performed. This test examines the entries in the oldhmd array corresponding to the failure flags
(e.g., oldhmd(10) corresponds to flag(1) and so on). The process continues with flag(2) and flag(3)
in a similar manner.

After testing each value of the flag array, the new values of the elastic constants are stored in the
newhmd array. Again for convenience, the elastic constants for a three-dimensional solid are
stored. In addition, the three failure flags are also stored. Hence a total of nwnew real numbers
are stored in the newhmd array for each material point that has failed. In this template, nwnew

equals 12 because there are nine elastic constants and three failure flags.

Subroutine USRDGD is called for each layer integration point through the thickness of each layer
in the laminate for each surface integration point of the element and for each element. It is a very
low-level routine that is called many, many times; and if the user should choose to print output
within this routine, he or she should expect a lot!

Because USRDGD is a low-level routine, it is called during the evaluation of both the first and
second variations during a nonlinear iteration. Hence multiple passes through this routine may
occur as a consistent state for the first and second variation is always sought.
STAGS 5.0 User Manual April, 2009 12-37

User-Written Subroutines Subroutine Specifications
USRELT Elements

Subroutine USRELT is called once for each element unit where on the associated H-1
record. USRELT may define all of the elements in a given element unit, or it may be used to
complement elements defined on T records. Elements are numbered sequentially as they are
defined in USRELT, from to , where is the number of elements defined on T
records, and is the number of elements defined in USRELT. Thus, element numbering is
continuous, from 1 to within each element unit.

USRELT Structure

 subroutine USRELT (iunit)

 INTEGER maxN
 PARAMETER (maxN = 9)
 INTEGER
 : iunit,
 : node(maxN), kelt, icross, iwall,
 : ilin, iplas, integ, ipenl,
 : iang
 REAL
 : xsi, zeta, ecy, ecz,
 : rx, ry, rz

***** Repeat for each beam element. *****

 call BEAM (node, kelt, icross,
 : xsi, ecy, ecz,
 : ilin, iplas)

***** Repeat for each shell element. *****

 call SHELL (node, kelt, iwall,
 : zeta, ecz,
 : ilin, iplas,
 : integ, ipenl, iang,
 : rx, ry, rz)

 return
 end

IUWE 1=

nT 1+ nT nU+ nT

nU

nT nU+
12-38 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
Beams node(1) = N1 node(2) = N2 node(3) = NR

Triangles node(1) = N1 node(2) = N2 node(3) = N3

Quadrilaterals node(1) = N1 • • • node(9) = N9

$STAGSHOME/examples/usersub/usrelt.F contains the code shown in “USRELT Structure”. See
Section 12.3 “Example Problem” on page 12-66 for a practical example of USRELT.

USRELT Data

Input

iunit unit number

Output

A

node kelt icross
xsi ecy ecz
ilin iplas

T-2 (p. 8-9)

See below re: node array.

B

node kelt iwall
zeta ecz
ilin iplas
integ ipenl iang

Triangle: T-3 (p. 8-14)

Quadrilateral: T-4 (p. 8-17)

T-4a (p. 8-23)

See below re: node array.

C
rx ry rz Triangle: T-3a (p. 8-16)

Quadrilateral: T-4b (p. 8-24)

 ✔ A data applies to beams.

 ✔ When icross = 0, then the remaining A data are irrelevant.

 ✔ B, C data apply to shells.

 ✔ When iwall = 0, then the remaining B data, except iang, is irrelevant.

 ✔ C data are relevant only when iang = 1.

 ✔ integ and ipenl are not used for triangles, but must appear in the
call SHELL argument list.
STAGS 5.0 User Manual April, 2009 12-39

User-Written Subroutines Subroutine Specifications
USRFAB User-Specified Material & Fabrication Properties

User-written subroutine USRFAB, like subroutine WALL, enables the user to specify material and/
or fabrication properties at each surface integration point of selected elements. Subroutine WALL

lets the user do this for shell elements for which material and fabrication properties are defined
via historical methods (via I*, J* and K* records, but not with the GCP), when it is necessary or
desirable to circumvent or supplement STAGS’ regular property specification procedures. The
user does this with subroutine WALL by setting the IWALL parameter equal to zero for any shell–
and/or element–unit element(s) for which some or all of the material and/or geometric properties
must be specified individually (see M-5, T-3, T-3xx, T-4xx and USRELT, for example). Subroutine
USRFAB enables the user to specify material and/or fabrication properties at each surface
integration point, for each of the layer points through the thickness, of selected elements that
utilize the GCP for specification of and operations with these properties.

When a user-written GCP fabrication—which requires the specification of a GCP material and the
specification of the GCP fabrication (geometric and control) parameters to be used—is desired
for selected elements, the user (in his or her model-specification input file for STAGS’ s1
processor) must specify nominal (default) GCP material properties for these elements in the usual
way (via I-6a, I-7a, I-8a, I-9a, I-10a and/or I-11a material-property-specification records, as
appropriate); and he (or she) must specify nominal (default) GCP fabrication properties via I-21a
and/or I-22a fabrication-specification records that are commanded by I-5a records on which the
fabrication-identification parameter INFO(1) (which translates to FABID on I-21a and I-22a) is
negative. When an element that has been assigned this “tagged” fabrication is encountered in
STAGS’ s2 processor (or in other post-model-generation STAGS processors), the original material
and fabrication properties are loaded into their appropriate header files (common blocks). User-
written subroutine USRFAB is then called for each integration point—to redefine zero or more of
these properties, as and if it is necessary to do so.

The user’s USRFAB subroutine must not change the number of layers in the fabrication; but it can
modify most of the other fabrication properties (thicknesses, orientation angles, etc.), as and if it
is necessary to do so.

The user’s USRFAB subroutine must not change the material type (ISOELASTIC, ORTHOELAST,
PLASTIC_WB, etc.); but it can select and use a different material of the same type, if desired. On
entry into subroutine USRFAB, all of the data for the original (nominal) material are defined in
the appropriate header file(s) for that material (see the header-file listings following the USRFAB

Structure table). If any or all of these data are modified for any given layer(s), USRFAB must call
STAGS’ subroutine MATSET (to identify the layer(s) that have changed) before returning to the
calling program. For a layered shell fabrication with a material that varies from layer to layer,
USRFAB must specify changes (from the nominal material properties) for one or more layers,
then call MATSET to identify the modified layer(s). This process must be repeated until all
12-40 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
modified layers have been changed and identified. Each call to MATSET generates a material data
entry that will be used in various routines to load material data needed for computations.

The FORTRAN code shown in the “USRFAB Template” listing is available in the $STAGSHOME/
examples/usersub directory. The user must replace the boldfaced “write...,” “format...” and
“STOP” lines, on page 12-44, with coding that is appropriate for his or her problem. The header
files referenced in the boldfaced include statements, on page 12-44, are shown after this
“USRFAB Template” listing. The calling sequence for subroutine MATSET is documented
immediately after these header file listings.
STAGS 5.0 User Manual April, 2009 12-41

User-Written Subroutines Subroutine Specifications
USRFAB Template

c=deck usrfab
c=purpose Template for user-written subroutine USRFAB
c=version May, 2002

#include “keydefs.h”

#if _usage_
*
* Calling sequence:
*
* call USRFAB (t, Pa, Pb, iunit,
* ielt, kelt, kfab, eltip,
* XYZg, XYs, ntvals, tvals,
* nlayrs, lays, laymat, laythk,
* layint, layang, zeta, ecz,
* ilin, iplas)
*
* Input Arguments
* ===============
* t = Time (seconds)
* Pa = Load factor for system A
* Pb = Load factor for system B
* iunit = Unit number; unit = 0 specifies the entire model
* ielt = Local element number within the specified unit; when
* unit = 0, elt specifies the global elt number
* kelt = 1 -- Unit is a shell unit
* = 2 -- Unit is an element unit
* kfab = Fabrication number assigned for this element
* eltip = Surface (volume) integration point number in element
* XYZg = Global coordinates at integration point
* XYs = Shell X,Y coordinates at integration point
* ntvals = Number of temperature sampling points
* tvals = Temperature gradient at sampling points
* nlayrs = Number of layers in fabrication KFAB
* lays = Integer array for (optional) use in call to MATSET
*
* Output Arguments
* ================
* laymat(j) = Material identifier for layer j
* layint(j) = # of through-layer integration pts for layer j
* laythk(j) = Thickness of layer j
* layang(j) = Fabrication orientation angle of layer j
* zeta = Angle from wall-ref coord to fabrication coord
* ecz = Eccentricity in Z' dirn (Z' coord of mid surface)
12-42 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
USRFAB Template (continued)

* ilin = 0 -- Nonlinear strain-displacement relations
* = 1 -- Linear strain-displacement relations
* iplas = 0 -- Elastic material properties used
* = 1 -- Plasticity theory enforced at all integ pts
* = 2 -- Plasticity theory enforced at elt centroid
*
#endif

 subroutine USRFAB (t, Pa, Pb, iunit,
 & ielt, kelt, kfab, eltip,
 & XYZg, XYs, ntvals, tvals,
 & nlayrs, lays, laymat, laythk,
 & layint, layang, zeta, ecz,
 & ilin, iplas)

 _implicit_none_

 Real t
 Real Pa
 Real Pb
 Integer iunit
 Integer ielt
 Integer kelt
 Integer kfab
 Integer eltip
 Real XYZg(3)
 Real XYs(2)
 Integer nlayrs
 Integer ntvals
 Real tvals(ntvals)
 Integer lays(nlayrs)
 Integer laymat(nlayrs)
 Real laythk(nlayrs)
 Integer layint(nlayrs)
 Real layang(nlayrs)
 Real zeta
 Real ecz
 Integer ilin
 Integer iplas
STAGS 5.0 User Manual April, 2009 12-43

User-Written Subroutines Subroutine Specifications
USRFAB Template (continued)

#include “mater1.h”
#include “mater2.h”
#include “mater3.h”
#include “mater4.h”
#include “mater7.h”
#include “mater8.h”
#include “mater9.h”
#include “mater10.h”

#include “stndcm.h”

 Logical debug
 Logical NTITLE

* ====================
* MATERIAL TYPE CODES:
* ====================
*
* Code Items Description
* ---- ----- -----------
* 1 7 Linear elastic isotropic material
* 2 18 Linear elastic orthotropic material
* 3 54 Mechanical sub-layer plasticity material
* 4 44 Linear elastic orthotropic brittle material
* 5 12 Shape-memory-alloy material
* 6 54 Plane-strain material
* 7 36 PDCOMP/PDLAM property material
* 8 32 Abaqus umat material
* 9 19 SHM membrane material
* 10 10 Hahn nonlinear elastic orthotropic material

 debug = .false.
 if (NTITLE('X_UsrFab')) debug = .true.

 write (not,1000)
1000 format (//'ERROR: Subroutine USRFAB has not been provided.')

 STOP

 end
12-44 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
mater1.h Header File

* ***
* mater1.h header file,
* for Linear elastic isotropic material
* ***

 Real e_1, gnu_1, rho_1, alpha_1, beta_1, t_1, m_1
 common /mater1/ e_1, gnu_1, rho_1, alpha_1, beta_1, t_1, m_1

mater2.h Header File

* ***
* mater2.h header file,
* for Linear elastic orthotropic material
* ***
 Real e1_2, e2_2, e3_2, g12_2, g13_2, g23_2
 Real p12_2, p13_2, p23_2, rho_2, a1_2, a2_2, a3_2
 Real b1_2, b2_2, b3_2, T_2, M_2
 common /mater2/ e1_2, e2_2, e3_2, g12_2, g13_2, g23_2,
 & p12_2, p13_2, p23_2, rho_2, a1_2, a2_2, a3_2,
 & b1_2, b2_2, b3_2, T_2, M_2

mater3.h Header File

* ***
* mater3.h header file,
* for mechanical sublayer plasticity material
* ***
 Real e_3, gnu_3, rho_3, alpha_3
 Integer nsubs
 Real ee_ss_3
 common /mater3/ e_3, gnu_3, rho_3, alpha_3,
 & nsubs,
 & ee_ss_3(2,20)
STAGS 5.0 User Manual April, 2009 12-45

User-Written Subroutines Subroutine Specifications
mater4.h Header File

* ***
* mater4.h header file,
* for linear orthotropic elastic brittle matl
* ***

 Real E1_4, E2_4, E3_4
 Real G12_4, G13_4, G23_4
 Real P12_4, P13_4, P23_4, Rho_4
 Real a1_4, a2_4, a3_4
 Real b1_4, b2_4, b3_4, T_4, M_4
 Real e1c_4, e1t_4, e2c_4, e2t_4, gam12f_4
 Real e3c_4, e3t_4, gam23f_4, gam13f_4
 Real Xc_4, Xt_4, Yc_4, Yt_4, Sxy_4
 Real Zc_4, Zt_4, Syz_4, Sxz_4
 Real alpha_4, F12_4, beta_4, IFAIL_4, IDGRD_4
 Real visf0_4, visf1_4, visff_4

 common /mater4/ E1_4, E2_4, E3_4,
 & G12_4, G13_4, G23_4,
 & P12_4, P13_4, P23_4, Rho_4,
 & a1_4, a2_4, a3_4,
 & b1_4, b2_4, b3_4, T_4, M_4,
 & e1c_4, e1t_4, e2c_4, e2t_4, gam12f_4,
 & e3c_4, e3t_4, gam23f_4, gam13f_4,
 & Xc_4, Xt_4, Yc_4, Yt_4, Sxy_4,
 & Zc_4, Zt_4, Syz_4, Sxz_4,
 & alpha_4, F12_4, beta_4, IFAIL_4, IDGRD_4,
 & visf0_4, visf1_4, visff_4
12-46 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
USRFAB must call STAGS’ subroutine MATSET if any material properties are changed. The three
arguments in the calling sequence for MATSET are documented in the following listing. Note:
MATSET is a STAGS routine that the user should not modify under any conditions.

c=deck matset
c=purpose STAGS subroutine that is called from user-written USRFAB
c=purpose to set modified material data for a group of layers at a
c=purpose single surface integration point of a given element
c=version May 2002

#if _usage_
*
* calling sequence: call MATSET (imatl, nlayrs, lays)
*
* Input Arguments:
* ================
* imatl = Material type (see USRFAB and mater1.h --> mater8.h)
* nlayrs = Number of layers to use modified material data
* lays = List of nlayrs layer numbers to be reset
*
#endif _usage_

The following example shows the “business” part of a typical user-written USRFAB subroutine
(i.e., the coding that replaces the three boldfaced lines at the bottom of the USRFAB template that
is shown on page 12-44):

mater8.h Header File

* ***
* mater8.h header file, for Abaqus UMAT material
* ***
 Real E1_8, E2_8, P12_8, G12_8
 Real XT_8, YC_8, XC_8, ALPHA_8
 Real NLAY_8, LSF_8, NOTOEL_8, MONINODE_8
 Real FIVISC_8, DTIME_8, DFMIN_8, DPHIO_8
 Real DELTA_8, BETA_8_8, ETA_8_8, BETAC_8
 Real IORX_8, SDPARA_8, VRUINC_8, VISFAC_8
 Real NIFVE_8, DAFF_8, IDAMP_8, ZR1_8
 Real ZR2_8, G23_8_8, G13_8_8, RHO_8
 common /mater8/ E1_8, E2_8, P12_8, G12_8,
 & XT_8, YC_8, XC_8, ALPHA_8,
 & NLAY_8, LSF_8, NOTOEL_8, MONINODE_8,
 & FIVISC_8, DTIME_8, DFMIN_8, DPHIO_8,
 & DELTA_8, BETA_8_8, ETA_8_8, BETAC_8,
 & IORX_8, SDPARA_8, VRUINC_8, VISFAC_8,
 & NIFVE_8, DAFF_8, IDAMP_8, ZR1_8,
 & ZR2_8, G23_8_8, G13_8_8, RHO_8
STAGS 5.0 User Manual April, 2009 12-47

User-Written Subroutines Subroutine Specifications
 Integer i

 Integer mattyp

 Real e1_s1 (2,3)

 data (e1_s1(1,i),i=1,3) / 0.014,

 & 0.029,

 & 0.060 /

 data (e1_s1(2,i),i=1,3) / 3628.39988,

 & 6200.0,

 & 8600.0 /

 if (iunit.eq.7) then

 if ((ielt.ge.37 .and. ielt.le.40) .or.

 & (ielt.ge.46 .and. ielt.le.49)) then

 zeta = 0.0

 ecz = 0.0

 ilin = 0

 iplas = 1

c Set material data for this element integration point

c for material type “PLASTIC_WB” (see “mater3.h”); all

c other data remain unchanged from the original input.

 mattyp = 3

 do 10 i = 1, 3

 ee_ss_3(1,i) = e1_s1(1,i)

 ee_ss_3(2,i) = e1_s1(2,i)

10 continue

 call MATSET (mattyp,1,1)

 write (not,100) iunit, ielt, eltip, kfab,

 & mattyp, ee_ss_3(1,3)

 endif

 endif

100 format (' USRFAB: iunit, ielt, eltip, kfab, mattyp, e36=',

 & 5i8, f14.8)

Note that this coding specifies new properties for 8 elements in unit 7 of the user’s model—
calling MATSET because material properties for those 8 elements are changed.
12-48 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
USRFPF Failure Model

Subroutine USRFPF allows the STAGS user to implement his or her own first–ply failure model
or to modify one of the existing failure models (which are implemented in the current version of
STAGS in FPFi.F subroutines). The existing material degradation models (which are
implemented in STAGS in DGRADi.F routines) can be utilized with the user’s USRFPF subroutine
if they fit the user’s model. It will be necessary for the user to write his or her own USRDGD

subroutine to implement a new material degradation model if the existing degradation models do
not fit the new model.

Subroutine USRFPF is called [by STAGS’ Generic Constitutive Processor (GCP) facility] for each
element that is fabricated with an orthotropic elastic brittle GCP material for which
on the I-10a (ORT_EL_BR_MATERIAL) record that defines that material.

As a template for adventuresome STAGS users, a failure model using the maximum strain
criteria has been implemented in the USRFPF subroutine that is distributed with the program (and
which is listed below for the reader’s convenience). The calling arguments to USRFPF are
documented in this listing and will not be further described here.

c=deck usrfpf
c=purpose Evaluate User-Written Failure Criterion
c=author Norm Knight/Veridian
c=version January 2000

#include “keydefs.h”

* ***
* * This routine is a template to guide the user in implementing a *
* * failure model in STAGS using the ORT_EL_BR_MATERIAL GCP material *
* * model -- where the failure selection flag IFAIL is set to 99 *
* ***

#if _usage_
* --
* CALLING SEQUENCE:
*
* call USRFPF (iCMtyp, mpd, strain, stress, flag)
*
* INPUT ARGUMENT TYPE DESCRIPTION
* ============== ==== ===========
* iCMtyp [I] Kinematic option for material processing
* mpd(*) [R] Material property data
* strain(*) [R] Mechanical strain vector
* stress(*) [R] Stress vector
*
* OUTPUT ARGUMENTS
* ================
* flag(*) [I] Failure flags

USRFPF Template

IFAIL 99=
STAGS 5.0 User Manual April, 2009 12-49

User-Written Subroutines Subroutine Specifications
* --
#endif

 subroutine USRFPF (iCMtyp, mpd, strain, stress, flag)

 _implicit_none_

 integer iCMtyp
 real mpd(*)
 float strain(*)
 float stress(*)
 integer flag(*)

* These are the user-parameters available to these routines
* (read in through the L-records)

 integer userint
 common /upi/ userint(200)

 real userflo
 common /upf/ userflo(200)

#include “con5.h”
#include “cs4xxx.h”
#include “pain3.h”
#include “stndcm.h”

* --
* I N T E R N A L D E C L A R A T I O N S
* --

 real eps1C
 real eps1T
 real eps2C
 real eps2T
 real eps6
 real eps6F
 real index(6)
 character mode*28
 logical NTITLE
 integer numcol

* --
* L O G I C
* --
*
* Perform Failure Analysis using the Maximum Strain Criteria

 if (iCMtyp.eq.1) then

* 1D CONTINUUM (ROD OR BAR ELEMENT)
* =================================
 numcol = 1

 elseif (iCMtyp.eq.2) then

* C0/C1 BEAM
* ==========
 numcol = 3

 elseif (iCMtyp.eq.3) then

* C0 SHELL
* ========
 numcol = 5

 elseif (iCMtyp.eq.4) then

* C1 SHELL (PLANE STRESS)
12-50 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
* =======================
 numcol = 3

* Read strength data for ply
* --------------------------
 eps1C = mpd(19)
 eps1T = mpd(20)
 eps2C = mpd(21)
 eps2T = mpd(22)
 eps6F = mpd(23)

 if (NTITLE('X_Usrfpf')) then
 write (not,910) idelt, eltip, layer, layip, (flag(i),i=1,3)
 write (not,920) strain(1), strain(2), strain(3)
 endif

* Compute failure indices:

 if (flag(1).eq.0) then

* Fiber tension failure:
* ----------------------

 if (NTITLE('X_Usrfpf')) then
 write (not,930) strain(1), flag(1), index(1), eps1T
 endif

 if (strain(1) .ge. 0.) then

 index(1) = strain(1)/eps1T

 if (index(1).ge.+1.0) then
 flag(1) = + istep
 mode = ‘FIBER TENSILE FAILURE: ‘
 if (nsp3.gt.0) write(not,900)
 & mode, idelt,eltip,layer,layip
 else
 flag(1) = 0
 endif

 endif

* Fiber compression failure
* -------------------------
 if (strain(1) .lt. 0.) then

 index(1) = strain(1)/eps1C
 if (index(1).le.-1.0) then
 flag(1) = - istep
 mode = ‘FIBER COMPRESSIVE FAILURE: ‘
 if (nsp3.gt.0) write(not,900)
 & mode, idelt,eltip,layer,layip
 else
 flag(1) = 0
 endif

 endif

 endif

 if (flag(2).eq.0) then

 if (NTITLE('X_Usrfpf')) then
 write (not,940) strain(2), flag(2), index(2), eps2T
 endif

 if (strain(2) .ge. 0.) then

* Matrix tension failure:
STAGS 5.0 User Manual April, 2009 12-51

User-Written Subroutines Subroutine Specifications
* -----------------------
 index(2) = strain(2)/eps2T
 if (index(2).ge.+1.0) then
 flag(2) = + istep
 mode = ‘MATRIX TENSILE FAILURE: ‘
 if (nsp3.gt.0) write(not,900)
 & mode, idelt,eltip,layer,layip
 else
 flag(2) = 0
 endif

 endif

 if (strain(2) .lt. 0.) then

* Matrix compression failure:
* ---------------------------
 index(2) = strain(2)/eps2C
 if (index(2).le.-1.0) then
 flag(2) = - istep
 mode = ‘MATRIX COMPRESSIVE FAILURE: ‘
 if (nsp3.gt.0) write(not,900)
 & mode, idelt,eltip,layer,layip
 else
 flag(2) = 0
 endif

 endif

 endif

 if (flag(3).eq.0) then

* Fiber/matrix shear failure:
* ---------------------------

 if (NTITLE('X_Usrfpf')) then
 write (not,950) strain(3), flag(3), index(3), eps6F
 endif

 eps6 = ABS(strain(3))
 index(3) = eps6/eps6F

 if (index(3).ge.+1.0) then
 flag(3) = + istep
 mode = ‘INPLANE SHEAR FAILURE: ‘
 if (nsp3.gt.0) write(not,900)
 & mode, idelt,eltip,layer,layip
 else
 flag(3) = 0
 endif

 endif

 if (NTITLE('X_Usrfpf')) then
 write (not,960) idelt, eltip, layer, layip, (flag(i),i=1,3)
 endif

 elseif (iCMtyp.eq.5) then

* 2D PLANE STRAIN CONTINUUM
* =========================
 numcol = 3

 elseif (iCMtyp.eq.6) then

* 2D AXISYMMETRIC CONTINUUM
* =========================
 numcol = 4
12-52 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
 elseif (iCMtyp.eq.7) then

* 3D CONTINUUM
* ============
 numcol = 6

 endif

900 format(a28,
 & ' ELDid=',i5,
 & '; ELTip=',i1,
 & '; Layer=',i3,
 & '; LayIP=',i1)
910 format (' ELDid=',i5,
 & '; ELTip=',i1,
 & '; Layer=',i3,
 & '; LayIP=',i1,
 & '; BEGIN FAIL FLAGS=',3i2)
920 format (' Input strain vector:',2x,e13.6,3x,e13.6,3x,e13.6)
930 format (' DEBUG1 ***',5x,e13.6,i2,3x,e13.6,3x,e13.6)
940 format (' DEBUG2 ***',5x,e13.6,i2,3x,e13.6,3x,e13.6)
950 format (' DEBUG3 ***',5x,e13.6,i2,3x,e13.6,3x,e13.6)
960 format (' ELDid=',i5,
 & '; ELTip=',i1,
 & '; Layer=',i3,
 & '; LayIP=',i1,
 & '; FINAL FAIL FLAGS=',3i4)

 end

The user may include data in addition to that which is transmitted to and from subroutine USRFPF

through its calling sequence via STAGS’ user parameter input facility—using L-2a and/or L-2b
records as required (for integers and real variables, respectively). This may be accomplished by
including the upfi.h header file or (as is done here) by including the following explicit
declarations and common statements:

integer userint
common / upi / userint(200)

and

real userflo
common / upf / userflo(200)

The cs4xxx.h header file that is included in this version of USRFPF contains four integer variables
that are used to identify which material point is being examined:

idelt Element number within a unit

eltip Element surface integration point number

layer Layer number within the laminate

layip Through-the-thickness integration point within a layer

On entry into the USRFPF routine, a check is made to identify the kinematics option for the
element by testing the value of the parameter iCMtyp. For C1 shell elements, iCMtyp equals 3, and
there are three stress values (σxx, σyy, τxy). Similarly there are three strain values. Next the strain
STAGS 5.0 User Manual April, 2009 12-53

User-Written Subroutines Subroutine Specifications
allowable values are loaded into local variables from the mpd(*) array (these are always the
original input values).

The next step is to test to determine if failure in the fiber (or 1 direction) has occurred previously
(if flag(1) is not zero) or that no failure has yet occurred (flag(1) equals zero). If flag(1) is not zero,
then no further check is made for that mode and the process moves to flag(2) and flag(3) in a
similar manner. If flag(1) equals zero, then the strain state is examined for failure (using the
maximum strain criterion in this template). Tests are made for tension and compression
independently. If failure is detected, then the alphanumeric variable mode is set to a 28–character
string (users may change this value) that describes the failure mode for output purposes. If failure
is detected, then flag(1) is set to a positive value for tensile failure or to a negative value for
compressive failure. Shear failures are always set equal to a positive value. Typically, the
magnitude of this value is the solution step number istep at which the failure was first detected.

Subroutine USRFPF is called for each layer integration point through the thickness of each layer
in the laminate for each surface integration point of the element and for each element. It is a very
low-level routine that is called many, many times; and if the user should choose to print output
within this routine, he or she should expect a lot! Limited output control is provided through the
integer parameter nsp3 (which is the same as the ILIST parameter on the B-1 record of the s2 input
data. Setting that variable to a positive nonzero number will cause USRFPF (as well as other FPF*
models) to print the failure mode and location.

Because USRFPF is a low-level routine, it is called during the evaluation of both the first and
second variations during a nonlinear iteration. Hence multiple passes through this routine for
each iteration may occur as a consistent state for the first and second variation is always sought.
12-54 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
USRLD General Loading

Subroutine USRLD is called once for each unit where on the associated Q-2 (shell unit)
or U-2 (element unit) record. USRLD may define all of the loads in a given unit, or it may be used
to complement loads defined on Q-3 (shell unit) or U-3 (element unit) records.

USRLD Structure

 subroutine USRLD (iunit, X, Y, nrows, ncols, isys)

 INTEGER
 : iunit, nrows, ncols, isys,
 : lt, ld, li, lj,
 : lax
 REAL
 : X(nrows), Y(ncols), P

***** Repeat for each load. *****

 call FORCE (P, lt, ld, li, lj, lax)

 return
 end

IFLG 1=
STAGS 5.0 User Manual April, 2009 12-55

User-Written Subroutines Subroutine Specifications
$STAGSHOME/examples/usersub/usrld.F contains the code shown in “USRLD Structure”. See
Section 12.3 “Example Problem” on page 12-66 for a practical example of USRLD.

USRLD Data

Input

A

iunit

isys
unit number

Shell unit: ISYS, Q-2 (p. 6-70)

Element unit: ISYS, U-2 (p. 10-4)

B

nrows

ncols

X(nrows)

Y(ncols)

NROWS(i), i=iunit F-1

NCOLS(i), i=iunit F-1

X surface coordinate along each row

Y surface coordinate along each column

 ✔ A data are always relevant.

 ✔ B data are relevant for shell units only.

Output

P lt ld

li lj lax
Shell unit: Q-3 (p. 6-70)

Element unit: U-3 (p. 10-5)
12-56 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
USRPT Nodes

Subroutine USRPT is called once for each element unit where on the associated H-1
record. USRPT may define all of the nodes in a given element unit, or it may be used to
complement nodes defined on S-1 records. Whether nodes are defined in USRPT or on S-1
records or in combination, they may be defined in any order, but when completely defined must
be numbered continuously starting with 1. Thus, node numbering within each element unit is
from 1 to , where is the number of nodes defined on corresponding S-1 records, and

 is the number of nodes defined in USRPT for the corresponding element unit.

USRPT Structure

 subroutine USRPT (iunit)

 COMMON
 : / NEWSY / xax, xay, xaz,
 : yax, yay, yaz,
 : zax, zay, zaz
 INTEGER
 : iunit, iupt,
 : ius, irs, ics,
 : iuvw, iruvw, iaux
 REAL
 : xax, xay, xaz,
 : yax, yay, yaz,
 : zax, zay, zaz,
 : xg, yg, zg,
 : gm

***** Repeat for each node. *****

 call NODE (iupt, ius, irs, ics,
 : xg, yg, zg,
 : iuvw, iruvw, iaux, gm)

 return
 end

IUWP 1=

nS nU+ nS

nU
STAGS 5.0 User Manual April, 2009 12-57

User-Written Subroutines Subroutine Specifications
$STAGSHOME/examples/usersub/usrpt.F contains the code shown in “USRPT Structure”. See
Section 12.3 “Example Problem” on page 12-66 for a practical example of USRPT.

USRPT Data

Input

iunit unit number

Output

A

iupt

ius irs ics

xg yg zg

iuvw iruvw iaux

S-1 (p. 7-3)

B gm U-4 (p. 10-7)

C

COMMON/NEWSY/

xax xay xaz

yax yay yaz

S-2 (p. 7-8)

 ✔ A, B data are always defined.

 ✔ C data are relevant only when iaux = 1.
Note that zax, zay, zaz are not set in USRPT; they are computed
by STAGS (see S-2).
12-58 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
WALL Shell Wall Fabrication Properties

User-written subroutine WALL is called at each integration point on the reference surface of
each shell element where IWALL = 0 (M-5, T-3a, T-4a, USRELT). (For type E480 elements,
subroutine WALL is called only once, at the element centroid.)

Subroutine WALL enables the user to define both geometric and material cross section properties
as a function of position on the shell reference surface. This is effected by reference to the Wall
Fabrication Table and/or by definition of data directly. As an example, the basic wall fabrication
properties can be defined with a Wall Fabrication Table ID, and eccentricity can then be defined
directly as a function of the position of each integration point on the shell reference surface.

Shell Units

Shell elements are numbered locally within each shell unit, from 1 to (F-1), in
row-major order.

Subroutine WALL is called for each shell element in each shell unit having IWALL = 0 (M-5).

Element Units

Elements are numbered sequentially as they are defined in each element unit, from 1 to ,
where is the number of elements defined on T records and is the number of elements
defined in USRELT. This establishes local element numbering within each element unit.
Subroutine WALL is called for each element-unit shell element for which IWALL = 0 (defined on
a T-3, T-320, T-330, T-4, T-410, T-411 or T-480 record, or in USRELT).

The FORTRAN code shown in the following “WALL Template” listing is available in the
$STAGSHOME/examples/usersub directory. The user must replace the lines that are printed in
boldface type, on page 12-62, with coding that is appropriate for his or her problem.

NROWS NCOLS×

nT nU+

nT nU
STAGS 5.0 User Manual April, 2009 12-59

User-Written Subroutines Subroutine Specifications
WALL Template

c=deck wall
c=purpose User-written WALL subroutine
c=version April 2002

#include “keydefs.h”

#if _usage_
*
* calling sequence: call WALL (iunit, ielt, kelt, XYZg, XYs,
* zeta, ecz, ilin, iplas)
*
* Input Arguments:
* ================
* iunit = unit number
* ielt = local element number (in unit iunit)
* kelt = element type code
* XYZg = {x,y,z} global coordinates
* XYs = {s,t} surface coordinates (shell unit, only)
*
* Output Arguments:
* =================
* zeta = zeta (see M-5 or T-3 for details)
* ecz = eccentricity (see M-5 or T-3 for details)
* ilin = nonlinearity flag
* iplas = plasticity flag
*
#endif

 subroutine WALL (iunit, ielt, kelt, XYZg, XYs,
 & zeta, ecz, ilin, iplas)

 _implicit_none_

 Integer iunit
 Integer ielt
 Integer kelt
 Integer ilin
 Integer iplas
 Real XYZg(3)
 Real XYs(2)
 Real zeta
 Real ecz

 Integer maxLAY
 PARAMETER (maxLAY = 100)
12-60 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
WALL Template (continued)

 Integer maxSM
 PARAMETER (maxSM = 3)

 Integer nit, not
 common /nitnot/ nit, not

 Integer itaw, kwall, nlay, nlip, nsmrs
 common /WALLX / itaw, kwall, nlay, nlip, nsmrs

 Integer matL (maxLAY)
 Real tL (maxLAY)
 Real zetL (maxLAY)
 Integer lsoL (maxLAY)
 Real e1L (maxLAY)
 Real u12L (maxLAY)
 Real gL (maxLAY)
 Real rhoL (maxLAY)
 Real a1L (maxLAY)
 Real e2L (maxLAY)
 Real a2L (maxLAY)
 common /WALL1 / matL, tL, zetL, lsoL, e1L, u12L,
 & gL, rhoL, a1L, e2L, a2L

 Integer matF, matM
 Real ttL (maxLAY)
 Real xxL (maxLAY)
 Real zetwL (maxLAY)
 Real oL (maxLAY)
 Real eF, uF, rhoF, alF
 Real eM, uM, rhoM, alM
 common /WALL2 / matF, matM,
 & ttL, xxL, zetwL, oL,
 & eF, uF, rhoF, alF,
 & eM, uM, rhoM, alM

 Integer matC, matS
 Real ct, cc, ch, cd, cb
 Real ts, phi, anc
 Real eC, uC, rhoC, alC
 Real eS, uS, rhoS, alS
 common /WALL3 / matC, matS,
 & ct, cc, ch, cd, cb,
 & ts, phi, anc,
 & eC, uC, rhoC, alC,
 & eS, uS, rhoS, alS
STAGS 5.0 User Manual April, 2009 12-61

User-Written Subroutines Subroutine Specifications
WALL Template (continued)

 Integer ta, mat, itvs, idumt
 Real ccc, cts
 common /WALL4 / ta, mat, itvs, idumt,
 & ccc(6,6), cts(2,2)

 Integer icroSM (maxSM)
 Real spaSM (maxSM)
 Real zetSM (maxSM)
 Real xsiSM (maxSM)
 Real eczSM (maxSM)
 common /SMEAR / icroSM, spaSM, zetSM, xsiSM, eczSM

 write (not,900)
 900 format (//' SUBROUTINE WALL HAS NOT BEEN PROVIDED.')

 STOP

 end
12-62 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
WALL Data

Input

iunit unit number

ielt unit local element number

kelt shell element code; e.g., 410

XYZg(3) global coordinates

XYs(2) surface coordinates;
relevant for shell units only.

Output

A

zeta ecz

ilin iplas
Shell units:

M-5 (p. 6-24)

Element units:

T-3 (p. 8-14) T-4 (p. 8-17)

B

COMMON/WALLX/

itaw kwall

nlay nlip
nsmrs

K-1 (p. 5-129)

C

COMMON/WALL1/

matL tL zetL

lsoL

e1L u12L gL

rhoL a1L e2L

a2L

K-2 (p. 5-133)

Elastic material properties:

for each layer i:

define matL(i)

if and only if matL(i)= 0

define

for layer i

xg yg zg, ,()

X Y,()

E1 ν12 G ρ α1 E2 α2, , , , , ,
STAGS 5.0 User Manual April, 2009 12-63

User-Written Subroutines Subroutine Specifications
Restrictions on variation of wall properties

ilin, iplas (A data) and kwall, nlip (B data) must be constant within each element.

D

COMMON/WALL2/

matF matM

ttL xxL
zetwL

oL

eF uF rhoF

alF

eM uM rhoM

alM

K-3a (p. 5-134)

K-3b (p. 5-135)

Fiber elastic material properties:

when matF = 0, define

Matrix elastic material properties:

when matM = 0, define

E

COMMON/WALL3/

matC matS

ct cc ch

cd cb

ts phi anc

eC uC rhoC

alC

eS uS rhoS

alS

K-4a (p. 5-136)

K-4b (p. 5-137)

Corrugation elastic material properties:

when matC = 0, define

Skin elastic material properties:

when matS = 0, define

F

COMMON/WALL4/

ta mat itvs

ccc(6,6)

cts(2,2)

K-5a (p. 5-138)

K-5b (p. 5-139)

K-5c (p. 5-140)

G

COMMON/SMEAR/

icroSM spaSM
zetSM

xsiSM eczSM

K-6 (p. 5-141)

 ✔ A data are always defined.

E ν ρ α, , ,

E ν ρ α, , ,

E ν ρ α, , ,

E ν ρ α, , ,
12-64 April, 2009 STAGS 5.0 User Manual

Subroutine Specifications User-Written Subroutines
When plasticity is included , all data must be constant within each element.

If either of the two above restrictions is violated by WALL (called at each integration point),
STAGS will resolve the discrepancies by resetting conflicting data to the values given for
integration point 1.

Material properties

Linear elastic material properties may be defined in C, D, and E data. However nonlinear material
properties may be defined indirectly only, by reference to a Wall Fabrication Table entry (see
“Wall fabrication table selection” on page 12-65).

Wall fabrication table selection

Set itaw > 0. The remaining B data are irrelevant.

Layered wall

Set itaw = 0 and kwall = 1. Define B, C data.

Fiber reinforced wall

Set itaw = 0 and kwall = 2. Define B, D data.

Corrugation stiffened wall

Set itaw = 0 and kwall = 3. Define B, E data.

General wall

Set itaw = 0 and kwall = 4. Define B, F data.

Smeared stiffeners

When itaw = 0 only: set nsmrs > 0 and define G data.

Material behavior is restricted to linear elasticity in walls containing smeared
stiffeners.

iplas 1≥()
STAGS 5.0 User Manual April, 2009 12-65

User-Written Subroutines Example Problem
12.3 Example Problem

Figure 12.1 contains a sketch of the example problem used to illustrate the user-written
subroutine concept. The structure is a quarter cylinder, bounded circumferentially by and

, and axially by and . The reference surface is defined by the expressions
. The transformation between global coordinates and

 nodal-auxiliary coordinates is indicated. Boundary conditions and loads are defined
in the nodal-auxiliary coordinate system. The nodal load P is shown acting in the positive u
direction, and the normal pressure q is shown acting in the positive w direction. Negative values
for P, q will result in loading acting in the negative u, w directions, respectively. Note that on
the boundary, in addition to the symmetry boundary condition, the constraint ,
where c is a constant, is prescribed. The effect of requiring uniform axial displacement along the

 boundary is that the discrete nodal load P acts like a line load on that
edge.

Just as the loading is parameterized by P and q, the geometry is parameterized by the radius, R,
and the length, L. Two additional parameters, nrows and ncols, the number of rows and columns,
control discretization. A mesh is shown in Figure 12.1.

The four user-written subroutines employed to model this quarter cylinder are:

USRPT defines nodal locations, boundary conditions, and nodal-auxiliary
coordinate systems

USRELT defines quadrilateral shell elements

USRLD defines the loading, P and q

UCONST defines the constraint on the boundary

This model could be further parameterized by replacing L with and , thereby permitting a
cylinder of axial length . Adding two additional parameters, and , would allow
a cylinder of arclength . Minor modifications to USRPT are all that would be necessary.
Similarly, the element type could be added as a parameter, requiring only minor modifications
to USRELT. The wall fabrication could be parameterized in a user-written subroutine WALL, and
so forth.

The INP and BIN input files are shown next, followed by listings of the FORTRAN code for the
user-written subroutines.

The input files, along with files containing source code for the user-
written subroutines, are found in $STAGSHOME/examples/cylinder.

θ 0°=

θ 90°= xg 0= xg L=

yg R θsin= zg, R θcos= xg yg zg, ,()
xa ya za, ,()

xg 0= u c=

xg 0= p P πR 2⁄()⁄=

9 9×

u c= xg 0=

xg
1 xg

2

xg
1 xg xg

2≤ ≤ θ1 θ2

θ1 θ θ2≤ ≤

☞

12-66 April, 2009 STAGS 5.0 User Manual

Example Problem User-Written Subroutines
Figure 12.1 User-written subroutines—cylindrical shell example problem.

37

55

46

28

19

10
98765

4
3

2
1

64

73

74
75

76
77 78 79 80 81

27

36

45

54

63

72

18

1

2
3

4 5 6 7 89

17

33

25

41

49

56

16

57

58

60
59

61 62 63 64

xg

xa u (axial),

za w (radial),

ya v (circum.),

yg
zg

θ 0°=

θ 90°=

L

P

24

32

40

48

R

q

0 xg L≤ ≤ 0 θ 90°≤ ≤ yg R θsin= zg R θcos=

boundary conditions: xg 0= : simple support & u constant=

xg L= : clamped

θ 0° 90°,= : symmetry

xa

ya

za
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

1 0 0

0 θcos θsin–

0 θsin θcos

xg

yg

zg
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

STAGS 5.0 User Manual April, 2009 12-67

User-Written Subroutines Example Problem
cylinder.inp

Quarter Cylinder, User-Written Subroutines $ A-1
 0 $ B-1
 0 1 0 0 0 8 $ B-2 UCONST
 1 0 1 1 $ B-3
 0 0 0 0 0 0 1 1 $ H-1 USRPT USRELT
 1 $ I-1
 10.0E6 0.3 $ I-2
 1 1 1 $ K-1
 1 0.1 0.0 1 $ K-2
 2 4 $ L-1
$ -- $
$ rows cols $
$ ---- ---- $
 9 9 $ L-2A discretization
$ -- $
$ R L P q $
$ --- --- --- --- $
 6.4 10.0 1.5E5 -100.0 $ L-2B geometry, loads
$ -- $
 1 $ U-1
 1 0 1 $ U-2 USRLD
 1 $ V-1

cylinder.bin

Quarter Cylinder, User-Written Subroutines $ A-1
 0 1 $ B-1
 1.0 $ C-1
12-68 April, 2009 STAGS 5.0 User Manual

Example Problem User-Written Subroutines
USRPT

 subroutine USRPT (iunit)

 COMMON
 : / UPI / nrows, ncols, UserInt(198)
 : / UPF / R, L, P, q, UserFlo(196)
 : / NEWSY / xax, xay, xaz,
 : yax, yay, yaz
 INTEGER
 : iunit, nrows, ncols, UserInt,
 : iupt, ius, irs, ics,
 : iuvw, iruvw, iaux,
 : i, j
 REAL
 : R, L, P, q,
 : xax, xay, xaz, UserFlo,
 : yax, yay, yaz,
 : xg, yg, zg, gm,
 : delX, delY, pi,
 : theta, Ct, St

 iupt = 0
 ius = 0
 irs = 0
 ics = 0
 iaux = 1
 gm = 0

 xax = 1
 xay = 0
 xaz = 0
 yax = 0

 pi = 4 * ATAN(1.)
 delX = L/(nrows-1)
 delY = (pi/2)/(ncols-1)

 do 20 j = 1,nrows
 xg = (j-1)*delX
 do 10 i = 1,ncols
 theta = (i-1)*delY
 Ct = COS(theta)
 St = SIN(theta)
 yg = R*St
 zg = R*Ct
 yay = Ct
 yaz = -St

 if (j .eq. 1) then
 if ((i .eq. 1) .or. (i .eq. ncols)) then
 iuvw = 100
 iruvw = 010
 else
 iuvw = 100
 iruvw = 011
 endif
 elseif (j .eq. nrows) then
 iuvw = 000
STAGS 5.0 User Manual April, 2009 12-69

User-Written Subroutines Example Problem
 iruvw = 000
 elseif ((i .eq. 1) .or. (i .eq. ncols)) then
 iuvw = 101
 iruvw = 010
 else
 iuvw = 111
 iruvw = 111
 endif
 iupt = iupt + 1
 call NODE (iupt, ius, irs, ics,
 : xg, yg, zg,
 : iuvw, iruvw,iaux, gm)
 10 continue
 20 continue

 return
 end
12-70 April, 2009 STAGS 5.0 User Manual

Example Problem User-Written Subroutines
USRELT

 subroutine USRELT (iunit)

 COMMON

 : / UPI / nrows, ncols, UserInt(198)

 INTEGER

 : maxN

 PARAMETER

 : (maxN = 9)

 INTEGER

 : iunit, nrows, ncols, UserInt,

 : node(maxN), kelt, iwall,

 : ilin, iplas, integ, ipenl,

 : iang, n0, i, j

 REAL

 : zeta, ecz,

 : rx, ry, rz

 kelt = 410

 iwall = 1

 zeta = 0

 ecz = 0

 ilin = 0

 iplas = 0

 integ = 0

 ipenl = 0

 iang = 0

 do 20 j = 1,nrows-1

 n0 = (j-1)*ncols

 do 10 i = 1,ncols-1

 node(1) = n0 + i

 node(2) = node(1) + ncols

 node(3) = node(2) + 1

 node(4) = node(1) + 1

 call SHELL (node, kelt, iwall, zeta, ecz,

 : ilin, iplas, integ, ipenl,

 : iang, rx, ry, rz)

 10 continue

 20 continue

 return

 end
STAGS 5.0 User Manual April, 2009 12-71

User-Written Subroutines Example Problem
USRLD

 subroutine USRLD (iunit, X, Y, nrows, ncols, isys)

 COMMON
 : / UPF / R, L, P, q, UserFlo(196)
 INTEGER
 : iunit, nrows, ncols, isys,
 : lt, ld, li, lj,
 : lax
 REAL
 : X(nrows), Y(ncols), UserFlo,
 : R, L, P, q

 lt = 1
 ld = 1
 li = 1
 lj = 0
 lax = 0

 call FORCE (P, lt, ld, li, lj, lax)

 lt = 4
 ld = 3
 li = 0

 call FORCE (q, lt, ld, li, lj, lax)

 return
 end
12-72 April, 2009 STAGS 5.0 User Manual

Example Problem User-Written Subroutines
UCONST

 subroutine UCONST

 INTEGER maxN

 PARAMETER (maxN = 2)

 INTEGER iu(maxN)

 INTEGER ix(maxN), iy(maxN), iz(maxN)

 INTEGER id(maxN)

 REAL cc(maxN)

 INTEGER nrows, ncols, UserInt

 COMMON / UPI / nrows, ncols, UserInt(198)

 INTEGER i

 INTEGER nterms

 nterms = 2

 iu(1) = 1

 iu(2) = 1

 ix(1) = 1

 iy(1) = 0

 iy(2) = 0

 iz(1) = 1

 iz(2) = 1

 id(1) = 1

 id(2) = 1

 cc(1) = 1.0E7

 cc(2) = -1.0E7

 do 10 i = 2,ncols

 ix(2) = i

 call CONSTR (nterms, iu, ix, iy, iz, id, cc)

 10 continue

 return

 end
STAGS 5.0 User Manual April, 2009 12-73

13
13
13 13

User–Defined Elements

13.1 Introduction

The User element (UEL) feature in STAGS 5.0 gives advanced analysts and developers powerful
new tools for solving problems that lie beyond the scope of those that STAGS has traditionally
treated. The process by which User elements are defined in STAGS is described concisely here
and fully in Chapter 9 of the STAGS Elements Manual. The input records with which User
elements may be employed in constructing a STAGS model are described in Section 9.8 on page
9-163.

As noted in Section 9.8, there are two distinct (but strongly coupled) operations that must be
performed to define a User element for use in the construction of STAGS models and for use in
conducting analyses with those models.

The first operation (which must be performed in generating the INP file that STAGS’ s1
processor reads and processes to construct the STAGS model for a given problem) is the analyst’s
definition of top-level information about the User element—including (but not limited to) the
element-type identifier by which it is to be referenced, the number of node points required to
specify any given element of this type, the names and characteristics of data associated with all
elements of this type, etc. This is done by including a set of user-element-definition directives
(see Sections 13.2 and 13.3) at any appropriate point in the analyst’s INP file prior to any input
records that command the inclusion of one or more User elements of that type in the model being
constructed.

The second operation (which must be performed prior to executing any STAGS processor) is the
analyst’s (developer’s) generation of all user-element-specific FORTRAN- and C-language routines
as described in Section 13.4. These routines may contain explicit definitions of the element
features (internal force vector, stiffness matrix, stress and strain recovery, etc.) or they may
contain CALL statements to other subroutines or functions that compute the various features.
STAGS 5.0 User Manual April, 2009 13-1

User–Defined Elements Introduction
STAGS processors need these routines to construct a STAGS model in which these user-defined
elements are employed and to perform analysis and postprocessing operations with that model—
and the successful linking of each of these user-element-enhanced processors.

Before getting into either of these operations, it is appropriate to pause briefly and note that the
principal goal of the STAGS User element framework is to provide a set of features that enable
element researchers and advanced or adventuresome analysts to add new element types to STAGS

without having to be overly concerned with the gory and sometimes excruciating details of the
STAGS element integration process—focusing only on the development of their new elements.

To provide an almost transparent element integration environment, the STAGS User element
framework provides the following features:

• Arbitrary User element types are represented in the standard STAGS element
description scheme as element types .

• Any number (less than or equal to one hundred) of User element types and their
associated data descriptions may be specified.

• Any number of User elements of any UEL type may be defined in STAGS models.

• Each User element type definition specifies a set of named data that are available
for every element of that type.

• User element program code can retrieve and store the values of individual User
element data items by their names, or can access an element's integer and floating-
point data blocks in the ABAQUS style.

• An arbitrary number of user-described property sets can be defined that specify a
collection of named data that may be arbitrarily associated with one or more
elements of any user-defined type.

• User element wrapper routines are invoked automatically by STAGS as required by
a solution process. Users implementing new elements need not be concerned with
the details of the STAGS solution process.

An arbitrary number of user-defined element types can be specified using a free field description
of the nodal and data specifications for each element. These descriptions are entered directly into
the STAGS model input file and provide the user the ability to describe the element type and its
data requirements in any manner that facilitates the most natural ordering. Comments and
flexible line spacing are allowed for enhanced readability.

Each User element type description may specify a collection of named integer and/or floating-
point variables associated with each User element defined in a STAGS model. Naming User
element variables greatly increases a user's understanding of both simple and complex datasets
and reduces the likelihood of confusing data values required by different element types. This is

900 type 999≤ ≤
13-2 April, 2009 STAGS 5.0 User Manual

User Element Definition Directives User–Defined Elements
a general capability; the developer or researcher is not restricted by the kind or amount of data
that can be associated with each User element type.

The User element framework also introduces a new STAGS feature called User property sets. A
developer or researcher may define any number of property sets, each of which is identified by
a meaningful name and a unique numeric identifier. The property items in a property set, entered
by the user in free field format (much like User element type descriptions), collect integer and/
or floating-point data that are best described when grouped together. This feature provides a
general and flexible technique for describing data required by any new capabilities added by
developers or researchers. The creation of new, user-defined element types is just one example.

13.2 User Element Definition Directives

Returning to the subject of directives for definition of User elements, we note that each UEL type
is described in the INP file for a STAGS model by a set of four required directives and two
optional directives (printed in square brackets) that are ordered as follows:

*userElement... — initiate userElement specifications
 *dofOrdering... — specify number and types of DOF at each node

 *nodeSequence... — specify nodal sequence for transformations

 [*floatVariables...] — specify float-type variables (if any)

 [*integerVariables...]— specify integer-type variables (if any)

*end userElement — terminate userElement specifications

Directive formatting is free-field. String values that contain one or more spaces must be enclosed
in matching single or double quotes. Directive names and directive attribute names are case-
insensitive. Empty (blank) lines and lines containing only $-initiated comments are ignored
during parsing of directives.

The *floatVariables data groups are optional. They may appear in any order and may be
repeated as many times as required. All float variable items are collected sequentially as they are
defined and are placed in a single logical group of data type float.

The *integerVariables data groups are also optional . They may appear in any order and
may be repeated as many times as required. All float variable items are collected sequentially as
they are defined and are placed in a single logical group of data type float. All integer variable
items are collected sequentially as they are defined and are placed in a single logical group of
type integer.
STAGS 5.0 User Manual April, 2009 13-3

User–Defined Elements User Element Definition Directives
Example of User element definition

Rather than going through a long-winded presentation of directive syntax and conventions, let us
simplify this by looking at a straightforward example that shows how a user might define a User
element—to be referenced as a type 901 element—for a simple three-noded beam. The end
nodes of this beam are identified as node number 1 and node number 2, and the internal node is
identified as node number 3. A fourth node is associated with the element in order to compute
the element’s orientation matrix. Associated with this element type is a set of named floating-
point variables and a set of named integer variables. These named data will be defined for each
user-defined element created by STAGS and can be manipulated by developers and by the
element researcher using utility routines that are described briefly below and in greater detail in
Chapter 9 of the STAGS Elements Manual.

*userElement name = "Beam Element" type = 901 nodes = 4

*dofOrdering
$ Node DOF...
$ ----------------
 1 1 2 3 4 5 6
 2 1 2 3 4 5 6
 3 1 2 3 4 5 6
 4 0

*nodeSequence
$ Nodes...
$ --------
 1 2 4

*floatVariables
$ Name Size
$ ----------------
 MaxStress 1
 MaxStressLoc 3
 SectionData 5
 ShearFactor 1
 OtherStuff 15

*integerVariables
$ Name Size
$ ----------
 NIPS 1
 List 10

*end userElement
13-4 April, 2009 STAGS 5.0 User Manual

User Element Definition Directives User–Defined Elements
Notes about this User element definition example

The following points about this example are generally true for all User element type definitions:

• User element type names must have string values and are used for descriptive
purposes only.

• User element type names are limited to 40 characters in length.

• User element type numbers must be in the range , inclusive and
must be unique (i.e., a UEL type must be defined only once).

• A User element type may have any number of nodes.

• The DOF ordering for each node must be specified in a single group.

• All nodes are expected to have zero (0), three (3) or six (6) degrees of freedom,
with DOFs defined in agreement with STAGS’ DOF-ordering convention:

1 : x–displacement 4 : x–rotation
2 : y–displacement 5 : y–rotation
3 : z–displacement 6 : z–rotation

• Element reference nodes are specified as having zero degrees of freedom (as for
node 4 in this example).

• Nodes used to define an element’s orientation matrix are identified by a single,
required *nodeSequence directive. Either three (3) or four (4) nodes in the
*dofOrdering group are referenced by index in this directive. If three nodes are
referenced, the element’s x–axis is directed from the first to the second node. The
element’s z–axis is directed as the vector cross product of the x–axis and the vector
from the first to the third node. The element’s y–axis follows from the right-hand
rule with respect to the x–axis and the z–axis. If four nodes are referenced, the
element’s x–axis is directed from the first to the second node. The element’s z–
axis is directed as the vector cross product of the vector from the first to the third
node and the vector from the second tor the fourth node. The element’s y–axis
follows from the right-hand rule with respect to the x–axis and the z–axis.

• User element variable names are limited to 40 characters in length.

• Variable names containing one or more spaces must be enclosed in matching
single or double quotes.

• Variable names are case-insensitive for comparison and must be unique within
their User element type definition.

• A variable's size (logical length) must be specified and must be an integer number
greater than zero.

900 type 999≤ ≤
STAGS 5.0 User Manual April, 2009 13-5

User–Defined Elements User Property Set Definition Directives
13.3 User Property Set Definition Directives

User property sets are described (during STAGS s1 processing) through a set of directives as
shown in the following example. Directives defining a User property set are ordered as follows:

*userProperty... — initiate userProperty specifications
 [*floatProps...] — define one or more float-type data parameters

 [*integerProps...]— define one or more integer-type data parameters

*end userProperty — initiate userProperty specifications

As with the previously-described user-element–definition directives, empty (blank) lines and
lines containing only $-initiated comments are ignored during parsing of directives; and directive
names and directive attribute names are case-insensitive. Directive formatting is free-field. String
values that contain one or more spaces must be enclosed in matching single or double quotes.

The *floatProps data group is optional; *floatProps data groups may appear in any
order and may be repeated as many times as required. All float property items are collected
sequentially as they are defined and are placed in a single logical group of data type float. The
*integerProps data group is optional when the analyst/developer chooses not to use STAGS’
GCP processor to specify material properties and fabrications; it is mandatory when he/she uses
the GCP. When needed, *integerProps data groups may appear in any order and may be
repeated as many times as required. All integer property items are collected sequentially as they
are defined and are placed in a single logical group of data type integer.

Example # 1 of User property set definition

*userProperty name = "Beam Element" id = 901

*integerProps
$ Required Standard Data
$ ----------------------
 ActiveNodes 2
 SamplingCount 10
 StrainCount 6
 StressCount 6

*end userProperty

*userProperty name = "Aluminum 6061-T6" id = 6061

*floatProps
E 10.00e+6
G 3.75e+6
MassDensity 2.54e-4
PoissonRatio 0.3
TensileUltimateStrength 38.00e+3
TensileYieldStrength 35.00e+3
CompresiveYieldStrength 35.00e+3
ShearYieldStrength 20.00e+3
ThermalExpansion 1.30e-5

*end userProperty
13-6 April, 2009 STAGS 5.0 User Manual

User Property Set Definition Directives User–Defined Elements
This example builds on the previous example that showed how an element researcher might
define a new element type for a three-noded beam with a single internal node. In addition to the
element type’s set of named integer and floating-point element variables, there may be several
User property sets defined to complete the specification of an element. These property sets
contain collections of related property items and can be logically associated with any number of
elements or referenced from any number of appropriate contexts. User property sets can be
manipulated by developers and element researchers using utility routines that are described
briefly below and more completely in Chapter 9 of the STAGS Elements Manual.

As noted above, the *integerProps data group is mandatory when the analyst/developer
employs STAGS’ GCP processor to specify material properties and fabrications. Under these
circumstances, two integer GCP-interface parameters (Class and Kintype) must be specified in
addition to the four other parameters that are typically required (ActiveNodes, SamplingCount,
StrainCount and StressCount). In the current versions of STAGS, the Class and Kintype
parameters may have the following values:

Class specifies class type for the element(s) in question:

= 0 — not specified (do not use the GCP interface)
= 1 — beam (1-D) elements
= 2 — shell (2-D) elements
= 3 — solid (3-D) elements

and

Kintype specifies the kinematic type for the element(s) in question:

= 0 — not specified (do not use the GCP interface)

= 1 — type C0 (qC0) elements — isoparametric (Mindlin) shell
elements with shear (and usually no natural drill freedom);
examples include the MIN4 and E480 (ANS) quads;
beams of this type have 8 resultant components;
shells have 6

= 2 — Kirchoff elements with C1 (qC1) compatibility;
beams of this type have 4 resultant components;
shells have 6

= 3 — 3-D (solid) elements (q3D), with 6 stresses
STAGS 5.0 User Manual April, 2009 13-7

User–Defined Elements User Property Set Definition Directives
The following example shows a User property set that might be used to define some of the
integer-type properties of a type-900 user element—a quadrilateral C0 shell element, in this
case—when the the GCP processor is used to specify its material properties and fabrications:

Example # 2 of User property set definition

*userProperty name = "MIN4 Element" id = 900

*integerProps
$ Required Standard Data
$ ----------------------
 ActiveNodes 4
 SamplingCount 4
 StrainCount 8
 StressCount 8

$ GCP-interface Data
$ ------------------
 Class 2
 Kintype 1

*end userProperty

The following points made about these two User property set definition examples are generally
true for all such definitions:

• For each User element type definition there must be one property set with an
identifier (id) that matches the identifier of the type definition. In addition to any
other properties this property set may contain, the following integer property items
must be specified: ActiveNodes (the number of active nodes for the element
type), SamplingCount (the number of locations where stresses and strains will
be evaluated), StrainCount (the number of strain components associated with
the element type), StressCount (the number of stress components associated
with the element type). Failure to provide these property items in a property set
associated with an element type definition will lead to a run-time error.

• User property set names must have string values and must be unique across all
User property sets.

• User property set names are limited to 40 characters in length.

• User property set identifiers (IDs) must have numeric values and must be unique
across all User property sets.

• Property item names containing one or more spaces must be enclosed in matching
single or double quotes

• Property item names are limited to 40 characters in length.

• Property item names are case-insensitive for comparison and must be unique
within their property set definition.
13-8 April, 2009 STAGS 5.0 User Manual

User Element Model–Definition Routines User–Defined Elements
13.4 User Element Model–Definition Routines

When one or more types of User elements are to be employed in a STAGS model, it is sometimes
necessary for the analyst (or developer) to generate a user-element-enhanced version of STAGS’
s1 (model–definition) processor. It is always necessary for him (or her) to generate User–
element–enhanced versions of STAGS’ s2 (analysis) processor and of any of the STAGS-system
post-analysis processor(s) that are to be used with that model. The broad outlines of how this
may be done are described in the following paragraphs. The interested reader should consult
Chapter 9 of the STAGS Elements Manual. for more information about this.

Top–level model–definition routines

When STAGS’ s1 processor encounters a User element, s1 calls a number of generic User–
element definition routines to perform operations that are required universally. s1 also calls upon
three other user-element “dispatch” routines to perform additional, nonstandard model-definition
operations for that User element—as and if they are required. The primary function of each of
these dispatch routines is evident by its name: UelEltDef, UelLoadDef and UelPressDef. Each of
these dispatch routines calls one or more next–level program- or developer-supplied routines that
perform nonstandard definition operations that are appropriate for each type of User element.
The “program-supplied” qualifier is appropriate when special operations are not required; the
“developer-supplied” qualifier applies when special operations are required.

For reference purposes, the current default version of the UelEltDef dispatch routine is shown in
the FORTRAN listing beginning on the next page. The current default versions of subroutines
UelLoadDef and UelPressDef are listed in Chapter 9 of the STAGS Elements Manual. The names
of the three user-element-type-specific routines that this version of UelEltDef calls—
UelEltDef900, UeltEltDef901 and UelEltDef902, for user-element types 900, 901 and 902,
respectively—are completely arbitrary and may be changed to reflect the user’s particular
choice (subject to the architectural constraint that each User element type must have a unique
identifier number that lies in the range from 900 to 999, inclusive). A do-nothing “starter”
template is provided for each of the three particular subroutines that this template version of
UelEltDef calls. The default version of the UelEltDef900 routine that this version of UelEltDef calls
is shown in the listing following that of UelEltDef. All three top-level s1-processor dispatch
routines and their respective type-specific children are documented in Chapter 9 of the STAGS

Elements Manual.
STAGS 5.0 User Manual April, 2009 13-9

User–Defined Elements User Element Model–Definition Routines
subroutine UelEltDef

1: c=deck UelEltDef
2: c=purpose Perform definition operations for a user-defined element
3: c=author --
4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
6: c=version January 2005
7:
8: #if _usage_
9: *

10: * call UelEltDef (idef, type, unit, uid,
11: * ifab, iang, ilin, iplas,
12: * nnodes, nodseq, triad, unodes,
13: * nodes, maxdof, nfvars, nivars,
14: * t0, xg, xe)
15: *
16: * Input Arguments
17: * ---------------
18: * idef = current User element definition index
19: * type = element type: >=900
20: * unit = current unit number
21: * uid = user specified element number
22: * ifab = fabrication code
23: * iang = material angle flag
24: * ilin = linearity flag
25: * iplas = plasticity flag
26: * nnodes = number of nodes
27: * nodseq = nodal sequence for element frame
28: * triad = material orientation matrix
29: * unodes = element nodes (user-definition)
30: * nodes = element nodes (STAGS-definition)
31: * maxdof = nodal maxdof vector
32: * nfvars = number of user float variables
33: * nivars = number of user integer variables
34: * t0 = element orientation matrix
35: * xg = global nodal coordinates
36: * xe = local nodal coordinates
37: *
38: #endif
39:
40: **
41: Subroutine UelEltDef (idef, type, unit, uid,
42: & ifab, iang, ilin, iplas,
43: & nnodes, nodseq, triad, unodes,
44: & nodes, maxdof, nfvars, nivars,
45: & t0, xg, xe)
46: **
47:
48: # include “keydefs.h”
49:
50: _implicit_none_
13-10 April, 2009 STAGS 5.0 User Manual

User Element Model–Definition Routines User–Defined Elements
subroutine UelEltDef (continued)

51:
52: # include “stndcm.h”
53:
54: Integer idef
55: Integer type
56: Integer unit
57: Integer uid
58: Integer ifab
59: Integer iang
60: Integer ilin
61: Integer iplas
62: Integer nnodes
63: Integer nodseq(4)
64: _float_ triad(3,3)
65: Integer unodes(nnodes)
66: Integer nodes(nnodes)
67: Integer maxdof(nnodes)
68: Integer nfvars
69: Integer nivars
70: _float_ t0(3,3)
71: Real xg(3,nnodes)
72: _float_ xe(3,nnodes)
73:
74: Integer a
75: Integer b
76: Integer m
77: Character msg*44
78: Logical NTITLE
79:
80: if (NTITLE('X_EltDef')) then
81:
82: m = min(nnodes,20)
83:
84: print 100, idef, type, unit, uid,
85: & ifab, iang, ilin, iplas,
86: & nnodes, nodseq, nfvars, nivars,
87: & triad
88:
89: print 200, (unodes(a),a=1,m)
90: print 300, (nodes (a),a=1,m)
91: print 400, (maxdof(a),a=1,m)
92: print 500, ((t0(a,b),a=1,3),b=1,3)
93: print 600, ((xg(a,b),a=1,3),b=1,m)
94: print 700, ((xe(a,b),a=1,3),b=1,m)
95:
96: endif
97:
98: * PERFORM DEFINITION OPERATIONS FOR A USER-DEFINED ELEMENT
99: * ==
STAGS 5.0 User Manual April, 2009 13-11

User–Defined Elements User Element Model–Definition Routines
subroutine UelEltDef (continued)

100: if (type.eq.900) then
101:
102: call UelEltDef900 (idef, type, unit, uid,
103: & ifab, iang, ilin, iplas,
104: & nnodes, nodseq, triad, unodes,
105: & nodes, maxdof, nfvars, nivars,
106: & t0, xg, xe)
107:
108: elseif (type.eq.901) then
109:
110: call UelEltDef901 (idef, type, unit, uid,
111: & ifab, iang, ilin, iplas,
112: & nnodes, nodseq, triad, unodes,
113: & nodes, maxdof, nfvars, nivars,
114: & t0, xg, xe)
115:
116: elseif (type.eq.902) then
117:
118: call UelEltDef902 (idef, type, unit, uid,
119: & ifab, iang, ilin, iplas,
120: & nnodes, nodseq, triad, unodes,
121: & nodes, maxdof, nfvars, nivars,
122: & t0, xg, xe)
123:
124: elseif (type.eq.910) then
125:
126: call UelEltDef910 (idef, type, unit, uid,
127: & ifab, iang, ilin, iplas,
128: & nnodes, nodseq, triad, unodes,
129: & nodes, maxdof, nfvars, nivars,
130: & t0, xg, xe)
131:
132: else
133:
134: * USER-DEFINED ELEMENT TYPE NOT FOUND
135: * ===================================
136: write (msg,800) type
137: call solstp (msg)
138:
139: endif
140:
141: 100 format(/' <<<< UelEltDef >>>>'
142: & //' idef', i5
143: & /' type', i5
144: & /' unit', i5
145: & /' uid', i5
146: & /' ifab', i5
147: & /' iang', i5
148: & /' ilin', i5
149: & /' iplas', i5
13-12 April, 2009 STAGS 5.0 User Manual

User Element Model–Definition Routines User–Defined Elements
The portions that are printed with boldface type in this listing of subroutine UelEltDef (lines 100–
122, inclusive) may be changed, as noted above, to reflect the user’s particular choices in
assigning identifier (type) numbers and subroutine names to each of his or her unique User
element types. The calling sequences shown here, however, should not be changed.

The observant reader will have noticed that in lines 124–130 of this version of UelEltDef there is
a test to determine if the current element is a type 910 element, followed by a call to UelEltDef910

if it is. This logic accommodates STAGS’ “actuator” element, which started out as a developer’s
user element and then migrated into current versions of the program as a “regular” or “standard”
STAGS element that any analyst can utilize. See the STAGS Elements Manual for more
information about this interesting and useful element.

The default version of subroutine UelEltDef900 (one of the three “children” called by the above-
listed version of UelEltDef) is shown in the following listing:

subroutine UelEltDef (continued)

150: & /' nnodes', i5
151: & /' nodseq', 4i5
152: & /' nfvars', i5
153: & /' nivars', i5
154: & /' triad', 1p9e12.4)
155: 200 format(' unodes', 20i5)
156: 300 format(' nodes', 20i5)
157: 400 format(' maxdof', 20i5)
158: 500 format(' t0', 1p3e14.6 / (12x,1p3e14.6))
159: 600 format(' xg', 1p3e14.6 / (12x,1p3e14.6))
160: 700 format(' xe', 1p3e14.6 / (12x,1p3e14.6))
161: 800 format('UelEltDef: Undefined User Element Type:', i5)
162:
163: end
STAGS 5.0 User Manual April, 2009 13-13

User–Defined Elements User Element Model–Definition Routines

subroutine UelEltDef900

1: c=deck UelEltDef900
2: c=purpose Perform definition operations for user-written E900
3: c=author --
4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
6: c=version January 2002
7:
8: #if _usage_
9: *

10: * call UelEltDef900 (idef, type, unit, uid,
11: * ifab, iang, ilin, iplas,
12: * nnodes, nodseq, triad, unodes,
13: * nodes, maxdof, nfvars, nivars,
14: * t0, xgg, xe)
15: *
16: * Input Arguments
17: * ---------------
18: * idef = current User element definition index
19: * type = element type (=900)
20: * unit = current unit number
21: * uid = user specified element number
22: * ifab = fabrication code
23: * iang = material angle flag
24: * ilin = linearity flag
25: * iplas = plasticity flag
26: * nnodes = number of nodes
27: * nodseq = nodal sequence for element frame
28: * triad = material orientation matrix
29: * unodes = element nodes (user-definition)
30: * nodes = element nodes (STAGS-definition)
31: * nfvars = number of user float variables
32: * nivars = number of user integer variables
33: * t0 = element orientation matrix
34: * xgg = global nodal coordinates
35: * xe = local nodal coordinates
36: *
37: #endif
38:
39: **
40: Subroutine UelEltDef900 (idef, type, unit, uid,
41: & ifab, iang, ilin, iplas,
42: & nnodes, nodseq, triad, unodes,
43: & nodes, maxdof, nfvars, nivars,
44: & t0, xgg, xe)
45: **
46:
47: # include “keydefs.h”
13-14 April, 2009 STAGS 5.0 User Manual

User Element Model–Analysis Routines User–Defined Elements
The two boldface lines (73 and 74), here, are to be implemented by the User element developer.

A comprehensive set of FORTRAN– and C–language utility routines is provided with STAGS to

facilitate the implementation and utilization of user-defined elements in STAGS’ s1 model–

definition processor and in other STAGS processors. These utilities are described briefly later in

this chapter and are documented more comprehensively in the STAGS Elements Manual.

13.5 User Element Model–Analysis Routines

When the STAGS’ s2 processor encounters a User element, it also calls upon a number of user-

element “dispatch” routines to perform initialization and computation operations for that UEL—

 subroutine UelEltDef900 (continued)

48:
49: _implicit_none_
50:
51: # include “stndcm.h”
52:
53: Integer idef
54: Integer type
55: Integer unit
56: Integer uid
57: Integer ifab
58: Integer iang
59: Integer ilin
60: Integer iplas
61: Integer nnodes
62: Integer nodseq(4)
63: _float_ triad(3,3)
64: Integer unodes(nnodes)
65: Integer nodes(nnodes)
66: Integer maxdof(nnodes)
67: Integer nfvars
68: Integer nivars
69: _float_ t0(3,3)
70: Real xgg(3,nnodes)
71: _float_ xe(3,nnodes)
72:
73: * TO BE IMPLEMENTED BY THE USER
74: * =============================
75:
76: end
STAGS 5.0 User Manual April, 2009 13-15

User–Defined Elements User Element Model–Analysis Routines
as and if required. Depending on the type of analysis to be performed, s2 may call some or all
of the user-element dispatch routines that are listed in the following Table:

Each of these dispatch routines in turn calls a corresponding user-defined routine that is specific
to a particular user-defined element type. Subroutine UelPvDef, for example, calls the provided
templates UelPvDef900, UelPvDef901 and UelPvDef902. Similar template routines are provided for
the other dispatch routines. As with the previously-described top-level model-definition routines,
the names of these user-element-type-specific model-analysis routines (for hypothetical user
types 900, 901 and 902) are arbitrary and may be changed to reflect the user’s particular choice.
In any event, it should be obvious that User element name and type choices implemented in
STAGS’ s1 (model-definition) operations should also be used in s2 (model-analysis) operations
and in other (post-processing) activities.

For reference purposes, the current default version of the UelPvDef dispatch routine is shown in
the following FORTRAN listing:

subroutine raison d’ étre

UelPvDef Perform pre-variation operations for User elements
UelMassDef Perform mass-computation operations for User elements

UelFiDef Compute internal forces for User elements
UelFlDef Compute live-loading forces for User elements

UelKmDef Compute the material stiffness of the User elements
UelKgDef Compute the geometric stiffness of the User elements

UelStrainDef Determine the user-element strains
UelStressDef Determine the user-element stresses

UelResultantDef Determine the user-element resultants
UelPrintStrainDef Print the user-element strains
UelPrintStressDef Print the user-element stresses

UelPrintResultantDef Print the user-element resultants
13-16 April, 2009 STAGS 5.0 User Manual

User Element Model–Analysis Routines User–Defined Elements

 subroutine UelPvDef

1: c=deck UelPvDef
2: c=purpose Perform pre-variation operations for a User element
3: c=author --
4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
6: c=version January 2005
7:
8: #if _usage_
9: *

10: * call UelPvDef (type, elt, nnodes, active, nvars,
11: * nodes, mxdof, nff, ivg, xe)
12: *
13: * Input Arguments
14: * ---------------
15: * type = element type: >= 900
16: * elt = element number of type TYPE in the model
17: * nnodes = number of nodes
18: * active = number of active nodes
19: * nvars = number of element variables
20: * nodes = element nodes
21: * mxdof = nodal maxdof vector
22: * nff = nodal DOF-count vector
23: * ivg = nodal DOF vector
24: * xe = nodal coordinates
25: *
26: #endif
27:
28: **
29: Subroutine UelPvDef (type, elt, nnodes, active, nvars,
30: & nodes, mxdof, nff, ivg, xe)
31: **
32:
33: # include “keydefs.h”
34:
35: _implicit_none_
36:
37: # include “stndcm.h”
38:
39: Integer type
40: Integer elt
41: Integer nnodes
42: Integer active
43: Integer nvars
44: Integer nodes(nnodes)
45: Integer mxdof(nnodes)
46: Integer nff(nnodes)
47: Integer ivg(nvars)
STAGS 5.0 User Manual April, 2009 13-17

User–Defined Elements User Element Model–Analysis Routines
 subroutine UelPvDef (continued)

48: _float_ xe(3,nnodes)
49: Integer i
50: Integer j
51: Integer m
52: Character msg*48
53: Logical NTITLE
54:
55: if (NTITLE('X_UelPvDef')) then
56:
57: m = min(nnodes,20)
58:
59: write (not,100) type, elt, nnodes, active, nvars
60: write (not,200) (nodes(i),i=1,m)
61: write (not,300) (mxdof(i),i=1,m)
62: write (not,400) (nff (i),i=1,m)
63: write (not,500) (ivg (i),i=1,min(nvars,20))
64: write (not,600) ((xe(i,j),i=1,3),j=1,m)
65:
66: endif
67:
68: * PERFORM PRE-VARIATION OPERATIONS FOR A USER-WRITTEN ELEMENT
69: * ===
70: if (type.eq.900) then
71:
72: call UelPvDef900 (type, elt, nnodes, active, nvars,
73: & nodes, mxdof, nff, ivg, xe)
74:
75: elseif (type.eq.901) then
76:
77: call UelPvDef901 (type, elt, nnodes, active, nvars,
78: & nodes, mxdof, nff, ivg, xe)
79:
80: elseif (type.eq.902) then
81:
82: call UelPvDef902 (type, elt, nnodes, active, nvars,
83: & nodes, mxdof, nff, ivg, xe)
84:
85: elseif (type.eq.910) then
86:
87: call UelPvDef910 (type, elt, nnodes, active, nvars,
88: & nodes, mxdof, nff, ivg, xe)
89:
90: else
91:
92: * USER-WRITTEN ELEMENT TYPE NOT FOUND
93: * ===================================
94: write (msg,700) type
95: call solstp (msg)
13-18 April, 2009 STAGS 5.0 User Manual

User Element Model–Analysis Routines User–Defined Elements
The specific UEL type designations and the names of the next–level subroutines that UelPvDef

calls are typically arbitrary and may be changed to reflect the user’s choices—subject to the

architectural constraint that each User element type must have a unique identifier number in

the range from 900 to 999, inclusive. The top–level UelPvDef dispatch routine documented in

this listing treats type 900, 901 and 902 User elements in lines 70–83, inclusive (printed in

boldface type)—calling next–level subroutines UelPvDef900, UeltPvDef901 and UelPvDef902 to

perform pre–variation operations for the current element when it is necessary to do so. The

names of the next–level routines that UelPvDef calls are arbitrary, but their calling sequences

are fixed and should not be changed.

This version of UelPvDef treats a type 910 User element in lines 85–88—calling UelPvDef910

to do pre–variation work for a type 910 element. If the analyst/developer intends to use the

“actuator” element that has been implemented as a type 910 UEL in current versions of

STAGS, he/she should not touch this portion of the code. If the analyst/developer has

implemented something else as a type 910 UEL, anything goes.

In any event, all of the top-level s2-processor dispatch routines and their respective children are

documented in Chapter 9 of the STAGS Elements Manual.

 subroutine UelPvDef (continued)

96:
96: endif
96:
96: return
96:
96: 100 format(/' <<<<<<<<<<<<<< UelPvDef >>>>>>>>>>>>>>'
97: & //' element type', i5
98: & /' element number of type in model ...', i5
99: & /' number of nodes', i5

100: & /' number of active nodes', i5
101: & /' number of variables', i5
102: & /' dataset record number', i5)
103:
104: 200 format(' nodes', 20i5)
105: 300 format(' maxdof ...', 20i5)
106: 400 format(' nff', 20i5)
107: 500 format(' ivg', 20i5)
108: 600 format(' xe', 1p3e14.6 / (11x,1p3e14.6))
109:
110: 700 format('UelPvDef: Undefined User element type:', i5)
111:
112: end
STAGS 5.0 User Manual April, 2009 13-19

User–Defined Elements User Element Post-Processing Routines
13.6 User Element Post-Processing Routines

Post-processing capabilities for user-developed elements in STAGS are built primarily around the
stapl post-processor, which provides the quickest means for the analyst to visualize his (or her)
UEL elements and results obtained with them. User-developed elements can have almost any
geometry—simple or complex. Complex user-developed “super” elements can be constructed,
for example, from static condensations of one or more groups of standard and/or other types of
User elements: these typically “reduce” a complex sub-model to a computationally manageable
size by eliminating “interior” nodes and retaining only those nodes that are required to define its
internal state—primarily (but not necessarily exclusively)—nodes along the outer boundary of
the sub-model. STAGS users can save significant amounts of computer resources with this kind
of User element—with some losses in the immediate visibilities of their models and of results
obtained with them.

As for the model definition and analsis tasks (in the s1 and s2 processors, respectively), STAGS

provides hooks that facilitate the implementation of user-written software for visualizing user-
written elements and results obtained with them—in stapl and in other STAGS post-processors,
and in s1 (which uses stapl software to generate configuration plots of the analyst’s model).

When any STAGS processor that generates model-configuration and/or -data plots encounters a
User element to be visualized, it calls upon one or more of the top-level “dispatch” routines that
are listed in the following Table to facilitate the accomplishment of that objective:

Each of these top-level dispatch routines in turn calls a corresponding user-defined routine that
is specific to a particular user-defined element type. Subroutine UelQuadDef, for example, calls
the provided templates UelQuadDef900, UelQuadDef901 and UelQuadDef902. Similar template
routines are provided for the other dispatch routines. As with all of the top-level dispatch
routines described here and earlier in this chapter, the names of these user-element-type-specific
model-analysis routines (for hypothetical user types 900, 901 and 902) are totally arbitrary and
may be changed to reflect the user’s particular choice. For completeness and consistency, User
element name and type choices implemented in s1 and s2 should also be implemented in stapl
and other (post-processing) processors.

subroutine raison d’ étre

UelQuadDef Determine the number of quads to be used to visualize a UEL of type type
UelGeomDef Provide nodal connectivity and geometry data for a specific UEL of type type

UelValuesDef Provide result value(s) for a specific UEL of type type
13-20 April, 2009 STAGS 5.0 User Manual

User Element Post-Processing Routines User–Defined Elements
For reference purposes, the current default versions of the UelQuadDef and UelValuesDef dispatch
routines are shown in the following two FORTRAN listings:

 subroutine UelQuadDef

1: c=deck UelQuadDef
2: c=purpose Return # of subelements for visualizing a user-written element
3: c=author --
4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
6: c=version October 2004
7:
8: #if _usage_
9: *

10: * CALL UelQuadDef (type,gelt, nsubs)
11: *
12: * Input Arguments
13: * ---------------
14: * type = element type: >=900
15: * gelt = global element number
16: *
17: * Output Arguments
18: * ----------------
19: * nsubs = number of subelements for visualizing a
20: * user-written element
21: *
22: #endif
23:
24: **
25: Subroutine UelQuadDef (type,gelt, nsubs)
26: **
27:
28: # include “keydefs.h”
29:
30: _implicit_none_
31:
32: # include “stndcm.h”
33:
34: Integer type
35: Integer gelt
36: Integer nsubs
37:
38: Integer elt
39: Character msg*48
40: Logical NTITLE
41:
42: if (NTITLE(‘X_UelQuadDef’)) then
43: write(not,100) type, gelt, elt
44: endif
45:
STAGS 5.0 User Manual April, 2009 13-21

User–Defined Elements User Element Post-Processing Routines
and

 subroutine UelQuadDef (continued)

46: * INITIALIZE OUTPUT ARGUMENTS
47: * ===========================
48: nsubs = 0
49:
50: * OBTAIN # OF ELEMENT type
51: * ========================
52: call UelEltp (gelt,type, elt)
53:
54: * RETURN NUMBER OF QUADS TO VISUALIZE A USER-WRITTEN ELEMENT
55: * ==
56: if (type.eq.900) then
57:
58: call UelQuadDef900 (type,gelt,elt, nsubs)
59:
60: elseif (type.eq.901) then
61:
62: call UelQuadDef901 (type,gelt,elt, nsubs)
63:
64: elseif (type.eq.902) then
65:
66: call UelQuadDef902 (type,gelt,elt, nsubs)
67:
68: elseif (type.eq.910) then
69:
70: call UelQuadDef910 (type,gelt,elt, nsubs)
71:
72: else
73:
74: * USER-WRITTEN ELEMENT TYPE NOT FOUND
75: * ===================================
76: write (msg,200) type
77: call solstp (msg)
78:
79: endif
80:
81: 100 format(/’ <<<<<<<<<<<< UelQuadDef >>>>>>>>>>>>>>’
82: & //’ element type’, i5
83: & /’ global element number’, i5
84: & /’ element number of type in model ...’, i5)
85:
86: 200 format(‘UelQuadDef: Undefined user element type: ‘,i5)
87:
88: end
13-22 April, 2009 STAGS 5.0 User Manual

User Element Post-Processing Routines User–Defined Elements
subroutine UelValuesDef

1: c=deck UelValuesDef
2: c=purpose Return solution values for a user-written element
3: c=author --
4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
6: c=version November 2004
7:
8: #if _usage_
9: *

10: * CALL UelValuesDef (type, gelt, sub, name, loc, dsx,
11: * step, iplast, layer, zloc, eref,
12: * nval, values, status)
13: *
14: * Input Arguments
15: * ---------------
16: * type = element type: >=900
17: * gelt = global element number
18: * sub = subelement identifier (1 <= sub <= Nsubs)
19: * (cf. subroutine UelQuadDef)
20: * name = name of data to be returned
21: * loc = output location: ‘N’ (nodes) or ‘C’ (centroid)
22: * dsx = dataset containing displacement solution
23: * step = solution step number
24: * iplast = plasticity flag
25: * layer = fabrication layer, or 0 (see below)
26: * zloc = 'B' - Bottom of layer "layer" -- or bottom of
27: * layer 1, if "layer" = 0; or
28: * = ‘T’ - Top of layer "layer" -- or top of
29: * layer NLAYS, where NLAYS = total # of
30: * layers in the fabrication
31: * eref = ‘F’ - Fabrication reference frame; or
32: * ‘M’ - Material reference frame
33: *
34: * Output Arguments
35: * ----------------
36: * nval = if loc = ‘N’, number of values returned per node
37: * if loc = ‘C’, number of values returned
38: * values = data to be returned:
39: * loc = ‘N’ : 4 value sets
40: * loc = ‘C’ : 1 value set
41: * status = success/failure indicator:
42: * = 0 : data retrieved successfully
43: * = -1 : data not defined for element
44: * = -2 : data not defined at requested location
45: *
46: #endif
47:
STAGS 5.0 User Manual April, 2009 13-23

User–Defined Elements User Element Post-Processing Routines
subroutine UelValuesDef (continued)

48: **
49: Subroutine UelValuesDef (type, gelt, sub, name, loc, dsx,
50: & step, iplast, layer, zloc, eref,
51: & nval, values, status)
52: **
53:
54: # include “keydefs.h”
55:
56: _implicit_none_
57:
58: # include “stndcm.h”
59: # include “dsuni.h”
60: # include “spec.h”
61: # include “unc0.h”
62: # include “unc2.h”
63: # include “xstep.h”
64:
65: Integer type
66: Integer gelt
67: Integer sub
68: Character name*(*)
69: Character loc*(*)
70: Integer dsx
71: Integer step
72: Integer iplast
73: Integer layer
74: Character*1 zloc
75: Character*1 eref
76: Integer nval
77: _float_ values(*)
78: Integer status
79:
80: Integer elt
81: Character msg*48
82: Logical NTITLE
83: Integer nwr
84: Integer UnitDat
85:
86: if (NTITLE(‘X_UelValuesDef’)) then
87: write(not,100) type, gelt, elt, sub, name, loc, dsx, step
88: endif
89:
90: * INITIALIZE STATUS ARGUMENT
91: * ==========================
92: status = 0
93:
94: * OBTAIN # OF ELEMENT type
95: * ========================
96: call UelEltp (gelt,type, elt)
13-24 April, 2009 STAGS 5.0 User Manual

User Element Post-Processing Routines User–Defined Elements
subroutine UelValuesDef (continued)

97:
98: * INITIALIZE UNIT OFFSET DATA
99: * ===========================

100: call QROFF (dselt,gelt,1,13,1, nwr,UnitDat)
101: call QREAD (dsunit,UnitDat,3,0, lnod)
102:
103: * RETURN SOLUTION VALUES FOR A USER-WRITTEN ELEMENT
104: * ===
105: if (type.eq.900) then
106:
107: call UelValuesDef900 (type, gelt, elt, sub, name,
108: & loc, dsx, step, xpa, xpb,
109: & iplast, layer, zloc, eref,
110: & nval, values, status)
111:
112: elseif (type.eq.901) then
113:
114: call UelValuesDef901 (type, gelt, elt, sub, name,
115: & loc, dsx, step, xpa, xpb,
116: & iplast, layer, zloc, eref,
117: & nval, values, status)
118:
119: elseif (type.eq.902) then
120:
121: call UelValuesDef902 (type, gelt, elt, sub, name,
122: & loc, dsx, step, xpa, xpb,
123: & iplast, layer, zloc, eref,
124: & nval, values, status)
125:
126: elseif (type.eq.910) then
127:
128: call UelValuesDef910 (type, gelt, elt, sub, name,
129: & loc, dsx, step, xpa, xpb,
130: & iplast, layer, zloc, eref,
131: & nval, values, status)
132:
133: else
134:
135: * USER-WRITTEN ELEMENT TYPE NOT FOUND
136: * ===================================
137: write (msg,200) type
138: call solstp (msg)
139:
140: endif
141:
142: 100 format(/’ <<<<<<<<<<< UelValuesDef >>>>>>>>>>>>>’
143: & //’ element type’, i5
144: & /’ global element number’, i5
STAGS 5.0 User Manual April, 2009 13-25

User–Defined Elements User Element Post-Processing Routines
As noted earlier, the specific User element type designations and the names of the routines that
the UelQuadDef and UelValuesDef dispatch routines call—UelQuadDef900, UeltQuadDef901 &
UelQuadDef902, and UelValuesDef900, UeltValuesDef901 & UelValuesDef902 for UEL types 900,
901 and 902, here—are completely arbitrary and may be changed to reflect the user’s
particular choices (subject to the architectural constraint that each UEL type must have a
unique identifier number in the range from 900 to 999, inclusive). The portions that are printed
in boldface type in these listings (lines 56–66 in UelQuadDef and lines 105–124 in UelValuesDef)
may be changed to reflect the user’s particular choices in assigning identifier (type) numbers
and subroutine names to each unique User element type. The calling sequences shown here
should not be changed, however.

The three top-level visualization dispatch routines and their respective children are more fully
documented in Chapter 9 of the STAGS Elements Manual.

subroutine UelValuesDef (continued)

145: & /’ element number of type in model ...’, i5
146: & /’ subelement identifier’, i5
147: & /’ name of requested data ‘, a
148: & /’ location of requested data ‘, a
149: & /’ solution dataset identifier’, i5
150: & /’ solution step number’, i5)
151:
152: 200 format(‘UelValuesDef: Undefined user element type: ‘,i5)
153:
154: end
13-26 April, 2009 STAGS 5.0 User Manual

FORTRAN– and C–Language Utility Routines User–Defined Elements
13.7 FORTRAN– and C–Language Utility Routines

A comprehensive set of utility routines is provided with STAGS to facilitate the implementation
and utilization of user-defined elements in STAGS’ s1 (model–definition) and other processors.
Some of these utilities (principally those that are written in the C programming language) are
very low-level architectural routines that STAGS users and element developers do not generally
need to know about or use. Others (in the FORTRAN language) may be employed effectively in
one or more phases of STAGS model–definition, analysis and/or post-processing operations. The
principal utilities are described briefly here, and the full set of utilities is documented fully in the
STAGS Elements Manual.

Before getting into these descriptions, let us pause briefly to tell the user and element developer
that the top-level phase1 routine in STAGS’ s1 processor calls subroutine cards to read all of
the input in the user’s INP model–definition input file. Subroutine cards, in turn, calls upon
subroutines cread and parse—in cooperation with subroutines XUelParse and parse2—to
assist in reading and in parsing user-specified directives—most notably the *userElement
and the *userProperty directives. After a STAGS s1 input file has been fully assimilated
and processed, subroutine phase1 calls user-element subroutine UelToQdb (which uses a
number of lower-level C– and FORTRAN–language routines) to create STAGS databases for all
of the specified User element types and variables that are specified in the input file. The
average user and element developer should be aware of but not intensely concerned about any
of these operations. The user/developer’s attention should be focused exclusively on higher-
level operations in defining and utilizing his/her user-developed elements.

Similarly, in the analysis phase of STAGS operations, the top-level work routine in STAGS’ s2
processor also calls upon subroutine cards to read all of the input in the user’s BIN model–
analysis input file. In the s2 processor, as in s1, subroutine cards utilizes lower-level
subroutines cread and parse to assist in reading and in parsing the user’s input. It is not
appropriate for the user to have any *userElement or *userProperty user-element- or
user-property-set definition directives here: these directives must be included in the user’s
model–definition INP input file. Here, too, the user/developer’s attention should be focused
exclusively on higher-level operations in utilizing his/her user-developed elements.

With this in mind, the following Table contains brief descriptions of 19 FORTRAN–language
subroutines that the user/developer can employ to load information into and to retrieve
information from the STAGS User Element Type databases. The interested user/developer should
see Chapter 9 of the STAGS Elements Manual for more information (calling sequences, etc.)
about these and other User element type database utility routines.
STAGS 5.0 User Manual April, 2009 13-27

User–Defined Elements FORTRAN– and C–Language Utility Routines
Table 13.1 User Element Type Database Utility Routines

Routine Purpose Input & Output

UelCount Retrieve the number of
User element types

eltCount = Number of User element types

UelGetModelCount Retrieve the number of
User elements by type

type = User element type ()
count = Number of User elements of type type in the model
dse9xx = User element dataset handle for type type

UelGetUnitCount Retrieve the number of
User elements by type
and unit

type = User element type ()
unit = STAGS model unit identifier
count = Number of User elements of type type in unit unit
dse9xx = User element dataset handle for type type

UelIndex Retrieve the index for a
User element type

type = User element type ()
elt = Index for User element of type type (if the User element type

does not exist, then zero is returned for the element type index)

UelInfo Retrieve metadata for a
User element type

elt = Index of User element type
type = User element type ()
nodeCount = Number of nodes for User element type type
nevars = Number of element variables
nodeSeq = Node sequence (3 or 4) to compute element frame
nfvars = Number of element type float variables
nivars = Number of element type integer variables
name = Name of User element type
nameLen = Number of characters in name

UelVarInfo Retrieve the number of
User element type vari-
ables

elt = Index of User element type
floCount = Number of float variables for this User element type
intCount = Number of integer variables for this User element type

UelFloVar Retrieve metadata for a
User element type float
variable

elt = Index of User element type
var = Index of User element type float variable
size = Variable size (in logical words)
histIdx = Variable index in history buffer (if positive)
name = Variable name
nameLen = Length of variable name

UelIntVar Retrieve metadata for a
User element type inte-
ger variable

elt = Index of User element type
var = Index of User element type integer variable
size = Variable size in logical words
histIdx = Variable index in history buffer (if positive)
name = Variable name
nameLen = Length of variable name

900 type 999≤ ≤

900 type 999≤ ≤

900 type 999≤ ≤

900 type 999≤ ≤
13-28 April, 2009 STAGS 5.0 User Manual

FORTRAN– and C–Language Utility Routines User–Defined Elements
Table 13.1 User Element Type Database Utility Routines (continued)

Routine Purpose Input & Output

UelSetFloVar Set User element type float
variable(s)

type = User element type ()
elt = Index of User element type
name = Name of float variable
data = Float variable data
size = Size of data stored (in logical words)

UelGetFloVar Retrieve a User element type
float variable(s); it is the
caller’s responsibility to
ensure that the data buffer is
large enough to hold the
returned items

type = User element type ()
elt = Index of User element type
name = Name of float variable ('*' => all float variables)
data = Float variable data vector
size = Size of data (in logical words); set to zero if name does not

exist

UelSetIntVar Set User element type inte-
ger variable(s)

type = User element type ()
elt = Index of User element type
name = Name of integer variable ('*' => all integer variables)
data = Integer variable data
size = Size of data stored (in logical words)

UelGetIntVar Retrieve User element type
integer variable(s); it is the
caller’s responsibility to
ensure that the data buffer is
large enough to hold the
returned items

type = User element type ()
elt = Index of User element type
name = Name of integer variable ('*' => all integer variables)
data = Integer variable data vector
size = Size of data (in logical words); size is set to zero if name

does not exist

UelSetHistVar Set all of the User element his-
torical variables

type = User element type ()
elt = Index of User element type
data = history variable
size = Size of data stored (in floating point words)

UelSetHistFloVar Set a User element historical
floating point variable

type = User element type ()
elt = Index of User element type
name = Name of float variable ('*' => all float variables)
data = floating point history variable(s)
size = Size of data stored (in logical words)

UelSetHistIntVar Set a User element historical
integer variable

type = User element type ()
elt = Index of User element type
name = Name of integer variable ('*' => all integer variables)
data = Integer history variable(s)
size = Size of data stored (in logicalwords)

900 type 999≤ ≤

900 type 999≤ ≤

900 type 999≤ ≤

900 type 999≤ ≤

900 type 999≤ ≤

900 type 999≤ ≤

900 type 999≤ ≤
STAGS 5.0 User Manual April, 2009 13-29

User–Defined Elements FORTRAN– and C–Language Utility Routines
Table 13.1 User Element Type Database Utility Routines (continued)

The following Table contains brief descriptions of 9 FORTRAN–language subroutines that the
user/developer can employ to load information into and to retrieve information from the STAGS

User property set databases. The interested user/developer should see Chapter 9 of the STAGS

Elements Manual for more information (calling sequences, etc.) about these and other User
property set database utility routines.

Routine Purpose Input & Output

UelGetHistFlo-
Var

Retrieve a User element histor-
ical floating point variable

type = User element type ()
elt = Index of User element type
name = Name of float variable ('*' => all float variables)
data = floating point history variable(s)
size = Size of data retrieved (in logical words)

UelSetHistIntVar Retrieve a User element histor-
ical integer variable

type = User element type ()
elt = Index of User element type
name = Name of integer variable ('*' => all integer variables)
data = Integer history variable(s)
size = Size of data retrieved (in logicalwords)

UelSetStr Map a character string into an
array of encoded integers

string = Character string to be copied into ibuff (trailing
spaces are ignored).

nlen = ibuff length holding string.
ibuff = Integer array with the structure: {stringLen, char1, char2, ...,

charN}

UelGetStr Retrieve a character string
from an array of integer-
encoded characters

ibuff = Integer array with the structure: {stringLen, char1,
char2, ..., charN}

stringLen = Length of character string string
string = Character string retrieved from ibuff

900 type 999≤ ≤

900 type 999≤ ≤
13-30 April, 2009 STAGS 5.0 User Manual

FORTRAN– and C–Language Utility Routines User–Defined Elements
Table 13.2 User Property Set Database Utility Routines

Routine Purpose Input & Output

UPropCount Retrieve the number of
User property sets

propCount = Number of User property sets

 UPropIndex Retrieve the index for a
user property set

id = User property set identifier (specified by the user)
prop = Index of User property set

UPropInfo Retrieve metadata for a
user property item

prop = User property set index
id = User property set identifier (specified by the user)
floCount = Number of user property set float items
intCount = Number of user property set integer items
name = Name of user property set
nameLen = Number of characters in name

UPropFloVal Retrieve metadata for a
user property set float
value

prop = User property set index
item = User property set float item index
data = Float property data
name = Property item name
nameLen = Property item name length

UelSetFloProp Set user property float
item(s)

id = User property set identifier (specified by the user)
name = Name of float property ('*' => all float properties)
data = float property data items
size = Size of data (in logical words); set to zero if name does not exist

UelGetFloProp Retrieve float user prop-
erty item(s)

id = User property set identifier (specified by the user)
name = Name of float property ('*' => all float properties)
data = Float property data items (it is the caller’s responsibility to ensure

that the data buffer is large enough to hold the returned items)
size = Size of data (in logical words); set to zero if name does not exist

UPropIntVal Retrieve metadata for a
user property set integer
value

prop = User property set index
item = User property set integer item index
data = Integer property data
name = Property item name
nameLen = Property item name length

UelSetIntProp Set user property inte-
ger item(s)

id = User property set identifier (specified by the user)
name = Name of integer property ('*' => all integer properties)
data = integer property data items
size = Size of data (in logical words); set to zero if name does not exist

UelGetIntProp Retrieve integer user
property item(s); it is the
caller’s responsibility
to ensure that the
data buffer is large
enough to hold the
returned items

id = User property set identifier (specified by the user)
name = Name of integer property ('*' => all integer properties)
data = Integer property data items
size = Size of data (in logical words); set to zero if name does not exist
STAGS 5.0 User Manual April, 2009 13-31

User–Defined Elements FORTRAN– and C–Language Utility Routines
Last, but not least, the following Table contains brief descriptions of 4 FORTRAN–language
routines that the analyst/developer can employ to retrieve element–property information and
results from STAGS databases when STAGS’ GCP processor is employed in specifying material
properties and element fabrications. See Chapter 9 of the STAGS Elements Manual for more
information about these and other GCP–interface routines.

Table 13.3 User Element GCP–Interface Routines

Routine Purpose Input & Output

e9xxcp Retrieve the CC matrix for a
UEL-GCP installation

nlin = Nonlinear-strain/displacement-relations flag
iplast = Plasticity-theory use flag
i1 = Local-angles-defining-planar-rotation flag
ag = Local angles defining planar rotations
ccp = Full (non-triangular) ABD matrix
status = Success/change-step-size/failure flag

e9xxgss Obtain the stress resultants
for a UEL-GCP installation

nlin = Nonlinear-strain/displacement-relations flag
iplast = Plasticity-theory use flag
pa = Load factor for system A
pb = Load factor for system B
kinflg = kinematic type flag for the element
i1 = Local-angles-defining-planar-rotation flag
ag = Local angles defining planar rotations
strainr = Element strains/curvatures
stressr = Stress resultants corresponding to given strains
edens = Energy density (nips values)
status = Success/change-step-size/failure flag

e9xxms Obtain the inertia terms for a
UEL-GCP installation

inertia = Mass per unit volume, surface or length

e9xxpse Obtain the stress resultants
for a multi-layer UEL-GCP
installation

step = Load step number
pa = Load factor for system A
pb = Load factor for system B
i1 = Local-angles-defining-planar-rotation flag
ag = Local angles defining planar rotations (nips values)
iplast = Plasticity-theory use flag
ilayr = Layer # for which output is desired
zloc = Z location (through thickness) where output is desired
eref = Reference frame for stress/strain computations
zetr = Angle between reference frame and direction of results
strainr = Element strains/curvatures (nsr*nips points)
epsilon = Strain vector (nsc components at nsp points)
plep = Plastic strains (nsc components at nsp points)
nsc = Number of strain components
epseff = Effective strain at nsp points
sigma = Stress vector (nsc components at nsp points)
sigeff = Effective stress at nsp points
status = Success/change-step-size/failure flag
13-32 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
13.8 Uniform Beam Example

This section shows the use of some of STAGS’ User element features in solving the textbook

problem that is shown in Figure 13.1:

Figure 13.1 Uniform Beam Example Problem

This straight, uniform beam with a circular cross section—10.0 inches long with a 1.0 inch
radius—is fully clamped at x=0 (End A) and is loaded at the free end at x=L (End B) with 1.0

pound forces in the y– and z–directions.

The user-defined beam element that is to be used in solving this problem is described by

Przemieniecki.* It has uniform cross-section and material properties and has two active nodes,

each with six degrees of freedom. A third (inactive) node is used for reference purposes: with

the two active nodes, the third node defines the beam’s principle x–y plane. The nodal force

directions for this user-defined beam element are shown in Figure 13.2.

* Przemieniecki, J.S., “Theory of Matrix Structural Analysis,” McGraw-Hill Book Com-
pany 1968, pp. 70–82.

R

A

B

x

y

z Fy

Fz

R = 1.0 inch

L = 10.0 inches

L

STAGS 5.0 User Manual April, 2009 13-33

User–Defined Elements Uniform Beam Example
Figure 13.2 User-Defined Beam Element: Forces, Moments and Stresses

The nonzero stresses at node A for this element are

 (13.1)

 (13.2)

 (13.3)

where A is the area of the cross–section of the beam (), where (), and where cy and
cz are defined in Figure 13.2. The cy and cz parameters define sampling point coordinates on the
beam cross section, for stress recovery. The nonzero stresses at node B for this element are

 (13.4)

A

B

x

y

z

F
1

F
2

F
3F

4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

A
σ

x τ
xy

τ
xz

B

σ
x

τ
xy

τ
xz

cy

cz

y

z

σx
F1

A
------–

F5cz

Iy
------------–

F6cy

Iz
------------+=

τxy SFT

F4cz

J
------------=

τxz S– FT

F4cy

J
------------=

πR2
= SFT 1=

σx
F7

A

F11cz

Iy

F12cy

Iz
---------------–+=
13-34 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
 (13.5)

 (13.6)

Model- and User-element definition operations

The STAGS problem description file (ubeam1.inp) is given below (with line numbers on the
left shown for reference purposes):

ubeam1.inp input file for uniform beam example

1: Straight Uniform Beam via User Defined Elements
2: 0 0 0 0 0 0 0 $ b1
3: 0 1 0 0 0 0 0 0 0 0 $ b2
4: 0 0 0 0 0 0 $ b3
5: 0 0 0 0 0 0 $ h1
6: $
7: $==
8: $ User Element Definitions
9: $==

10: $
11: *userElement name=”Uniform Beam Element” type=900 nodes=3
12:
13: *dofOrdering
14:
15: $ Node DOF...
16: $ -----------------
17: 1 1 2 3 4 5 6
18: 2 1 2 3 4 5 6
19: 3 0
20:
21: *nodeSequence
22:
23: $ Nodes...
24: $ --------
25: 1 2 3
26:
27: *floatVariables
28:
29: $ Name Size
30: $ ------------------
31: Area 1

τxy S– FT

F10cz

J
--------------=

τxz SFT

F10cy

J
---------------=
STAGS 5.0 User Manual April, 2009 13-35

User–Defined Elements Uniform Beam Example
ubeam1.inp input file for uniform beam example (continued)

32: AreaInShearY 1
33: AreaInShearZ 1
34: Iy 1
35: Iz 1
36: J 1
37: Length 1
38: Material 1
39: MaxCompression 1
40: MaxShear 1
41: MaxTension 1
42: ShearDefY 1
43: ShearDefZ 1
44: ShearFactorT 1
45: ShearFactorY 1
46: ShearFactorZ 1
47:
48: *end userElement
49:
50: *userProperty name=”Standard Data -- Uniform Beam Element” id=900
51:
52: *integerProps
53: $ Required Standard Data
54: $ ----------------------
55: ActiveNodes 2
56: SamplingCount 10
57: StrainCount 6
58: StressCount 6
59: *floatProps
60: $ Nodal Stress/Strain Sampling Points
61: $ -----------------------------------
62: y1 0.0
63: z1 1.0
64:
65: y2 1.0
66: z2 0.0
67:
68: y3 0.0
69: z3 -1.0
70:
71: y4 -1.0
72: z4 0.0
73:
74: y5 0.0
75: z5 0.0
76:
77: *end userProperty
78:
13-36 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
The observant reader will note that line 11 in this model-definition input file is the starting point
for a *userElement directive defining a User element type which will (arbitrarily) be
identified as a type 900 element. Each type 900 element is defined by three nodes whose nodal

ubeam1.inp input file for uniform beam example (concluded)

79: *userProperty name=”Aluminum 6061-T6” id=6061
80:
81: *floatProps
82: E 10.000e+6
83: G 3.846e+6
84: MassDensity 2.540e-4
85: PoissonRatio 0.3
86: TensileUltimateStrength 38.0e+3
87: TensileYieldStrength 35.0e+3
88: CompresiveYieldStrength 35.0e+3
89: ShearYieldStrength 20.0e+3
90: ThermalExpansion 1.3e-5
91:
92: *end userProperty
93: $
94: $===
95: $ Element Unit
96: $===
97: 0 3*0 0.0 0.0 0.0 111 111 0 11 0 $ s3
98: 1 3*0 1.0 0.0 0.0 $ s3a
99: 0 3*0 5.0 1.0 0.0 000 000 0 1 0 $ s3

100: 999999 $ s3
101: $---
102: E9XX_elements 1 $ t100
103: 900 1 0 0 0 0 10 1 1 $ ----
104: 1 2 12 $ nodes
105: 1 1 0 1 $ {nodes} & elt x-incs
106: 3.142 1.0+12 1.0+12, $ A, Asy, Asz,
107: 0.7854 0.7854 1.571, $ Iy, Iz, J,
108: 0.0 6061.0 0.0 $ L, Mat, Sigc,
109: 0.0 0.0, $ Sigs, Sigt,
110: 0.0 0.0 1.0 $ SDy, SDz, SFt,
111: 1.333 1.333 $ SFy, SFz
112: END $ t100
113: $---
114: $ Specified Displacements & Forces
115: $---
116: 1 $ u1
117: 1 3 $ u2
118: 0.0 -1 1 1 0 0 6 1 0 0 0 $ u3
119: 1.0 +1 2 11 0 0 1 0 0 0 0 $ u3
120: 1.0 +1 3 11 0 0 1 0 0 0 0 $ u3
121: $---
122: 1 0 0 0 0 1 0 0 0 0 0 $ v1
STAGS 5.0 User Manual April, 2009 13-37

User–Defined Elements Uniform Beam Example
DOF are specified with the *dofOrdering directive, as shown in lines 17–19. The beam
element’s active nodes each have six DOF while the reference node has zero DOF.

 Note: Each node in a user-defined element must currently have 0, 3 or 6 DOF.

The *nodeSequence directive (on lines 21–26) must contain either three or four indices
identifying nodes in the previous node-DOF specification that are to be used to define the local
reference frame for the User element (see Section 13.2 for a discussion of how an element’s local
frame is constructed). In this case, the sequence 1,2,3 specifies that the first, second and third
node in the previous node-DOF list are to be used to define the local reference frame for the
element.

Each type 900 beam element has a set of sixteen floating-point data items as specified by the
*floatVariables directive on lines 27–47. These data items specify an element’s
characteristic geometry data (Area, AreaInShear, etc.) and solution results (MaxCompression,
MaxShear, etc.). Note that the variable called Material is used as a pointer to the element’s
material data that are specified later as User property information. There are no integer data for
this User element type, so the *userElement directive terminates at line 48.

In this example, the User property items that are required for the User element type definition
(ActiveNodes, SamplingCount, StrainCount and StressCount) are combined with additional
data using the *userProperty directive beginning on line 52. Note that this user property set
has an identifier value that is identical to the identifier of the User element type definition (i.e.,
900); this causes this particular property set to be associated with User element type definition
identified by 900. In addition to the required integer element data given on lines 56–58, this
property set also contains floating-point data (in lines 59–76)—these data define y–z sampling
point coordinates where stresses and strains are to be evaluated at each end of a beam element,
as shown in the following Figure:

This first property set definition is terminated at line 77. A second user property set directive,
contained on lines 79–92, defines material data for aluminum 6061-T6. Full use of long property
names is used here to make the items self describing. Note that while any unique identifier could
be used to tag this property set (other than 900, as discussed above), an id value of 6061 seems
appropriate. This property set terminates on line 92.

y

z
1

2

3

4

5

13-38 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
Following the one User element type definition and two property set definitions, standard STAGS

input continues at line 97 with the definition of an element unit containing 11 nodes spaced one
inch along the x–axis beginning at the global origin. These nodes are unconstrained in both
translation and rotation. A twelfth node is located at (5,1,0); this node is fully fixed and is used
as the principle x–y plane reference node for each of the beam elements.

Line 102 tells STAGS that one user-defined element type is used in this model. Lines 103–112
define ten type 900 elements and their variable data. The first beam element is connected
between nodes 1 and 2 and uses node 12 as its principle x–y plane reference node. Subsequent
elements are connected between nodes (2,3), (3,4), etc. All elements use node 12 as their
principle x–y plane reference node.

Values for the element’s variable data (which were declared on lines 31–46) are contained on
lines 106–111. In general, all User element floating-point data are specified first, followed by all
integer data. These data are entered in the order that they were declared in *floatVariables
and *integerVariables directives within the *userElement directive. Regardless of
how many *floatVariables and *integerVariables directives are used, or in what
order they are actually given, float and integer variable declarations are separately combined in
the order that each type is declared. Note that the material type identifier (Material) is defined
as a floating-point variable in the *floatVariables part of the *userElement definition
(on line 38) for this User element, so the value of Material is specified as a floating-point
number (6061.0) on line 108 of the user’s input file. If Material had been defined as an integer
variable (in the *integerVariables part of the *userElement definition, its value
would have to have been specified later, as an integer number.

As noted earlier, some of these User element variables characterize the element (and require
specified input values) while the other variables will be specified later with values that are to be
filled-in by user-written code. For example, the data on line 106 and 107 give the beam cross
sectional area, effective area in shear, area moments of inertia and torsion factor. Data values on
lines 108 and 109 are all place holders, with the exception of the value for Material, and will
be specified later by user-written code. The value of Material being set to 6061 is used by the
analyst to link these elements to the aluminum material data in the property set identified as
6061. Data on lines 110 and 111 are mixed; the shear deformation parameters (ShearDefY and
ShearDefZ) are computed by code and the shear factors (ShearFactorT, ShearFactorY and
ShearFactorZ) are specified.

Standard STAGS input continues on lines 116–122, which specify the boundary conditions and
applied loads. On line 118, all displacement and rotation DOF for the root node are specified to
STAGS 5.0 User Manual April, 2009 13-39

User–Defined Elements Uniform Beam Example
have zero values. Lines 119–120 specify that one pound force loadings are applied at node 11 in
the y– and z–directions, respectively.

Finally, line 122 requests that STAGS output displacement and internal force solution results.

User Element Definition Routines

This example problem does not require any special processing in STAGS s1 processor for the
type 900 user-defined beam element. The user-written routines called by the dispatchers
UelEltDef, UelLoadDef and UelPressDef (cf. Section 13.4) only need to be implemented as empty
routines. The template routines UelEltDef900, UelLoadDef900 and UelPressDef900 that are

supplied as part of the STAGS distribution will work perfectly fine, for this problem. Because
these template routines are automatically linked as part of standard STAGS, no additional actions
are necessary.

Since this user-defined element will be used in a static nonlinear analysis, only a few model-
analysis routines will need to be written to support STAGS’ s2 processing (cf. Section13.5). Recall
that STAGS’ s2 processor typically calls twelve top-level dispatch routines during the solution
process:

UelPvDef,
UelMassDef,
UelFiDef,
UelFlDef,
UelKmDef,
UelKgDef,
UelStrainDef,
UelStressDef,
UelResultantDef,
UelPrintStrainDef
UelPrintStressDef

and
UelPrintResultantDef.

Each of these dispatch routines in turn calls a corresponding user-written subroutine that is
specific to each user-defined element type. For this example, the following user-written routines
should typically be supplied for this type 900 element:

UelPvDef900,
UelFiDef900,
UelKmDef900,
13-40 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
UelStrainDef900,
UelStressDef900,
UelPrintStrainDef900

and
UelPrintStressDef900.

The UelMassDef900, UelFlDef900 and UelKgDef900 subroutines only need to be implemented as
empty routines. The template versions of UelMassDef900, UelFlDef900 and UelKgDef900 that are
supplied as part of the STAGS distribution will work fine, for this problem, so no additional
work on them is required.
STAGS 5.0 User Manual April, 2009 13-41

User–Defined Elements Uniform Beam Example
User beam pre-variation definition routine—UelPvDef900

The purpose of a User element pre-variation definition routine (such as UelPvDef900) is to
compute and store element parameters using operations that only need to be performed once.
Each User element pre-variation routine that is called by the UelPvDef dispatcher is provided for
this purpose. The pre-variation definition routine for this User element is presented below (with
line numbers shown on the left for reference purposes):

subroutine UelPvDef900

 1: c=deck UelPvDef900
 2: c=purpose Perform pre-variation operations for User element E900
 3: c=author --
 4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
 5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
 6: c=version December 2001
 7:
 8: #if _usage_
 9: *
 10: * call UelPvDef900 (type, elt, nnodes, active, nvars,
 11: * nodes, mxdof, nff, ivg, xe)
 12: *
 13: * Input Arguments
 14: * ---------------
 15: * type = element type (=900)
 16: * elt = element number of type TYPE in the model
 17: * nnodes = number of nodes
 18: * active = number of active nodes
 19: * nvars = number of element variables
 20: * nodes = element nodes
 21: * mxdof = nodal maxdof vector
 22: * nff = nodal DOF-count vector
 23: * ivg = nodal DOF vector
 24: * xe = nodal coordinates
 25: *
 26: #endif
 27:
 28: **
 29: Subroutine UelPvDef900 (type, elt, nnodes, active, nvars,
 30: & nodes, mxdof, nff, ivg, xe)
 31: **
 32:
 33: # include “keydefs.h”
 34:
 35: _implicit_none_
 36:
 37: # include “stndcm.h”
 38:
 39: Integer type
13-42 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
 40: Integer elt
 41: Integer nnodes
 42: Integer active
 43: Integer nvars
 44: Integer nodes(nnodes)
 45: Integer mxdof(nnodes)
 46: Integer nff(nnodes)
 47: Integer ivg(nvars)
 48: _float_ xe(3,nnodes)
 49:
 50: * TO BE IMPLEMENTED BY THE USER
 51: * =============================
 52:
 53: Integer size
 54:
 55: _float_ Asy
 56: _float_ Asz
 57: _float_ E
 58: _float_ G
 59: _float_ Iy
 60: _float_ Iz
 61: _float_ L
 62: _float_ Mat
 63: _float_ SDy
 64: _float_ SDz
 65:
 66: call UelGetFloVar (type,elt,'AreaInShearY', Asy, size)
 67: call UelGetFloVar (type,elt,'AreaInShearZ', Asz, size)
 68: call UelGetFloVar (type,elt,'Iy', Iy, size)
 69: call UelGetFloVar (type,elt,'Iz', Iz, size)
 70: call UelGetFloVar (type,elt,'Material', Mat, size)
 71:
 72: call UelGetFloProp (nint(Mat),'E', E, size)
 73: call UelGetFloProp (nint(Mat),'G', G, size)
 74:
 75: * Compute Beam Length and Shear Deformation Parameters
 76: * --
 77: L = sqrt((xe(1,1)-xe(1,2))**2 +
 78: & (xe(2,1)-xe(2,2))**2 +
 79: & (xe(3,1)-xe(3,2))**2)
 80:
 81: SDy = 12*E*Iz/(G*Asy*L*L)
 82: SDz = 12*E*Iy/(G*Asz*L*L)
 83:
 84: call UelSetFloVar (type,elt,'Length', L, size)
 85: call UelSetFloVar (type,elt,'ShearDefY', SDy, size)
 86: call UelSetFloVar (type,elt,'ShearDefZ', SDz, size)
 87:
 88: end
STAGS 5.0 User Manual April, 2009 13-43

User–Defined Elements Uniform Beam Example
Lines 1–52 are provided as part of the standard UelPvDef900 template routine. The idea of any
template is to provide developers all the data they might need to calculate the requested output
or internal intermediate data.

Lines 53–64 define all the variables that are needed for the local operations. For demonstration
purposes, this routine computes some of the beam parameters that will be used later by other
type 900 routines.

Lines 66–70 retrieve some floating-point User element variables for a specific type 900 element.
Notice that the names in the UelGetFloVar calls were created by the user in the *userElement
directive in the model description file. The material identification parameter (Material) is used
as a User property set identifier in lines 72–73 to retrieve the material properties for this
particular element.

Computations on lines 77–82 are performed to compute the beam element’s length and shear
deformation parameters. These computed parameters are stored as part of the User element
variables on lines 84–86. While these computations are very simple, they do demonstate the
purpose of a User element prevariation routine—to compute invariant element parameters once
and store them for later use.
13-44 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
User beam internal force vector definition routine—UelFiDef900

The purpose of a User element internal force definition routine (such as UelFiDef900) is to
compute and return the internal force vector, a plastic strain code and the internal energy for a
specific UEL. Each User element internal force definition routine that is called by the UelFiDef

dispatcher is provided for this purpose. The internal force definition routine for this User element
is presented below (with line numbers shown on the left for reference purposes):

subroutine UelFiDef900

 1: c=deck UelFiDef900
 2: c=purpose Compute internal force vector for user-written E900
 3: c=author --
 4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
 5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
 6: c=version December 2001
 7:
 8: #if _usage_
 9: *
 10: * call UelFiDef900 (type, elt, nlin, iplast, istep,
 11: * pa, pb, active, nvars, ix,
 12: * de, fi, iplmax, energy)
 13: *
 14: * Input Arguments
 15: * ---------------
 16: * type = element type (=900)
 17: * elt = element number of type TYPE in the model
 18: * nlin = =0 - do not use nonlinear strain/displ. relations
 19: * =1 - use nonlinear relations for applicable elements
 20: * iplast = =0 - do not use plasticity theory
 21: * =1 - use plasticity theory
 22: * istep = step number of displacement vector
 23: * pa = system A load factor
 24: * pb = system B load factor
 25: * active = number of active element nodes
 26: * nvars = number of element variables
 27: * ix = node permutation array
 28: * de = element local deformation vector
 29: *
 30: * Output Arguments
 31: * ----------------
 32: * fi = internal forces
 33: * iplmax = =0 - plastic strains not excessive (plasticity only)
 34: * >0 - plastic strains excessive, stop first variation
 35: * energy = element internal energy
 36: *
 37: #endif
 38:
 39: **
STAGS 5.0 User Manual April, 2009 13-45

User–Defined Elements Uniform Beam Example
 40: Subroutine UelFiDef900 (type, elt, nlin, iplast, istep,
 41: & pa, pb, active, nvars, ix,
 42: & de, fi, iplmax, energy)
 43: **
 44:
 45: # include “keydefs.h”
 46:
 47: _implicit_none_
 48:
 49: # include “stndcm.h”
 50:
 51: Integer type
 52: Integer elt
 53: Integer nlin
 54: Integer iplast
 55: Integer istep
 56: _float_ pa
 57: _float_ pb
 58: Integer active
 59: Integer nvars
 60: Integer ix(active)
 61: _float_ de(nvars)
 62: _float_ fi(nvars)
 63: Integer iplmax
 64: _float_ energy
 65:
 66: * TO BE IMPLEMENTED BY THE USER
 67: * =============================
 68:
 69: Integer i
 70: Integer size
 71:
 72: _float_ A
 73: _float_ E
 74: _float_ G
 75: _float_ Iy
 76: _float_ Iz
 77: _float_ J
 78: _float_ L
 79: _float_ Mat
 80: _float_ SDy
 81: _float_ SDz
 82:
 83: _float_ K0101
 84: _float_ K0202
 85: _float_ K0206
 86: _float_ K0303
 87: _float_ K0305
 88: _float_ K0404
 89: _float_ K0505
 90: _float_ K0511
 91: _float_ K0606
13-46 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
 92: _float_ K0612
 93:
 94: * Retrieve Element And Material Properties
 95: * --
 96: call UelGetFloVar (type,elt,'Area', A, size)
 97: call UelGetFloVar (type,elt,'Iy', Iy, size)
 98: call UelGetFloVar (type,elt,'Iz', Iz, size)
 99: call UelGetFloVar (type,elt,'J', J, size)
100: call UelGetFloVar (type,elt,'Length', L, size)
101: call UelGetFloVar (type,elt,'Material', Mat, size)
102: call UelGetFloVar (type,elt,'ShearDefY', SDy, size)
103: call UelGetFloVar (type,elt,'ShearDefZ', SDz, size)
104:
105: call UelGetFloProp (nint(Mat),'E', E, size)
106: call UelGetFloProp (nint(Mat),'G', G, size)
107:
108: * Stiffness Coefficients
109: * ----------------------
110: K0101 = E*A/L
111:
112: K0202 = 12*E*Iz/((1+SDy)*L**3)
113: K0206 = 6*E*Iz/((1+SDy)*L**2)
114:
115: K0303 = 12*E*Iy/((1+SDz)*L**3)
116: K0305 = 6*E*Iy/((1+SDz)*L**2)
117:
118: K0404 = G*J/L
119:
120: K0505 = (4+SDz)*E*Iy/((1+SDz)*L)
121: K0511 = (2-SDz)*E*Iy/((1+SDz)*L)
122:
123: K0606 = (4+SDy)*E*Iz/((1+SDy)*L)
124: K0612 = (2-SDy)*E*Iz/((1+SDy)*L)
125:
126: * X-Forces: S1 and S7
127: * -------------------
128: fi(1) = K0101 * (de(1)-de(7))
129: fi(7) = -fi(1)
130:
131: * Y-Forces: S2 and S8
132: * -------------------
133: fi(2) = K0202 * (de(2)-de(8)) + K0206 * (de(6)+de(12))
134: fi(8) = -fi(2)
135:
136: * Z-Forces: S3 and S9
137: * -------------------
138: fi(3) = K0303 * (de(3)-de(9)) - K0305 * (de(5)+de(11))
139: fi(9) = -fi(3)
140:
141: * X-Moments: S4 and S10
142: * ---------------------
143: fi(4) = K0404 * (de(4) - de(10))
STAGS 5.0 User Manual April, 2009 13-47

User–Defined Elements Uniform Beam Example
144: fi(10) = -fi(4)
145:
146: * Y-Moments: S5 and S11
147: * ---------------------
148: fi(5) = K0505 * de(5) + K0511 * de(11) + K0305 * (de(9)-de(3))
149: fi(11) = K0511 * de(5) + K0505 * de(11) + K0305 * (de(9)-de(3))
150:
151: * Z-Moments: S6 and S12
152: * ---------------------
153: fi(6) = K0606 * de(6) + K0612 * de(12) + K0206 * (de(2)-de(8))
154: fi(12) = K0612 * de(6) + K0606 * de(12) + K0206 * (de(2)-de(8))
155:
156: * Plasticity Code
157: * ---------------
158: iplmax = 0
159:
160: * Element Energy
161: * --------------
162: energy = 0.d0
163:
164: do 10 i=1,nvars
165: energy = energy + de(i)*fi(i)
166: 10 continue
167:
168: energy = 0.5d0 * energy
169:
170: end

Lines 1–68 are provided as part of the standard UelFiDef900 template routine. The idea of any
template is to provide developers all the data they might need to calculate the requested output
or internal intermediate data.

Lines 69–92 define all the variables that are needed for the local operations. This routine is going
to compute an element’s internal force vector. Lines 96–103 retrieve some floating-point User
element variables for a specific type 900 element. Notice that the names in the UelGetFloVar calls
were created by the user in the *userElement directive in the model description file. The
material identification parameter (Material) is utilized as a User property set identifier in lines
105–106 to retrieve the material properties for this particular element.

Computations on lines 110–124 are performed to calculate the beam element’s stiffness
coefficients. These stiffness values are then used on lines 128–154, along with the element’s
deformations, to determine the element’s internal force components. Finally, the plastic strain
code is set to zero and the element’s internal energy are computed on lines 158 and 162–168,
respectively. While these computations are very simple, they do demonstrate the general
approach for any User element internal force definition routine.
13-48 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
User beam material stiffness matrix definition routine—UelKmDef900

The purpose of a User element material stiffness matrix definition routine (such as UelKmDef900)
is to compute and return the material stiffness matrix for a specific UEL. Each User element
material stiffness matrix definition routine called by the UelKmDef dispatcher is provided for this
purpose. The material stiffness matrix definition routine for this User element is presented below
(with line numbers shown on the left for reference purposes):

subroutine UelKmDef900

 1: c=deck UelKmDef900
 2: c=purpose Compute material stiffness matrix for user-written E900
 3: c=author --
 4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
 5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
 6: c=version December 2001
 7:
 8: #if _usage_
 9: *
 10: * call UelKmDef900 (type, elt, nlin, iplast, nnodes,
 11: * active, nvars, xe, de, km)
 12: *
 13: * Input Arguments
 14: * ---------------
 15: * type = element type (=900)
 16: * elt = element number of type TYPE in the model
 17: * nlin = 0 - do not use nonlinear strain/displ. relations
 18: * 1 - use nonlinear relations for applicable elements
 19: * iplast = 0 - do not use plasticity theory
 20: * 1 - use plasticity theory
 21: * nnodes = number of element nodes
 22: * active = number of active element nodes
 23: * nvars = number of element variables
 24: * xe = element local coordinates
 25: * de = element local deformation vector
 26: *
 27: * Output Arguments
 28: * ----------------
 29: * km = material stiffness matrix
 30: *
 31: #endif
 32:
 33: **
 34: Subroutine UelKmDef900 (type, elt, nlin, iplast, nnodes,
 35: & active, nvars, xe, de, km)
 36: **
 37:
 38: # include “keydefs.h”
 39:
STAGS 5.0 User Manual April, 2009 13-49

User–Defined Elements Uniform Beam Example
 40: _implicit_none_
 41:
 42: # include “stndcm.h”
 43:
 44: Integer type
 45: Integer elt
 46: Integer nlin
 47: Integer iplast
 48: Integer nnodes
 49: Integer active
 50: Integer nvars
 51: _float_ xe(3,nnodes)
 52: _float_ de(nvars)
 53: _float_ km(*)
 54:
 55: * TO BE IMPLEMENTED BY THE USER
 56: * =============================
 57:
 58: Integer size
 59:
 60: _float_ A
 61: _float_ E
 62: _float_ G
 63: _float_ Iy
 64: _float_ Iz
 65: _float_ J
 66: _float_ L
 67: _float_ Mat
 68: _float_ SDy
 69: _float_ SDz
 70:
 71: _float_ K0101
 72: _float_ K0202
 73: _float_ K0206
 74: _float_ K0303
 75: _float_ K0305
 76: _float_ K0404
 77: _float_ K0505
 78: _float_ K0511
 79: _float_ K0606
 80: _float_ K0612
 81:
 82: * Retrieve Element And Material Properties
 83: * --
 84: call UelGetFloVar (type,elt,'Area', A, size)
 85: call UelGetFloVar (type,elt,'Iy', Iy, size)
 86: call UelGetFloVar (type,elt,'Iz', Iz, size)
 87: call UelGetFloVar (type,elt,'J', J, size)
 88: call UelGetFloVar (type,elt,'Length', L, size)
 89: call UelGetFloVar (type,elt,'Material', Mat, size)
 90: call UelGetFloVar (type,elt,'ShearDefY', SDy, size)
 91: call UelGetFloVar (type,elt,'ShearDefZ', SDz, size)
13-50 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
 92:
 93: call UelGetFloProp (nint(Mat),'E', E, size)
 94: call UelGetFloProp (nint(Mat),'G', G, size)
 95:
 96: * Stiffness Coefficients
 97: * ----------------------
 98: K0101 = E*A/L
 99:
100: K0202 = 12*E*Iz/((1+SDy)*L**3)
101: K0206 = 6*E*Iz/((1+SDy)*L**2)
102:
103: K0303 = 12*E*Iy/((1+SDz)*L**3)
104: K0305 = 6*E*Iy/((1+SDz)*L**2)
105:
106: K0404 = G*J/L
107:
108: * K0505 = (4+SDz)*E*Iy/((1+SDz)*L)
109: * K0511 = (2-SDz)*E*Iy/((1+SDz)*L)
110:
111: K0606 = (4+SDy)*E*Iz/((1+SDy)*L)
112: K0612 = (2-SDy)*E*Iz/((1+SDy)*L)
113:
114: * Material Stiffness Matrix
115: * -------------------------
116: km(1) = K0101
117: km(22) = -K0101
118:
119: km(3) = K0202
120: km(17) = K0206
121: km(30) = -K0202
122: km(68) = K0206
123:
124: km(6) = K0303
125: km(13) = -K0305
126: km(39) = -K0303
127: km(58) = -K0305
128:
129: km(10) = K0404
130: km(49) = -K0404
131:
132: km(15) = K0505
133: km(41) = K0305
134: km(60) = K0511
135:
136: km(21) = K0606
137: km(34) = -K0206
138: km(72) = K0612
139:
140: km(28) = K0101
141:
142: km(36) = K0202
143: km(74) = -K0206
STAGS 5.0 User Manual April, 2009 13-51

User–Defined Elements Uniform Beam Example
144:
145: km(45) = K0303
146: km(64) = K0305
147:
148: km(55) = K0404
149:
150: km(66) = K0505
151:
152: km(78) = K0606
153:
154: end

Lines 1–57 are provided as part of the standard UelKmDef900 template routine. The idea of any
template is to provide developers all the data that they might need to calculate the requested
output or internal intermediate data.

Lines 58–80 define all the variables that are needed for the local operations. This routine is going
to compute an element’s material stiffness matrix.

Lines 84–91 retrieve some floating-point User element variables for this specific type 900
element. Notice that the names in the UelGetFloVar calls were created by the user in the
*userElement directive in the model description file. The material identification parameter
(Material) is used as a User property set identifier on lines 93–94 to retrieve the material
properties for this particular element.

Computations on lines 98–112 are performed to calculate the beam element’s stiffness
coefficients. These stiffness values are then used on lines 116–152 to set the element’s material
stiffness matrix components. Notice that only the nonzero components need to be set since the
matrix work space has been initialized to zero by STAGS. While these computations are very
simple, they do demonstrate the general approach for any User element material stiffness matrix
definition routine.
13-52 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
User beam strain vector definition routine—UelStrainDef900

The purpose of a User element strain vector definition routine (such as UelStrainDef900) is to
compute and return the strain vector for a specific User element at a number of sampling points.
Each User element strain vector definition routine called by the UelStrainDef dispatcher is
provided for this purpose. The strain vector definition routine for this User element is presented
below (with line numbers shown on the left for reference purposes):

subroutine UelStrainDef900

 1: c=deck UelStrainDef900
 2: c=purpose Compute strain vector for user-written element E900
 3: c=author --
 4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
 5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
 6: c=version December 2001
 7:
 8: #if _usage_
 9: *
 10: * call UelStrainDef900 (type, elt, nlin, iplast,
 11: * nnodes, active, nvars, nips,
 12: * neps, ix, xe, de,
 13: * strain)
 14: *
 15: * Input Arguments
 16: * ---------------
 17: * type = element type (=900)
 18: * elt = element number of type TYPE in the model
 19: * nlin = =0 - do not use nonlinear strain/displ. relations
 20: * =1 - use nonlinear relations for applicable elements
 21: * iplast = =0 - do not use plasticity theory
 22: * =1 - use plasticity theory
 23: * nnodes = number of element nodes
 24: * active = number of active element nodes
 25: * nvars = number of element variables
 26: * nips = number of strain sampling points
 27: * neps = number of strain components
 28: * ix = node permutation array
 29: * xe = nodal coordinates in element system
 30: * de = element local deformation vector
 31: *
 32: * Output Arguments
 33: * ----------------
 34: * strain = element strain vector at each sampling point
 35: *
 36: #endif
 37:
 38: **
 39: Subroutine UelStrainDef900 (type, elt, nlin, iplast,
STAGS 5.0 User Manual April, 2009 13-53

User–Defined Elements Uniform Beam Example
 40: & nnodes, active, nvars, nips,
 41: & neps, ix, xe, de,
 42: & strain)
 43: **
 44:
 45: # include “keydefs.h”
 46:
 47: _implicit_none_
 48:
 49: # include “stndcm.h”
 50:
 51: Integer type
 52: Integer elt
 53: Integer nlin
 54: Integer iplast
 55: Integer nnodes
 56: Integer active
 57: Integer nvars
 58: Integer nips
 59: Integer neps
 60: Integer ix(active)
 61: _float_ xe(3,nnodes)
 62: _float_ de(nvars)
 63: _float_ strain(neps,nips)
 64:
 65: * TO BE IMPLEMENTED BY THE USER
 66: * =============================
 67:
 68: _float_ E
 69: _float_ G
 70: _float_ Mat
 71: _float_ Pr
 72:
 73: Integer i
 74: Integer n
 75: _float_ s(6)
 76: Integer size
 77:
 78: * Retrieve Element And Material Properties
 79: * --
 80: call UelGetFloVar (type,elt,'Material', Mat, size)
 81:
 82: call UelGetFloProp (nint(Mat),'E', E, size)
 83: call UelGetFloProp (nint(Mat),'G', G, size)
 84: call UelGetFloProp (nint(Mat),'PoissonRatio', Pr, size)
 85:
 86: * Compute Beam Element Stresses At Each Sampling Point
 87: * --
 88:
 89: call UelStressDef900 (type, elt, nlin, iplast,
 90: & nnodes, active, nvars, nips,
 91: & neps, ix, xe, de,
13-54 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
 92: & strain)
 93:
 94: * Compute Beam Element Strains At Each Sampling Point
 95: * ---
 96: * +------------+
 97: * | Strains: |
 98: * | 1. exx |
 99: * | 2. eyy |
100: * | 3. ezz |
101: * | 4. exy |
102: * | 5. exz |
103: * | 6. eyz |
104: * +------------+
105:
106: n = nips/2
107:
108: do 10 i=1,n
109:
110: * First Node...
111: * -------------
112: call scopud (6,strain(1,i), s)
113:
114: strain(1,i) = (s(1) - Pr * (s(2) + s(3))) / E
115: strain(2,i) = (s(2) - Pr * (s(3) + s(1))) / E
116: strain(3,i) = (s(3) - Pr * (s(1) + s(2))) / E
117: strain(4,i) = s(4) / G
118: strain(5,i) = s(5) / G
119: strain(6,i) = s(6) / G
120:
121: * Second Node...
122: * --------------
123: call scopud (6,strain(1,i+n), s)
124:
125: strain(1,i+n) = (s(1) - Pr * (s(2) + s(3))) / E
126: strain(2,i+n) = (s(2) - Pr * (s(3) + s(1))) / E
127: strain(3,i+n) = (s(3) - Pr * (s(1) + s(2))) / E
128: strain(4,i+n) = s(4) / G
129: strain(5,i+n) = s(5) / G
130: strain(6,i+n) = s(6) / G
131:
132: 10 continue
133:
134: end

Lines 1–67 are provided as part of the standard UelStrainDef900 template routine. The idea of
any template is to provide developers all the data they might need to calculate the requested
output or internal intermediate data.

Lines 68–76 define all the variables that are needed for the local operations. This routine is going
to compute an element’s strain vector at a number of sampling points.
STAGS 5.0 User Manual April, 2009 13-55

User–Defined Elements Uniform Beam Example
Line 80 retrieves the material identifier for this specific type 900 element. Notice that the names
in the UelGetFloVar calls were created by the user in the *userElement directive in the model
description file. The material identification parameter (Material) is used as a User property set
identifier in lines 82–84 to retrieve the material properties for this particular element.

Because of its formulation, this particular User element computes element stresses from element
internal forces (using UelStressDef900) and element strains from the element stresses. The
element’s stresses are computed via the call to UelStressDef900 on lines 89–92. Notice that this
stress routine invocation is possible because all of its required arguments are also arguments
passed to the strain calculation routine. The stress values are then used on lines 106–132 to set
the element’s strain components. While these computations are very simple, they do demonstrate
the general approach for any User element strain vector definition routine.
13-56 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
User beam stress vector definition routine—UelStressDef900

The purpose of a User element stress vector definition routine (such as UelStressDef900) is to
compute and return the stress vector for a specific UEL at a number of sampling points. Each
User element stress vector definition routine called by the UelStressDef dispatcher is provided
for this purpose. The stress vector definition routine for this User element is presented below
(with line numbers shown on the left for reference purposes):

subroutine UelStressDef900

 1: c=deck UelStressDef900
 2: c=purpose Compute stress vector for user-written element E900
 3: c=author --
 4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
 5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
 6: c=version December 2001
 7:
 8: #if _usage_
 9: *
 10: * call UelStressDef900 (type, elt, nlin, iplast,
 11: * nnodes, active, nvars, nips,
 12: * nsig, ix, xe, de,
 13: * stress)
 14: *
 15: * Input Arguments
 16: * ---------------
 17: * type = element type (=900)
 18: * elt = element number of type TYPE in the model
 19: * nlin = =0 - do not use nonlinear strain/displ. relations
 20: * =1 - use nonlinear relations for applicable elements
 21: * iplast = =0 - do not use plasticity theory
 22: * =1 - use plasticity theory
 23: * nnodes = number of element nodes
 24: * active = number of active element nodes
 25: * nvars = number of element variables
 26: * nips = number of stress sampling points
 27: * nsig = number of stress components
 28: * ix = node permutation array
 29: * xe = nodal coordinates in element system
 30: * de = element local deformation vector
 31: *
 32: * Output Arguments
 33: * ----------------
 34: * stress = element stress vector at each sampling point
 35: *
 36: #endif
 37:
 38: **
 39: Subroutine UelStressDef900 (type, elt, nlin, iplast,
STAGS 5.0 User Manual April, 2009 13-57

User–Defined Elements Uniform Beam Example
 40: & nnodes, active, nvars, nips,
 41: & nsig, ix, xe, de,
 42: & stress)
 43: **
 44:
 45: # include “keydefs.h”
 46:
 47: _implicit_none_
 48:
 49: # include “stndcm.h”
 50:
 51: Integer type
 52: Integer elt
 53: Integer nlin
 54: Integer iplast
 55: Integer nnodes
 56: Integer active
 57: Integer nvars
 58: Integer nips
 59: Integer nsig
 60: Integer ix(active)
 61: _float_ xe(3,nnodes)
 62: _float_ de(nvars)
 63: _float_ stress(nsig,nips)
 64:
 65: * TO BE IMPLEMENTED BY THE USER
 66: * =============================
 67:
 68: _float_ A
 69: _float_ Iy
 70: _float_ Iz
 71: _float_ J
 72: _float_ SFt
 73: _float_ SFy
 74: _float_ SFz
 75:
 76: _float_ energy
 77: _float_ fi(12)
 78: Integer i
 79: Integer iplmax
 80: Integer istep
 81: Integer n
 82: _float_ pa
 83: _float_ pb
 84: Integer size
 85: _float_ y(5)
 86: _float_ z(5)
 87:
 88: * Retrieve Element And Material Properties
 89: * --
 90: call UelGetFloVar (type,elt,'Area', A, size)
 91: call UelGetFloVar (type,elt,'Iy', Iy, size)
13-58 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
 92: call UelGetFloVar (type,elt,'Iz', Iz, size)
 93: call UelGetFloVar (type,elt,'J', J, size)
 94: call UelGetFloVar (type,elt,'ShearFactorT', SFt, size)
 95: call UelGetFloVar (type,elt,'ShearFactorY', SFy, size)
 96: call UelGetFloVar (type,elt,'ShearFactorZ', SFz, size)
 97:
 98: * Retrieve Stress Sampling Points
 99: * -------------------------------
100: call UelGetFloProp (type,'y1', y(1), size)
101: call UelGetFloProp (type,'y2', y(2), size)
102: call UelGetFloProp (type,'y3', y(3), size)
103: call UelGetFloProp (type,'y4', y(4), size)
104: call UelGetFloProp (type,'y5', y(5), size)
105:
106: call UelGetFloProp (type,'z1', z(1), size)
107: call UelGetFloProp (type,'z2', z(2), size)
108: call UelGetFloProp (type,'z3', z(3), size)
109: call UelGetFloProp (type,'z4', z(4), size)
110: call UelGetFloProp (type,'z5', z(5), size)
111:
112: * Compute Beam Element Internal Forces -- FI
113: * --
114: istep = 0
115: pa = 0.0
116: pb = 0.0
117:
118: call UelFiDef900 (type, elt, nlin, iplast, istep,
119: & pa, pb, active, nvars, ix,
120: & de, fi, iplmax, energy)
121:
122: * Compute Beam Element Stresses At Each Sampling Point
123: * --
124: * +------------+
125: * | Stresses: |
126: * | 1. sxx |
127: * | 2. syy |
128: * | 3. szz |
129: * | 4. sxy |
130: * | 5. sxz |
131: * | 6. syz |
132: * +------------+
133:
134: n = nips/2
135:
136: do 10 i=1,n
137:
138: * First Node...
139: * -------------
140: stress(1,i) = -fi(1)/A - fi(5)*z(i)/Iy + fi(6)*y(i)/Iz
141: stress(2,i) = 0.0
142: stress(3,i) = 0.0
143:
STAGS 5.0 User Manual April, 2009 13-59

User–Defined Elements Uniform Beam Example
144: if (i.ne.n) then
145: stress(4,i) = fi(4)*z(i)*SFt/J
146: stress(5,i) = -fi(4)*y(i)*SFt/J
147: stress(6,i) = 0.0
148: else
149: stress(4,i) = -fi(2)*SFy/A
150: stress(5,i) = -fi(3)*SFz/A
151: stress(6,i) = 0.0
152: endif
153:
154: * Second Node...
155: * --------------
156: stress(1,i+n) = fi(7)/A + fi(11)*z(i)/Iy - fi(12)*y(i)/Iz
157: stress(2,i+n) = 0.0
158: stress(3,i+n) = 0.0
159:
160: if (i.ne.n) then
161: stress(4,i+n) = -fi(10)*z(i)*SFt/J
162: stress(5,i+n) = fi(10)*y(i)*SFt/J
163: stress(6,i+n) = 0.0
164: else
165: stress(4,i+n) = fi(8)*SFy/A
166: stress(5,i+n) = fi(9)*SFz/A
167: stress(6,i+n) = 0.0
168: endif
169:
170: 10 continue
171:
172: end

Lines 1–67 are provided as part of the standard UelStressDef900 template routine. The idea of
any template is to provide developers all the data they might need to calculate the requested
output or internal intermediate data.

Lines 68–86 define all the variables that are needed for the local operations. This routine
computes an element’s stress vector at a number of sampling points.

Lines 90–96 retrieve some floating-point User element variables for a specific type 900 element.
Notice that the names in the UelGetFloVar calls were created by the user in the *userElement
directive in the model description file.

Lines 100–110 retrieve the sampling points provided in the User property set tagged with the
same identifier as the User element identifier. Recall that the sampling points could have been
placed in any property set the user might have created—not necessarily the property set (i.e., the
one with id=900) with the parameters required for the User element type.
13-60 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
This particular User element computes element stresses from element internal force components
given the element’s deformations (using UelFiDef900). The element’s internal forces are
computed via the call to UelFiDef900 on lines 118–120. Notice that this internal force invocation
is possible because most of its required arguments are also arguments passed to the stress
calculation routine. The internal force values are then used on lines 140–170 to compute the
element’s stress components. While these computations are very simple, they do demonstrate the
general approach for any User element stress vector definition routine.
STAGS 5.0 User Manual April, 2009 13-61

User–Defined Elements Uniform Beam Example
User beam strain printing definition routine—UelPrintStrainDef900

The purpose of a User element strain printing definition routine (such as UelPrintStrainDef900)
is to print the strain vector for a specific User element at a number of sampling points. Each User
element strain printing routine called by the UelPrintStrainDef dispatcher is provided for this
purpose. The strain printing definition routine for this User element is presented below (with line
numbers shown on the left for reference purposes):

subroutine UelPrintStrainDef900

 1: c=deck UelPrintStrainDef900
 2: c=purpose Print strain vector for a user-written element E900
 3: c=author --
 4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
 5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
 6: c=version December 2001
 7:
 8: #if _usage_
 9: *
 10: * call UelPrintStrainDef900 (type, elt, nnodes, active,
 11: * nips, neps, ix, xe,
 12: * strain, maxLines, lines)
 13: *
 14: * Input Arguments
 15: * ---------------
 16: * type = element type (=900)
 17: * elt = element number of type TYPE in the model
 18: * nnodes = number of element nodes
 19: * active = number of active element nodes
 20: * nips = number of strain sampling points
 21: * neps = number of strain components
 22: * ix = node permutation array
 23: * xe = nodal coordinates in element system
 24: * strain = element strain vector at each sampling point
 25: * maxLines = number of lines per “page”
 26: * lines = number of lines printed prior to the call
 27: *
 28: * Output Arguments
 29: * ----------------
 30: * lines = number of lines printed after the call
 31: *
 32: #endif
 33:
 34: **
 35: Subroutine UelPrintStrainDef900 (type, elt, nnodes, active,
 36: & nips, neps, ix, xe,
 37: & strain, maxLines, lines)
 38: **
 39:
13-62 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
 40: # include “keydefs.h”
 41:
 42: _implicit_none_
 43:
 44: # include “stndcm.h”
 45:
 46: Integer type
 47: Integer elt
 48: Integer nnodes
 49: Integer active
 50: Integer nips
 51: Integer neps
 52: Integer ix(active)
 53: _float_ xe(3,nnodes)
 54: _float_ strain(neps,nips)
 55: Integer maxLines
 56: Integer lines
 57:
 58: * TO BE IMPLEMENTED BY THE USER
 59: * =============================
 60:
 61: Integer i
 62: Integer j
 63:
 64: * CHECK FOR NEW HEADER
 65: * --------------------
 66: if (lines+nips .gt. maxLines) then
 67: write(not,100) type
 68: lines = 6
 69: endif
 70:
 71: * PRINT STRAINS AT EACH SAMPLING POINT
 72: * ------------------------------------
 73: do 10 j=1,nips
 74: write(not,200) elt, j, (strain(i,j),i=1,neps)
 75: 10 continue
 76:
 77: write(not,300)
 78: lines = lines + nips + 1
 79:
 80: 100 format(/' --------------------------------'
 81: & /' Strain for User Element Type',i4
 82: & /' --------------------------------'
 83: & //' Element Point',7x,'Exx',11x'Eyy',11x,'Ezz',11x,
 84: & 'Exy',11x,'Exz',11x,'Eyz'
 85: & /' ------- -----',6(' ------------'))
 86:
 87: 200 format(i8,i7,1p6e14.5)
 88:
 89: 300 format(' ')
 90:
 91: end
STAGS 5.0 User Manual April, 2009 13-63

User–Defined Elements Uniform Beam Example
Lines 1–60 are provided as the core part of the standard UelPrintStrainDef900 template routine.
The idea of any template is to provide developers all the data they might need to calculate the
requested output or internal intermediate data.

The templates that are supplied with STAGS for printing strain (i.e., strain printing definition
routines UelPrintStrainDef9xx) also include a simple implementation to provide users a head-start
on specialization. The sample implementation is described in the remainder of this section.

Lines 61–62 define all the variables needed for the local operations.

Lines 66–69 check to determine if a new header needs to be printed before the strain components
are printed and prints the header if it is required.

Lines 73–75 print the element’s strain components at each of the sampling points.

Finally, lines 77–78 print a spacer line and increments the output line count argument by the
number of lines just printed.

The sample strain printing implementations assume that there are six (6) strain components with
a certain ordering (i.e., Exx, Eyy, Ezz, Exy, Exz and Eyz). If your User element strain
calculations meet these conditions, then the UelPrintStrainDef9xx templates can be used as they
are. Otherwise, only minor modifications will probably be required. For this example, no
modifications to the UelPrintStrainDef900 template were required.
13-64 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
Beam stress printing definition routine—UelPrintStressDef900

The purpose of a User element stress printing definition routine (like UelPrintStressDef900) is to
print the stress vector for a specific UEL at a number of sampling points. Each User element
stress printing routine called by the UelPrintStressDef dispatcher is provided for this purpose.
The stress printing definition routine for this User element is presented below (with line numbers
shown on the left for reference purposes):

subroutine UelPrintStressDef900

 1: c=deck UelPrintStressDef900
 2: c=purpose Print stress vector for a user-written element E900
 3: c=author --
 4: c=author Lyle W. Swenson, Jr. Knowledge Management Systems, Inc.
 5: c=author -------------------- Ph: (858)259-2773 or (858)481-9907
 6: c=version December 2001
 7:
 8: #if _usage_
 9: *
 10: * call UelPrintStressDef900 (type, elt, nnodes, active,
 11: * nips, nsig, ix, xe,
 12: * stress, maxLines, lines)
 13: *
 14: * Input Arguments
 15: * ---------------
 16: * type = element type (=900)
 17: * elt = element number of type TYPE in the model
 18: * nnodes = number of element nodes
 19: * active = number of active element nodes
 20: * nips = number of stress sampling points
 21: * nsig = number of stress components
 22: * ix = node permutation array
 23: * xe = nodal coordinates in element system
 24: * stress = element stress vector at each sampling point
 25: * maxLines = number of lines per “page”
 26: * lines = number of lines printed prior to the call
 27: *
 28: * Output Arguments
 29: * ----------------
 30: * lines = number of lines printed after the call
 31: *
 32: #endif
 33:
 34: **
 35: Subroutine UelPrintStressDef900 (type, elt, nnodes, active,
 36: & nips, nsig, ix, xe,
 37: & stress, maxLines, lines)
 38: **
 39:
STAGS 5.0 User Manual April, 2009 13-65

User–Defined Elements Uniform Beam Example
 40: # include “keydefs.h”
 41:
 42: _implicit_none_
 43:
 44: # include “stndcm.h”
 45:
 46: Integer type
 47: Integer elt
 48: Integer nnodes
 49: Integer active
 50: Integer nips
 51: Integer nsig
 52: Integer ix(active)
 53: _float_ xe(3,nnodes)
 54: _float_ stress(nsig,nips)
 55: Integer maxLines
 56: Integer lines
 57:
 58: * TO BE IMPLEMENTED BY THE USER
 59: * =============================
 60:
 61: Integer i
 62: Integer j
 63:
 64: * CHECK FOR NEW HEADER
 65: * --------------------
 66: if (lines+nips .gt. maxLines) then
 67: write(not,100) type
 68: lines = 6
 69: endif
 70:
 71: * PRINT STRESS AT EACH SAMPLING POINT
 72: * -----------------------------------
 73: do 10 j=1,nips
 74: write(not,200) elt, j, (stress(i,j),i=1,nsig)
 75: 10 continue
 76:
 77: write(not,300)
 78: lines = lines + nips + 1
 79:
 80: 100 format(/' --------------------------------'
 81: & /' Stress for User Element Type',i4
 82: & /' --------------------------------'
 83: & //' Element Point',7x,'Sxx',11x'Syy',11x,'Szz',11x,
 84: & 'Sxy',11x,'Sxz',11x,'Syz'
 85: & /' ------- -----',6(' ------------'))
 86:
 87: 200 format(i8,i7,1p6e14.5)
 88:
 89: 300 format(' ')
 90:
 91: end
13-66 April, 2009 STAGS 5.0 User Manual

Uniform Beam Example User–Defined Elements
Lines 1–60 are provided as the core part of the standard UelPrintStressDef900 template routine.
The idea of any template is to provide developers all the data they might need to calculate the
requested output or internal intermediate data.

The templates that are provided with STAGS for printing stress (i.e., stress printing definition
routines UelPrintStressDef9xx) also include a simple implementation to provide users a head-start
on specialization. The sample implementation is described in the remainder of this section.

Lines 61–62 define all the variables needed for the local operations.

Lines 66–69 check to determine if a new header needs to be printed before the stress components
are printed and prints the header if required.

Lines 73–75 print the element’s stress components at each of the sampling points.

Finally, lines 77–78 print a spacer line and increments the output line count argument by the
number of lines just printed.

The sample stress printing implementations assume that there are six (6) stress components with
a certain ordering (i.e., Sxx, Syy, Szz, Sxy, Sxz and Syz). If your User element stress
calculations meet these conditions, then the UelPrintStressDef9xx templates can be used as they
are. Otherwise, only minor modification will probably be required. For this example, no
modifications to the UelPrintStressDef900 template were required.

Analysis and Results

A nonlinear static analysis was performed for the beam model and User element described
above. The STAGS solution description file (ubeam1.bin) is given below (with line numbers on
the left shown for reference purposes):

ubeam1.bin

 1: User Beam Nonlinear Analysis
 2: 3 1 1 0 0 0 0 1 $ b1 -- indic,ipost,ilist,icor,..,isolvr
 3: 1 0 0 $ b2 -- icpact,iter,iprim,...
 4: 500.0 500.0 500000.0 $ c1 -- stld,step,facm,...
 5: 0 0 5 -20 0 1.0e-6 $ d1 -- istart,nsec,ncut,newt,nstrat,delx,...
 6: 0 $ et1 -- npath,...
STAGS 5.0 User Manual April, 2009 13-67

User–Defined Elements Uniform Beam Example
The applied load magnitudes (500,000 lb) are highly unrealistic here (i.e., they are extremely

large). These values were chosen to create large nonlinear displacements and rotations and to

demonstrate the efficacy of STAGS’ corotation architecture. No special work is required on the

part of users or developers to benefit from these powerful corotational features. Although linear

element formulations will not suffice for all geometrically nonlinear problems, there are many

situations were materially linear elements with automatic corotational corrections yield excellent

results.

A load versus displacement plot is shown in the following Figure for the beam tip in the z–

direction. For comparison purposes the plot also includes the result for the same problem using

STAGS’ E210 beam elements. Although the E210 element uses a nonlinear strain-displacement

formulation, for this problem the results are virtually indistinguishable.

Tip displacement
0 1 2 3 4 5 6

A
pp

lie
d

lo
ad

 fa
ct

or
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0
4.

5
5.

0x105

User beam element (ubeam1)"
Reference solution (E210)"
13-68 April, 2009 STAGS 5.0 User Manual

14

14

14 14
The Element Library

14.1 Organization

This Chapter contains a very brief (summary) description of each of the “standard” and
“special-purpose” elements that are implemented in the current version of the STAGS

program. Element definition via User-written subroutines is discussed in Chapter 12 of this
document, and the construction and utilization of User-defined elements is discussed (briefly)
in Chapter 13. The STAGS Elements Manual contains fuller descriptions and discussions
of many (but not all) of the standard and special-purpose elements that are summarized here.
It also contains essential information about the construction and utilization of User-defined
elements. As in the STAGS Elements Manual, the standard and special-purpose STAGS

elements are organized here in six main groups:

• “spring” elements
• “beam” elements
• shell and mesh-transition shell elements
• sandwich and mesh-transition sandwich elements
• solid elements
• contact elements

User-defined elements are described in the preceding Chapter and in the STAGS Elements
Manual, and will not be discussed here. The discussion of each element is accompanied by
a figure that contains a graphical representation of that element. Some common symbols used
in the figures are:

• – node n

• – side n

• – integration point n

n

n

n

STAGS 5.0 User Manual April, 2009 14-1

The Element Library Algorithm for Determining the Element Frame
14.2 Algorithm for Determining the Element Frame

The origin of the element frame is located at node 1, with the nodes numbered in
counterclockwise order, corner nodes first. Although this numbering is strictly adhered to,
for element units the origin (node 1) is selected by STAGS to provide the best possible local
frame for the element computations. For this reason, the user should avoid stress and strain
output in element coordinates, since the local element coordinate system can vary from
element to element. As was stated before, the default STAGS option for output is in the shell-
wall, or system, thereby avoiding any reference to the element system. By a suitable
definition for the wall and for the material layers, the user can select whatever
coordinate system he wants for the output of these quantities.

The actual algorithm for triangles and quadrilaterals is now described, with
representing the updated or current global coordinates of the nodal points when corotation
is invoked (default). For triangles, points from node 1 to node 2. The following formulas
determine the orientation of the axes:

 (14.1)

where the numerical subscripts refer to the three corner nodes of the triangle. For
quadrilaterals, we first determine the normal as the cross product of the diagonals:

 (14.2)

The other two axes are determined by

 (14.3)

For beams, we first determine the initial element system using an auxiliary node. This
auxiliary node is along the shell normal with its origin at node 1 (in the case of shell units),

x′ y′ z′, ,()

x y,()
x y,() φ1 φ2,()

xg yg zg, ,()

x′

x′
xg2

xg1
–

xg2
xg1

–
-----------------------=

r xg3
xg1

–=

z′ x′ r×
x′ r×
----------------=

y′ z′ x′×=

z′
xg3

xg1
–() xg4

xg2
–()×

xg3
xg1

–() xg4
xg2

–()×
---=

r xg4
xg1

–=

x′ r z′×
r z′×
---------------=

y′ z′ x′×=
14-2 April, 2009 STAGS 5.0 User Manual

Algorithm for Determining the Element Frame The Element Library
or it is given by the user (element units). In all cases, is determined by the vector joining
the endpoints of the beam:

 (14.4)

For shell units, the initial system follows

 (14.5)

whereas for the element units

 (14.6)

or the same as for triangles (14.1). In order obtain the element system for a current
configuration using the corotational option, it is necessary to account for both the translation
and rotation of the two endpoint nodes. Initially, the nodal orientation for both nodes is
taken to be the same as in the initial element system. In subsequent steps in the analysis, both
the coordinates and the nodal orientations change. STAGS keeps track of the nodal
orientations by storing the rotation necessary to take the node from its initial position to
the current position. The current orientation of node a is

 (14.7)

where is the initial element system determined from (14.5) or (14.6). After the initial step,
the beam system is determined as follows:

x′

x′
xg2

xg1
–

xg2
xg1

–
-----------------------=

r xg3
xg1

–=

y′ r x′×
r x′×
----------------=

z′ x′ y′×=

r xg3
xg1

–=

z′ x′ r×
x′ r×
----------------=

y′ z′ x′×=

T

Ra TaE0=

E0
STAGS 5.0 User Manual April, 2009 14-3

The Element Library Algorithm for Determining the Element Frame
 (14.8)

where the expression is shorthand for determining the triad that is the midpoint
interpolation of triads and , and where is the ith column of the matrix . The last
equation of (14.8) is the result of rotating the interpolated axis in until it coincides
with the line joining the endpoints of the beam element; there is a unique formula for rotating

 the minimum possible amount until the two axes coincide.

x′
xg2

xg1
–

xg2
xg1

–
-----------------------=

R1 2⁄ int R1 R2,()=

y′ r̂2 x′ r̂2⋅()
r̂1 x′+

1 x′ r̂1⋅+
-----------------------⎝ ⎠

⎛ ⎞–=

z′ r̂3 x′ r̂3⋅()
r̂1 x′+

1 x′ r̂1⋅+
-----------------------⎝ ⎠

⎛ ⎞–=

“int R1 R2,()”

R1 R2 r̂i R1 2⁄

r̂1 R1 2⁄

R1 2⁄ x
14-4 April, 2009 STAGS 5.0 User Manual

“Spring” Elements The Element Library
14.3 “Spring” Elements

The current version of the STAGS program has the following four E100-series “spring”
elements:

• the E110 Mount element

• the E120 Rigid Link element

• the E121 Soft Link element

• the E130 Generalized Fastener element

For geometric reasons, all of these elements are called “spring” elements. The E120 (rigid
link) element is considered to be a standard element; but the E110 (mount), E121 (soft link)
and E130 (generalized fastener) elements are considered to be special-purpose—for reasons
that should be clear from the descriptions in the next four subsections.
STAGS 5.0 User Manual April, 2009 14-5

The Element Library “Spring” Elements
E110 Mount element

The E110 mount element, shown in Figure 14.1, uses a special nonlinear spring that is
capable of modeling a User-defined displacement-velocity-force profile. The action of the
force resulting from the extension and/or motion of the nonlinear spring's end-points can be
applied with an offset from the element's nodes. This is achieved using rigid links connecting
the element's nodes (denoted N1 and N2) and the nonlinear spring's end-points (see Figure
14.1). Rigid links provide a method for defining rotational stiffness in addition to axial

spring stiffness. Geometry for the node N1 and node N2 rigid links is expressed in the node's
local element coordinate system (X1,Y1,Z1) and (X2,Y2,Z2), respectively, as shown in Figure
14.1. The coordinate X1 is in the direction of the line connecting N1 and N2. The Y1 axis is
normal to X1 and in the plane defined by N1, N2, and N3, completing a right-handed system.
(Clearly, node N3 must not lie on the same line as N1 and N2.) N3 can be either a structural
node or a dummy node, defined only for reference to the mount. Any freedoms defined on
dummy nodes are ignored. For rigid link 1, the origin of the (X1,Y1,Z1) system is situated at
N1, and the distance RL1x, RL1y, and RL1z are expressed in this system. For rigid link 2, the
(X2,Y2,Z2) system, with origin at N2, is used to express the distances RL2x, RL2y, and RL2z.
The component values can be positive, negative, or zero. When all components for a rigid
link are zero, the rigid link does not exist. See Figure 14.1.

Figure 14.1 E110 Mount element

RL1

RL2

nonlinear spring

rigid link 1

X1
Y1

Z1

X2

Y2

Z2

• nodes N1, N2 and N3 define the (X1,Y1) plane
• (X1,Y1,Z1) is analogous to in the E210 Beam
• (X2,Y2,Z2) has origin at node 2, and has the same directions as (X1,Y1,Z1)
• point RL1 is defined in (X1,Y1,Z1) coordinates
• point RL2 is defined in (X2,Y2,Z2) coordinates

x′ y′ z′, ,()

N1

N2N3

rigid link 2
14-6 April, 2009 STAGS 5.0 User Manual

“Spring” Elements The Element Library
E120 Rigid link element

The E120 rigid link element, shown in Figure 14.2, constrains the distance between two
nodes (N1 and N2) to be an invariant during an analysis. The displacements of node N2 are
dependent on the displacements and rotations of node N1 through a rigid-link constraint
equation, which is enforced via Lagrange multipliers (see Figure 14.2), and the more
complete discussion of this element in the STAGS Elements Manual. Note that the rotations

for N2 are not constrained by the motion of N1; if N2 rotations are to be constrained, then the
constraints must be explicitly specified, or the reference node N3 must have a nonzero value.
In the latter case, STAGS will generate partial compatibility constraints (see records G-2)
constraining the rotations of N2 to be the same as those of N1.

E121 Soft link element

The three-node E121 soft link element, shown in Figure 14.3, has been designed for use at
junctions between surfaces idealized by shell elements and assemblages of solid elements.
The E121 element forces two solid-element nodes (N1 and Nk) at a junction to remain
“straight,” or aligned along the shell normal of the shell node N0 to which they are joined.
The shell normal, in turn, rotates rigidly with the shell node in response to equilibrium. The
position of the shell node can be described as a linear weighted average of the solid nodes
through the thickness. The solid element nodes are free to move along the shell normal—
allowing for stress relief in the thickness direction, consistent with a plane-stress

Figure 14.2 E120 Rigid link element

XG

YG

ZG

N1

N2

N1

N2

X1

x1

x2

X2

r

r0

ẑ

STAGS 5.0 User Manual April, 2009 14-7

The Element Library “Spring” Elements
approximation. For a full discussion of this element, please see the STAGS Elements
Manual.

E130 Generalized fastener element

The E130 fastener element is shown in Figure 14.4:

Figure 14.3 E121 Soft link element

Figure 14.4 Fastener element local coordinates, displacements, and rotations

x

z

N0

Nk

N1

y

^

^
^

N1 N2

N3

x

yz +
*

dx dy

dz /2

dz/2

N1

x

y
z +θy

θz

θx

Coordinate system and
 relative translations

Relative angles for
 node N1

L/2

L/2
14-8 April, 2009 STAGS 5.0 User Manual

“Spring” Elements The Element Library
The E130 element is a generalization of the E110 Mount with the provision of six
hyperelastic and/or elastic-plastic spring functions (see Figure 7.1 “Degree-of-Freedom
Directions at an Auxiliary Node” on page 7-6), with a potentially different function for each
of the three local translations and rotations. The local directions are illustrated in Figure 14.4
on page 14-8, where we find that the local x axis lies along the line between the first two
nodes, labeled N1 and N2 in the figure. The local z axis is normal to the plane determined by
N1, N2, and the reference node N3. The y axis completes a right-hand orthogonal system.
Before deformation, the direction vector along the line between N1 and N2 is split evenly into
two rigid links of length L/2. Local deformational rotation and translation of each node brings
these links into new positions illustrated in the top half of the picture. The translational
deformations are labeled near the center of the triangle, where the open circles denote the
projection of the ends of the links onto the plane. If and are the local displacement and
rotation vectors belonging to N1 or N2 for i = 1 or 2 respectively, then the displacement of
the tip of the link is

 (14.9)

Here, is the vector that points from the node i to the other node, which also means that
 is - . The bottom half of the figure shows the deformational angles for node N1. is

the twist around the link in the x direction, is the counter-clockwise out-of-plane angle,
and is the in-plane angle. The relative translations and rotations are

 (14.10)

The nodal displacements by this time have been passed through the same corotational
software as is used for the E210 beam. This insures that any rigid motion of the fastener has
been eliminated, and consequently, that the deformational displacements are small for all
practical cases.

The potential energy is a function only of the local displacements and :

 (14.11)

where the index i refers to components. If the local freedoms are ordered as

, (14.12)

ui θi

di
θi x12

i
×
2

------------------- ui+=

x12
i

x12
2 x12

1
θx

θy

θz

d̂ d2 d1–=

θ̂ θ2 θ1–=

d̂ θ̂

U d̂ θ̂,() gi d̂
i

() hi θ̂
i

()+[]

i 1=

3

∑=

d̂
T

d̂
T

θ̂
T

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

STAGS 5.0 User Manual April, 2009 14-9

The Element Library “Spring” Elements
and the nodal freedoms are ordered as

, (14.13)

and if we define the moment arm as

, (14.14)

then equations (14.9) and (14.10) can be expressed as the matrix equation

, (14.15)

where we have used the tilde notation on the moment arms to denote the equivalent skew-
symmetric matrix. If we take the first derivative of equation (14.11) and use the chain rule
and equation (14.15), the nodal forces become

, (14.16)

where we have defined the six primitive spring forces from the first variation of equation
(14.9) as a function of the local displacements:

 (14.17)

Since the potential energy itself is not needed to generate forces for the equilibrium
equations, and can be defined directly by user input in the form of tables (or possibly
from a User-written subroutine). Local forces for a particular point are linearly interpolated
from the values in the table, and the local tangent stiffness is numerically computed from the
derivatives of these forces and expressed as a 6x6 diagonal matrix . From the chain rule
and equations (14.15) and (14.16), we obtain the final nodal tangent stiffness:

d
T

d1
T

θ1
T d2

T
θ2

T

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

L12
x12

2
--------=

d̂ P̂d=

P̂ I– L̃12 I L̃12–

0 I– 0 I
=

L12

f P̂
T
f̂=

f̂ g'
h'

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

g' g∂

d̂∂
-------=

h' h∂
θ̂∂

-------=

g' h'

K̂

14-10 April, 2009 STAGS 5.0 User Manual

“Spring” Elements The Element Library
 (14.18)

Each relative displacement freedom can be matched up with a different nonlinear spring
expressed as a Mount Table defined in the I-4 “material” records. At present, E130 fastener
elements do not allow for velocity-dependent nonlinear spring response (if velocities are
included in the table, the zero value is used). Otherwise, any force-deflection curve is
acceptable. Type E130 elements must be referenced in an element unit.

K P̂
T
K̂P̂=
STAGS 5.0 User Manual April, 2009 14-11

The Element Library “Beam” Elements
14.4 “Beam” Elements

The current version of the STAGS program has the following two E200-series “beam”
elements:

• the E210 Beam element
• the E250 Planar Boundary Condition element

For historical (and geometric) reasons, both of these elements are called “beam” elements.
The E210 (beam) element is a standard single- or multiple-component beam element; but the
E250 (Planar Boundary Condition) “element” is considered to be special—for reasons that
should be clear from the descriptions in the next two subsections.
14-12 April, 2009 STAGS 5.0 User Manual

“Beam” Elements The Element Library
E210 Beam element

The E210 beam element, shown in Figure 14.5, is “classic” in all senses of the word. Its

cross-section geometry, specified via J-series Cross-Section records described in Chapter 5
of this document, is uniform along the length of the beam.

Figure 14.5 E210 Beam element

2

1

rw

x′

y′
z′

• nodes N1, N2 and N3 define the plane

• is normal to the plane

• – element coordinate system

x′ y′,()

z′ x′ y′,()

x′ y′ z′, ,()

N1

N3

r12 r2 r1–=

r13 r3 r1–=

x′
r12

r12
----------=

z′
x′ r13×
x′ r13×
--------------------=

y′ z′ x′×=

ru

u

rv

v
w

N2
STAGS 5.0 User Manual April, 2009 14-13

The Element Library “Beam” Elements
E250 Planar boundary condition element

The E250 Planar Boundary Condition “element”* in STAGS, shown in Figure 14.6, is STAGS’
response to the fact that there are situations that arise where the analyst wishes to constrain
a section through or along a structure to remain in a specified plane but be free to move
otherwise. This constraint can be visualized as an imaginary cut through the structure with

the part that is on one side of the boundary modeled by FEM methods and the part that is on
the other side of the boundary simulated by the planar (moving plane) boundary. Such a

* See Nour-Omid, S., F.A. Brogan and G.M. Stanley, “The Computational Structural
Mechanics Testbed Structural Element Processor ES6: STAGS Beam Element,”
NASA CR–4359, 1991

Figure 14.6 E250 Planar boundary condition

y′
x′

z′

– element coordinate system (see E210 Beam)
– updated nodal orientation coordinate system
– coordinates of node N1
– coordinates of node N2
– displacement at node N1
– displacement at node N2

A planar boundary condition is enforced by the following:

• initially
•

•

x′ y′ z′, ,()
x̂ ŷ ẑ, ,()

r1
r2
d1
d2

x̂ ŷ ẑ, ,() x′ y′ z′, ,()=

ẑ1 r2 d2+() r1 d1+()–()• 0=

ẑ2 x̂1• ẑ2 ŷ1• 0= =

N3

N2

N1
14-14 April, 2009 STAGS 5.0 User Manual

“Beam” Elements The Element Library
moving plane is free to rotate and translate. A special case of this boundary is symmetry,
where such a plane is constrained. An example of the moving plane is shown in the following
figure:

Description of the constraint

The equation for the position of a point in a plane is

 (14.19)

where n is the normal to the plane, and p1 is already assumed to lie in the plane. It follows
that p2 must also lie in the plane defined by n if equation (14.19) is satisfied. One can see
how a full boundary line can be constructed. First allow the first point p1 to define the
position of the plane. If we apply equation (14.19) to this segment, p2 must also lie in the
plane. By induction, we can continue the line as long as desired by enforcing additional
points in succession. The only requirement is that these points must originally satisfy
equation (14.19) in the undeformed configuration. This is achieved by using a third node
(labeled N3 in Figure 14.6), to determine the initial orientation of the plane containing N1, N2

and N3. Because of our ability to construct the entire boundary with individual coplanar
segments that are linked together, we only need to consider one segment—shown in the
figure above. For shell structures, we also have rotational freedoms that must leave any
normal to the plane unchanged. This constraint is best achieved by the following
construction:

p

p

1

2

n

n Δp• n1 Δp• 0= =

Δp p2 p1–=

p

p

n

n

y
x

1
1

2

2
^

^

STAGS 5.0 User Manual April, 2009 14-15

The Element Library “Beam” Elements
Let us assume that is normal to the plane. Then the following will allow free rotation
about n2 but will leave the normal at the new point p2 unchanged:

 (14.20)

If we assume that the auxiliary vectors and rotate rigidly along with the normal n1, the
second normal n2 will remain parallel to n1 no matter how much that triad rotates. and
are otherwise arbitrary and are easily constructed, for example, by using the vector joining
the two nodes and completing a right hand system. Thus, equations (14.19) and (14.20) taken
together are three nonlinear constraints that are valid no matter how large the subsequent
motion of the system may be.

Constraint kinematics

The unit vectors , and n1 rotate rigidly in response to rotations at node p1 from their initial
positions , and , where the rotation of n1 is possible because the plane in question
may rotate. This rotation is expressed by a triad ΔR formed from the product of rotations that
are required to satisfy equilibrium. The kinematic equations are

 (14.21)

where is the skew-symmetric (tilde symbol) matrix that is constructed from the rotation
increments derived from the solution of the displacement equations, and where the last
equation in this set expresses the update or correction of the triad from the previous iteration.

Enforcement of the constraint

Equations (14.19) and (14.20) can be enforced by adding the constraints to the potential
energy via Lagrange multipliers. To prevent numerical difficulties with the stiffness
factorization operation, it is essential to augment this constraint with a “penalty” function
consisting of functions that are identically zero when equations (14.19) and (14.20) are
satisfied. These additional terms do not affect the resulting displacement field. The modified
potential function takes the simple form:

n1 n=

x̂ n2• 0=

ŷ n2• 0=

x̂ ŷ

x̂ ŷ

x̂ ŷ

x̂0 ŷ0 n1()
0

x̂ ΔRx̂0=

ŷ ΔRŷ0=

n1 ΔR n1()
0

=

ΔR δω̃()exp ΔR←

δω̃
14-16 April, 2009 STAGS 5.0 User Manual

“Beam” Elements The Element Library
 (14.22)

where U is the ordinary finite element potential function, s is the penalty scaling constant,
and the λ are Lagrange multipliers. Contributions to the internal force are computed by taking
the variation of equation (14.22), with the following contributions from the constraints in
equation (14.22):

 (14.23)

The reader will notice that f1 is the force on the first node that is required to constrain the
second node to lie on the plane and that there is obviously an equal and opposite reaction f2

at the second node. The moment m1 required to align n2 with n1 is opposed by m2. m1 also has
the additional moment that is generated by the pair of forces f1 and f2. If equations
(14.19) and (14.20) are satisfied, equation (14.23) simplifies to (since must also
vanish):

 (14.24)

The stiffness (at equilibrium) is symmetric, with the structure

Π U p1 p, 2 …() β n2• λpΔp n1•+ +=

s
2
--- 1 n1 n2•()2

– Δp n1•()2
+[]+

β λxx̂ λyŷ+=

f1 λp sΔp n1•+()n1–=

m1 m2 Δp f1×+–=

f2 f1–=

m2 β n2× sn1 n2×+–=

fλp
Δp n1•=

fλx
x̂ n2•=

fλy
ŷ n2•=

Δp f1×

n1 n2×

f1 λpn1–=

m1 m2 Δp f1×+–=

f2 f1–=

m2 β n2×–=

fλp
Δp n1•=

fλx
x̂ n2•=

fλy
ŷ n2•=
STAGS 5.0 User Manual April, 2009 14-17

The Element Library “Beam” Elements
 (14.25)

where the vector shows the order of the freedoms. ω represents the rotational counterpart of
the displacements p for the node indicated (subscript). The only other nonzero terms are
displayed in equations (14.26):

 (14.26)

where for any vector v,

 (14.27)

and where I3 is the 3x3 identity matrix. Note that in deriving equations (14.26), we used the
fact that at equilibrium, n1 = n2.

It is very simple to derive the noncorotational and linear forms for the force and stiffness by
dropping higher order terms, so those details are omitted here.

sn1n1
T K12 s– n1n1

T 0 n– 1 0 0

K12
T K22 K23 K24 n1 Δp× x̂ n2× ŷ n2×

s– n1n1
T K23

T
sn1n1

T 0 n1 0 0

0 K24
T 0 K44 0 x–̂ n2× y–̂ n2×

n– 1
T n1 Δp×()T n1

T 0 0 0 0

0 x̂ n2×()T 0 x̂ n2×()–
T 0 0 0

0 ŷ n2×()T 0 ŷ n2×()T
– 0 0 0

p1

ω1

p2

ω2

λp

λx

λy

K12 f̃– 1 sn1 Δp n1×()T
–=

K22 K44
1
2
---λp Δpn1

T n1ΔpT
+() s Δp n1×() Δp n1×()T

+ +=

K23 f̃1– s Δp n1×()n1
T

–=

K24 n– 2βT
s n1n1

T I3–()+=

K44
1
2
--- βn2

T n2βT
+() s I3 n1n1

T
–()+=

ṽ

0 v– z vy

vz 0 v– x

v– y vx 0

=

14-18 April, 2009 STAGS 5.0 User Manual

Shell and Mesh-Transition Shell Elements The Element Library
14.5 Shell and Mesh-Transition Shell Elements

The current version of the STAGS program has the following two E300-series triangular shell
elements and the following five E400-series quadrilateral shell and mesh-transition shell
elements:

• the E320 triangular shell element
• the E330 triangular shell element

• the E410 4-node quadrilateral shell element
• the E411 4-node quadrilateral shell element
• the E480 9-node quadrilateral shell element

• the E510 5-node quadrilateral mesh-transition shell element
• the E710 7-node quadrilateral mesh-transition shell element

These seven elements are described in the following six Subsections. The final Subsection in
this Section describes how mesh transitions can also be performed using triangular elements.
STAGS 5.0 User Manual April, 2009 14-19

The Element Library Shell and Mesh-Transition Shell Elements
E320 Triangular shell element

The E320 triangular shell element, shown in Figure 14.7, is a “classic” triangular element.

The nine integration-point locations are shown here. Element stress/strain results are
computed at the element centroid only.

Figure 14.7 E320 Triangular shell element

1

3

2

1

2

3

x′
y′

z′

uv
w

rurv

rw

r12
r31

r23

1

2

3

4

5

6

7

8

9

14-20 April, 2009 STAGS 5.0 User Manual

Shell and Mesh-Transition Shell Elements The Element Library
E330 Triangular shell element

The E330 triangular shell element, shown in Figure 14.8, is STAGS’ adaptation of the
COMET program’s MIN3 element.* †

In a shell unit, this element may have one, three (the default number), four or seven
integration-points—depending on the INTEG parameter on the N-1 record. In an element unit,
this element currently has three integration points. Element stress/strain results may be
computed at each integration point or just at the element centroid.

Figure 14.8 E330 Triangular shell element

* Tessler, A., “A C0-Anisoparametric Three-Node Shallow Shell Element,” Computer
Methods in Applied Mechanics and Engineering, Vol. 78, 1990, pp. 89–103

† Barut, A., E. Madenci and A. Tessler, “Nonlinear Analysis of Laminates Through a
Mindlin-Type Shear Deformable Shallow Shell Element,” Computer Methods in
Applied Mechanics and Engineering, Vol. 143, Nos 1–2, April 1997, pp. 157–173

1

3

2

1

2

3

x′

y′

z′

u
v

w
ru

rv
rw

2

x′

y′

z′

u
v

w
ru

rv
rw

3

2

1

1

3

1

2

3

4

5

6

7

1

2

3

4

1

3
2

1

2

3

x′

y′
z′

u
v

w ru
rv

rw

1

2

3

STAGS 5.0 User Manual April, 2009 14-21

The Element Library Shell and Mesh-Transition Shell Elements
E410 4–Node quadrilateral shell element

The E410 4–node quadrilateral shell element in the current version of STAGS, shown in
Figure 14.9, is a “classic” 4–node quadrilateral shell element.*

Figure 14.9 E410 4–Node quadrilateral shell element

* Rankin, C.C. and F.A. Brogan, “The Computational Structural Mechanics Testbed
Structural Element Processor ES5: STAGS Shell Element,” NASA CR–4358, 1991

2

5

3

1

4

3

4

1

2

1

2

3

4

x′

y′

z′

w

rw

– 4-point integration
– 5-point integration

INTEG 0=

INTEG 1=

u

v

ru

rv
14-22 April, 2009 STAGS 5.0 User Manual

Shell and Mesh-Transition Shell Elements The Element Library
E411 4–Node quadrilateral shell element

The E411 quadrilateral shell element, shown in Figure 14.10, has four user-specified nodes

and an additional set of four mid-side nodes that are constructed by the program.

Figure 14.10 E411 4–Node quadrilateral shell element

2

5

3

1

4

1

2

3

6

9

7

4

8

5

1

4

3

2

1

2

3

4

1

2

3

4

x′

y′

z′
u

v

w

ru

rv

rw

u23

u34

u12

u41
STAGS 5.0 User Manual April, 2009 14-23

The Element Library Shell and Mesh-Transition Shell Elements
E480 9–Node quadrilateral shell element

The E480 9–node quadrilateral shell element in the current version of STAGS, shown in
Figure 14.11, is a classic 9–node ANS shell element.* †

Figure 14.11 E480 9–Node quadrilateral shell element

* Stanley, G.M., “The Computational Structural Mechanics Testbed Structural Ele-
ment Processor ES1: Basic SRI and ANS Shell Elements,” NASA CR–4357, 1990

† Park, K.C. and G.M. Stanley, “A Curved C0 Shell Element Based on Assumed Natural-
Coordinate Strains,” ASME Journal of Applied Mechanics, Vol. 108, 1986, pp. 278–290

4

rw

rv

v

w

u
ru

7

8

96

3

2

1

5

3

4

1

2

1

7

2

9

5

6

3

4

8

14-24 April, 2009 STAGS 5.0 User Manual

Shell and Mesh-Transition Shell Elements The Element Library
E510 and E710 Quadrilateral mesh-transition shell elements

Transition meshes can be generated very easily in STAGS shell units with simple input. Two
types of juncture lines are recognized, as has been the case for some time. The simplest
juncture is defined along an entire shell unit boundary, via G-1 records. The limitation is that
only whole boundaries are recognized, and thus it is not possible to insert a unit with double
the mesh density along only part of a shell unit boundary, as illustrated in Figure 14.12. To
cope with this situation with the minimum number of shell units, the user must join shell
units along only part of a juncture line (for example, the line along the bottom of unit 1 in
the figure) and place the units properly by using IGLOBE = 0, 3 or 4 (on the M-2 record). This
process should be familiar to STAGS users for models containing stiffeners that are modeled
as shell units. After the units are properly located, master-slave relationships are generated
by G-2 records in which IDIR = 0 for both groups of nodes.

In Figure 14.12, you will also notice the dangling nodes in unit 3. These nodes are omitted
from any G-2 reference. To understand how STAGS copes with this situation, it is useful to
consider unit 3 in isolation. Each edge or boundary line is numbered clockwise starting with
boundary line 1, which runs along row 1; these conventions are also discussed under Record

Figure 14.12 Mesh refinement example

1

5

2 3 4

2

3

4

1

rows

co
ls

.

STAGS 5.0 User Manual April, 2009 14-25

The Element Library Shell and Mesh-Transition Shell Elements
P-1 (Boundary Conditions). In Figure 14.12, for example, let us assume that row number 1
is the vertical line on the left edge of unit 3 and that column number 1 runs along the bottom
side. Then the boundary lines are as labeled in the figure (small circles). Notice that the mesh
halves in density along lines 2, 3 and 4, but not along line 1 as one crosses from unit 3 to the
adjacent units. Special variables MESH1 through MESH4 (N-1) take the value 0 for a boundary
line where the mesh is to be continuous with adjacent shell units, and 1 (or 3) where the mesh
halves across the boundary line.

This input signals the code to interpret every other node as a dependent node that is
constrained automatically by introducing an E510 quadrilateral mesh-transition element along
the boundary for which MESHi is set equal to 1, and/or by introducing an E710 mesh-
transition quadrilateral element at any corner for which the MESHi and MESHj parameters for
the lines meeting at that corner are both set equal to 1. One can readily see that this has the
effect of imposing a halving of the mesh along the affected boundaries. The choice of E510
or E710 depends on the number of dependent nodes that have to be constrained. Note that
since the number of intervals is doubling as you move in from an adjacent unit, the number
of mesh lines must be 2N-1, where N is the number of mesh lines in the adjoining coarser
mesh (the number of mesh lines are specified in the F-1 records). For unit 3 in Figure 14.12,
the N-1 record would look like

 410 0 0 0 0 0 0 0 1 1 1 $ N-1

where we have assumed in this example that the user wants to use type E410 elements with
unit 3, to have no mesh irregularities, to keep equal mesh spacing, and to use default values
for the penalty and integration order. The last four integers correspond to the situation in unit
3, Figure 14.12.

If the user wishes to join the shell units with G-1 records (remembering that the relevant
boundary lines must be compatible, as always), the same input applies, except that the input
may be simpler since STAGS will often be able to locate the units automatically. In Figure
14.12, unit 3 boundary lines 1 and 3 satisfy G-1 requirements.

In an element unit, quadrilateral mesh-transition shell elements are identified by element type
E510 or E710. These elements must be included in the count NQUAD of quads, on record H-1.
For either element, if the desired normal is pointing toward the viewer, the 4 corner nodes
are numbered first on record T-4a in counter-clockwise order (the same as for the E410); and
the remainder of the nodes are input on record T-4b including the midside nodes and the
center node (for the E710 only). The midside nodes are numbered in the same order as the
corner nodes, starting with the first one to the right (or left for clockwise input) of corner
node 1. If there is no midside node along a given side, a 0 is input. This tells STAGS where
to put the dependent nodes. It must be remembered that only two topologies are possible, as
shown in Figure 14.13. For the E510 case, the single midside node can be located on any of
the four sides. The dependent node is opposite the extra node, and is invisible to the user.
14-26 April, 2009 STAGS 5.0 User Manual

Shell and Mesh-Transition Shell Elements The Element Library
For the E510 element shown in the left half of this figure, the user should input

 1 2 3 4 510 1 $ T-4a
 0 5 0 0 0 $ T-4b

where in this example wall 1 and defaults for the other entries on T-4a are selected. Note that
for this case the only nonzero entry on T-4b is in the second slot, since the extra node is
located on the second side with reference to node 1, in the counter-clockwise order. The
following input describes the E710 element in the right half of this figure:

 1 2 3 4 710 1 $ T-4a
 0 5 6 0 7 $ T-4b

Note how similar this input is to the previous example, except that here we have the extra
midside node 6 adjacent to 5, and that there is an extra node 7 in the fifth slot. The midside
nodes can start on any side and are always adjacent. The center node must appear last as the
fifth entry on the record. In a real case, the node numbers will of course correspond to user
point numbers generated previously.

For both shell and element unit input, the user will find that just about any type of mesh-
doubling scenario can be covered with just these two quadrilateral mesh-transition elements.
As viewed from inside the doubled region, the E510’s lie along a mesh-transition boundary,
and E710’s occupy any corners where the mesh is coarser along two adjacent lines. More
severe refinement can be done in stages, with one refinement level per boundary line. It will
be seen that with the mesh doubling for each line, a very fine mesh can be had in short order.

Example: Aircraft Panel Quarter Model with Crack in Refined Region

In this example, we have a quarter of a fuselage panel section containing rings and stringers
that are modeled as shell units—a typical ASIP model. Figure 14.14 gives a view of the
model and the mesh structure. There are 12 shell units in this example, 7 of which lie on the
planform in the figure. Stiffeners, composed of shell units, are marked by the heavy lines.
Each shell unit is labeled by a number in the order that it appears in the STAGS input. Arrows
point to the stiffener shell units, which are viewed edge-on. All boundaries are symmetry,
except for the crack (free edge), marked by the heavy dashed line. The left-hand boundary is
symmetry with a specified, constant nonzero u. u is aligned along the cylinder axis, which is

Figure 14.13 Node numbering for mesh-transition elements

510 element: 710 element:

X

X

1 2

34

5

6

7
X

1 2

34

5

STAGS 5.0 User Manual April, 2009 14-27

The Element Library Shell and Mesh-Transition Shell Elements
horizontal and labeled on the lower left-hand corner of the model. In addition to the specified
displacement, a uniform pressure load is applied to units 1 through 7. With each shell unit,
we have included the number of rows and columns, rows first, just as they appear on the F-1
record. The direction of increasing rows and column number is also illustrated in the lower
left-hand corner of the model.

Now let us walk through the input in this case. You will readily recognize that the F-1 record
input matches the numbers in parentheses in Figure 14.14, unit for unit. Check the figure and
understand that the mesh numbering corresponds exactly to the number of mesh lines in the
row and column direction for each unit. Next come 15 G-1 records that connect whole
boundaries between units. Check the figure to ensure that the full boundary line condition is
fulfilled. Note that only the first 7 records apply to the skin, while the remainder describe
connections to the stiffeners. The next 9 G-2 records are most interesting, because here is a

Figure 14.14 Quarter panel model with crack in refined region

1

1211

8

9 10

765

43

2

(4 x 9)

(3 x 9)

(5 x 5)(9 x 9)(7 x 5)

(9 x 4)(7 x 4)

(5 x 9)

(3 x 9)

(3 x 5)(3 x 4)

C
ol

s.

Rows

Crack

u specified

u

v

14-28 April, 2009 STAGS 5.0 User Manual

Shell and Mesh-Transition Shell Elements The Element Library
case where both unit 6 (containing the crack tip) and unit 7 connect to line 2 of unit 4. The
first 5 partial compatibility records illustrate the requirement that only every other node in
the denser-meshed unit 6 is connected to unit 4. As we explained before, the intervening
nodes on 6 are dependent nodes and are invisible to the user. The next set of 4 compatibility
records defines a continuous mesh between unit 4 and 7. The last G-2 record joins the stringer
to the ring stiffener.

The first refinement line lies along boundary 4 on unit 3, illustrated on the top half of Figure
14.15, where the unit boundary lines are marked by the numerals:

From Figure 14.14, transition elements must be placed along this line to reduce the number
of independent nodes to every other line in the unit. As described earlier, the special input
on record N-1 tells STAGS where to put dependent nodes. For this reason, we label in the
input that boundary line 4 as reduced for unit 3. What STAGS actually does is to introduce
three E415 quadrilateral elements along line 4, as shown by the shaded squares along line 4.
Since unit 4 shows the same pattern as unit 3, it is not surprising that the input to STAGS is
identical. Unit 6 is more complicated. Here, doubling occurs along three boundary lines (1,

Figure 14.15 Generation of transition elements

Unit 3Three E415 elements
shaded, Unit 3

Eight E415 elements are
shaded along boundaries,
and two E417 in corners
(hatched).

1

2

3

4

2

3

4

1
Unit 6
STAGS 5.0 User Manual April, 2009 14-29

The Element Library Shell and Mesh-Transition Shell Elements
3, and 4 as shown in the lower half of Figure 14.15), with the expected input on the N-1

record. The element pattern shows an E417 element in each of the two corners along line 4,
and the remainder E415’s along boundary lines 1, 3, and 4.

The model for this example is constructed via the following INP file:

Aircraft Panel Quarter Model—INP File

Transition mesh for 15” crack (1/4 model) $ A-1
0 0 1 0 0 0 1 $ B-1
12 0 0 15 10 0 0 0 0 0 $ B-2
2 0 8 $ B-3
1.0 0.1 1.0 $ C-1
4 9 5 9 7 4 9 4 7 5 9 9 5 5 3 9 3 4 3 5 2 4 2 5 $ F-1
1 3 2 1 $ G-1
1 2 3 4 $ G-1
2 2 4 4 $ G-1
3 3 4 1 $ G-1
3 2 5 4 $ G-1
5 3 6 1 $ G-1
6 3 7 1 $ G-1
1 3 8 3 $ G-1
3 3 9 3 $ G-1
5 3 10 3 $ G-1
8 2 9 4 $ G-1
9 2 10 4 $ G-1
1 2 11 3 $ G-1
2 2 12 3 $ G-1
11 2 12 4 $ G-1
4 1 4 0 6 1 1 0 $ G-2
4 2 4 0 6 3 1 0 $ G-2
4 3 4 0 6 5 1 0 $ G-2
4 4 4 0 6 7 1 0 $ G-2
4 5 4 0 6 9 1 0 $ G-2
4 6 4 0 7 2 1 0 $ G-2
4 7 4 0 7 3 1 0 $ G-2
4 8 4 0 7 4 1 0 $ G-2
4 9 4 0 7 5 1 0 $ G-2
8 2 9 0 11 1 4 0 $ G-2
1 / 10.5E6 0.33 $ I-1/2
2 / 10.7E6 0.33 $ I-1/2
1 1 1 / 1 .036 $ K-1/2
2 1 1 / 1 .036 $ K-1/2
3 1 1 / 1 .036 $ K-1/2
4 1 1 / 1 .036 $ K-1/2
5 1 1 / 2 .17075 $ K-1/2
6 1 1 / 2 .17075 $ K-1/2
7 1 1 / 2 .34229 $ K-1/2
8 1 1 / 2 .34229 $ K-1/2
$
$ **** SHELL UNIT 1 ****
5 0 $ M-1 #1
0. 10. 165.6 172.8 74.0 $ M-2A #1
14-30 April, 2009 STAGS 5.0 User Manual

Shell and Mesh-Transition Shell Elements The Element Library
1 $ M-5
410 0 0 $ N-1
0 6 6 4 $ P-1
111 100 $ P-2 (symmetry with set u)
1/ 1 2 $ Q-1/Q-2
 8. 5 3 0 0 $ Q-3 (pressure)
 -.0022 -1 1 1 0 $ Q-3 edge displ.
0 $ R-1 #1
$
$ **** SHELL UNIT 2 ****
$
5 0 $ M-1 #2
10. 20. 165.6 172.8 74.0 $ M-2A #2
2 $ M-5
410 0 0 $ N-1
6 6 4 4 $ P-1
1/ 1 1 $ Q-1/2
 8. 5 3 0 0 $ Q-3 (pressure)
4 0 0 0 0 0 $ R-1 #2
$
$ **** SHELL UNIT 3 ****
$
0 0 $ M-1 #3
0. 10. 172.8 174.6 74. $ M-2A
3 $ M-5 Wall 3
410 0 0 0 0 0 0 0 0 0 1 $ N-1 #3 line 4 is reduced
0 6 6 6 $ P-1
111 100 $ P-2 ”symmetry” with nonzero u
1/ 1 2 $ Q-1/2
 8. 5 3 0 0 $ Q-3 (pressure)
 -.0022 -1 1 1 0 $ Q-3 edge displ.
4 0 0 0 0 8 $ R-1 #3
$
$ **** SHELL UNIT 4 ****
$
5 0 $ M-1 #4
10. 20. 172.8 174.6 74. $ M-2A
4 $ M-5 Wall 4
410 0 0 0 0 0 0 0 0 0 1 $ N-1 #4 line 4 is reduced
6 6 4 6 $ P-1
1/ 1 1
 8. 5 3 0 0
4 0 0 0 0 0 $ R-1 #4
$
$ **** SHELL UNIT 5 ****
$
5 0 $ M-1 #5
0. 10. 174.6 176.4 74. $ M-2A
3 $ M-5
410 $ N-1 #5
0 4 6 6 $ P-1
111 100 $ P-2 (symmetry with set u)
1/ 1 2 $ Q-1/2
 8. 5 3 0 0 $ Q-3 (pressure)
 -.0022 -1 1 1 0 $ Q-3 edge displ.
0 $ R-1 #5
$

STAGS 5.0 User Manual April, 2009 14-31

The Element Library Shell and Mesh-Transition Shell Elements
$ **** SHELL UNIT 6 (Contains CRACK tip!) ****
$
5 0 $ M-1 #6
10. 15. 174.6 176.4 74. $ M-2A
4 $ M-5 Wall 4
410 0 0 0 0 0 0 1 0 1 1 $ N-1 # 6 lines 1,3,4 reduced
6 3 6 6 $ P-1
1/ 1 13 $ Q-1/2 (note number of records)
 8. 5 3 0 0 $ Q-3 (pressure)
0. -1 2 2 9 $ Q-3 (Forced disp.to close crack)
0. -1 4 2 9 $ Q-3 (Forced disp.to close crack)
0. -1 6 2 9 $ Q-3 (Forced disp.to close crack)
0. -1 2 3 9 $ Q-3 (Forced disp.to close crack)
0. -1 4 3 9 $ Q-3 (Forced disp.to close crack)
0. -1 6 3 9 $ Q-3 (Forced disp.to close crack)
0. -1 2 4 9 $ Q-3 (Forced disp.to close crack)
0. -1 4 4 9 $ Q-3 (Forced disp.to close crack)
0. -1 6 4 9 $ Q-3 (Forced disp.to close crack)
0. -1 2 5 9 $ Q-3 (Forced disp.to close crack)
0. -1 4 5 9 $ Q-3 (Forced disp.to close crack)
0. -1 6 5 9 $ Q-3 (Forced disp.to close crack)
0 0 0 0 0 0 $ R-1 #6
$
$ **** SHELL UNIT 7 ****
$
5 0 $ M-1 #7
15. 20. 174.6 176.4 74. $ M-2A
4 $ M-5 Wall 4
410 0 0 0 0 0 0 0 0 0 0 $ N-1 #7
6 3 4 6 $ P-1
1/ 1 1 $ Q-1/2
8. 5 3 0 0 $ Q-3 (pressure
0 0 0 0 0 0 $ R-1 #7
$
$ **** SHELL UNIT 8 ****
$
4 4 $ M-1 #8
72.0 74.0 165.6 172.8 $ M-2A #8
10.0 0.0 0.0 $ M-4D #8 (note translation of unit)
0.0 0.0 0.0 $ M-4E #8
5 0 0. 0. 0 0 0 $ M-5 #8
410 0 0 0 0 0 0 $ N-1 #8
3 6 6 4 0 $ P-1 #8
0 $ Q-1
0 0 $ R-1 #8
$
$ **** SHELL UNIT 9 ****
$
4 4 $ M-1 #9
72.0 74.0 172.8 174.6 $ M-2A #9
10.0 0.0 0.0 $ M-4D #9
0.0 0.0 0.0 $ M-4E #9
6 0 0. 0. 0 0 0 $ M-5 #9
410 0 0 0 0 0 0 $ N-1 #9
3 6 6 6 0 $ P-1 #9
0 $ Q-1
0 0 $ R-1 #9
14-32 April, 2009 STAGS 5.0 User Manual

Shell and Mesh-Transition Shell Elements The Element Library
$

$ **** SHELL UNIT 10 ****

$

4 4 $ M-1 #10

72.0 74.0 174.6 176.4 $ M-2A #10

10.0 0.0 0.0 $ M-4D #10

0.0 0.0 0.0 $ M-4E #10

6 0 0. 0. 0 0 0 $ M-5 #10

410 0 0 0 0 0 0 $ N-1 #10

3 4 6 6 0 $ P-1 #10

0 $ Q-1

0 $ R-1 #10

$

$ **** SHELL UNIT 11 ****

$

2 3 $ M-1 #11

0.0 1.0 0.0 10.0 $ M-2A #11

0. 9.1493261 -72.424373 $ M-4A #11

10. 9.1493261 -72.424373 $ M-4B #11

10. 9.2746593 -73.416488 $ M-4C #11

7 0 0. 0. 0 0 0 $ M-5 #11

410 0 0 0 0 0 0 $ N-1 #11

3 6 6 3 0 $ P-1 #11

0 0 0 0 $ Q-1 #11

 $ R-1 #11
$

$ **** SHELL UNIT 12 ****

$

2 3 $ M-1 #12

0.0 1.0 10.0 20.0 $ M-2A #12

10. 9.1493261 -72.424373 $ M-4A #12

20. 9.1493261 -72.424373 $ M-4B #12

20. 9.2746593 -73.416488 $ M-4C #12

8 0 0. 0. 0 0 0 $ M-5 #12

410 0 0 0 0 0 0 $ N-1 #12

3 4 6 6 0 $ P-1 #12

0 0 0 0 $ Q-1 #12

0 $ R-1 #12
STAGS 5.0 User Manual April, 2009 14-33

The Element Library Shell and Mesh-Transition Shell Elements
E330 Triangular mesh-transition shell elements

Transition meshes between and among shell units, using type E330 triangular shell elements
instead of type E510 and/or E710 quadrilateral elements, can also be generated very easily via
the MESH1, MESH2, MESH3 and/or MESH4 parameters (on the N-1 record). This STAGS feature
closely parallels the E510 and E710 quadrilateral mesh-transition shell element capabilities
described above. Setting MESH1, MESH2, MESH3 and/or MESH4 equal to 3 on an N-1 record
signals STAGS to interpret every other node on the associated boundary as a dependent node
that is constrained automatically by introducing as many E330 triangular transition elements
as may be required along that boundary or at the corner of defined by adjacent boundaries
that are tagged in this manner. This has the effect of halving the mesh along the affected
boundaries. Since the number of intervals is doubling as you move in from an adjacent unit,
the number of mesh lines must be 2N-1, where N is the number of mesh lines in the adjoining
coarser mesh (the number of mesh lines are specified in the F-1 records). To employ type
E330 (instead of E510 and E710) shell transition elements for unit 3 of the example problem
shown in Figure 14.12, the N-1 record would look like

 410 0 0 0 0 0 0 0 3 3 3 $ N-1

(assuming that the analyst wants to use type E410 elements with unit 3, to have no mesh
irregularities, to keep equal mesh spacing, and to use default values for the penalty and
integration order). The last four integers correspond to the situation in unit 3, Figure 14.12.
The difference here is that STAGS generates three type E330 triangular shell elements in each
transition “side cell” for which the MESHi value of 1 generates an E510 element, and/or four
type E330 triangular elements for each “corner cell” for which adjacent boundaries have
MESHi and MESHj both equal to 3. The patterns for this are shown in Figure 14.16:

When the MESH* parameters that were set to 1 in the example just discussed are set to 3,
instead of 1, the transition mesh shown in Figure 14.17 is generated:

Figure 14.16 Triangular mesh-transition shell elements

X

X

X

Side cell:

Corner cell:
14-34 April, 2009 STAGS 5.0 User Manual

Shell and Mesh-Transition Shell Elements The Element Library
Figure 14.17 Quarter panel model with crack in refined region

1

1211

8

9 10

765

43

2

(4 x 9)

(3 x 9)

(5 x 5)(9 x 9)(7 x 5)

(9 x 4)(7 x 4)

(5 x 9)

(3 x 9)

(3 x 5)(3 x 4)
C

ol
s.

Rows

Crack

u

v

STAGS 5.0 User Manual April, 2009 14-35

The Element Library Sandwich and Mesh-Transition Sandwich Elements
14.6 Sandwich and Mesh-Transition Sandwich Elements

The current version of the STAGS program has the following three “standard” sandwich
elements and the following two mesh-transition sandwich elements:

• the E830 6-node sandwich element

• the E840 8-node sandwich element

• the E849 18-node sandwich element

and

• the E845 10-node mesh transition sandwich element

• the E847 14-node mesh transition sandwich element

These are described in the following four Subsections.

E830 6–Node sandwich element

Sandwich components play increasingly important roles in the design of many aerospace
structures, and it is necessary to determine their behavior adequately. The 6–node sandwich
element (see Figure 14.18) discussed here and the 8–node sandwich element (see Figure
14.19) discussed in the next subsection are important additions to STAGS’ modeling
capabilities and will be used more and more as time goes on.

The classical approach to the modeling of sandwiches corresponds to an extension of the
theory of thin shells. In this approach, the behavior of the sandwich as a three dimensional
object is reduced to the behavior of a two dimensional surface with in-plane and out of the
plane stiffness properties. Because sandwiches (in contrast to thin walled shells) also undergo
transverse shear deformations, two extra parameters are required to describe this mode of
deformation. The classical theory of sandwich shells is a two dimensional theory in the sense
that the behavior of the three dimensional sandwich shell is described by the deformation of
a reference surface and two additional geometric parameters (shear angles) that are locally
attached to this surface. Successful finite element discretizations of these classical models
have been made in the past, but applications of these discretizations are mostly confined to
linear or moderately nonlinear analysis situations.

For implementation into a general purpose finite element code, sandwich elements based on
classical theory have at least two undesirable aspects. The first is that a complete new coding
of the element drivers must be introduced. The second is that the code must deal with
boundary conditions along the edges of the shell that involve shear angles. This departure
from standard conventions is cumbersome and requires alterations in the organization of the
existing software. A less difficult modeling technique is a welcome alternative.
14-36 April, 2009 STAGS 5.0 User Manual

Sandwich and Mesh-Transition Sandwich Elements The Element Library
The classical model of a sandwich reduces the behavior of the aggregate to that of two
membranes that are held apart by a core. The core is considered to be virtually inextensional
in the transverse direction, usually with a relatively large resistance against transverse shear.
However, in the plane of the middle surface of the aggregate, the core possesses virtually no
stiffness. It is noted here that it is possible to call a composite of this type a sandwich of the
first kind.

A more general type of sandwich emerges if one considers the two faces to consist of
shells—with shell surfaces having bending stiffness as well as the usual membrane
stiffness—that are held apart by a lightweight core. The latter may have three dimensional
elastic properties. Examples of such structural elements are sandwich walls made of glass
fibre faces with polyurethane foam as the core material. This type of wall construction can
be called a sandwich of the second kind.

The implementation of a sandwich of the second kind in a general purpose finite element
code is easier and more straightforward than the implementation of the classical concept of
a sandwich in such a code, provided the code possesses a mature shell finite element
modeling capability.

Sandwich element internal force and material and geometric stiffness matrices

Formulation of the internal force and material and geometric stiffness matrices for a 6–node
sandwich element follows standard finite element procedures. An overview of the algorithmic
steps used to develop these quantities is outlined in this section. As will be seen, internal
force and stiffness matrix terms depend on the element’s constitutive properties and on the
components of its displacement gradient field. Detailed discussion of the assumptions made

Figure 14.18 E830 6–node sandwich element
STAGS 5.0 User Manual April, 2009 14-37

The Element Library Sandwich and Mesh-Transition Sandwich Elements
for the sandwich element’s displacement field, and computation of the displacement field
derivatives, is presented in the next section.

Formulation of the internal force and stiffness matrices begins with the definition of the
engineering Green’s strain, which is given as

 (14.28)

Note that the engineering shearing strains are twice the corresponding tensor values, in
agreement with common practice. Let us assume for simplicity that the internal energy can
be written as the quadratic form

 (14.29)

where

 (14.30)

and where D is a constitutive matrix and σ is the stress conjugate to the strain. The
generalization to a nonlinear constitutive function does not affect these arguments.

The first variation of the energy is

 (14.31)

where D is assumed to be symmetric and where δε is the variation of the strain, which in turn
is a function of the element displacement field through its derivatives in equation (14.28).

In practice, these displacement field derivatives are approximated using so-called
interpolating shape function “formulas.” Without loss of generality, we can define

 (14.32)

ε

u x,
1
2
--- u x,

2
v x,

2
w x,

2
+ +()+

v y,
1
2
--- u y,

2
v y,

2
w y,

2
+ +()+

w z,
1
2
--- u z,

2
v z,

2
w z,

2
+ +()+

v x, u y, u x, u y, v x, v y, w x, w y,+ + + +

w y, v z, u y, u z, v y, v z, w y, w z,+ + + +

u z, w x, u z, u x, v z, v x, w z, w x,+ + + +⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

U
1
2
---εTDε 1

2
---σTε= =

σ Dε=

δU σTδε=

u x, u y, u z, v x, v y, v z, w x, w y, w z,

T
Gd=
14-38 April, 2009 STAGS 5.0 User Manual

Sandwich and Mesh-Transition Sandwich Elements The Element Library
where the transpose of the row matrix gives the order of the displacement gradient quantities
chosen, where G is a matrix of constants (dependent on the initial geometry) with nine rows
corresponding to each of the derivatives listed and with as many columns as there are
freedoms in the element (in general). d is the vector of nodal displacements (freedoms). It is
assumed here that G is known by standard finite element methods. If the derivatives in
equation (14.32) are inserted into equation (14.28), with some rearrangement we obtain the
variation in the strain:

 (14.33)

where the “core strain derivative” matrix W is defined as

 (14.34)

and where the dependence of W on d is emphasized. Once a set of displacements is known
and the derivatives in equation (14.32) are computed, the variation in the strain is known
from equation (14.33).

The internal force vector is computed using equation (14.33):

 (14.35)

from which the force (per integration point) is defined

 (14.36)

and the nonlinear strain-displacement matrix is given by

 (14.37)

The total second variation of the energy as given in equation (14.31) comes in two parts:

 (14.38)

The first term (referred to as the “material stiffness”) is computed directly from equation
(14.38):

δε WGδd=

W d()

1 u x,+ 0 0 v x, 0 0 w x, 0 0

0 u y, 0 0 1 v y,+ 0 0 w y, 0

0 0 u z, 0 0 v z, 0 0 1 w z,+

0 u z, u y, 0 v z, 1 v y,+ 0 1 w z,+ w y,

u z, 0 1 u x,+ vz 0 v x, 1 w z,+ 0 w x,

u y, 1 u x,+ 0 1 v y,+ v x, 0 w y, w x, 0

=

fTδd σTδε σTWGδd= =

f BTσ=

B WG=

ΔδU ΔεTDδε σTΔδε+=
STAGS 5.0 User Manual April, 2009 14-39

The Element Library Sandwich and Mesh-Transition Sandwich Elements
 (14.39)

The “geometric” second variation always appears as the inner product of the stress with the
second variation of the strain:

 (14.40)

where S is the 3x3 matrix of stresses in the usual order.

Sandwich element displacement and displacement gradient calculations

The displacement of any point in the core of a sandwich element is assumed to vary linearly
through the thickness between values at the upper and lower bond lines of the face sheets
with the core. If the core’s coordinate system is taken to be the same as that for the lower
face sheet reference surface, then the core displacement can be written as

 (14.41)

where and are linear interpolation coefficients parameterized by
and where h is the core local thickness and z is the thickness coordinate over the range [-h/
2, h/2]. The sandwich core shape functions are given by

 (14.42)

 (14.43)

where is the matrix of shape functions associated with lower face sheet freedoms at a
node N, and is the matrix of shape functions associated with upper face sheet freedoms
at a node M. Both of these matrices are partitioned into two parts that give the contribution
to the total displacement due to nodal displacement and nodal rotation freedoms, respectively.

The nodal freedoms for the lower and upper face sheet reference surfaces are also partitioned
into displacement and rotation freedoms, respectively:

 (14.44)

KM BTDB=

KG GT
S 0 0

0 S 0

0 0 S

G=

u aHNdN bH
ˆ

MdM+=

a
1
2
--- 1 ζ–()= b

1
2
--- 1 ζ+()= ζ 2

h
---z=

HN HN
u HN

θ
⎝ ⎠
⎛ ⎞=

H
ˆ

M H
ˆ

M
u

H
ˆ

M
θ

⎝ ⎠
⎛ ⎞=

HN

H
ˆ

M

dN

dN
u

dN
θ

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

14-40 April, 2009 STAGS 5.0 User Manual

Sandwich and Mesh-Transition Sandwich Elements The Element Library
 (14.45)

The sandwich core displacement given in equation (14.28) allows for the upper face sheet
reference surface to be arbitrarily oriented with respect to the lower face sheet reference
surface (and the sandwich core coordinate system). If and represent coordinates of a point
expressed in lower and upper reference surface coordinate systems, respectively, and are
related by an orthogonal rotation matrix such that

 (14.46)

then the displacement shape function matrices associated with upper face sheet reference
surface displacement and rotation freedoms at a node M, but with components expressed in
the lower face sheet coordinate system, are given by

 (14.47)

 (14.48)

Here and are the displacement shape function matrices associated with upper face
sheet displacement and rotation freedoms at a node M, and whose components are expressed
in the upper face sheet coordinate system.

The displacement gradient for the sandwich core can now be determined from equation
(14.41) to be

 (14.49)

where the gradient of the upper face sheet shape functions with respect to the sandwich core
coordinate system is given by

 (14.50)

The gradient of the upper face sheet reference surface shape function submatrices identified
in equation (14.50) can be expressed in the upper face sheet reference surface coordinate
system (the barred system) by using the chain rule along with equation (14.46) and the
relations in equations (14.47) and (14.48):

dM

dM
u

dM
θ

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

x x

T

x Tx=

H
ˆ

M
u

THM
u

TT
=

H
ˆ

M
θ

THM
θ

TT
=

HM
u

HM
θ

xi∂
∂u

xid
da HNdN a

xi∂
∂HNdN xid

db H
ˆ

MdM b
xi∂

∂H
ˆ

MdM+ + +=

xi∂
∂H

ˆ
M

xi∂
∂H

ˆ
M
u

xi∂
∂H

ˆ
M
θ

=

STAGS 5.0 User Manual April, 2009 14-41

The Element Library Sandwich and Mesh-Transition Sandwich Elements
 (14.51)

 (14.52)

For the sandwich elements that are implemented in the current version of STAGS, the upper
and lower face sheets are modeled with shell elements of the same type (i.e., E330 shells for
an E830 sandwich and E410 shells for an E840 sandwich). Consequently, using the following
definitions for the shape function derivatives,

 (14.53)

 (14.54)

the components for the sandwich core displacement gradient, as expressed in equation
(14.49), can be written as

 (14.55)

 (14.56)

 (14.57)

Displacement at the bond line between sandwich core and face sheet

Displacement at a bond line between a sandwich face sheet and core is given in terms of the
face sheet reference surface displacement and the eccentricity of the bond line with respect
to the face sheet reference surface as follows:

 (14.58)

xi∂
∂H

ˆ
M
u

T
xk∂

∂HM
u

xi∂
∂xkTT T

xk∂
∂HM

u

Tik
TT

==

xi∂
∂H

ˆ
M
θ

T
xk∂

∂HM
θ

xi∂
∂xkTT T

xk∂
∂HM

θ

Tik
TT

==

GN x,
u

x∂
∂HN

u

x∂
∂HN

u

== GN y,
u

y∂
∂HN

u

y∂
∂HN

u

== GN z,
u 0=

GN x,
θ

x∂
∂HN

θ

x∂
∂HN

θ

== GN y,
θ

y∂
∂HN

θ

y∂
∂HN

θ

== GN z,
θ 0=

x∂
∂u a GN x,

u GN x,
θ()dN b T GM x,

u
T11 GM y,

u
T12+()TT T GM x,

θ
T11 GM y,

θ
T12+()TT()dM+=

y∂
∂u a GN y,

u GN y,
θ()dN b T GM x,

u
T21 GM y,

u
T22+()TT T GM x,

θ
T21 GM y,

θ
T22+()TT()dM+=

z∂
∂u 1

h
---– HN

u HN
θ()dN

1
h
--- THM

u
TT THM

θ
TT()dM+ +=

b T GM x,
u

T31 GM y,
u

T32+()TT T GM x,
θ

T31 GM y,
θ

T32+()TT()dM

u uR Θ e×+=
14-42 April, 2009 STAGS 5.0 User Manual

Sandwich and Mesh-Transition Sandwich Elements The Element Library
Here is the face sheet reference surface displacement, is the local reference surface
rotation, and e is the eccentricity of the sandwich bond line from the face sheet reference
surface.

For an E330 triangle face sheet shell element, the reference surface rotation components are
independent degrees of freedom and are not related to the transverse reference surface w-
displacement component. In addition, the only nonzero component of the eccentricity is e3.
Consequently, the displacement components at a bond line, as given in equation (14.58), can
be written as

 (14.59)

 (14.60)

 (14.61)

From these results, the nodal shape function matrices for the E830 sandwich element can be
written as

 (14.62)

 (14.63)

and is the shape function for freedom i, due to freedom j, at node N.

uR Θ

u uR θ2e3+=

v vR θ1e3–=

w wR=

HN
u

hN
uu

e3hN
θ2u

+ hN
uv

e3hN
θ2v+ hN

uw
e3hN

θ2w
+

hN
vu

e3hN
θ1u

– hN
vv

e3hN
θ1v– hN

vw
e3hN

θ1w
–

hN
wu

hN
wv

hN
ww

=

HN
θ

hN
uθ1 hN

uθ2 hN
uθ3

hN
vθ1 hN

vθ2 hN
uvθ3

hN
wθ1 hN

wθ2 hN
wθ3

=

hN
ij
STAGS 5.0 User Manual April, 2009 14-43

The Element Library Sandwich and Mesh-Transition Sandwich Elements
E840 8–Node sandwich element

Formulation of the internal force and material and geometric stiffness matrices for the E840
sandwich element follows exactly the same approach as presented above for the E830
sandwich element. Results for these quantities are given in equations (14.36), (14.39), and
(14.40), respectively.

Similarly, the E840 sandwich core displacement follows the same assumptions as presented
above for the E830 sandwich element, as represented in equation (14.41). The displacement
gradient components are given in equations (14.55), (14.56), and (14.57).

Displacement at a bond line between a sandwich face sheet and core is given in terms of the
face sheet reference surface displacement and the eccentricity of the bond line with respect
to the face sheet reference surface as follows:

 (14.64)

Here is the face sheet reference surface displacement, is the local reference surface
rotation, and e is the eccentricity of the sandwich bond line from the face sheet reference
surface.

For an E410 quadrilateral shell element, Kirchhoff assumptions for the transverse w-
displacement component at a sandwich bond line can be written as

 (14.65)

Figure 14.19 E840 8–Node sandwich element

u uR Θ e×+=

uR Θ

w wR wR x, e1 wR y, e2+ +=
14-44 April, 2009 STAGS 5.0 User Manual

Sandwich and Mesh-Transition Sandwich Elements The Element Library
Comparing equation (14.65) with the third component of equation (14.64), the face sheet
reference surface rotation vector components are seen to be related to the transverse w-
derivatives as follows:

 (14.66)

 (14.67)

 (14.68)

In addition, the only nonzero component of the eccentricity is e3. Consequently, the
displacement components at a bond line, as given inequation (14.64), can be written as

 (14.69)

 (14.70)

 (14.71)

From these results, the nodal shape function matrices for the E840 sandwich element can be
written as

 (14.72)

 (14.73)

and is the shape function for , due to freedom j, at node N.

E849 18–Node sandwich element

The description of the E849 sandwich element in element
units is in preparation.

θ1 wR y,=

θ2 wR x,–=

θ3 0=

u uR wR x, e3–=

v vR wR y, e3–=

w wR=

HN
u

hN
uu

e3hN x,
wu

– hN
uv

e3hN x,
wv

– hN
uw

e3hN x,
ww

–

hN
vu

e3hN y,
wu

– hN
vv

e3hN y,
wv

– hN
vw

e3hN y,
ww

–

hN
wu

hN
wv

hN
ww

=

HN
θ

hN
uθ1 hN

uθ2 hN
uθ3

hN
vθ1 hN

vθ2 hN
uvθ3

hN
wθ1 hN

wθ2 hN
wθ3

=

hN
ij

ui
STAGS 5.0 User Manual April, 2009 14-45

The Element Library Sandwich and Mesh-Transition Sandwich Elements
E845 and E847 mesh-transition sandwich elements

With shell units that are constructed with E840 sandwich elements, transition meshes can be
generated in exactly the same way as described above for the standard quadrilateral-shell-
elements case. This is done via G-1 and G-2c records (specifying full and partial
compatibilities, respectively) and via the MESH1 through MESH4 variables on the N-1 record
for any shell unit that has one or more mesh-transition elements. These variables take the
value 0 for a boundary line where the mesh is to be continuous with adjacent shell units, or
1 where the mesh halves across the boundary line. This input tells STAGS to interpret every
other node on each of the nodal layers of the shell as a dependent node that is constrained
automatically by introducing an E845 or an E847 mesh-transition sandwich element along
the boundary. The choice of E845 or E847 depends on the number of dependent nodes that
have to be constrained. Note that since the number of intervals is doubling as you move in
from an adjacent unit, the number of mesh lines in each layer of the shell must be 2N-1,
where N is the number of mesh lines in the adjoining coarser mesh (the number of mesh lines
are specified in the F-1 records).

The description of 845 and 847 sandwich mesh-transition
sandwich elements in element units is in preparation.
14-46 April, 2009 STAGS 5.0 User Manual

Solid Elements The Element Library
14.7 Solid Elements

The current version of the STAGS program has the following four “standard” solid elements:

• E881 8-node ANS solid element
• E882 18-node ANS solid element
• E883 27-node ANS solid element
• E885 20-node displacement-based solid element

These are described in the following four subsections.

E881 8-Node ANS solid element

The E881 8-node ANS solid element, in STAGS, is shown in Figure 14.20:

Figure 14.20 The E881 8-node ANS solid element

1

2

3

4

5

6

7

8

STAGS 5.0 User Manual April, 2009 14-47

The Element Library Solid Elements
E882 18-Node solid element

The E882 18-node ANS solid element, in STAGS, shown in Figure 14.21:

Figure 14.21 The E882 18-node ANS solid element

1

2

3

4

5

6

7

8

9
10

11
12

13
14

15
16

17

18
14-48 April, 2009 STAGS 5.0 User Manual

Solid Elements The Element Library
E883 27-Node solid element

The E883 27-node ANS solid element, in STAGS, shown in Figure 14.22:

Figure 14.22 The E883 27-node ANS solid element

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17 18

19
20

21

22

23

24

26
25

27
STAGS 5.0 User Manual April, 2009 14-49

The Element Library Solid Elements
E885 20-Node displacement-based solid element

The E885 20-node displacement-based solid element, in STAGS, shown in Figure 14.23:

Figure 14.23 The E885 20-node displacement-based solid element

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17
18

19
20
14-50 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
14.8 Contact Elements

The three types of contact elements that are implemented in the current version of STAGS are
summarized below:

• E810 Pad Contact Element
• E820 General Contact Element
• E822 Line Contact Element

A discussion of each of these element types follows.

E810 Pad contact element

The 8-node surface-to-surface “pad” contact element developed by Carlos Davila* has been
implemented in the current version of STAGS as the type E810 pad element. This element,
shown in Figure 14.24, enables the user to treat some problems in which different shells

come into contact with each other or in which shells come into contact with parts of
themselves. The pad element is essentially a set of four independent nonlinear springs
connecting the corner nodes of two E410 shell elements⎯the “lower” E410 coinciding with
the lower face and the “upper” E410 coinciding with the upper face of the pad. This
arrangement facilitates use of a local coordinate system which corotates with the lower E410
element, and it provides a simple definition of the average normal to that surface for simple
monitoring of the “gaps” that are used to determine the spring forces when contact occurs.

* Davila, Carlos: “Pad Elements for Gaps, Contact Problems and Crack Closure in Fracture
Mechanics,” NASA/Langley Computational Mechanics Branch Report, 18 August 1992.

Figure 14.24 The E810 pad contact element

N8

N7

N6

N5

N4

N3

N2

N1

Upper E410 Element

Lower E410 Element
STAGS 5.0 User Manual April, 2009 14-51

The Element Library Contact Elements
Forces from the nonlinear corner springs, which enforce the no-penetration inequality
constraints on contacting structures, are computed with one or more I-4a tables, which
contain stiffness vs. penetration penalty function specifications. The simplest stiffness vs.
penetration curve is bilinear⎯giving zero (or negligibly small) forces and stiffnesses when
the gap for a given pair of nodes is zero or positive, and producing large forces and
stiffnesses (which act to minimize penetration) when the gap is negative. For best results, the
stiffness vs. penetration curves specified in these tables should be “S” shaped—with a
pronounced “toe” near the origin. See the “Force and Stiffness Computations” topic, below,
for more information about this important subject.

The E810 pad element is designed for use in situations where the contact region is known a
priori and where individual elements coming into contact can be readily identified and paired
with each other. It enables the user to treat (some) lap-joint and other types of contact
problems, for example; but it is not designed for use in more general situations where the
contact regions are not known a priori or when sliding occurs or friction is present. Pad
elements can also be used to treat contact (minimize penetration) between pairs of 8-node
solid elements. They can also be used (in sets of four E810 elements) for contact situations
for shells that are constructed with 9-node E480 shell elements. (Note: these capabilities have
not been tested and cannot be guaranteed to work correctly with the current version of
STAGS.) With the lower pad-element nodes specified as immobilized auxiliary user points,
pad elements can be used to treat contact between a flexible shell (the upper surface of the
pad element) and a rigid wall (the lower surface of the pad element). This capability has been
tested and can be exploited by STAGS users in appropriate situations.

E810 pad elements must be defined in an element unit, referencing User Points (nodes) that
coincide with⎯and are slaved to⎯the nodes of the underlying E410 shell elements (or E880
solid elements). As noted above, each pad-element definition references a penalty function
table that specifies the nonlinear spring stiffness for each of the springs comprising the pad
element as a function of penetration.

Force and stiffness computations

As noted above, the 8-node E810 pad element consists of four independent springs
connecting the nodes on the lower face of the element to those on its upper face—the lower-
face nodes generally being associated with an E410 element on one structural component and
the upper-face nodes being associated with an E410 element on a different component.
Forces and stiffnesses for the coupled ensemble of springs are expressed in a local element
coordinate system which rotates with the lower face element. Neglecting frictional forces, the
Davila formulation gives
14-52 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
 (14.74)

and

 (14.75)

for the contact-element force vector and stiffness matrix, respectively, with the n superscript
taking on values from 1 to 4 (for the four springs), where

 (14.76)

and

 (14.77)

In the Davila formulation, the quantities are penalty functions representing the spring
stiffnesses and the quantities represent spring forces. Here

 is the spring stiffness in its “open” configuration, where and are the normal
displacement components (with respect to the co-rotated lower-face element) of the upper-
face and lower-face spring nodes, respectively, and is the so-called clearance for the
nodal pair in the undeformed configuration.

In Davila’s original formulation, when and when
(where is an analyst-supplied penalty-function parameter for the element).

The initial implementation in STAGS of the Davila pad element used these expressions—but
with the defined by the analyst, on an element-by-element basis, as a spring-stiffness-vs-
displacement (penalty) function. Numerical difficulties stemming from that implementation
were surmounted in the current version of STAGS by replacing the above-cited expression for

 by

Fe
f
n

f
n

=

Ke
k

n
k–

n

k–
n

k
n

=

f
n

0

0

f̂
n

=

k
n

0 0 0

0 0 0

0 0 αn

=

αn

f̂
n

αn αo
–()g

n
U

n
L

n
–()αn

+=
αo

U
n

L
n

g
n

αn αo
= U

n
L

n
– g

n
– 0≤ αn α=

U
n

L
n

– g
n

– 0> α

αn

f
n

STAGS 5.0 User Manual April, 2009 14-53

The Element Library Contact Elements
 (14.78)

where is the integrated value of over , and represents the
normal penetration of the lower-face reference plane by the nth upper-face node point.

This approach is especially effective when the user specifies a stiffness-vs-displacement
function that, with integration, gives a smoothly increasing force with increasing penetration
of the target-element. This approach to force computation for the pad element was motivated
by successes realized in overcoming contact-induced numerical problems by using it first
with mount elements, and then with the general-contact elements that are described later.

For some examples illustrating some of the ways in which E810 PAD elements can be used,
please see the STAGS Elements Manual and the STAGS Test Cases Manual documents.

E820 General contact element

The E820 point/surface contact “element” was implemented in STAGS to treat structural
contact problems that are more general than those that can be handled with the E810 element.
In discussing this point/surface approach, it is only necessary to consider the case where two
structural components experience contact with each other, as shown schematically in Figure
14.25:

One of these bodies is arbitrarily designated as the contacting structure, and the other is
referred to as the contacted structure. These two structures are different bodies in the

Figure 14.25 Two-body contact situation

f
n

0

0

r
n

=

r
n

r
n

δ
n

()= α δ() 0 δ δn≤ ≤ δn

Contacting_Structure

Contacted_Structure Contact_Region
14-54 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
following discussion, but everything generalizes to the same- and to the multi-body contact
situations.

To use the E810 (pad) element in an analysis involving structural contact, the analyst must
know a priori which element(s) of the contacting structure come into contact with which
elements of the contacted structure, so that an 8-node pad element (which is basically a set
of four nonlinear springs connecting the corresponding vertices of contacting quadrilaterals)
can be constructed for each such pair of elements.

The pad-element approach is inconvenient and inefficient (at best) for problems in which the
contacting and/or the contacted elements are not known a priori, and it is totally
inappropriate for problems in which the contacting and/or contacted elements change as the
analysis progresses. More general surface/surface or point/surface contact capabilities are
required for problems of that nature.

With a completely general surface/surface contact capability, the analyst would only need to
specify that two (or more) structures might experience contact with each other, and the
program would do whatever it needs to detect and deal with contacts as they occur. It is
something of an understatement to note that this would be a very expensive luxury for most
problems of significant size and/or complexity. In many problems, good advantage can be
taken of user specifications that some part(s) of the contacting structure may experience
contact with some part(s) of the contacted structure, so that only elements and/or points in
the designated regions need to be considered during the contact operations that the program
must perform.

With this level of generality, a surface/surface contact implementation permits the analyst to
specify that one or more members of a specific set of elements on the surface of the
contacting structure may initially be in contact (or may subsequently come into contact) with
one or more members of a different set of elements on the surface the contacted structure.
The program would then need to detect and deal with all kinds of situations in which various
parts of each contacting element interact with various parts of one or more contacted
elements. That is generally computationally demanding and very expensive.

With the same level of generality, a point/surface implementation permits the analyst to
specify that one or more contact points on the surface of the contacting structure may initially
be in contact (or may come into contact) with one or more members of a set of target
elements on the surface the contacted structure. Here, the program need only detect and deal
with interactions between individual contact points and the specific target elements that
comprise the contact surface.

This point/surface approach has been implemented in STAGS, to treat the situation that is
shown schematically in Figure 14.26:
STAGS 5.0 User Manual April, 2009 14-55

The Element Library Contact Elements
For problems requiring this more general treatment of structural contact, the user of STAGS

must include one or more so-called contact-definition specifications in an element unit for the
model to be analyzed. With each contact-definition, the analyst specifies that one or more
contact points in the contacting structure may experience contact with one or more of the
target elements that comprise the contact surface region of the contacted structure. (The
contact points and the contacted surfaces are usually, but not necessarily, in different shell
units in the model.) STAGS then considers the possibility that during the analysis any of these
contact points may be in contact with any of these target elements—where each point in
contact with the contact surface can move (without friction) from one target element of the
contact surface to a neighbor, as loadings and deformations dictate.

It is important to note that each point/surface contact definition produces one E820 “contact-
point element” in the STAGS model for each designated contact point, and one E821 “target
element” in the model for each designated target element. No actual structural elements are
defined by these definitions.

The analyst informs STAGS (via contact definitions) at the outset of an analysis that the
indicated contacts are possible. STAGS then takes contact-induced forces and stiffnesses into
account during the course of the analysis by using appropriate combinations of these E820
and E821 elements to construct structural elements on-the-fly when they are required for
each actual contact between a contact point and the contacted target element.

Two major aspects of the current point/surface contact implementation in STAGS are
discussed in the following two sub-sections: how STAGS determines the status of each contact
point—i.e., how the program determines whether or not each contact point is in contact with
its target surface (and, if so, which element(s) it is contacting), and how STAGS computes the

Figure 14.26 Point/surface contact definition

Contact Point

Contact Surface

Contacting Structure

Contacted Structure

Target Element
14-56 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
contact-induced forces and stiffnesses. Results obtained using the new point/surface contact
capabilities are presented and discussed after that.

Determination of contact status

Information about contact is organized on two distinct levels in STAGS. On the first level,
analyst-supplied contact-definition information is used to generate a number of multi-value
dictionaries (tables) that are used to keep track of which contact-points and target elements
are included in each contact-definition. These tables facilitate access to information such as
(a) the node points that are associated with the set of target elements for the contact region,
(b) the target elements that are attached to each of these nodes, (c) the other target elements
(if any) that are connected to each edge of each target element on the target surface, and other
things like that. On the second level, contact status information is maintained for each contact
point, and configuration information is maintained for each contact point and each target
element. Some of this information is maintained in datasets that disappear on completion of
the analysis, and some of it is maintained in the case.rst file along with other information
required to re-start a STAGS analysis.

When STAGS performs a first or second variation for a problem, the program checks first to
determine the contact status of each contact point. Figure 14.27 shows an overview of the
logic used in STAGS to determine the contact-status.

If the contact point is not in contact with its contact surface, STAGS uses the logic shown in
Figure 14.28 to determine whether or not that point initiates contact with its contact surface
during the current step.

Figure 14.27 Contact-status determination

Determine whether or not POINT
initiates contact with any contact

surface target element

Determine if POINT continues its contact
with the contact surface⎯and, if so, the

element(s) that POINT is contacting

?

Is POINT in contact with
the target surface?

YesNo
STAGS 5.0 User Manual April, 2009 14-57

The Element Library Contact Elements
STAGS begins by comparing the current position of the point to that of each node on the
contact surface to identify NABOR—the contact surface node closest to the point. STAGS then
examines the positional relationships between point and each target element attached to
NABOR at the start of the current step and for the current solution, to determine if point is on
the same side of the element as it was at the start of the current step (in which case contact
is not initiated), or if the path of point (during the current step) has crossed the element (in
which case contact is initiated). STAGS takes the target element thicknesses into account, and
utilizes a user-specified contact-point RADIUS parameter to account for the thickness of the
contacting structure, in determining whether or not contact occurs. If the path of this contact
point crosses the interior of a given target element, the point initiates contact only with that
particular target element. If the crossing occurs on an edge or at a vertex of the target
element, the point initiates contact with the crossed target element and with its neighbor (on
the crossed edge) or with its neighbors (at the crossed vertex).

The algorithm that STAGS uses to determine initial contact also has an exhaustive-search
option, to examine all contact-point/target-element contact possibilities (instead of just those
stemming from NABOR). This option is in the code but cannot be user-activated at the present
time. If the contact point is in contact with its contact surface, STAGS uses the logic shown
in Figure 14.29 to determine whether or not that contact continues.

Subroutines E820Q2 and E820T2 (in the No branch from the “Is the contact point inside the
element at start of step?” question, in Figure 14.29) are called when the target element that
the contact point is contacting at the start of the step is a quadrilateral or a triangle,

Figure 14.28 Determination of contact initiation

No

Find the closest point (NABOR)

For each target element
attached to NABOR

?

?

Has the contact point path
crossed the element plane?

Yes

YesDid the crossing occur within
the domain of the element?

Set the contact-point status parameters

No

No

Yes

More elements?

?

14-58 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
respectively. Each of these routines tests to determine (a) if during the current step the
contact point crosses the surface of the target element within its domain (in which case
contact with the entire contact surface is terminated), (b) if the contact point is still within
the interior of the start-of-step target element (in which case contact with that target element
continues), and/or (c) if the contact point is currently on an edge or at a vertex of the target
element (in which case contact continues with all of the target elements that are attached to
that vertex. If it is determined that the contact point continues its contact with the given target
element (or that it stops contacting the entire contact surface), an “I am finished!” signal is
returned to the calling routine (along with the necessary contact-point status parameters).

The “Examine exit-edge neighbor element” and “Examine other target segment(s) ... at the
exit vertex” portions of the Yes branch from the “Is the contact point inside the element at
start of step?” question, in Figure 14.29) are basically calls to control routines (NABOR1
and AMIGO1) that perform similar tests for the contact point with respect to the one target
element that is connected to the flagged edge of the original target element or to each of the
target elements that are connected to the flagged vertex of the original target element,
respectively. An “I am finished!” signal from either of these routines terminates efforts to
determine if contact continues, with the contact-point status fully determined. If either
routine returns to the control level (shown in Figure 14.29) without the “I am finished!”
signal, testing continues until all viable contact-continuation candidates have been checked.

Here, it is important to note that continued testing may be required for three reasons: because
the path of the contact point, originally in the interior of a given target element, has taken it
across an edge of or through a vertex of that element (then into or through a neighboring
element, if any); because the point, originally on an edge of the given target element, has

Figure 14.29 Determination of contact continuation

call E820Q2 or E820T2

?

Yes

Yes

No

No
?

?

Examine exit-edge
neighbor element

(if any)

Examine other
target segment(s)

exit vertex
(if any) at the

? ?

Finished?
Finished?

On an Edge At a Vertex

Where is the
contact_point?

NoNo

Yes Yes
STAGS 5.0 User Manual April, 2009 14-59

The Element Library Contact Elements
moved off that edge (and possibly into or through the neighboring element, if any); or
because the point, originally at a vertex of the given target element, has moved off that vertex
(and possibly into or through a neighboring element, if any). The word through is used in two
senses in the preceding sentence: some tests are performed to determine whether or not the
path of the contact point crosses the appropriate surface plane of the candidate element (in
which case contact ceases), and other tests are performed to determine if the path of the
contact point is such that the candidate element is traversed without crossing the surface of
that element (in which case contact may continue).

Under some conditions, the contact status of a given contact point and its target surface
cannot be determined without adding a few “twists” to these tests, principally in order to take
more global (than at the element level) contact-surface curvatures into account. In essence,
these twists supplement the simple “Am I in the domain of the (given) element?” test that
STAGS uses throughout most of its contact-status determination process.

Force and stiffness computations

The general-contact quadrilateral element used in STAGS is based on the variational approach
used by Parisch.* The general-contact triangular element in STAGS is based on the
formulation that is described farther below.

The Parisch formulation for the contact stiffness matrix and force vector begins with the
assumption that a contact point is penetrating a target element at a known location, ,
where and are the surface coordinates of the contact point. Applying the usual
variational techniques to the energy functionals, Parisch obtained the following consistent
tangent stiffness matrix and force vector for a quadrilateral target element:

 (14.79)

and

 (14.80)

where

 (14.81)

* Parisch, H., “A Consistent Tangent Stiffness Matrix for Three-Dimensional Non-Lin-
ear Contact Analysis,” International Journal for Numerical Methods in Engineering, v. 28,
p. 1803ff (1989).

c ξ η(,)
ξ η

Ke ε Θ1 Θ2 Θ3 Θ4 Θ5+ + + +{ }=

Fe εδ N⋅=

Θ1 N N∗⋅=
14-60 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
 (14.82)

 (14.83)

 (14.84)

 (14.85)

and

 (14.86)

 (14.87)

 (14.88)

 (14.89)

 (14.90)

In these expressions, the are the basis functions evaluated at the nodes of the target
element; , , and are the contravariant tangent vectors and the normal vector at the
contact point on the target element; and the are contact-point-related geometric
quantities; measures warping of the deformed target element surface; represents the
penetration by the contact point of the target element at ; and is the user-supplied
penalty function parameter.

For the triangular element, the normal-direction components of the material stiffness matrix
are

 (14.91)

and the full geometric stiffness matrix is

 (14.92)

where

Θ2 δ x
3δ
h

--------m12 1–⎝ ⎠
⎛ ⎞ U1V1

∗ U2V2
∗ V1U1

∗ V2U2
∗+ + +[]=

Θ3
g– 2

h
-------- m22U1U1

∗ m11U2U2
∗ m12 U1U2

∗ U2U1
∗+()–+[]=

Θ4
x–

3δ
h

----------- m11m22 m12m12–() V1V2
∗ V2V1

∗+() x
3δ m11V1V1

∗ m22V2V2
∗+()–[]=

Θ5
x– 3δ2

h
-------------- m22 U1V2

∗ V2U1
∗+() m11 U2V1

∗ V1U2
∗+()+[]=

N∗ nψ1– nψ2– nψ– 3 nψ– 4 n,,,,{ }=

U1
∗ nψ1 ξ, nψ2 ξ, nψ3 ξ, nψ4 ξ, 0 0 0, ,,,,,{ }=

U2
∗ nψ1 η, nψ2 η, nψ3 η, nψ4 η, 0 0 0, ,,,,,{ }=

V1
∗ e– 1ψ1 e– 1ψ2 e– 1ψ3 e– 1ψ4 e

1,,,,{ }=

V2
∗ e– 2ψ1 e– 2ψ2 e– 2ψ3 e– 2ψ4 e

2,,,,{ }=

ψn
e

1
e

2
n

h mij
x

3 δ
c ξ η(,) ε

Km[] α

L1L1 L1L2 L1L3 L– 1

L2L2 L2L3 L– 2

L3L3 L– 3

sym 1

=

Kg[] Kg1
Kg2

Kg3
Kg4

+ + +=
STAGS 5.0 User Manual April, 2009 14-61

The Element Library Contact Elements
 (14.93)

 (14.94)

 (14.95)

 (14.96)

where

 (14.97)

 (14.98)

 (14.99)

 (14.100)

 (14.101)

where b and h are the base and height dimensions of the triangle (in its local coordinate
system); the are the basis functions (area coordinates) in the triangle at the point of
contact; is the penetration; s is the (local-system) x-coordinate of the triangle’s third (non-
base) node point; and where the and parameters are functions of the contact-point
location in the triangle. The and f parameters, here, represent the user-specified stiffness
(as a function of the penetration) and its integration over the stiffness/penetration curve, as
described above.

Kg1
f SP∗ PS∗+[] bh⁄⋅=

Kg2
f T[] bh⁄⋅=

Kg3
fδ– PP∗[] b

2
h

2⁄⋅=

Kg4
f– RQ∗ QR∗+[] b

2
h

2⁄⋅=

P∗ 0 0 h 0 0 h– 0 0 0 0 0 0

0 0 b s–() 0 0 s 0 0 b– 0 0 0
=

Q∗ h b s–() 0 h– s 0 0 b– 0 0 0 0=

R∗ 0 0 r1 0 0 r2 0 0 r3 0 0 0=

S∗ 1– 0 0 0 0 0 0 0 0 1 0 0

0 1– 0 0 0 0 0 0 0 0 1 0
=

T 0

0 0 0 0 0 x– 2 0 0 x2 0 0 0

0 0 0 0 x1 0 0 x– 1 0 0 0

0 x2 x– 1 0 x– 2 x1 0 0 0 0

0 0 0 0 0 x– 2 0 0 0

0 0 0 0 x1 0 0 0

0 x2 x– 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

S y m 0 0 0 0

0 0 0

0 0

0

=

Li
δ

ri xi
α

14-62 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
The normal-direction force contributions for the triangular element are given by

 (14.102)

For examples illustrating the use of E820 general contact elements, see the STAGS Elements
Manual and the STAGS Test Cases Manual documents.

E822 Line contact element

The line contact element that STAGS constructs on-the-fly when contact occurs between two
line-pair segments is based on the formulation that is described in the paper by Rankin,
Chien, Loden and Swenson.*

Let us suppose that two lines in space are defined by ordered sets of nodes {Ni} and {Mi}
for contacting line L1 and contacted line L2, respectively, as shown in Figure 14.30. Also let
us assume that any point p between any two nodes Ni and Ni+1 on a given line is described
by linear interpolation.

* Rankin, C.C., L.S. Chien, W.A. Loden and L.W. Swenson, Jr., “Line-to-Line Contact
Behavior of Shell Structures,” AIAA Paper No. 99–1237, April 1999

Figure 14.30 Line-contact lines

F{ } α

L– 1

L– 2

L– 3

1⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

⋅=

Line 1

Ni+1

Ni

Ni-1

Ni+2

Mi-1

Mi

Mi+2

Mi+1

d

q1

q2

p1

p2

p

q

STAGS 5.0 User Manual April, 2009 14-63

The Element Library Contact Elements
We have labeled the minimum distance d between the two lines, as shown in the figure. Any
point between, for example, two nodes Ni and Ni+1 is interpolated by a parameter ξ as
follows:

 (14.103)

and for the second line, we have

 (14.104)

where this time, the points q refer to nodes Mi and Mi+1 on the other line. The distance
between p and q is clearly

 (14.105)

To determine if contact has taken place, we wish to find the minimum value of d as a
function of ξ and η, or

 (14.106)

Since

 (14.107)

Equations (14.107) yield a linear equation in ξ and η:

 (14.108)

or

 (14.109)

p ξ() 1
2
--- p1 1 ξ–() p2 1 ξ+()+[]=

q η() 1
2
--- q1 1 η–() q2 1 η+()+[]=

d ξ η,() p q–=

d p ξ,• 0=

d q η,• 0=

p ξ,
1
2
--- p2 p1–()=

q η,
1
2
--- q2 q1–()=

p2 p1–
2

p2 p1–()– q2 q1–()•

p2 p1–()– q2 q1–()• q2 q1–
2

ξ
η

2Δdc– p2 p1–()•

2Δdc q2 q1–()•
=

Ce r=
14-64 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
where Δdc is the distance between the centroids of the line segments belonging to the nodes
in question:

 (14.110)

and C, e, and r in equation (14.109) correspond to the matrix and vectors in equation
(14.108). A solution to equation (14.108) always exists except in the pathological case that
the two lines are parallel to one another, in which case an infinite number of solutions exist;
such a case can be treated by other methods. A suggested technique is to find which pair of
centroids yields a minimum distance, and then solve equation (14.108). If equation (14.108)
has a solution in the range [-1,+1] for both ξ and η, the segment with minimum distance has
been found; otherwise, neighboring segments need to be tried.

The penalty method of contact enforcement is expressed through the enforcement function
g(|d|) which acts to repel the segments whenever d is negative, negative being defined when
any segment crosses any shell or solid element face. To determine whether a crossing has
occurred, combine equation (14.103) with the equation interpolating the element surface, and
solve. Taking the corner nodes and using a bilinear interpolation:

 (14.111)

for the unknowns ξ, r, and s. If there is a crossing, all three of these variables will lie in the
interval . If d is negative, then the segments will be repelled by a force proportional to
its first variation:

 (14.112)

where g′ is the derivative of g (or the quantity f most often interpolated from a one-
dimensional table) and is the normalized minimum distance vector. Expressed in
terms of the problem unknowns, we obtain

 (14.113)

where dependence on (δξ,δη) vanishes because of equations (14.106) and (14.107).

The first and second variation is simplified by a straightforward change of variables:

Δdc
1
2
--- p2 p1+() q2 q1+()–[]=

1
2
--- p1 1 ξ–() p2 1 ξ+()+[] 1

4
--- 1 rrk–() 1 ssk–()xk

k
∑=

1– 1[,]

δg d() g'
d
------d δd fd̂ δd•=•=

d̂ d d⁄=

δg d() 1
2
---g'd̂ δp2 δp1+() δq2 δq1+() p2 p1–()δξ q2 q1–()δη ξ δp2 δp1–() η δq2 δq1–()–+–+–[]•=

1
2
---g'd̂ δp2 δp1+() δq2 δq1+() ξ δp2 δp1–() η δq2 δq1–()–+–[]•=
STAGS 5.0 User Manual April, 2009 14-65

The Element Library Contact Elements
 (14.114)

from which equations (14.103)-(14.105) become

 (14.115)

The “internal force” due to contact becomes

 (14.116)

where the matrix Z will appear many times. The force transforms to the original system by
multiplying by the transpose of R.

The second variation comes in three parts. The so-called “material” portion in the modified
coordinate system can be written down immediately:

 (14.117)

where g″ is the second derivative of g, or the first derivative f′ of the table quantity f.

Although more difficult to compute, the “geometric” part is made much simpler by our
change of variables. The first task is to determine the derivatives of ξ and η with respect to
v, where we leave off the subscript on v for now. To do this, we first note that equation
(14.109) is transformed into the new system as follows:

v1

v2

v3

v4

1
2

I I
I I

I I–

I I–

p1

p2

q1

q2

R

p1

p2

q1

q2

= =

p v1 ξv3+=

q v2 ηv4+=

d v1 v2 ξv3 ηv4–+–=

fint g'

I
I–

ξI
η– I

d̂ g'Zd̂= =

Km Zd̂g'' Zd̂()
T

=

14-66 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
 (14.118)

Now we take the derivative of equation (14.118):

 (14.119)

from which the unknown quantities can be computed. The following derivations are
lengthy but straightforward:

 (14.120)

Note that there are 12 columns on the right hand side of equation (14.120), which correspond
to the derivatives with respect to each component in turn of the transformed independent
variable v. The result is a 2 x 12 matrix of derivatives .

Next, we must compute the derivative of the unit vector by the well-known formula

 (14.121)

 is computed long-hand to yield:

 (14.122)

v3
2

v– 3 v4•

v3– v4• v4
2

ξ
η

v1 v2–()– v3•

v1 v2–() v4•
=

Ce r=

C v, e Ce v,+ r v,=

e v,

Ce v, r v, C v, e–=

v3
T

– v3
T

v1 v2– 2ξv3 ηv4–+()
T

– ηv3
T

v4
T

v4
T

– ξv4
T

v1 v2– 2ηv4– ξv3+()
T

=

e v,

d̂

d̂v I d̂d̂
T

–⎝ ⎠
⎛ ⎞

d v,
d

--------=

Qd v,=

Q
I d̂d̂

T
–⎝ ⎠

⎛ ⎞

d
-------------------------=

d v,

d v,
I v3ξ v1, v4η v, 1

–+ I– v3ξ v, 2
v4η v, 2

–+ ξI v3ξ v, 3
v4η v, 3

–+ ηI– v3ξ v, 4
v4η v, 4

–+=

Z
T

v3 v4–[]e v,+=
STAGS 5.0 User Manual April, 2009 14-67

The Element Library Contact Elements
If we now combine equations (14.121), (14.122), and use the chain rule on equation (14.116),
we obtain the following:

 (14.123)

Note that for equations (14.123), 012 represents a 3x12 matrix of zeros and 03 a 3x1 matrix
of zeros. Also, recall that dimensions of and are 2x12 and 3x12 respectively, as they
must be.

Finally, the total stiffness (second variation) is

 (14.124)

and that the stiffness in the original system is

 (14.125)

where is the required output “tangent” stiffness for the contact penalty function with
freedoms arranged as in equations (14.103) and (14.104). That transformation can be carried
out symbolically, resulting in the following:

 (14.126)

Kg K1 K2+=

K1 g'ZQd v,=

K2 g'

012

012

d̂ 03

03 d̂–
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

e v,

=

e v, d v,

Ktot Km Kg+=

K tan R
T

KtotR=

K tan

K tan R
T

K11 K12 K13 K14

K
T

12 K22 K23 K24

K
T

13 K
T

23 K33 K34

K
T

14 K
T

24 K
T

34 K44

R=

K11 K13 K31 K33+ + + K11 K13– K31 K33–+ K12 K14 K32 K34+ + + K12 K14– K32 K34–+

K11 K13– K31– K33+ K12 K14 K32– K34–+ K12 K14– K32– K34+

Symmetric K22 K24 K42 K44+ + + K22 K24– K42 K44–+

K22 K24– K42– K44+

=

14-68 April, 2009 STAGS 5.0 User Manual

Contact Elements The Element Library
See the STAGS Elements Manual and the STAGS Test Cases Manual documents for
examples illustrating the use of E822 line contact capabilities.
STAGS 5.0 User Manual April, 2009 14-69

15

15

15 15
Analysis Techniques

15.1 Modeling Strategy

The modern computer has made it possible for the structural analyst to consider models that
approximate rather closely the actual structure. However, there are still several limitations
set by computer runtime and storage capacity. The quality of the analysis that can be
achieved within a fixed budget depends largely on the ability of the analyst to transform the
given structure into a tractable model. In cases requiring a significant computer expense, the
user with moderate experience would be well advised to consult with an expert on such
questions as modeling, choice of analysis method, and strategy used in the nonlinear
analysis. The simplifications that can be made and the possible pitfalls in modeling are so
diverse that it is impossible to give advice that covers all significant questions. The
interested reader should study the Bushnell papers given in the footnote.*

A general principle that almost always should be followed is to consider carefully before the
analysis what kind of results are to be expected. Unexpected developments tend to result in
a need to rerun the analysis after modification of the model. When the analysis is planned
it is prudent to assume that more than one run will be needed even without allowance for
redesign. Questions about modeling of the structure can probably best be answered after
some preliminary analyses of models with relatively few degrees of freedom.

* Bushnell, D., “Static Collapse: A Survey of Methods and Modes of Behavior,” Finite Elements in
Analysis and Design, Vol. 1, No. 2, August 1985, pp. 165–205
and
Bushnell, D., “Buckling of Shells—Pitfall for Designers,” AIAA Paper No. 80-0665, 1980
and
Bushnell, D., “Computerized Buckling Analysis of Shells,” Kluwer Academic Publishers,
Dorbrecht, 1985
STAGS 5.0 User Manual April, 2009 15-1

Analysis Techniques Modeling Strategy
If the budget situation does not allow a nonlinear analysis of a relatively true model of the
structure, a bifurcation (linear pre-buckling) analysis may be used instead. It may be
possible to verify the adequacy of such an approach by comparison of results from nonlinear
and bifurcation analyses for a smaller model that can be expected to exhibit similar
behavior. Another possibility is to make a nonlinear analysis of only a part of the structure.
For example, for a shell with several cutouts the influence of each cutout may be evaluated
separately. If the cutouts are sufficiently far apart, the interaction of their effects may be
disregarded. It may be possible to conclude that the effects of geometric nonlinearity in
some part of the structure are negligible. Such a conclusion may for example be based on a
preliminary bifurcation buckling analysis. In that case, it is possible to omit the nonlinear
terms in one or more branches [see the description of the M-1 record, in Chapter 6].

It is sometimes necessary to model the structure as composed of several shell units; in other
cases, it may be convenient but not necessary to do so. It may be possible to avoid use of a
user written geometry subroutine by definition of more than one shell unit. This affects the
numbering system for the grid points, however, and may therefore result in increased
computer time.

When a structure is made up of several shell units, the unknowns are in general assigned
freedom numbers in the order in which the shell units are given. The way in which the units
are numbered can significantly affect the computational effort and disc storage required for
assembly and decomposition of the overall stiffness matrix. The greatest efficiency is
obtained by minimizing the differences between freedom numbers on boundary lines which
are connected. Thus the user should attempt to define his structure so that successive shell
units are connected where possible with the last row or column of one unit connected to the
first row or column of the next unit.

Any one of the shell units must be defined so that it can be mapped onto a surface with four
edges. For this purpose, it is sufficient to define a numbering system by rows and columns
for the grid points. An example is shown in Figure 15.1, where a shell surface (a quarter of
a plate with a rectangular hole) with five “edges” is mapped onto a rectangular surface.
Triangular domains approximated with finite elements can be introduced to make the
modeling of the shell easier.

A segment of a shell of revolution (or any “two–sided” shell unit) can be mapped onto
a four–sided domain if some generator is chosen to represent both sides 2 and 4. A data
record is included to indicate displacement compatibility on these two sides. If the shell of
revolution defined by user-written subroutines is closed at the apex, the user defines a shell
with a hole at the apex. In addition, regular data records can be used to define triangular
elements at the apex. For standard shell geometries, the STAGS program automatically
includes a number of triangular elements.

360°
15-2 April, 2009 STAGS 5.0 User Manual

Modeling Strategy Analysis Techniques
Sometimes it is difficult to decide whether a part of the structure, such as a relatively deep
ring, should be represented as a separate shell unit or as a stiffener. If it is modeled as a
stiffener, it follows that the effect of warping and cross-section distortions are omitted.
Clearly, this may lead to unconservative results. For example, the T-stiffener shown in
Figure 15.2 has the additional freedom represented by bending of the web. The flange will
rotate through an angle which is smaller than the rotations occurring during buckling. A
rather extensive study of this general problem is presented in a classic paper by D.
Bushnell.* Cross-section deformation is also the reason that a reduction factor on the
torsional stiffness must be introduced for the corrugation stiffened shell [see the description
of the K-4b record, in Chapter 5]. The results presented in the above–cited Bushnell paper
may be of some help in the choice of the constant PHI (K-4b). Structural elements are defined
as stiffeners if the strain energy can be sufficiently accurately determined in terms of the
value of the displacement components at the reference surface. The presence of a stiffener
does not add much to the number of degrees of freedom and considerable computer time
may be saved by modeling a part of the structure as a stiffener. Sometimes, if use of the
stiffener approach is too unconservative, stiffeners with reduced stiffness properties may be
defined rather than one or more extra shell branches. Separate studies on small models may
be performed to determine such reduction factors.

Figure 15.1

* Bushnell, D., “Evaluation of Various Analytical Models for Buckling and Vibration of Stiffened
Shells,” AIAA Journal, Vol. 11, 1973, pp. 1284–1291

side 1

side 4

side 3

side 3

side 1 side 1

side 3

si
de

 2
side 2si

de
 4

T or J

S or I

X

Y

S

P

P

T

STAGS 5.0 User Manual April, 2009 15-3

Analysis Techniques Modeling Strategy
The analysis of a stiffener is based on beam theory. Contributions to the final equations
from beams and stiffeners are computed in the same parts of the computer program. They
are handled separately in the input because a stiffener always has displacements that are
compatible with those of a shell unit. It is assumed in the beam theory that the cross-section
of a beam remains plane after deformation. Therefore, unless thermal expansion or inelastic
strains complicate the situation strain energy can be defined in terms of reference surface
quantities and a few geometric parameters—such as area and moments of inertia. For that
case the beam can be defined as having a “cross-section of general type.” However, the user
might find it more convenient to define the cross-section as consisting of a number of
rectangular sub-elements.

If the beam is subject to bending, plastic strains will not vary linearly with the distance to
the reference surface. In that case it is not sufficient to define the geometric parameters of
the cross-section. It is necessary to describe the cross-section in detail. In STAGS that is done
by breaking the cross-section up into a number of elements in such a way that the moment
of inertia of each sub-element can be ignored. The same method is used if the temperature
varies over the stiffener cross-section. A cross-section of sub-element type can be defined
as consisting of only rectangular sub-elements. In that case the user gives the dimensions of
the element and its area and moments of inertia are computed. This method often represents
the easiest way to define a cross-section composed of rectangular parts.

It is possible to consider the stiffeners as discrete. In that case the location of each stiffener
must be defined. The other option is to define the stiffeners as “smeared,” that is, their

Figure 15.2

UNDEFORMED SHELL DEFORMED SHELL

CL CL
15-4 April, 2009 STAGS 5.0 User Manual

Modeling Strategy Analysis Techniques
contribution to the shell wall stiffness is considered to be uniformly distributed over the
shell surface. The shell stiffener combination is then represented by an equivalent
orthotropic shell wall.

Use of discrete stiffeners entails more work in preparation of data records. Also, it requires
some additional computational effort and computer storage space. Discrete stiffeners must
be used if the possibility of lateral buckling of the stiffeners is considered and if the shell
wall deformation between stiffeners is important. Notice that then it is also necessary to
include a few points between the stiffeners. Therefore, a model in which there are no grid
lines between discrete stiffeners would often have been better defined with smeared
stiffeners. An exception may be the case in which the cross-section of the stiffeners varies
from one stiffener to another but not along the length of the stiffeners. In that case the
definition of smeared stiffeners in a user–written WALL will entail as much work as the
discrete stiffener option. Smeared stiffeners may be used to suppress the shell wall
deformation between stiffeners.

The position of a stiffener that does not follow a grid line is defined by use of a functional
relationship in a user-written subroutine.

Standard boundary conditions (applied to an entire boundary line) may be specified by
Boundary Condition data records. Point–wise constraints may be specified by load records
(Q-1, Q-2) or in user written subroutine USRLD. Any other linear displacement constraints
can be specified by user–written subroutine UCONST.

If a free body is subjected to a self–equilibrated load system, it is advisable, and sometimes
necessary, to add artificial constraints to prevent rigid body motions. These of course, must
be chosen so that they do not prevent deformation of the shell. In that case, zero forces are
exerted on the shell at the points of artificial constraint.

In order to make sure that no rigid body motions are permitted, consider the structure in any
Cartesian coordinate system that is convenient in the case. Make sure that translation along
and the rotation about each of the three coordinate axes are constrained. Notice, for
example, that a cylindrical shell “simply supported” at both ends is free to move in the axial
direction. Such motion is prevented by restraining (Q-1, Q-2) axial motion at one point on
the shell surface.
STAGS 5.0 User Manual April, 2009 15-5

Analysis Techniques Solution Strategy
15.2 Solution Strategy

The first task, confronting the analyst of a shell structure, is to consider possible failure
modes and based on this to decide what type of analysis he needs to perform. A nonlinear
transient analysis with an accurately determined loading history answers all question
regarding structural adequacy, barring the special conceptual difficulties in connection with
inelastic deformation and imperfection sensitivity. However, such an analysis is almost as a
rule too expensive and the analyst must consider the possibilities of obtaining approximate
solutions that still are satisfactory.

Is the problem static or dynamic?

A static analysis serves as a satisfactory approximation if the load is applied sufficiently
slowly. It may also be accepted if can be shown to be conservative.

If the expected mode of failure is due to local excessive stresses (brittle failure, spallation)
rather than a general collapse of the structure (buckling), inclusion of dynamic effects
(stress wave propagation) may be required if the time for application of the load is small in
comparison to a typical distance (length, radius) divided by the velocity of sound in the
material.

If the expected mode of failure is collapse of the structure or critical stresses (brittle failure
or excessive plastic strain) primarily due to long wave bending stresses, the time for load
application should rather be compared to the period for the vibration modes that are
dominant in the deformation pattern causing collapse. If the time it takes to apply the load
is about the same or larger than the time for a period of the slowest vibration mode, the
static analysis gives satisfactory results. Not much experience is available in this area, but
this contention seems to be corroborated by results presented in 1974 by Almroth and
Meller.* It should be noticed that the period of vibration varies with the applied load so that
a point of unstable equilibrium at least one mode has a zero frequency.

For cases in which the mode of failure is collapse, it appears that a static analysis may be
accepted as conservative in some situations. If the load is applied during a very short time
interval, the inertial inhibits development of displacements, corresponding to those obtained
from a static analysis under the same load. A static analysis is then generally conservative.

* Almroth, B. O. and E. Meller, “Nonlinear Transient Response Analysis of General Shells,” proc.
IUTAM Symposium on Buckling of Structures, Harvard University, June 1974
15-6 April, 2009 STAGS 5.0 User Manual

Solution Strategy Analysis Techniques
On the other hand if the load is rapidly applied and then sustained for a time that is at least
of the same order of size as the period of the lowest vibration frequency, the static analysis
is unconservative (it does not include the “overshoot”). In such a case it appears that static
analysis based on twice the maximum load would be clearly conservative.

To answer the question of the need for a transient analysis, it appears that it often is useful
and sometimes necessary to determine a few of the lowest vibration frequencies. If collapse
and plastic deformation are excluded, these frequencies and corresponding “virtual masses”
may be used directly in a modal transient analysis (not included in STAGS). Evaluation of
the results of such an analysis may reveal whether or not a nonlinear transient analysis of
the discrete system is needed (see discussion below).

Is a linear analysis sufficient?

In general, the results from a linear analysis are accurate if, under the design load, the
squares of the rotations are small in comparison to the strains. However, large rotations, if
confined to a narrow boundary layer, would have little effect on the shell behavior in
general and do not preclude the use of linear analysis. On the other hand, the possibility of
loss of structural stability must be considered even if the linear analysis results in small
rotations. A bifurcation buckling analysis as discussed below would indicate a load level at
which a rapid growth of the displacements may be expected.

Unless experience with similar cases is available to the user, it is suggested that the
nonlinear static analysis be used as a matter of course. If the nonlinear effects are negligible,
the design load an be applied and convergence will occur within a few iterations. In that
case, the computer run time will exceed the time for a linear analysis only by some 10 to
30 percent because STAGS is based on the modified Newton–Raphson method. If
convergence is not obtained, the linear solution is printed but a warning is served that it may
be inaccurate. Usually, this indicates that the nonlinear terms at the applied load level are
too large. An inspection of the results of the linear analysis may indicate that a nonlinear
analysis is desirable.

Convergence failure may be caused by an ill–conditioned matrix. With a system that is
almost singular, a solution will be obtained from the linear analysis that deviates from the
true solution even if nonlinear terms are negligible. Such a situation may be revealed by
inspection of the size of printed “equilibrium forces.” If there is doubt about the reason for
nonconvergence, it may be advisable to rerun with the parameter ILIN = 1 (M-1).
Convergence failure in that case clearly indicates ill–conditioning and suggests that the
model be reconsidered as discussed below. Whenever convergence fails and the equilibrium
forces indicate that the equation system is satisfied the nonlinearities may be of significance.
STAGS 5.0 User Manual April, 2009 15-7

Analysis Techniques Solution Strategy
In some cases, consecutive iterations tend to oscillate and nonconvergence at the design load
may occur even if the linear analysis predicts stresses and displacements within a few
percent. It appears that if the squares of the rotations are small in comparison to the strains
and in addition a bifurcation buckling analysis indicates a large safety margin, then the
linear solution is probably of sufficient accuracy even if nonlinearities cause
nonconvergence. If the squares of the rotations are significant or if the bifurcation buckling
analysis shows only a moderate margin of strength, a nonlinear analysis must be
recommended.

In the case of transient response analysis by use of the explicit scheme the inclusion of
nonlinear terms add little to the computer time.

Can the stability problem be solved by use of a bifurcation buckling analysis?

Loss of structural stability at a bifurcation in the load displacement path is discussed
elsewhere. The bifurcation buckling theory gives information about the load level at which
bifurcation occurs. In some cases loads can be applied far above the bifurcation buckling
load without significant damage to the structure. In other cases the structure collapses well
below this load due to imperfection sensitivity. Often experience (from experiments or from
nonlinear analysis) indicates that the bifurcation buckling load is a significant design
parameter.

Stability loss at a bifurcation point occurs only if the corresponding deformation mode is
not contained in the deformation mode for arbitrarily small loads. For example, a flat plate
with in–plane loading experiences no lateral displacements in the pre–buckling range. Thus
it does not contain the lateral displacement modes of the buckled plate. Likewise, if the
structure as well as loading is symmetric about some plane, all deformation modes
antisymmetric with respect to that plane are possible bifurcation buckling modes. In such
cases, we may choose to perform a buckling analysis with a nonlinear basic stress state. This
question is further discussed under STRATEGY below.

Sometimes when a bifurcation point does not exist at all, the bifurcation buckling approach
may still lead to an acceptable estimate of the critical load. A detailed discussion of this
problem was presented in a 1972 paper by Almroth and Brogan.* Briefly, it may be stated
that the bifurcation approach is questionable (too conservative) if the structure is statically
indeterminate and thus allows favorable redistribution of the stresses (e.g. shells with
cutouts). The bifurcation approach gives unconservative results if the stiffness of the shell
deteriorates with increasing load (e.g. long cylinders under bending).

* Almroth, B. O. and F. A. Brogan, “Bifurcation Buckling as an Approximation of the Collapse Load
for General Shells,” AIAA Journal, Vol. 10, 1972, pp. 463–467
15-8 April, 2009 STAGS 5.0 User Manual

Solution Strategy Analysis Techniques
The bifurcation buckling analysis with a linear stress state is probably a good approximation
for any case in which the squares of the rotations in the linear solution are small in
comparison to the membrane strains at the load level corresponding to bifurcation.

Linear static analysis

A linear stress analysis is straightforward and does not require any decisions about the
computational strategy. If an adequate model of the structure has been defined and the grid
is fine enough, a satisfactory solution is obtained unless the coefficient matrix is seriously
ill–conditioned. This problem is discussed below.

Eigenvalue analysis

The strategy in the eigenvalue analysis is determined by the choice of suitable values for the
parameters read on the D-2 and D-3 records. If vibration frequencies or bifurcation bucking
loads are based on a nonlinear stress state, there are other decisions to make in connection
with computation of the stress state. The strategy in such computations does not differ from
the strategy in the regular nonlinear stress analysis discussed in a later paragraph.

In the case of nonlinear stress state, an option is provided to perform the stress analysis first,
save the data for a certain number of load steps on tape and later decide for which of those
load steps vibration frequencies or buckling loads should be obtained. This option may save
some computer time. First, it may be easier to decide on the load levels at which eigenvalues
are desired after the results of the stress analysis have been studied. The arrangement also
makes it possible to find additional eigenvalues in a subsequent run. When eigenvalues are
computed in a later run, the input data file for the nonlinear prestress analysis can be used
with the exception that IXEV is set equal to 3 on the D-2 record. In addition, the user has the
option of changing NLDS (D-2) and PLDS on the D-3 record to select certain of the data sets
saved on tape for eigenvalue solution. Changes in boundary conditions are also permitted at
this time.

For free vibrations in the presence of a nonzero stress state determined from a linear
analysis, the same procedure can be used with INDIC = 5 on the B-1 record and ILIN = 1 on
the M-1 record.

In a free vibration analysis, the eigenvalues correspond to vibration frequencies in [cps]. All
eigenvalues are positive, except that those corresponding to rigid body motions, if such are
allowed correspond to zero frequencies. The user can ask for a number of clusters of
eigenvalues, each within a specified frequency range. In most practical applications the
interest is confined to one range of eigenvalues, especially to a sequence of the lowest
eigenvalues.
STAGS 5.0 User Manual April, 2009 15-9

Analysis Techniques Solution Strategy
The user specifies the range of eigenvalues as well as maximum number of eigenvalues to
be computed. If the I lowest eigenvalues are needed, the user can set EIGA=EIGB, SHIFT=0,
and NEIG=I. If EIGA=EIBG and SHIFT is nonzero, then the NEIG eigenvalues closest to SHIFT will
be determined. If the analysis will be terminated when all eigenvalues in that
range have been determined even if the number is less than NEIG.

If there exists a symmetry plane, in loading as well as in geometry, the size of the problem
can be reduced and significant savings in the total computational effort can be achieved. If
the structure on one side of the symmetry plane is considered, only the frequencies of
symmetric modes are obtained. In a separate run with IBOND=1 on the P-1 record the
antisymmetric modes can be determined. If the eigenvalue analysis is based on a nonzero
prestress analysis with symmetry conditions and an eigenvalue analysis with boundary
conditions corresponding to antisymmetry.

The eigenvalue approach for bifurcation buckling analysis with linear stress state is
discussed elsewhere. This problem is slightly more complicated than the vibration problem
because eigenvalues can be negative as well as positive. The NEIG eigenvalues closest to the
point of shift (SHIFT or (EIGA + EIGB)/2) are found, independently of the sign.

Often the user is only interested in one eigenvalue—the lowest positive one. If the analysis
is performed without a shift, it may happen that only negative eigenvalues are found because
these are smaller in magnitude. In that case, the analysis has to be repeated with a positive
shift. In choosing the shift for a repeated run the user can take advantage of the knowledge
that the smallest positive eigenvalue is larger in magnitude than the largest of the negative
eigenvalues that were found. Sometimes the buckling loads are symmetric with respect to
zero. This is the case, for example, if a plate or a cylinder is subjected to uniform a shear
load.

It may often be advisable to request more than one eigenvalue also in bucking analysis. If
the structure shows insufficient strength and only the lowest eigenvalue and corresponding
mode are known, reinforcements may be introduced that have little effect on secondary
buckling mode with the eigenvalue below the design load.

It is usually possible to save time as well as computer cost by preliminary determination of
approximate values for the buckling load under negative as well as positive load, before a
large scale analysis is carried out. A linear analysis with a rather coarse grid will give some
idea about the stress distribution. Once such a distribution is available it is usually possible
to find “ball park” values by use of well known solutions for buckling of plates, spheres, or
cylinders. Such knowledge is useful when the grid is defined, as well as in decisions
regarding the shift.

EIGA EIGB<
15-10 April, 2009 STAGS 5.0 User Manual

Solution Strategy Analysis Techniques
The bifurcation buckling with a nonlinear prestress is of limited usefulness. Bifurcation
buckling occurs only if the deformation mode corresponding to collapse is orthogonal to the
deformation pattern in the basic stress state. If bifurcation takes place (into a mode that is
permitted by boundary conditions), this will be apparent to the output from the nonlinear
analysis since the coefficient matrix will have a negative root for each bifurcation point
below that applied load. Introduction of geometric imperfections in the nonlinear analysis
will remove the bifurcation an collapse will be indicated by a rapid growth of the collapse
mode just before the critical load is reached. This problem is discussed under nonlinear
analysis below. If at some level the nonlinear analysis is terminated due to the presence of
a negative root, a bifurcation bucking analysis based on the stress distribution corresponding
to a load factor somewhat below the critical load may be executed. This can be done, if in
the nonlinear analysis some results have been saved—i.e, if INDIC=4 or 6 (B-1) and IXEV=0
(D-2). The results of such an analysis would reveal the approximate buckling mode. It is
feasible that the negative root found in the nonlinear analysis is due to inaccuracy (ill–
conditioning) in the computations rather than to impending buckling. This is probably the
case if the computed eigenvalue far exceeds the value at which the determinant changes
sign.

If the nonlinear analysis is terminated at the maximum load level, it is possible to gain some
idea about the size of the margin of safety against collapse through the execution of an
analysis of bifurcation from the nonlinear stress state. In that case the final solution is saved
for subsequent bifurcation buckling analysis.

Another situation in which a bifurcation buckling analysis with nonlinear prestress may be
useful arises when a symmetry plane exists. The situation in that case is the same as in the
case of the free vibration analysis. The symmetry plane makes it possible to reduce the size
of the problem only if buckling into antisymmetric modes is considered separately in a
bifurcation buckling analysis with nonlinear symmetric prestress. It should be noticed that
the computed eigenvalue gives a good estimate of the critical load only if the computed
bifurcation load is close to the load level corresponding to the basic stress state. It may often
prove practical to save data from a nonlinear run and attempt an antisymmetric bifurcation
analysis somewhat below the collapse load for symmetric deformations. Such an analysis is
likely to reveal whether the question of antisymmetric buckling need be further pursued.

Nonlinear static analysis

In the nonlinear stress analysis, a significant part of the computer time is devoted to the
solution of a system of nonlinear algebraic equations. The computer time involved in those
computations depends to some degree on the decisions the program user make regarding
certain parameters on the D-1 record that governs the computational strategy in STAGS.
STAGS 5.0 User Manual April, 2009 15-11

Analysis Techniques Solution Strategy
Some understanding of the solution of those constants. Such understanding will also help
the user in proper interpretation of the results and in avoiding certain pitfalls.

The solution of the nonlinear algebraic equations is usually based on the modified Newton–
Raphson method. In general, solutions to the equations are obtained at a number of step–
wise increasing load levels. The coefficient matrix is not necessarily reformed and factored
when the load is increased, but attempts are made to obtain convergence by use of the
factored matrix that is already available from computations at some earlier load step. The
accuracy of the solution does not depend on the accuracy of the factored matrix. Two
convergence criteria have to be satisfied before the solution is accepted. One of these
requires that if the largest correction of a displacement unknown during the iteration divided
by the largest displacement is less than a prescribed valued DELX (D-1). The other criterion
is applied to normalized values of the unbalanced forces, i.e,. the vector representing the
error in the individual equations.

The procedure converges only if reasonably good initial estimates of the unknowns are
available. For the first load step, a linear solution is obtained and used as initial estimate. In
the second load step, estimates are obtained by use of a linear extrapolation (based on the
zero load solution and the first nonzero solution). From then on, estimates are obtained by
use of a quadratic extrapolation. The user can suppress the extrapolation by use of the
parameter NSTRAT (D-1). Such action may, for example, be warranted if the analysis of the
accuracy requirement is loosened by modification of DELX (D-1). In order that convergence
be obtained, neither the initial load factor nor the load step must be too large. Generally, the
computer economy is best if the step is chosen so that convergence is obtained after two or
three iterations. The first two load steps have less accurate estimates, and convergence is
often somewhat slower. The number of iterations allowed in the effort to obtain convergence
is internal tot he code; it is not a user’s option. In general, seven iterations are allowed.
However, for the first load step, 15 iterations are allowed, unless the rate of decrease in
consecutive corrections is so slow that continuation is meaningless. If convergence is not
obtained on the first load step, the computations are discontinued so the user can reconsider
his choice of initial load and maybe re-examine the discretization of the structure.

If nonconvergence occurs at a later stage in the analysis, the load step will be cut by a factor
of 2, or the matrix will be refactored, depending on the values of the input parameters NCUT,
NEWT (D-1). The choice of these parameters is discussed below.

STAGS assumes that nonconvergence has occurred if convergence is not achieved after seven
iterations, if the solution is diverging for two successive iterations, or if the rate of
convergence is indicated by two successive iterations is so slow that it is unlikely that the
criterion will be satisfied within 7 iterations. If convergence has been obtained in the
seventh iteration, then the following load step will be cut in half or a refactoring made
15-12 April, 2009 STAGS 5.0 User Manual

Solution Strategy Analysis Techniques
(depending on the user-selected strategy parameters NCUT and NEWT) before the iterations are
started on that load step. Finally, if convergence is extremely easy, i.e. if convergence
occurs in one iteration on the present as well as the preceding load level, the step will be
automatically increased through multiplication by a factor of 2.0.

The choice of the initial load level and the load step is the first decision the user has to make
regarding the computational strategy. If it is expected that nonlinearities are of little
influence at the design load, it may be possible to obtain convergence directly at that load
level. In that case, the maximum load is set equal to the initial load and the step size is
irrelevant. However, if a value of the collapse load is to be established or if there are
considerable effects of nonlinearity at the design load, then the equations must be solved
under a step-wise increasing load. In some cases, the nonlinearities are relatively
insignificant until a point is reached that is close to the collapse load. In that case, a
relatively large initial load and a smaller load step may be used. In other cases, such as
cylinders with nonuniform external pressure or long cylinders under bending, convergence
has been found to be difficult for relatively small loads. The initial load step may have to
be as small as 5% of the collapse load, and sometimes even less. If there is no special reason
to proceed differently, it is suggested that the initial load as well as the load step is set equal
to about one tenth of the estimated collapse load. such an estimate can, for example, be
obtained by consideration of a simple equivalent structure, for which an analytical solution
is available, or from a bifurcation bucking analysis. A load step that is too small for an
efficient analysis gradually will be corrected by successive automatic increases in the step
size.

Very slow convergence with the modified Newton method is usually connected with
oscillatory solutions. In that case it is recommended that a true Newton method be used,
NEWT = -20 (D-1).

In most cases, the nonlinear analysis will not be completed in one run. Intermediate
solutions are saved on tape or file so that the analysis can be restarted after the user has
studied the results and reconsidered his strategy. The last three displacement solutions (if
available) are saved on the tape so that a restart can begin with a quadratic extrapolation for
initial estimates. Sometimes, as will be seen below, there may be reasons to restart from
record one or two. At restart, the initial load factor must be the load factor corresponding to
the record from which restart takes place. Before restart, it is advisable to ascertain that the
data were properly recorded.

The input record with strategy parameters also includes a parameter NSEC. Occasionally,
during computations, a check is made of whether the elapsed computer time exceeds NSEC;
if so, intermediate results are saved on a data tape. NSEC should be chosen to be a few
seconds less than the time estimate at which the operator aborts the run. Before each
STAGS 5.0 User Manual April, 2009 15-13

Analysis Techniques Solution Strategy
refactoring, the program also checks that sufficient time is available to make refactoring
meaningful. To refactor at the end of a run would be wasteful because a restart run always
begins with factoring.

After initial convergence has been obtained, the program continues with the input load step
until a load level is reached at which the analysis fails to converge within prescribed limits
(or convergence is easy enough to allow load step increase). The program then either cuts
the load increment in half or updates the factored matrix by use of the displacement vector
solution obtained for the previous load step. The choice between these two alternatives is
based on the following strategy parameters, input by the user:

NCUT —Total number of times load increments may be cut in half.

NEWT —Number of times the factored matrix may be recomputed.

On nonconvergence the normal action is reformulation and refactoring of the matrix. If
convergence still fails the load step will be cut by a factor of two unless the step already
has been cut NCUT times, in which case the program stops with the message that
“convergence difficulties cannot be resolved.” If nonconvergence should occur after NEWT

refactorings already have been performed, the load step will be cut until the number of load
step cuts equals NCUT.

In view of the highly unpredictable nature of nonlinear behavior, it is very difficult to
prescribe the best value for the strategy parameters in advance. As an initial choice for an
unfamiliar type of shell, the values

ICUT = 2

INEWT = 4

are suggested. By observing the convergence behavior in previous computer runs, a more
effective set of these values and the load step may be selected for continuation. In general,
it seems advisable to restrict each computer run to some 10 to 20 times the computer time
for one factoring so that the convergence behavior can guide the selection of strategy. In
such a case, there should be little reason to control the number of factorings by INEWT.
However, for very large systems with expensive factoring, especially in transient analysis,
it may be better to continue an analysis with smaller steps than to repeatedly refactor the
matrix. In that case INEWT may be set to 0, 1, or 2. ICUT essentially serves to define a
minimum step size below which the user finds it impractical to perform the analysis. Choose
ICUT such that the analysis will remain economically feasible.

The user may force factoring independently of any convergence difficulties. If NEWT=-N,
then the matrix will be refactored at every Nth load step. Such a strategy is probably useful
15-14 April, 2009 STAGS 5.0 User Manual

Solution Strategy Analysis Techniques
for problems with a relatively inexpensive. If convergence is slow, an over– or under–
relaxation factor is automatically applied, depending on whether the convergence is uniform
or oscillating. The user generally leaves blank fields for convergence parameters and
relaxation factor. This means that the convergence parameter is applied as indicated above.
The user may loosen the convergence criterion if it is indicated from the results that round-
off errors make convergence difficult or even impossible. The criterion also may be
tightened as subsequently discussed. The relaxation factor should be determined by the user
only if he has considerable experience with the program. If the relaxation factor is given any
value on the input record (including 1.0), this factor will be used throughout the analysis.

A collapse load is represented by a maximum in the load–displacement path. If a
displacement is controlled and the load computed, it will be possible to compute points
through and beyond the maximum. If, on the other hand, the load is the independent
variable, instability is indicated by a failure to converge even with a very small load step.
This, of course, is less satisfactory because convergence failure could have been caused by
numerical difficulties rather than by rapidly growing displacements. Therefore, if
convergence difficulties indicate that the collapse load is approached, the applied load may
be plotted versus some representative displacement, the component that shows the greatest
increase between the last two load steps may be selected. A better indication of collapse can
be obtained if the load factor is plotted as a function of the determinant. This is possible
only if a reasonably large number of refactorings have been executed. The value of the
determinant is zero at the point of collapse for “dead load” but not for displacement or
thermal loading. The best way to determine whether a limit point has been reached may be
to restart the analysis in the dynamic mode. At the load level corresponding to
nonconvergence or slightly higher the analysis is restarted as a transient analysis. In the
presence of a limit point the solution vector will undergo large changes after only a few time
steps.

The problems associated with the use of the load factor as independent parameter are related
to solution prediction beyond the limit point and ill conditioning in the neighborhood of a
limit point. Both these problems can be circumvented if some “path length” parameter is
used as independent parameter. Such procedures were first published by Riks and are here
referred to as the Riks method. While other procedures have been tried with some success,
the Riks method is the most straightforward and clearly the most promising choice for
introduction in the STAGS computer program. The path parameter introduced is the length
of a vector with two components: a load parameter and some norm of the displacements.
Since the components have physically different dimensions, they must be balanced in an
appropriate way.

Some trial runs indicate that good results are obtained if the base load is chosen such that
collapse will occur at a load factor of the order of unity. A procedure for selection of load
STAGS 5.0 User Manual April, 2009 15-15

Analysis Techniques Solution Strategy
step size based on the “curvature of the path” seems to be working well. Only limited
experience with the Riks method is presently available. However, in addition to the fact that
computations can be carried beyond the limit point, it appears that this procedure is more
efficient in terms of computer time.

For a dead weight (or a pressure applied by a compressible medium such as air) the true
behavior of the structure at the limit point will be represented only by the results of a
dynamic analysis. The limit point is first closely approached in a static analysis. Results
from this analysis are used in a restart with increasing load and with dynamic effects
included.

If a pressure is applied over a part of the structure through an incompressible medium such
as water, the stability is not lost at the limit point and points on the falling part of the curve
will represent meaningful results. However, these are difficult to determine. One method
that sometimes can be used is to add fictitious springs so that the slope of the load
displacement curve remains positive. The load carried by the springs is eventually
subtracted out.

The existence of a bifurcation point along the primary path would be indicated by the
vanishing of the determinant. Above the bifurcation point, the equilibrium on the primary
path is unstable and the determinant is not positive definite: an attempt to refactor will result
in a message that the matrix has one or more negative roots. This will occur only if the
boundary condition in the model allows the corresponding bifurcation buckling mode.

Theoretically, as the critical load is reached, the round–off errors should trigger the
deformation corresponding to the buckling mode. In practical application, it is generally
found that in the early stage of buckling the amplitude of the buckling mode is so small in
comparison to the displacement corresponding to the basic stress state that its growth,
although in a relative sense large, will not violate the specified convergence criterion. This
difficulty is avoided by the specification of initial imperfections in the shell geometry which
are small enough not to appreciably affect the buckling load but large enough to trigger the
new deformation pattern. The program, therefore, includes an option to add an initial lateral
displacement pattern. This procedure has to be used, for example, if a study is made of post-
buckling behavior of a shell of revolution subject to symmetric loading.

It has been found during use of the program that the imperfections may be useful as triggers
also in other cases than those with perfect axial symmetry. For example, in the analysis of
an elliptical cylinder with an aspect ration of 1.5, it was found that without a trigger it was
necessary to use a very severe convergence criterion but if a small imperfection is
added, the same collapse load may be computed in about half the run time with a less severe
convergence criterion . If the elliptical cylinder has a significantly smaller aspect

ε 10
5–

=

ε 10
3–

=

15-16 April, 2009 STAGS 5.0 User Manual

Solution Strategy Analysis Techniques
ratio, it is likely that the amplitude of the buckling pattern which is present in the pre–
critical displacement pattern is too small to act effectively as a trigger. In this case, the
computation of a collapse load must include the use of a small imperfection. The choice of
imperfection mode may often be aided by knowledge of the bifurcation bucking mode.

If difficulties like these do occur, they will be discovered when refactoring at a load level
above the collapse load leads to a coefficient matrix which is not positive definite. In such
a case, the user must either sharpen his convergence criterion or introduce an imperfection.
If the imperfection is too small the unstable branch of the load-displacement curve for the
perfect cylinder represents a configuration for which the equilibrium is almost satisfied.
Since the convergence criterion cannot be made arbitrarily fine, this will at times lead to a
false indication of convergence.

The run which ends with a message that negative roots are present, may sometimes be saved
if a new run is restarted from an earlier solution. There also may be other reasons to suspect
that an inaccurate solution has been accepted in which case restart from an earlier solution
is advisable.

Through use of additional analyses with various degree of imperfections, the user of the
program can get some notion of the imperfection sensitivity of the collapse load.

Finally, it may be advisable, often to set INDIC = 4 or 5 even if bifurcation or vibration
analyses are not part of the original plans. Such a choice leaves the option open if the results
of the nonlinear analysis indicate that a subsequent eigenvalue analysis may be helpful.

Transient analysis

A nonlinear transient analysis must be used if a structure that would be susceptible to
buckling under static loading is subject to rapidly varying loads. However, such an analysis
is generally quite expensive, and the user faced with the necessity may be willing to
sacrifice accuracy in order to save on computer cost. It is necessary that the user is able to
obtain some estimate on the computer run time before a decision is made on the procedure
to be followed.

The strategy in the transient analysis is determined by a number of parameters defined on
the E-1 and E-2 records. After defining a structural model and a preliminary grid the user
must decide on the integration procedure.

Shell structures usually result in the so–called “stiff” system of differential equations– that
is, the eigenvalues corresponding to free vibrations cover a very large range. The highest
eigenvalues determine the numerical stability of explicit integration method. Therefore, a
STAGS 5.0 User Manual April, 2009 15-17

Analysis Techniques Solution Strategy
very small time step must be used. On the other hand, it is relatively easy to determine the
maximum time step. In the linear case the critical time step is given by

 (15.1)

where is the highest vibration frequency of the system. Usually the highest frequency
does not vary much with the applied load in the nonlinear case. It is suggested therefore that
in a nonlinear transient analysis with the explicit method the time step is chosen to be about
80 percent of that given by this equation. However, for cases in which geometric
nonlinearities are important, it is likely that the lower frequencies of the system are the more
important. In that case the implicit methods are generally more efficient.

Based on a finite difference formulation (of second order accuracy) for a shell of isotropic
properties the critical time step is found to be

 (15.2)

where , , and mass density of the material. The quantities
and represent grid spacings in arclength in the two directions such that .
For layered and composite materials an average value of E can be used. If a higher order
finite element formulation is used, the critical time step may be considerably smaller. With
elements for which , are considerably larger than h—say twice as much or more—

 according to equation (15.2) is probably reasonably accurate unless a refined membrane
element is used. For refined membrane elements the critical time step may have to be
decreased by a factor of two or more.

Except for some special cases then, equation (15.2) gives only an indication about where to
start in a trial and error estimate of the critical time step. If the critical time step is exceeded
computed displacement will grow very rapidly and the problem is noticed after only a few
time steps. Instead of reliance on a trial and error procedure the user may take advantage of
the knowledge that the highest frequency of the system is equal to or less than the maximum
frequency for an individual element. Thus it is possible to choose the critical time step from
an eigenvalue analysis for the smallest of all elements in the structure.

Notice that c is the velocity of a sound in the material. If in the one-dimensional case
is chosen to be exactly then a stress wave progresses through the material with the
speed of sound. Only for this value of is the solution accurate (barring discretization

Δt 2 ωmax⁄=

ωmax

Δt MIN c Δα()⁄()2
cs Δβ()⁄()2

+

1
2
---–

3
hc
------- 1 Δα()⁄()2

1 Δβ()⁄()2
+

1–

=

c
2 ρ 1 ν2

–()[]= cs
2

G ρ⁄= ρ = Δα
Δβ Δβ Δα≤

Δα Δβ

Δt

Δt
c Δα

Δt
15-18 April, 2009 STAGS 5.0 User Manual

Solution Strategy Analysis Techniques
errors). If exceeds the critical value a small error will be magnified with each time step.
If is less than the critical value error does not accumulate and the solution obtained is
reasonably accurate except in case the loading is so severe that the magnitude of the
nonlinear terms changes significantly during one time step.

Therefore, the explicit method is somewhat easier to use than any of the implicit methods.
The latter are used for the purpose of reducing computer runtime. In particular, implicit
methods are more flexible as they allow the choice of a larger time step with the purpose of
sacrificing accuracy for a reduction in computer cost. With the explicit method no large
systems of equations need be solved and no large matrices need be stored. Therefore, it may
be possible to obtain solutions with the explicit scheme for cases that are beyond the
capability of the implicit scheme (core or disk storage).

Several implicit methods have been provided in STAGS for use in transient response
analysis. These are the trapezoidal formula, the Gear 2nd and 3rd order formulas and a
formula due to K. C. Park. For a purely linear transient analysis (ILIN = 1 on the M-1 record
for all branches), the stability and accuracy of the trapezoidal formula make it the natural
choice. When nonlinear effects are included in some part of the structure, the trapezoidal
formula may become numerically unstable while the 2nd order Gear formula and the Park
formula remain stable. The 3rd order Gear formula is also stable for sufficiently large time
steps. Damping of higher frequency modes is substantially greater with the second-order
Gear method. Consequently, the Park method is recommended for general nonlinear
transient analysis. Figure 15.3 shows the damping in percent on each period as a function

Figure 15.3

Δt

Δt

0 0.1

30

20

10

0
0.2 0.3

%
 D

A
M

P
IN

G

Δt x f

f=FRQUENCY (Hz)
Δt=TIME SKIP
STAGS 5.0 User Manual April, 2009 15-19

Analysis Techniques Solution Strategy
of time steps per period. However, the special properties of the Gear methods may be useful
to users whose knowledge of their behavior is relatively sophisticated.

Typical for the implicit integration schemes is that a large time step results in inaccuracy in
the form of artificial damping. Consequently the modes corresponding to the higher
frequencies are damped out quickly. In order to obtain reasonably accurate results for the
motion in the highest frequency modes, we must choose a time step that is of the same order
of size as for the explicit integration. Therefore, implicit methods are not suitable for
analysis of stress wave propagation.

If the problem is to determine whether the shell would collapse under some history of
loading, the following procedure is recommended:

• Determine a number of deformation modes and frequencies for the stress-
free structure. The number may depend on the case, say five to twenty
modes. By use of a shift it may be possible to reduce the number of
eigenvalues and vectors determined.

• The half period for the “highest mode” which must be reasonably accurately
represented in the analysis is determined.

• Decide how much damping of this mode is acceptable and determine the
time step from Figure 15.3.

• Check critical time step for explicit integration. If this is more than one-
third of that determined above, use the explicit scheme. Otherwise use the
K. C. Park method.

• Make an estimate of the number of time steps that would be required to
complete the analysis.

• Approximate values for the average computer time per time step are given
above.

• The total computer time for the analysis can now be determined. It seems
prudent to estimate that at least twice as much time may be required due to
false starts and wasted runs.

• If the estimate shows that the analysis is not economically feasible, several
options may be considered such as: static analysis only, linear analysis, a
coarser grid, other changes in the model, or a larger time step.

In the nonlinear transient analysis, the time step must be adjusted so that the accuracy is
satisfactory without undue expense, and also it must be small enough to admit convergence
at each stop. If nonconvergence occurs the matrix is always refactored. Should convergence
fail after refactoring, the time step will be cut once.
15-20 April, 2009 STAGS 5.0 User Manual

Progressive Failure Solution Strategy Analysis Techniques
Very little experience is available on the option with a variable time step. This part of the
program must therefore be considered to be experimental. However, if the option is used, an
unsuitable choice of the initial time step would be automatically adjusted. Thus, the choice
of DT (E-1 record) is less critical. On the other hand, SUP (E-1) must be defined since the
error that is permitted at each time step is proportional to this value (the largest
displacement to be expected, or rather the largest value of the maximum displacement value
for which we still expect to obtain reasonable accuracy).

15.3 Progressive Failure Solution Strategy*

The progressive failure solution strategy implemented in STAGS leverages on the overall
nonlinear solution algorithms already existing in STAGS. Composite damage modeling for
laminated composite structures is treated in a manner similar to plasticity for metallic
structures. The key difference here is the material degradation model for the composite
damage models considered involves discrete reductions in lamina properties at material
points (ply discounting as opposed to a flow rule). As an alternative to ply discounting for
material degradation, another progressive damage model based on the crack-density state-
variable approach developed by Prof. F. K. Chang of Stanford University has been
implemented. Discrete local changes in stiffness cause difficulties for the nonlinear solution
procedure. Chang’s approach includes some damping terms to stabilize the solution. The
following sections describe the overall modeling aspects, choice of solution strategy
parameters, maintaining equilibrium, and recommended guidelines.

Modeling

Modeling for composite damage simulations follows the usual STAGS approach for element
and node generation (shell units or element units). Only the STAGS E410 and E480 shell
elements have been tested. The material modeling is done through the GCP (generic
constitutive processor) feature within STAGS. Some elements do not currently support the
GCP option for material modeling (e.g., the E210 beam) and are restricted to STAGS’
historical approach using I- and K- records. With STAGS’ implementation of GCP, the
composite damage modeling is available for orthotropic elastic brittle materials via the

* This section is based on material given in Knight, Norman F., Jr., “Enhancement of STAGS Pro-
gressive Failure Capability,” MRJ Technology Solutions Final Report for MRJ Task
1410, October 1999, pp. 32–37
STAGS 5.0 User Manual April, 2009 15-21

Analysis Techniques Progressive Failure Solution Strategy
ORT_EL_BR_MATERIAL option and for Chang’s progressive damage model based on the
crack density state variable via the ABAQUS_UMAT_MATERIAL option.

The NGCP parameter on the B-3 record for the S1 processor indicates whether GCP input will
be used (NGCP=1) or will not be used (NGCP=0). GCP material data libraries may be used
exclusively in the model or in combination with K- record material data.

Input for the GCP material types begins with the I-5a input record using an alphanumeric
command verb instructing STAGS to read specific GCP material data.

The input data for the ORT_EL_BR_MATERIAL command verb are defined on the I-10a
record. This record gives the linear elastic material properties, the strain and/or strength
allowables, the degradation parameter, some other material values, and identifiers to select
the failure model and degradation model to be used.

The input data for the ABAQUS_UMAT_MATERIAL command verb are defined on the I-11a
record. This record gives the linear elastic material properties, selected strength allowables,
and various damage and damping model parameters required by Chang’s progressive
damage model. The laminate data (layer material number, number of layer integration points
per layer, layer orientation, and layer thickness) for both material types are specified using
the I-21a GCP shell fabrication record.

For the ORT_EL_BR_MATERIAL material type, the user has the option of specifying nonzero
positive values for either the strain allowables or the strength allowables or both. If the
strain allowables are nonzero and the strength allowables are zero, then the strain allowables
are used with the elastic constants to calculate strength allowables (e.g., XT = E11 ε1t).
Likewise if the strain allowables are zero, then they are computed internally based on the
strength allowables. All values must be given as either zero or nonzero, and all values must
be positive. Nonzero values must be given for all strain allowables or all strength
allowables. Users cannot specify a mixed set of nonzero strain and strength allowables.

For the ABAQUS_UMAT_MATERIAL material type, the user must also provide several ASCII
files in a specific subdirectory named OUTDIR. A unit–cell plane strain analysis and a curing
residual thermal strain analysis generate these files. These files are generated by the
execution of the PDCOMP and RSDE codes provided by Prof. F. K. Chang. Only the STAGS

E410 shell element has been validated for this damage model.

Choosing solution strategy parameters

STAGS provides a number of parameters that are associated with the solution strategy.
Incorporating the progressive failure capability into STAGS resulted in the addition of
15-22 April, 2009 STAGS 5.0 User Manual

Progressive Failure Solution Strategy Analysis Techniques
several new features. This new capability has only been tested with the traditional solution
control procedures (load control and displacement control). Parameters that affect the
nonlinear solution process include NCUT, NEWT, and DELX on the D-1 solution parameter
record and NSOL on the ET-1 solution control record used by the STAGS’ s2 processor.

The nonlinear solver in STAGS is a Newton–Raphson procedure for solving a system of
nonlinear algebraic equations. The process involves a left-hand-side tangent stiffness matrix
(second variation), a right-hand-side force imbalance or residual vector (first variation), an
iterative increment in the displacement vector, an updating step for the iterative change in
the displacement solution, and the formation of an initial guess or starting vector for the
next solution step. These four parameters (NCUT, NEWT, DELX, and NSOL) affect these steps.

The NCUT parameter defines the total number of times the load/displacement factor (step
size) can be cut before the solution process is stopped by STAGS. Generally this parameter
is set to a value between 5 and 10. Frequent cuts of step size generally indicates difficulties
in the solution process; and careful examination of the results generated up to that point may
reveal a modeling problem, a collapse behavior or some other event unforeseen by the user
at the start of the analysis. A value of 5 is recommended until some familiarity with the
problem is obtained.

The NEWT parameter defines the number of refactorings of the tangent stiffness matrix
allowed during the execution. This parameter is discussed under the D-1 record and only a
brief description will be given here. For NEWT=-20, the tangent stiffness matrix is evaluated,
formed, assembled, and factored on each and every iteration. For NEWT = -1, the tangent
stiffness matrix is evaluated, formed, assembled, and factored at the beginning of each and
every solution step and possibly during the iteration process for that solution step as
required by the solution strategy. However, it is always recomputed at the beginning of each
solution step. For negative values of NEWT, the number of times the tangent stiffness matrix
can be refactored is unlimited. For positive values of NEWT, the tangent stiffness matrix is
recomputed as required by the solution strategy until a total of NEWT refactorings have
occurred. With continuing increases in computer processor speeds and the availability of
faster equation solvers, the trend towards using a true Newton procedure (update the tangent
stiffness matrix on each iteration) is becoming a reality.

The DELX parameter defines the error tolerance on the iterative solution used as a stopping
criterion for each solution step. After each iterative solution update, the norm of the iterative
change in the displacement vector and the norm of the force imbalance or residual vector
are computed and compared with the value DELX. If either of those norms is smaller than
DELX, then the solution for that step is said to have converged. The default value of DELX is
10-3; however, typical values are usually between 10-4 and 10-6. In some cases, the default
value may be used to get a solution and then a restart step performed using a smaller value
STAGS 5.0 User Manual April, 2009 15-23

Analysis Techniques Progressive Failure Solution Strategy
of DELX to verify that an equilibrium state has actually been achieved. Setting DELX to a
value larger than the default value is not recommended in general, and if done, requires the
analyst to carefully examine the solution.

The NSOL parameter on the ET-1 record has been used primarily for restarts in the past. For
the progressive failure capability, a new option (NSOL=3) was added. This option specifies
that the previously converged solution will be used as the initial guess for the starting vector
during the first two iteration of the next solution step. This option was developed in an
attempt to avoid excessive amounts of new damage being created when an extrapolated
initial guess is used to start the next solution step.

One solution parameter that users do not have control over is the number of iterations
permitted per solution step, ITLIM. This is an internal parameter and is set to 11. For a
progressive failure analysis in STAGS, this limit is automatically doubled. If the iterative
process is converging very slowly, then the tangent stiffness matrix will be refactored
(provided the number of refactorings is not greater than NEWT) and/or the step size will be
cut (provided the number of cuts is not greater than NCUT). Users may enter “X_40_” on the
A-1 title record for the STAGS s2 processor in order to allow a maximum of 40 iterations.
This doubling of ITLIM appears to be necessary in some cases as the damage progresses
during each iteration and may not have reached a stable damage state within 11 iterations.
Some cases needed 15 to 20 iterations before no additional failures were detected for that
solution step. Convergence of the nonlinear solution procedure is affected by the continual
local stiffness changes as damage is detected, material properties degraded, and stress
redistribution occurs.

During the iteration process, several variables are output and can be monitored. The residual
error norm RNORM and the displacement solution norm DNORM0 indicate the relative
performance of the algorithm in achieving convergence. The solution strategy is controlled
primarily by RNORM. In a full Newton–Raphson approach, the value of RNORM may increase
up to a value of unity before the load factor is reduced. Once it reaches unity, the load factor
is reduced regardless of the number of iterations.

In order to monitor this process, a new output parameter TOTFAL was added to the single line
of output printed after each iteration cycle. This parameter gives the total number of points
where failure has been detected up through that iteration. Once that value stabilizes (stops
changing), no additional failures occur for this solution step. Then convergence to within
the error tolerance DELX is relatively fast. If that value continues to increase, then additional
failures are occurring and possible overall failure of the structure may be imminent. TOTFAL

represents the total number of failed layer points in the model. It has a maximum value
equal to the product of the number of layers, the number of surface integration points per
element, and the number of elements with linear orthotropic elastic brittle and/or ABAQUS
15-24 April, 2009 STAGS 5.0 User Manual

Progressive Failure Solution Strategy Analysis Techniques
UMAT materials. During iteration for the current solution step, TOTFAL should never be
smaller than the value obtained from the last converged solution step. Each layer of the
laminate has a specified number of layer integration points (see the I-21b record). If any or
all layer integration points detect failure, this failure counts as only one layer failure point.
For example, the maximum number of layer failure points for a 16-ply laminate is 64 for
the E410 element with 4 surface integration points and 144 for the E480 element with 9
surface integration points—regardless of the number of layer integration points per layer.

Maintaining equilibrium

Establishing and re-establishing equilibrium for a nonlinear problem is a continuous
problem during any nonlinear simulation even without brittle failures at the lamina level.
The Newton–Raphson solution procedure is employed by STAGS to establish equilibrium at
each solution step. The nonlinear solution strategy can be load control, displacement control
or an arc-length-parameter control. Under load or displacement control, the load or
displacement is incriminated and fixed during the iteration, and a new solution is found.
Under arc-length control, the load and displacement are both changing during the iteration.
So far, only the load and displacement control features of STAGS have been tested with the
new progressive failure capability.

The Newton–Raphson procedure involves essentially four main stages. First, an initial guess
for the next solution step is needed. Currently two options are provided: use the previously
converged nonlinear displacement solution as the initial guess for the next solution step; and
use previously converged solutions to perform a quadratic extrapolation for the next
solution. If the step size is large, then the extrapolated initial guess may result is excessive
amounts of damage and the solution may not converge. The load step would be cut and the
iteration process continued until NCUTS cuts have been made.

Second, the second variation of the energy functional is needed which gives the “tangent”
stiffness matrix (i.e., “tangent” only if evaluated using a converged nonlinear solution). This
matrix can be evaluated, assembled, and factored on each iteration (full Newton–Raphson is
obtained by setting NEWT = -20) or perhaps only at the beginning of each solution step
(obtained by setting NEWT = -1) or if the error measures begin to increase rather than
decrease (modified Newton–Raphson). To evaluate the “tangent” stiffness matrix, the
material properties, the stress state, and the displacements are needed. The material
properties for each iteration are initially those values archived after obtaining convergence
for the previous solution step (i.e., this will be called the reference material state for this
solution step). When the iterative change in displacements is computed and the displacement
solution is updated, new strains are computed and new stresses are computed based on the
archived material data. These stresses are then used in a failure analysis; and if failures are
detected, the material properties are degraded. The stresses are then recomputed using these
STAGS 5.0 User Manual April, 2009 15-25

Analysis Techniques Progressive Failure Solution Strategy
degraded properties. At this point in a given iteration, the displacement solution has been
updated; and the stresses and material properties are consistent with this solution. These
values are then used to evaluate the “tangent” stiffness matrix for the next iteration. Then
when a new displacement solution is obtained for the next iteration, the new stresses are
computed based on the archived material data (i.e., the reference material state for this
solution step)—not the material state from the previous iteration. Once convergence has
occurred, the degraded material properties from the final iteration of the current solution
step are archived to the historical database and used as the reference set of material data for
the next step. In the modified Newton–Raphson procedure, the “tangent” stiffness matrix is
updated periodically (e.g., at the beginning of each solution step (NEWT = -1)).

Third, the first variation of the energy functional is needed which gives the internal force
vector and residual or force-imbalance vector. This vector is computed during every
iteration for both the full and modified Newton–Raphson procedures. The computational
process to evaluate the first variation is similar to the process used to evaluate the “tangent”
stiffness matrix.

Finally, the displacement solution is updated on each iteration. Each iteration starts from the
reference material state (i.e., the archived material data from the previous converged
solution). The solution increment obtained by solving a system of equations based on the
second variation and a right-hand-side vector based on the first variation is added to the
solution vector from the previous iteration. As such, equilibrium is established and
maintained throughout the solution process. Once a solution step has converged, the values
of the degraded material properties for each material point with damage are saved (or
archived) in the historical database as the converged material data for the next solution step.
These data provide the reference material state for the next step.
15-26 April, 2009 STAGS 5.0 User Manual

Progressive Failure Solution Strategy Analysis Techniques
Recommended guidelines

The following values for the solution parameters are recommended (based on limited
testing):

• NEWT = -1 unless geometric nonlinearities are also very strong (i.e., collapse
of a shell)

• NCUT = 5 since a restart can be performed if necessary

• DELX = 0.000001 to ensure convergence and equilibrium for each step;
DELX = 0.0001 is typically used for problems involving plasticity

• NSOL = 3 to reduce the overshoot in the solution and generate excessive
damage in the model that is not really present

• BETA should be a small number if degradation is applied recursively (say 0.1;
make it negative for degrade only once) or 0.000001 if it is only degraded
once. Values equal to 0.1 appear to work well in either case but will generate
some stress values that are not close to zero.

• The iteration output should be monitored and if the number of failures has
not stabilized within 7 iterations, then a restart with “X_40_” on the A-1 title
record for the STAGS s2 processor should be performed.

• Monitor the iteration history for each step. Once the total number of failed
ply points (TOTFAL) stops changing, convergence should be very fast. If this
is not true, then examine the value of the determinant (DETERM) and the
degree of freedom associated with the largest residual term (DOF). These
values are printed for each iteration. If these values are changing, then the
solution is most likely still having trouble finding an equilibrium solution.
If the values are not changing, an inconsistency in the implementation may
have been detected.

• Post-process the results by plotting the percent of failed plies per element
should be done to watch the damage progression. These contour plots are
generated by setting the ITEM parameter on the PL-3 record for stapl to a
value of 8 and the parameter ICOMP to zero. A “patch quilt” plot or element
assignment plot can be generated for this parameter by including the
character string “DISCONT” anywhere on the PL-1 record for stapl. In this
case, an element is assigned a color based on the value of this parameter; no
contouring across element boundaries occurs.
STAGS 5.0 User Manual April, 2009 15-27

16

16

16 16
 Interpretation of Results

An understanding of the definitions and sign conventions used in STAGS is crucial to
interpretation of secondary solution data. The analyst will find this section an indispensable
reference for understanding the meaning of the strains, curvatures, stresses, forces, and
moments arising from both membrane action and flexure. Before going further, a few words
about coordinate systems. Some solution data, such as Von Mises stresses and eigenvalues,
are invariant with respect to coordinate transformation; but in general, post-processing
involves transformation of both vector and tensor quantities into coordinate systems which
are most meaningful to the application at hand. For this reason, STAGS gives the user great
flexibility in specifying the system(s) in which results are to be expressed. Therefore, it is
essential that the various coordinate systems used in STAGS be understood by the analyst. It
will be helpful to refer to Section 4.1 “Coordinate Systems” as necessary to avoid any
ambiguity regarding coordinate systems appearing in this discussion.

16.1 Shell Results

Figure 16.1 shows a curved shell with stress resultants (membrane forces) and moment
resultants (flexural forces) expressed in shell coordinates . Figure 16.2 gives
conventions for interpreting membrane forces, and Figure 16.3 gives conventions for
interpreting flexural forces. Each of these last two figures shows a section of a curved shell
whose dimensions are . The coordinate system attached to this differential
section is an arbitrary rectangular system in the plane of the shell. The z direction is normal
to the shell at the point at which results are computed. Since the conventions for interpreting
resultants are independent of the coordinate system in which they are expressed, it is not
necessary to specify this system further. In practice, resultants are usually expressed
in either material coordinates or fabrication coordinates , although the user may
select any rectangular system in which the axes are in the plane of the shell and the 3
axis is normal to the shell.

X′ Y′ Z′, ,()

dx dy× x y z, ,()

x y z, ,()
φ1 φ2,() x y,()

1 2,()
STAGS 5.0 User Manual April, 2009 16-1

Interpretation of Results Shell Results
Refer to Figure 6.6 on page 6-58 for nodal-displacement conventions

Figure 16.1 Sign conventions for stress and moment resultants.

Figure 16.2 Membrane forces. All forces are shown acting in their respective positive senses.

Stress Resultants Moment Resultants

NX ′

X′ Y′

Z′

NY′NX ′Y ′ NY′X ′ MX ′Y′ MY ′X ′MX ′ MY ′

X′ Y′

Z′

QX ′ QY ′

x

z

y

Nxx

Nyy

Nxx x∂
∂Nxxdx+

Nyy y∂
∂Nyydy+

Nxy

Nyx

Nyx y∂
∂Nyxdy+

Nxy x∂
∂Nxydx+

Conventions for Interpreting Membrane Forces:

stress resultants, N, have units of [force/length]
positive normal forces Nxx and Nyy cause tension

positive shear Nxy = Nyx acts in a positive coordinate direction
on a positive face and in a negative direction on a negative face

☞

16-2 April, 2009 STAGS 5.0 User Manual

Shell Results Interpretation of Results
In STAGS, curvature is defined as

 (16.1)

Figure 16.3 Flexural forces. All forces are shown acting in their respective positive senses.

Conventions for Interpreting Flexural Forces

• moment resultants, M, have units of

• shear resultants, Q, have units of

• the right-hand rule applies consistently for interpreting moments

• positive bending moment causes tension on the top surface

• positive twisting moment is directed “inward” on the faces and
“outward” on the faces

• positive shear acts in the direction on positive faces, and in the
direction on negative faces

x

z w,

y

Qy

Qx

Qy y∂
∂Qydy+

Qx x∂
∂Qxdx+

Mxy

Myx

Mxy x∂
∂Mxydx+

Myx y∂
∂Myxdy+

Mxx

Mxx x∂
∂Mxxdx+

Myy y∂
∂Myydy+

Myy

force length×() length⁄

force length⁄

Mxx , Myy()

Mxy Myx=() x c=

y c=

Qx , Qy() z+ z–

κxx

κyy

κxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

w– ,xx

w,yy–

2w,xy–
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

STAGS 5.0 User Manual April, 2009 16-3

Interpretation of Results Shell Results
D, shell flexural rigidity, and C, a constitutive matrix, are defined for convenience as

 (16.2)

where h is thickness, and E and are elastic constants.

Moments are then defined as

 (16.3)

In some references, the “twist” term () is defined as ,
omitting the factor of 2. When this is done, .
STAGS consistently uses the definition .

Transverse shear is defined as

 (16.4)

Strains are defined as

D Eh3

12 1 v2–()
-------------------------=

C

1 ν 0

ν 1 0

0 0
1 ν–

2

=

ν

Mxx

Myy

Mxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

D C[]
κxx

κyy

κxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

Eh3

12 1 v2–()

1 ν 0

ν 1 0

0 0
1 ν–

2

w,xx–

w,yy–

2w,xy–
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

κxy κxy w,xy–=

C 3 3,() 1 ν–=

κxy 2w,xy–=

Qx Mxx x, Myx y,+=

D w,xxx– w,xyy–()=

Qy Mxy x, Myy y,+=

D w,xxy– w,yyy–()=
16-4 April, 2009 STAGS 5.0 User Manual

Shell Results Interpretation of Results
 (16.5)

where the superscript 0 refers to reference-surface strains, and z is the through-thickness
distance from the reference surface (see “Effects of Eccentricity” on page 16-6) to the strain
sampling point, the location where strains are computed.

Stresses follow from strains according to the following, where C is from (16.2).

 (16.6)

Interpretation of stresses can be inferred from the definition of resultants. The following
equations define the relationships between stresses and resultants.

Membrane Forces

• normal forces

 (16.7)

• planar shear forces

 (16.8)

εxx

εyy

γxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

εxx
0

εyy
0

γxy
0

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

z+

κxx

κyy

κxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

⋅=

σxx

σyy

τxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

E
1 v2–
-------------- C[]

εxx

εyy

γxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

Nxx σxxdz

h

∫=

Nyy σyydz

h

∫=

Nxy Nyx τxydz

h

∫= =
STAGS 5.0 User Manual April, 2009 16-5

Interpretation of Results Shell Results
Flexural Forces

• transverse shear forces

 (16.9)

• bending moments

 (16.10)

• twisting moments

 (16.11)

Effects of Eccentricity

STAGS permits flexibility in positioning the shell wall with respect to the reference surface,
the surface on which the nodes lie. The amount by which the middle surface, the surface
defined by the center of the shell wall, is offset from the reference surface is known as
eccentricity, and the analyst must be aware of its effects upon computed values of moment
resultants. As shown in Figure 6.2 on page 6-28, the eccentricity, e, is defined as the
(shell unit) or (element unit) value of the middle surface.

In equations (16.7) – (16.11), the limits of through-thickness integration are determined by
the wall thickness, h, and the eccentricity, e. For example, if the reference surface coincides
with the middle surface, then the integrals are of the form

 .

Qx τzxdz

h

∫=

Qy τyzdz

h

∫=

Mxx σxx z⋅ dz

h

∫=

Myy σyy z⋅ dz

h

∫=

Mxy Myx τxy z⋅ dz

h

∫= =

Z′
z′

f σ()dz

h 2⁄–

h 2⁄

∫ or f σ() z⋅ dz

h 2⁄–

h 2⁄

∫

16-6 April, 2009 STAGS 5.0 User Manual

Shell Results Interpretation of Results
Or, if the reference surface coincides with the bottom surface, then

 .

Inspection of equations (16.7) – (16.9) show that computed values for force resultants are
independent of eccentricity, but equations (16.10) – (16.11) show that computed values for
moment resultants are not. For the case shown in Figure 6.2, a contour plot of moments can
be misleading! This is not a matter of computing the correct moments, but rather a subtle
point regarding the interpretation of moments. Fortunately, other results are not affected, and
generally it is stresses and strains, rather than resultants, that are of primary interest.

The analyst may wish to “transfer” reference-surface moment resultants to the middle
surface. This merely requires adding the effect of the eccentric membrane force resultants.
This operation can be derived by considering the familiar expression

where is a moment vector at point o due to the eccentric force vector, F, and r is a
position vector defining the eccentricity of F relative to point o. Here, r is the position of
the reference surface relative to the middle surface, , where e is the eccentricity
(refer to Figure 6.2). It follows that

 (16.12)

where the subscript m refers to the middle surface, and r to the reference surface.

One final point regarding eccentricity—its effect on loading. During
model development, the analyst should bear in mind that an eccentric
membrane force is equivalent to a force plus a moment applied to the
middle surface.

f σ()dz

0

h

∫ or f σ() z⋅ dz

0

h

∫

Mo r F×=

Mo

r 0 0 e–()=

Mxx

Myy

Mxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

m

Mxx

Myy

Mxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

r

e

Nxx

Nyy

Nxy
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

⋅–=

☞

STAGS 5.0 User Manual April, 2009 16-7

Interpretation of Results Beam Results
16.2 Beam Results

Figure 16.4 on page 16-10 shows a beam with resultant forces. and are due to bending
about the axis; and are due to bending about the axis; is due to torsion, or
twisting about the axis (not shown); and is due to axial deformation. It is helpful to
establish some terminology before continuing. Some of the terms and symbols used here are
described elsewhere in this manual, and some are unique to beam results and are not found
elsewhere.

Each beam element in STAGS is categorized using the following three classes:

• ring a shell stiffener occurring along a row of a shell
unit. Refer to Figure 6.5 on page 6-52 and records
O-1a—O-1b, starting on page 6-50.

• stringer a shell stiffener occurring along a column of a shell
unit. Refer to Figure 6.5 on page 6-52 and records
O-2a—O-2b, starting on page 6-54.

• beam a beam element in an element unit. Refer to Figure 8.5 on page
8-33 and record T-2 on page 8-9. Beam elements may also be
defined via user-written subroutine USRELT.

Compare Figure 16.4 with Figure 6.5 and Figure 8.5 to help understand the distinctions
among the three beam categories. Also refer to Figure 5.5 on page 5-122 regarding cross-
section definition, and Figure 14.5 on page 14-13 for establishing the beam element
coordinate system.

The element reference axis is established by the vector , which points from node 1 to node
2 (Figure 14.5). The beam cross-section axis, parallel to the reference axis, intersects the
cross-section plane at the origin of the cross-section coordinate system. Referring to
Figure 16.4, it can be seen that the reference axis is established by in a beam, in a
stringer, and in a ring. The cross-section axis is established by the cross-section
coordinate . The axis is not shown, but it is always parallel to the reference axis.

The cross-section axis is positioned using eccentricities, ECY and ECZ, which offset it from
the reference axis. The cross-section is oriented by rotating it through an angle XSI, indicated
by in Figure 16.4. ECY, ECZ, and XSI thus establish the position and orientation of the
cross-section coordinate system. Figure 16.4 shows an additional coordinate system, ,
which is coincident with the unrotated cross-section coordinate system. The axis,
coincident with and parallel to the reference axis, is not shown. For all three beam
categories, a positive ECY is directed from the reference axis in the positive direction, and

Vy Mz

z Vz My y T

x N

X constant=()

Y constant=()

x′ y′ z′, ,()

r12

y z,()
x′ X′

Y′
x x

ξ y z,()
y z,()

ξ 0=() x

x

y

16-8 April, 2009 STAGS 5.0 User Manual

Beam Results Interpretation of Results

☞

a positive ECZ is directed from the reference axis in the positive direction. Negative ECY,
ECZ are directed in the negative directions, respectively. XSI is a right-handed rotation
about the cross-section axis (or). The rotation vector points in the positive direction
for a positive XSI.

Beam results are expressed in the unrotated cross-section coordinate system. Figure
16.4 gives conventions for interpreting beam resultant forces, which are related to axial and
torsional-shear stresses by the relations

Reference-axis strain, curvature, and unit twist are defined by the relations

where are displacements in the directions, l is the length of the beam, and

 are the axial rotations at nodes 1 and 2, and the unit twist has units of .

Transformation of beam resultants

Moments and curvatures may be transformed from the unrotated cross-section
coordinate system to the cross-section coordinate system according to

 (16.13)

z

y z,

x x x

y z,()

Nx σxx y z,() dydz

A

∫= Mz yσxx y z,() dydz

A

∫= My zσxx y z,() dydz

A

∫=

T yτxz y z,() zτxy y z,()–[] dydz

A

∫=

εx u,x= κz v,xx–= κy w,xx–= α Rx
2 Rx

1–() l⁄=

u v w, ,() x y z, ,() Rx
1

Rx
2 α() radians length⁄

y z,()

y z,()

Mz

My
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

ξcos ξsin

ξsin– ξcos

Mz

My
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

⋅=

κz

κy
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

ξcos ξsin

ξsin– ξcos

κz

κy
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

⋅=
STAGS 5.0 User Manual April, 2009 16-9

Interpretation of Results Beam Results
Figure 16.4 Beam resultant forces. All forces are shown acting in
their respective positive senses.

Conventions for Interpreting Beam Resultant Forces

• stress resultants, N, have units of

• moment resultants, M, have units of

• flexural shear resultants, V, have units of

• torsional shear resultants, T, have units of

• the right-hand rule applies consistently for interpreting moments

• positive normal force N causes axial tension

• positive bending moment causes axial tension on the surface

• positive bending moment causes axial tension on the surface

• positive shear acts in the direction on faces, and in the
 direction on faces

• positive shear acts in the direction on faces, and in the
 direction on faces

• positive torsion, T, is directed in the direction on faces, and in
the direction on faces

My

My dMy+

Vy

Vy dVy+

Vz

Mz

Vz dVz+

Mz dMz+

N

N dN+

T

T dT+

z

y

z

y

node 1

ECZ

ECY

(beam)

(stringer)

(ring)

x′

X′

Y′

ξ

force

force length×

force

force length×

Mz y+

My z+

Vy y+ x+

y– x–

Vz z+ x+

z– x–

x+ x+

x– x–
16-10 April, 2009 STAGS 5.0 User Manual

Beam Results Interpretation of Results

☞

Axial stress and strain

Since the axis is coincident with the axis, there is no ambiguity regarding interpretation
of axial stress and strain. Still, greater insight to the behavior of beams can be gained by
considering the following relations among curvatures, moments, strains, and stresses.

Curvatures from (16.13) may be combined with axial strain at the cross-section axis to
compute strain anywhere in the cross section according to

 (16.14)

Elastic stresses may then be computed as

Alternatively, when are principal axes , elastic stresses may be computed
according to

 (16.15)

Torsional shear

STAGS assumes that torsional shear strain varies linearly with distance from the twist axis.
In general, this assumption is valid only for circular cross sections. STAGS does not report
torsional shear strain, but computes torsional shear stress using the familiar expression

where r is the radial distance from the twist axis, and is the resultant shear stress acting
in the circumferential direction.

Torsional shear results computed by STAGS should not be relied upon for non-circular cross
sections. The torsional moment and the unit twist are valid, however, and may be
used to compute torsional shear stress by the analyst who has knowledge of stress
distribution over a given cross section.

Flexural shear

STAGS computes flexural shear resultants, and . No assumption is made regarding
cross-sectional variation of shear strain, however average values are computed.

x x

εx
0()

εx εx εx
0 yκz zκy+ += =

σx σx E εx⋅= =

y z,() Iyz 0=()

σx
N
A

Mz y⋅
Iz

My z⋅

Iy
--------------+ +=

τ Tr
J

------=

τ

T() α()

Vy Vz

γy γz,()
STAGS 5.0 User Manual April, 2009 16-11

Interpretation of Results Evaluating Solution Quality

☞

Flexural shear stresses are not reported. and may be used to compute flexural shear
stress by the analyst who has knowledge of stress distribution over a given cross section.

Combined shear

Net shear strains and stresses may be computed by combining flexural and
torsional results, where the analyst has computed these. STAGS does not compute cross-
sectional variation of shear in beams, which is a complex matter for all but the simplest of
situations, such as a circular cross-section under pure torsion or a rectangular cross-section
under pure flexure.

If rigorous treatment of beams is important, they should be modeled using shells. For
example, a Tee-stiffener can be modeled using separate shell branches for web and flange.

16.3 Evaluating Solution Quality

16.4 Interpreting Diagnostic Messages

16.5 Overcoming Difficulties

It is important that the output be carefully studied. For example, even if only the bifurcation
buckling load is of direct interest, it is worthwhile to study carefully the buckling mode.
Such a study may reveal a flaw in the modeling which makes the computed critical load
questionable. In general, a study of the output may indicate whether a suitable grid has been
chosen. It is a good habit to look through the entire output even if everything appears to be
all right.

Arrangements have been made so that the program can be used as a preprocessor of data
records. If the program module S2 is excluded, all input records are read, error checks are
made, but no time-consuming computations will be carried out. The printout from such a
run contains all of the messages that are based on the input data directly including possible
error messages. It also contains the matrix of shell wall stiffnesses. A plot of the grid can
be obtained in an isometric view. Because such a run generally executes in a few seconds
and only requires minimum computer core storage, it can be made on a high priority basis
as a preliminary to a longer low priority run.

Vy Vz

γxy γxz,() τxy τxz,()
16-12 April, 2009 STAGS 5.0 User Manual

Overcoming Difficulties Interpretation of Results
Error messages are obtained when various indices are outside of their allowed or specified
range. In many cases, input record errors will cause the remaining data records to be read
in an incorrect sequence which will normally cause the run to abort. In such a case,
additional errors will not be found unless the run is repeated after correction of the error.

Error messages may appear embedded in the regular output. If the run is aborted for reasons
that are not immediately clear, look through the output for such messages.

The following text discusses some special problems that may occur and their possible
solutions. Computer system problems are not included in this discussion.

Linear static analysis

Problem Output from matrix decomposition indicates that the stiffness matrix is
singular or near-singular.

Action The stiffness matrix becomes singular when rigid body motion is not
prevented. Errors or omissions in data defining wall construction and
material properties may lead to a singular system. It may also be noted that
as the mesh spacing is reduced, the stiffness matrix will approach a
singular condition in the limit.

Problem The displacement or stress solution appears not to vary smoothly with the
shell coordinates.

Action One possibility is that the grid is too coarse. It is also possible that the
solution is inaccurate because of roundoff errors. Check equilibrium
forces! An accurate solution possibly can be obtained by use of nonlinear
analysis as a form of linear refinement. If convergence is not obtained in
a nonlinear analysis, look for reasons for ill-conditioning and try to
improve the model.

Problem The displacements appear to be too large.

Action An error in the model or in the shell stiffness is conceivable. It is also
possible that the boundary conditions allow rigid body motions. Check
equilibrium forces!

Problem The displacements are all zero.

Action Probably the case has been specified so that there is no load. Check if the
load is in conflict with boundary conditions, e.g. applied at a point at
which the boundary conditions do not allow displacement.
STAGS 5.0 User Manual April, 2009 16-13

Interpretation of Results Overcoming Difficulties
Problem The average bandwidth of the stiffness matrix is zero and the determinant
is exactly 1.0.

Action These symptoms occur when there are no nonzero terms in the stiffness
matrix. The problem is probably caused by errors in the data defining the
wall properties. The stiffness matrix will also vanish identically when all
freedoms of the system have been constrained by boundary conditions or
specified displacements in the load data.

Problem The stress at some point does not appear to converge with the grid size.

Action A singularity may exist. If it is necessary to find accurate values for the
stress at the point in question, a special analysis based on three-
dimensional inelastic analysis may have to be carried out for a part of the
structure in the immediate vicinity of the singularity. If displacements
appear to converge, the displacement solution and the stresses away from
the singularity are probably satisfactory.

Eigenvalue analysis

Problem The output indicates the existence of negative roots when the matrix is
refactored after the shift. (If negative roots occur without shift, see linear
analysis above.)

Action Each negative root represents an eigenvalue between zero and the value of
the shift. If the number of negative roots is larger than the number of
computed eigenvalues between zero and the value of the shift, there must
be additional eigenvalues between zero and the smallest computed
eigenvalue. A rerun is then needed if the lowest eigenvalues are required.

Problem Only negative eigenvalues were obtained, though a positive value was
desire.

Action It is necessary to use a positive shift.

Problem The buckling or vibration mode shows jumpiness in the displacement,
changing sign at every grid point.

Action The grid is probably too coarse and should be modified. The occurrence
of such buckling modes is discussed under STRATEGY.
16-14 April, 2009 STAGS 5.0 User Manual

Overcoming Difficulties Interpretation of Results
Problem No convergence on all or some of the requested eigenvalues.

Action The program iterates 30 times. This is usually sufficient. Should
nonconvergence occur, the intermediate values of the eigenvalues (if
printed) will give some information. They indicate approximate values of
buckling loads or vibration frequencies. A repeated analysis with a shift
closer to the nonconverged eigenvalues will probably remedy the
problem. It may be useful to ask for more than one cluster of eigenvalues
in the repeat run, so that none of the eigenvalues to be determined are too
far away from a point of shift.

Nonlinear static analysis

In the nonlinear analysis, a normal exit can occur in several different ways. Normal exit
does not always mean that the analysis has been successfully completed. The program
output advertises when one of the following normal exits occurs:

• Convergence not obtained at first step.

• The time limit NSEC is exceeded or there is not enough time left to perform the
next option.

• The maximum load is reached.

• Convergence not obtained and the values set on the parameter NEWT and NCUT

have been reached.

• Convergence difficulties cannot be resolved if the maximum number of cuts is
reached and nonconvergence occurs after refactoring.

An abnormal exit can occur for several reasons, none of which can be indicated by the
program output. Examples of abnormal exits are:

• Maximum time on control record has been exceeded.

• Maximum I/O time allowed has been exceeded.

• Maximum allowed computer core storage or disc storage exceeded.

• Systems error.

• Error in user-written subroutine.

If the analysis is to be continued, check in the system output that the appropriate data have
been saved on tape or disc file.
STAGS 5.0 User Manual April, 2009 16-15

Interpretation of Results Overcoming Difficulties
Problem No convergence on first load step for an original run (not restart).

Action The cause may be that the system is ill-conditioned or that the effect of
nonlinearities is too large. Use of a less severe convergence criterion is
possible if the ill-conditioning is moderate. However, this may lead to an
unnecessarily expensive analysis as convergence difficulties will be
recurring. If too much nonlinearity prevents convergence, this may be
caused by a mistake in modeling or in the data input. Nonconvergence will
usually result if rigid body motion is permitted, even though applied loads
are in balance.

Problem No convergence on first load step of a restart.

Action This may be because a load level has been reached that is close to a limit
point. If the load displacement curve based on the previous runs does not
indicate clearly that collapse is about to occur, continue the analysis, with
much smaller steps. The nonconvergence also m ay be caused by an error
in input data. It should be determined also whether the initial load factor
corresponds to the solution on the selected restart record and whether the
previous run was properly saved; check ISTART and STLD!

Problem The output indicates that convergence difficulties cannot be resolved.

Action This may not be a problem. Such output is obtained when convergence
fails if the number of cuts of load step has reached NCUT, but the number
of refactorings is still below NEWT. It would not serve any purpose to do
additional factorings without a cut in the load step. If it appears that the
run should be continued, it must be restarted with a smaller load step.

Problem At refactoring the determinant is found not to be positive definite (this
could happen at restart or during the run).

Action This is an indication that either there is a bifurcation point on the primary
path below the load level is reached, or that an inaccurate solution was
accepted at a previous step. If there is a true bifurcation, the analysis can
be rerun with a small imperfection (or perhaps a small lateral load) which
will trigger displacements in the critical mode. If a true bifurcation does
not exist, there may be present a displacement mode that has an extremely
small amplitude at moderate loads. At some load level (close to a sharp
maximum in the load displacement curve) this amplitude begins to grow
rapidly. In that case either an imperfection may be used or the convergence
16-16 April, 2009 STAGS 5.0 User Manual

Overcoming Difficulties Interpretation of Results
criterion may be sharpened. This is discussed under strategy for nonlinear
analysis.

Problem Convergence difficulties seem to persist even with moderate nonlinearity.

Action The system may be ill-conditioned; the accuracy of the computations are
marginal in comparison to the convergence criterion. This problem may be
cured by use of a less severe convergence criterion. However, with a
coarser criterion, less accurate solutions will be accepted, and the
predictions for initial estimate will be inaccurate. The output indicates for
each iteration at which point the largest change is displacement occurs. If
the convergence is nonuniform oscillating, it may be practical to switch to
a true Newton method.

Problem At some load level, the displacement solution does not appear to be
smooth.

Action A jumpy solution probably indicates that a spurious mode of collapse is
developing. Use a finer grid!

Transient analysis

Problem Convergence difficulties or negative roots.

Action See Nonlinear Analysis.

Problem The explicit scheme is used and the displacement components grow
extremely rapidly.

Action Mathematical instability occurs because the time step is too large. Rerun
with smaller time step!

Problem One of the implicit integration methods is used. The motion of the
structure seems to indicate unwarranted damping.

Action The time step is probably too large. Reduce the time step or use the option
with a variable time step. If the problem occurs with a variable time step,
reduce the value of SUP (E-1).

Problem The third order Gear method is used. The motion of the structure seems to
indicate that energy is added to the system in a way that is not due to the
STAGS 5.0 User Manual April, 2009 16-17

Interpretation of Results Overcoming Difficulties
work of external forces. A vibration with increasing amplitude in the
lowest frequency mode is a reason for suspicion.

Action The chosen time step is such that at least one of the deformation modes is
in the unstable range. Choose other integration method, modify (increase)
time step, or add some structural damping.
16-18 April, 2009 STAGS 5.0 User Manual

17
17
17 17

Input/Output Files

STAGS uses various file systems; e.g., text input/output files, binary database files, and
scratch files. Understanding these file systems is important for effective use of STAGS. This
is especially so for restarting an analysis, for pre/postprocessing, and for interfacing with
the database via STAR, the STAGS Access Routines.

There are two sections in this chapter. Section 17.1 describes each file, and section 17.2
summarizes file requirements according to the various STAGS processors.

See Section 3.5 “File Systems” on page 3-8 for additional information on files.

17.1 Description of I/O Files

This section gives a brief description of each STAGS file. The files appear in alphabetical
order.

ACCEL casename.accel.i

The ACCEL file, created by stp per user request, contains text data in
PATRAN “results” format representing the nodal accelerations at load/
timestep i. See $STAGSHOME/doc/stpfiles for more information.

BIN casename.bin

The BIN file contains input to the STAGS solution processor, s2.
Solution input data are described in Chapter 11.

BSR casename.bsr

The BSR file is a binary scratch data file that is present only during
execution of certain STAGS processors. If an orphan BSR file is found after
STAGS 5.0 User Manual April, 2009 17-1

Input/Output Files Description of I/O Files
all processors have finished, it should be deleted. BSR files can grow quite
large!

DISP casename.disp.i

The DISP file, created by stp per user request, contains text data in
PATRAN “results” format representing the nodal displacements at load/
time step i. See $STAGSHOME/doc/stpfiles for more information.

EGV casename.egv

The EGV file contains a binary representation of eigenvector data for
selected load/time steps during each run or execution of the STAGS

processor s2. The EGV file is indexed by the IMP file.

EGV.bak casename.egv.bak

The EGV.bak file contains a backup copy of the EGV file. The EGV.bak
file is copied from an EGV file when s2 is run and an EGV file for that case
exists. Only one EGV.bak file exists at any time. The user can suppress the
creation of the EGV.bak file by specifying the appropriate option with the
stags command.

EGV.BOMB casename.egv.BOMB

The EGV.BOMB file contains the most recently obtained eigenvector data
when the s2 process terminates abnormally. Often the EGV.BOMB file
will be usable, but since the case terminated abnormally, there is no
guarantee. Usually an EGV.BOMB file will contain load/time step data up
to the step that triggered the abnormal termination. In the event the user
encounters an EGV.BOMB file, he/she must decide whether to use it or the
EGV.bak file that is normally available before performing further analysis.

EIG casename.eig.i.j

The EIG file, created by stp per user request, contains text data in PATRAN

“results” format representing a normalized displacement due to
eigenmode j for loadstep i. See $STAGSHOME/doc/stpfiles for more
information.

elmI casename.elmI.i

The elmI file, created by stp per user request, contains text data in PATRAN

“results” format representing stress and moment resultants for solution
time/load step i. See $STAGSHOME/doc/stpfiles for more information.
17-2 April, 2009 STAGS 5.0 User Manual

Description of I/O Files Input/Output Files
elmP casename.elmP.i.j

The elmP file, created by stp per user request, contains text data in
PATRAN “results” format representing plastic strains for solution time/
load step i in material layer j for those cases where plastic strains exist.
See $STAGSHOME/doc/stpfiles for more information.

elmR casename.elmR.i

The elmR file, created by stp per user request, contains text data in
PATRAN “results” format representing reference-surface strains and
curvatures for solution time/load step i. See $STAGSHOME/doc/stpfiles for
more information.

elmT casename.elmT.i.j

The elmT file, created by stp per user request, contains text data in
PATRAN “results” format representing strains and stresses for solution
time/load step i in material layer j. See $STAGSHOME/doc/stpfiles for more
information.

FINT casename.fint.i

The FINT file, created by stp per user request, contains text data in
PATRAN “results” format representing the nodal forces at load/time step i
for the given STAGS model. See $STAGSHOME/doc/stpfiles for more
information.

FORT fort.*

TMP and FORT files are miscellaneous scratch files and should disappear
upon termination of the process that created them. If you are sure no
STAGS processes are running in the current directory and these files exist,
you may delete them.

IMP casename.imp

The IMP file contains an index of the latest set of data contained in the
EGV file.

IMP.bak casename.imp.bak

The IMP.bak file contains a backup copy of the IMP file. The IMP.bak file
is copied from an IMP file when s2 is run and an IMP file exists for that
case. Only one IMP.bak file exists at any time. The user can suppress the
STAGS 5.0 User Manual April, 2009 17-3

Input/Output Files Description of I/O Files
creation of the IMP.bak file by specifying the appropriate option with the
stags command.

IMP.BOMB casename.imp.BOMB

The IMP.BOMB file contains the most recently obtained eigenvector data
when the s2 process terminates abnormally. Often the IMP.BOMB file will
be usable, but since the case terminated abnormally, there is no guarantee.
Usually an IMP.BOMB file will contain load/time step data up to the step
that triggered the abnormal termination. In the event the user encounters
an IMP.BOMB file, he/she must decide whether to use it or the IMP.bak
file that is normally available before performing further analysis.

INP casename.inp

The INP file contains input to the STAGS model processor, s1. Model input
data are described in Chapters 5–10.

LOD casename.lod

The LOD file is a binary scratch file used by stp to store selected
displacement data. It is deleted upon normal termination of stp.

LOG casename.log

The LOG file contains text diagnostics from the latest stags command.

MDL casename.mdl

The MDL file is a PATRAN Neutral File that is created by the STAGS-to-
PATRAN model translation function of stp.

OUT1 casename.out1

The OUT1 file contains text output from the STAGS processor s1.

OUT2 casename.out2

The OUT2 file contains text output from the most recent invocation of the
STAGS processor s2.

OUT2.i casename.out2.i

An OUT2.i file results when the STAGS processor s2 is run through the
stags command and an OUT2 file exists. The existing OUT2 file is
17-4 April, 2009 STAGS 5.0 User Manual

Description of I/O Files Input/Output Files
renamed to an OUT2.i file where i is either 1 or the greatest i plus 1 of
existing OUT2.i files.

Examples

If the file ring.out2 exists and we run s2 through the stags command,
ring.out2 will be renamed ring.out2.1 and the output from the latest
execution of s2 will be placed in the file ring.out2.

If the following files exist: ring.out2, ring.out2.1, ring.out2.2, and
ring.out2.3 and if s2 is executed through the stags command, the file
ring.out2 will be renamed to ring.out2.4 and output from the latest
execution of s2 will be placed in the file ring.out2.

If the files ring.out2.1 and ring.out2.2 exist but ring.out2 does not exist
and if s2 is executed through the stags command, output will be placed
in the file ring.out2, and no renaming will occur.

Once an OUT2 file becomes an OUT2.i file, no further renaming occurs.

The OUT2 file always contains the latest output of an s2 execution.
Previous executions of s2 on the same case are placed in numerical order
in OUT2.i files from oldest, , to second newest, , where j is the
maximum of all i’s.

Note: OUT2 files are renamed to OUT2.i files in the fashion described above
only if s2 is executed through the stags command or if the user explicitly
renames the files.

PDF casename_m.pdf and casename.pdf

These PDF files contain plots generated in Adobe’s Portable Document
Format (pdf) by STAGS’ stapl plotting processor for the model and
selected solutions, respectively.

PIN casename.pin

The PIN file contains input for STAGS’ stapl plotting processor.

PLOT casename.i.plot

The PLOT file is a text file created by the invocation of the “xy”
function from within a single stp session. The PLOT file may be used
directly as input to xgraph or plotps.

The integer i is used to age the PLOT files. If no PLOT file exists then
, otherwise where j is the highest-numbered existing PLOT

file. See $STAGSHOME/doc/stpfiles for more information.

i 1= i j=

ith

i 1= i j 1+=
STAGS 5.0 User Manual April, 2009 17-5

Input/Output Files Description of I/O Files
POUT casename.pout

The POUT file contains printed output from the stapl plotting processor.

PS casename_m.ps and casename.i.ps

PS files contain data for plots generated in Adobe’s PostScript format
(ps) by the stapl program; they can be printed directly on a PostScript
printer or viewed in a PostScript viewer.

The casename_m.ps file is a PostScript-formatted plot—generated by
STAGS’ s1 (model definition) processor—of the undeformed model;.

Each casename.i.ps file contains one plot of the undeformed or deformed
configuration, with or without solution information, generated by the
stapl processor; the integer i is used to age the PS files; if no PS file exists
then stapl sets , otherwise it sets it to , where j is the highest-
numbered existing PS file.

PXY casename.pxy

The PXY text file contains y(x) data generated by STAGS’ xyrans
processor; these files facilitate visual inspection of STAGS results and can
often be used effectively as (part of the) input into an xy plotting program.

RES casename.res

The RES file contains a binary representation of the solution state for the
load/time steps evaluated in the current, and if applicable, previous
executions of the STAGS processor s2. The RES file is indexed by the RST
file. The RES file is created the first time s2 is run for a given case. Each
subsequent run of s2 for that case appends and/or overwrites data to the
RES file.

RES.bak casename.res.bak

The RES.bak file contains a backup copy of the RES file. The RES.bak file
is copied from an RES file when s2 is run and an RES file for that case
exists. Only one RES.bak file exists at any time. In case the RES file is very
large (i.e. more than 1/2 available free disk space), the user can suppress
the creation of the RES.bak file by specifying the appropriate option with
the stags command.

RES.i casename.res.i

When the user selects the “pcopy” function of stp, he or she is asked to
select a subset of load/time steps from the current RES file and copy them

i 1= i j 1+=
17-6 April, 2009 STAGS 5.0 User Manual

Description of I/O Files Input/Output Files
into a new RES file that is usually much smaller. The original RES file is
renamed to an RES.i file where i is either 1 or the highest plus one of
existing RES.i files. The file RST.i indexes the database file RES.i.

RES.BOMB casename.res.BOMB

The RES.BOMB file contains the current database when the s2 process
terminates abnormally. Often the RES.BOMB file will contain usable data;
but since the case terminated abnormally, there is no way to guarantee that
the database is intact. Usually a RES.BOMB file will contain load/time
step data up to but not including the step that triggered the abnormal
termination. In the event the user encounters a RES.BOMB file, he/she
must decide whether to use it or the RES.bak file that is normally available
before performing further analysis.

CAUTION: If a truly bad RES.BOMB file is renamed to a RES file and the creation of
a RES.bak file is suppressed during an s2 execution, the database could be
lost.

RST casename.rst

The RST file contains an index of the RES file for the load/time step
solutions generated from running the STAGS processor s2.

RST.bak casename.rst.bak

The RST.bak file contains a backup copy of the RST file. The RST.bak file
is copied from an RST file when s2 is run and an RST file for that case
exists. Only one RST.bak file exists at any time. The user can suppress the
creation of the RST.bak file by specifying the appropriate option with the
stags command.

RST.i casename.rst.i, where i is an integer

When the STAGS user selects the “pcopy” function of stp, he or she is
asked to select a subset of load/time steps from the current RST file and
copy them into a new RST file that is usually much smaller. The original
RST file is renamed to an RST.i file where i is either 1 or the highest plus
one of existing RST.i files. The file RST.i indexes the database file RES.i.

RST.BOMB casename.rst.BOMB

The RST.BOMB file contains an index for the current database when the
s2 process terminates abnormally. Often the RST.BOMB file will be
usable, but since the case terminated abnormally, there is no guarantee.
Usually an RST.BOMB file will contain load/time step data up to the step
STAGS 5.0 User Manual April, 2009 17-7

Input/Output Files Description of I/O Files
that triggered the abnormal termination. In the event the user encounters
an RST.BOMB file, he/she must decide whether to use it or the RST.bak
file that is normally available before performing further analysis.

SAV casename.sav

The SAV file, a binary representation of the STAGS model, is created by the
STAGS processor s1. One can also create a SAV file by making the
appropriate calls to the “data put” (DP) routines in the STAR library.

SOT casename.sot.i

The SOT file contains text diagnostics from running a program that calls
the STAR library. The file is created upon a call to DUOPEN and upon a
normal call to DUCLOSE, the file is deleted.

STEP casename.step

The STEP file contains a complete listing of the load/time step history
contained in the RES file. The STEP file is created by various
postprocessors.

The integer i is used to age the SOT files. If no SOT file exists then ,
otherwise where j is the highest-numbered existing SOT file.

TMP tmp.*

TMP and FORT files are miscellaneous scratch files and should disappear
upon termination of the process that created them. If you are sure no
STAGS processes are running in the current directory and these files exist,
you may delete them.

i 1=

i j 1+=
17-8 April, 2009 STAGS 5.0 User Manual

Summary of I/O File Requirements Input/Output Files
17.2 Summary of I/O File Requirements

The following sections discuss input files required for each STAGS processor and the output
files generated or modified. Files marked with an asterisk (*) are read and/or written under
certain conditions only. See the file descriptions above for details. Files marked with a hash
(#) are temporary files that may be present while the processor is running but which should
disappear upon termination.

s1—Model processor

Input: INP EGV* IMP*

Output: LOG OUT1 SAV BSR# TMP#

PDF (casename_m.pdf) or PS (casename_m.ps)

s2—Solution processor

Input: BIN SAV EGV* IMP* RES*
RST*

Output: LOG OUT2 RES RST EGV*
IMP* OUT2.i* BSR# FORT# TMP#

stapl—Plotting processor

Input: PIN SAV RES* RST*

Output: PDF PS POUT

stp—STAGS translator/postprocessor

Input: PCN* RES* RST* SAV*
PATRAN Neutral File *(input to PAT2S, Appendix X)

Output: ACCEL* DISP* EIG*
elmI* elmP* elmR* elmT*
FINT* MDL* PCN* PLOT* PS*
RES* RES.i* RST* RST.i*
SAV* SOT* STP* VELO*
BSR# FORT# LOD# PD# TMP#
STAGS 5.0 User Manual April, 2009 17-9

Appendix A
1

A

A A p p e n d i c e s
1 A

STAGS Input Record Catalog

Model Input—INP File

Summary and Control Parameters

A-1 Case Title
COMMENT

B-1 Analysis Type Definition
IGRAV ICHECK ILIST INCBC NRUNIT NROTS KDEV

B-1a Model Unit List (for plotting)
(IUNIS(i), i = 1, NRUNIT)

B-1b Sequence of Model Rotations (for plotting; NROTS records required)
IROT ROT

B-2 General Model Summary
NUNITS NUNITE NSTFS NINTS NPATS NCONST NIMPFS INERT NINSR NPATX NSTIFS

B-3 Data Tables Summary
NTAM NTAB NTAW NTAP NTAMT NGCP

B-4 Gravitational Acceleration
GRAV

B-5 Buckling Mode Imperfections
WIMPFA IMSTEP IMMODE IMRUN

B-6 Inertial Loads Summary
ISYS IA IOM IAL IOPT

B-6a Inertial Loads — Acceleration
AX AY AZ
STAGS 5.0 User Manual April, 2009 A-1

Appendix A
B-6b Inertial Loads — Angular Velocity
OMX OMY OMZ

B-6c Inertial Loads — Angular Acceleration
ALX ALY ALZ

B-6d Inertial Loads — Position Vector
X Y Z

Discretization and Connectivity Summary

F-1 Grid Summary
(NROWS(i) NCOLS(i)), i = 1, NUNITS

F-2 Stiffener Summary
IUNIT NRGS NSTR

G-1 Shell Unit Connections
MUNIT MBOUND NUNIT NBOUND NDEFS INC1 INC2 INC3 INC4

G-2 Partial Displacement Compatibility
IU1 IR1 IC1 ID1 IU2 IR2 IC2 ID2 ND1A ND1B INC1 ND2A ND2B INC2 NDEFS

G-2a Partial Compatibility Incrementations
JU1 JR1 JC1 JD1 JU2 JR2 JC2 JD2

G-2c Partial Displacement Compatibility
IU1 IR1 IC1 IL1 ID1 IU2 IR2 IC2 IL2 ID2 ND1A ND1B INC1 ND2A ND2B INC2

G-2d Partial Compatibility Looping and Incrementations
NDEFS JU1 JR1 JC1 JL1 JD1 JU2 JR2 JC2 JL2 JD2

G-3 Constraint—Record 1
NTERMS NX INC1 INC2 INC3 INC4 INC5

G-4 Constraint—Record 2
IU(i) IX(i) IY(i) ID(i) CC(i) IZ(i)

G-5 Crack Inserted Node Set—Record 1
NCRACK INNODS INELTS ITEAR ACRIT CTOD
ACRITT SAWL SAWT CSCALE IDREC
A-2 April, 2009 STAGS 5.0 User Manual

Appendix A
G-6 Crack Inserted Node Set—Record 2
ICOPEN ICUNIT ICROW1 ICCOL1 ICROW2 ICCOL2

JCUNIT JCROW1 JCCOL1 JCROW2 JCCOL2 THETA

G-7 Crack Inserted Node Set—Record 3
 JETYPE JCUNIT JCROW1 JCCOL1 JCROW2 JCCOL2

H-1 Element Unit Summary (NUNITE records required)
NUPT NT1 NT2 NT3 NT4 NT5 IUWP IUWE IUDIMP IUWLE NS5

Data Tables

I-1 Material Properties
ITAM NESP IPLST ITANST ICREEP IPLANE

I-2 Material Elastic Properties
E1 U12 G RHO A1 E2 A2

I-3 Material Plastic Properties
(E(i), S(i)), i=1, NESP

I-3a Material Creep Properties
ACO BCO M N

I-4a Mount Element Table Size
IMNT NRD NRV

I-4b Relative Displacement Vector
DISP(j), j = 1, NRD

I-4c Relative Velocity Vector
RVEL(i), i = 1, NRV

I-4d Mount Force Matrix
FORCE(j), j = 1, NRD

I-5a GCP Command Record
COMMAND INFO(j), j = 1, 7
STAGS 5.0 User Manual April, 2009 A-3

Appendix A
I-6a Linear Elastic Isotropic GCP Material
E GNU RHO ALPHA BETA T M

I-7a Linear Elastic Orthotropic GCP Material
E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO A1 A2 A3 B1 B2 B3 T M

I-8a Plane-Strain-Plasticity GCP Material
E GNU RHO ALPHA BETA T M

I-9a Mechanical Sublayer Plasticity GCP Material
E GNU RHO ALPHA NSUBS T

I-9b Stress-Strain Curve for a Given State
(E(i), S(i)), i = 1, NSUBS

I-10a Linear Orthotropic Elastic Brittle GCP Material
E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO A1 A2 A3 B1 B2 B3 T M
EPS1C EPS1T ESP2C EPS2T EPS6F EPS3C EPS3T EPS4F EPS5F
XC XT YC YT SXY ZC ZT SYZ SXZ ALPHA F12 BETA IFAIL IDGRD
VISF0 VISF1 VISFF

I-11a PDLAM GCP Material
E1 E2 E3 G12 G13 G23 P12 P13 P23
RHO A1 A2 A3 B1 B2 B3 T M
XC XT YC SXZ SYZ ALPHA CURET G1C G2C
VISF0 VISF1 VISFF DPHI0 DELTA DFMIN BETA ETA BETAC

I-12a ABAQUS UMAT GCP Material
PROPS(1) PROPS(2) ... PROPS(40)

I-13a SHM-Membrane GCP Material
E GNU RHO ALPHA BETA T M PENLTY IWRINK ISTATE

I-14a Nonlinear Orthotropic Elastic GCP Material
E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO
A1 A2 A3 B1 B2 B3 T M S6666

I-21a GCP Shell Fabrication Record
MATID(j) j = NX, NLAYER

I-21b GCP Shell Integration Points Record
INTSHL(j) j = NX, NLAYER

I-21c GCP Shell Layer Thickness Record
THKSHL(j) j = NX, NLAYER
A-4 April, 2009 STAGS 5.0 User Manual

Appendix A
I-21d GCP Shell Layer Orientation Record

ANGSHL(j) j = NX, NLAYER

I-21e Shear Factor Specification Record

SCF1 SCF2

I-22a GCP Solid Fabrication Record

THICK

I-22b GCP Solid Fabrication Orientation Record

ANGLE

J-1 Cross-Section

ITAB KCROSS MATB NSUB TORJ SCY SCZ NSOYZ KAPY KAPZ

J-2a General Cross-Section—Record 1

BA BIY BIZ BIYZ

J-2b General Cross-Section—Record 2

(SOY(i), SOZ(i)), i = 1, NSOYZ

J-3a General Subelement Cross-Section

SA(i) SY(i) SZ(i) SIY(i) SIZ(i) SIYZ(i) ISP(i)

J-3b Rectangular Subelement Cross-Section

Y1(i) Y2(i) Z1(i) Z2(i) ISOC(i)

J-4a Arbitrary Cross-Section—Record 1

BMA

J-4b Arbitrary Cross-Section—Record 2

(CCC(i,j), j=1,4), i=1,4

K-1 Shell Wall Properties

ITAW KWALL NLAY NLIP NSMRS SHEAR1 SHEAR2

K-2 Layered Wall

MATL TL ZETL LSOL
STAGS 5.0 User Manual April, 2009 A-5

Appendix A
K-3a Fiber Reinforced Wall—Record 1
MATF MATM

K-3b Fiber Reinforced Wall—Record 2
TT XX ZETW O

K-4a Corrugation Stiffened Wall—Record 1
MATC MATS CT CC CH CD CB

K-4b Corrugation Stiffened Wall—Record 2
TS PHI ANC

K-5a General Wall—Record 1
TA MAT ITVS

K-5b General Wall—Record 2
(CCC(i,j), j = 1, 6), i = 1, 6

K-5c General Wall—Record 3
(CTS(i,j), j = 1, 2), i = 1, 2

K-6 Smeared Stiffener
ICROSM SPASM ZETSM XSISM ECZSM

L-1 User Parameters Summary
NPI NPF

L-2a Integer Parameters
USERINT(i), i = 1, NPI

L-2b Floating-Point Parameters
USERFLO(i), i = 1, NPF
A-6 April, 2009 STAGS 5.0 User Manual

Appendix A
Shell Units

M-1 Shell Type
ISHELL IGLOBE NROWS NCOLS NLAYS NFABS

M-2 Shell Surface Constants
PROP(i), i=1,8

M-3 Shell Unit Orientation—Straight-Line Boundary
NREP NCEP XGEP YGEP ZGEP

M-4a Shell Unit Orientation—Corner Point 1
XGC1 YGC1 ZGC1

M-4b Shell Unit Orientation—Corner Point 2
XGC2 YGC2 ZGC2

M-4c Shell Unit Orientation—Corner Point 3
XGC3 YGC3 ZGC3

M-4d Shell Unit Orientation—Translation
XG YG ZG

M-4e Shell Unit Orientation—Rotation
XGROT YGROT ZGROT

M-5 Shell Wall (NFABS records required)
IWALL IWIMP ZETA ECZ ILIN IPLAS IRAMP

M-6 Shell Imperfections
X1 Y1 XL YL WAMP ID

M-7a Random Imperfection Shapes
N1 N2 NI M1 M2 MI KTEST

M-7b Random Imperfection Amplitudes
GRAMP RANK EXP

N-1 Discretization Control
KELT NNX NNY IRREG IUGRID INTEG IPENL MESH1 MESH2 MESH3 MESH4 KELTX
STAGS 5.0 User Manual April, 2009 A-7

Appendix A
N-2 X-Segment Length

SEGLX(i), i=1,NNX

N-3 X-Segment Spacing

NSEGX(i), i=1,NNX

N-4 X-Coordinate

X(i), i = 1, NRWS

N-5 Y-Segment Length

SEGLY(j), j = 1, NNY

N-6 Y-Segment Spacing

NSEGY(j), j = 1, NNY

N-7 Y-Coordinate

Y(j), j = 1, NCLS

N-8 Mesh Irregularity

NRW1 NRW2 NCL1 NCL2

O-1a Discrete Ring—Record 1

ICROSS XSI ECY ECZ ILIN IPLAS

O-1b Discrete Ring—Record 2

IR JR1 JR2 XR YR1 YR2

O-2a Discrete Stringer—Record 1

ICROSS XSI ECY ECZ ILIN IPLAS

O-2b Discrete Stringer—Record 2

JS IS1 IS2 YS XS1 XS2

P-1 Boundary Conditions—Record 1

IBLN(i), i = 1, 4 IBOND

P-2 Boundary Conditions—Record 2

ITRA IROT
A-8 April, 2009 STAGS 5.0 User Manual

Appendix A
P-3 Boundary Conditions—Record 3

JBLN(i), i = 1, 4

P-4 Boundary Conditions—Record 4

JTRA JROT

Q-1 Loads Summary

NSYS NICS NAMS NUSS NHINGE NMOMNT NLEAST IPRESS

Q-2 Load Set Summary

ISYS NN IFLG

Q-3 Load Definition

P LT LD LI LJ LAX NX INC1 INC2 INC3 ILAY

Q-4 Attached Mass (NN records required)

GM IRM ICM LAYER NX INC1 INC2 INC3

Q-5 Uniform Stress State for Eigenanalysis

PNXA PNYA PNXYA PNXB PNYB PNXYB

Q-6 Cable Hinge Restraint

IROW ICOL HRU HRV HRW LAYER NX INC1 INC2 INC3

Q-7 Cable Hinge Moment

IROW ICOL MSYS RUM RVM RWM LAYER NX INC1 INC2 INC3

Q-8a Least Squares Loading Summary

NSQR IUNIT IROW ICOL SCALE

Q-8b Least Squares Load Definition

P LU LR LC LNDA LNDB LNDINC

R-1 Output Control—Record 1

IPRD IPRR IPRE IPRS IPRP IPRF NSELD NSELS IPRDSP IPRSTR ISL ISS ISD

R-2 Output Control—Record 2

IROWD ICOLD
STAGS 5.0 User Manual April, 2009 A-9

Appendix A
R-3 Output Control—Record 3

IROWS ICOLS

Element Units—Points & Lines

S-1 User Points (upts protocol)

IUPT IUS IRS ICS XG YG ZG IUVW IRUVW IAUX NPTS ILAY

S-1a User Point Incrementations (upts protocol)

JUPT JUS JRS JCS Dxg Dyg Dzg

S-2 Auxiliary Coordinate System (upts protocol)

XAX XAY XAZ YAX YAY YAZ

S-3 User Points (user-points protocol)

IUPT IUS IRS ICS XG YG ZG IUVW IRUVW IAUX NPTS ILAY

S-3a User Point Incrementations (user-points protocol)

JUPT JUS JRS JCS Dxg Dyg Dzg

S-4 Auxiliary Coordinate System (user-points protocol)

XAX XAY XAZ YAX YAY YAZ

S-5 Contact-Line Definition

LINEID UNITID NRECS

S-5a Contact Line on a Shell Unit

II JJ NPTS INC

S-5b Contact Line on an Element Unit

II NPTS INC

Element Units—Edef Protocol

T-1 Spring Element

N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

T-1a Mount

IMNT1 IMNT2 RLX1 RLY1 RLZ1 RLX2 RLY2 RLZ2
A-10 April, 2009 STAGS 5.0 User Manual

Appendix A
T-1b Rigid or Soft Link

SCALE

T-1c Generalized Fastener

IMNT1 IMNT2 IMNT3 IMNT4 IMNT5 IMNT6 PLAS1 PLAS2 PLAS3 PLAS4 PLAS5 PLAS6

T-2 Beam

N1 N2 N3 KELT ICROSS XSI ECY ECZ ILIN IPLAS NX USERELT

T-2a Beam Incrementations

INC1 INC2 INC3 INC4

T-3 Triangular Shell

N1 N2 N3 KELT IWALL ZETA ECZ ILIN IPLAS IANG USERELT

T-3a Wall Reference Vector

RX RY RZ

T-4 Quadrilateral Shell

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT

T-4a Extra Nodes

NODE(i), i=5,n

T-4b Wall Reference Vector

RX RY RZ

T-5 Contact, Sandwich, and Solid Element Flags

N810 N820 N822 N830 N840 N845 N847 N849 N880

T-6 E810 PAD Contact Element

N1 N2 N3 N4 N5 N6 N7 N8 KELT ITAB OFFSET NX USERELT

T-6a PAD Element Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9

T-7 General Contact Definition

KELT NSRF NPTS

T-7a E820 Row & Column Contact-Element Specifications

USRF TYPE LI LJ ID NI NJ
STAGS 5.0 User Manual April, 2009 A-11

Appendix A
T-7b E820 Element-Number Contact-Element Specifications

USRF TYPE I1 I2 INC ID

T-7c Row & Column Contact-Point Specifications

UNITP LI LJ RADIUS TOUCHE NI NJ

T-7d Point-Number Contact-Point Specifications

UNITP I1 I2 INC RADIUS TOUCHE

T-8 Line-Contact Interaction Definition

LINE1 LINE2 IPEN NX INC1 INC2 INC3

T-9 E830 6-Node Sandwich Element Definition

KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

T-9a E830 Lower Face-Sheet Properties

N1 N2 N3 IFABL ZETAL ECZL IPLASL IANGL

T-9b E830 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-9c E830 Upper Face-Sheet Properties

N4 N5 N6 IFABU ZETAU ECZU IPLASU IANGU

T-9d E830 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

T-9e E830 Core Properties

IFABC ZETAC IPLASC IANGC

T-9f E830 Core Reference Vector

RXC RYC RZC

T-9g E830 X-Direction Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9

T-9h E830 Y-Direction Incrementations

J1 J2 J3 J4 J5 J6 J7 J8 J9

T-10 E840 8-Node Sandwich Element Definition

KELT ILIN INTEG IPEN NX NY USERC USER1 USER2
A-12 April, 2009 STAGS 5.0 User Manual

Appendix A
T-10a E840 Lower Face-Sheet Properties

N1 N2 N3 N4 IFABL ZETAL ECZL IPLASL IANGL

T-10b E840 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-10c E840 Upper Face-Sheet Properties

N5 N6 N7 N8 IFABU ZETAU ECZU IPLASU IANGU

T-10d E840 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

T-10e E840 Core Properties

IFABC ZETAC IPLASC IANGC

T-10f E840 Core Reference Vector

RXC RYC RZC

T-10g E840 X-Direction Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

T-10h E840 Y-Direction Incrementations

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

T-11 E845 10-Node Sandwich Transition Element Definition

KELT ILIN INTEG IPEN IEDGE NX NY USER

T-11a E845 Lower Face-Sheet Properties

N1 N2 N3 N4 N5 IFABL ZETAL ECZL IPLASL IANGL

T-11b E845 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-11c E845 Upper Face-Sheet Properties

N6 N7 N8 N9 N10 IFABU ZETAU ECZU IPLASU IANGU

T-11d E845 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

T-11e E845 Core Properties

IFABC ZETAC IPLASC IANGC
STAGS 5.0 User Manual April, 2009 A-13

Appendix A
T-11f E845 Core Reference Vector

RXC RYC RZC

T-11g E845 X-Direction Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

T-11h E845 Y-Direction Incrementations

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

T-12 E847 14-Node Sandwich Transition Element Definition

KELT ILIN INTEG IPEN IEDGE NX NY USER

T-12a E847 Lower Face-Sheet Properties

N1 N2 N3 N4 N5 N6 N7 IFABL ZETAL ECZL IPLASL IANGL

T-12b E847 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-12c E847 Upper Face-Sheet Properties

N8 N9 N10 N11 N12 N13 N14 IFABU ZETAU ECZU IPLASU IANGU

T-12d E847 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

T-12e E847 Core Properties

IFABC ZETAC IPLASC IANGC

T-12f E847 Core Reference Vector

RXC RYC RZC

T-12g E847 X-Direction Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

T-12h E847 Y-Direction Incrementations

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15

T-13 E849 18-Node Sandwich Element Definition

KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

T-13a E849 Lower Face-Sheet Properties

N1 N2 N3 N4 N5 N6 N7 N8 N9 IFABL ZETAL ECZL IPLASL IANGL
A-14 April, 2009 STAGS 5.0 User Manual

Appendix A
T-13b E849 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-13c E849 Upper Face-Sheet Properties

N10 N11 N12 N13 N14 N15 N16 N17 N18 IFABU ZETAU ECZU IPLASU IANGU

T-13d E849 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

T-13e E849 Core Properties

IFABC ZETAC IPLASC IANGC

T-13f E849 Core Reference Vector

RXC RYC RZC

T-13g E849 X-Direction Incrementations

(IX(k), k=1,18) IXC IX1 IX2

T-13h E849 Y-Direction Incrementations

(IY(k), k=1,18) IYC IY1 IY2

T-14 E880-Family Solid Element

KELT IFAB IANG ILIN IPLAS NX NY

T-14a E880 Solid Element Nodes

(NODE(k), k=1,NPTS) USERELT

T-14b E880 X-Direction Incrementations

IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8 IUX

T-14c E880 Y-Direction Incrementations

IY1 IY2 IY3 IY4 IY5 IY6 IY7 IY8 IUY

T-14d E880 Material Orientation Record

XFX XFY XFZ YFX YFY YFZ
STAGS 5.0 User Manual April, 2009 A-15

Appendix A
Element Units—Ecom Protocol

T-100 Element Command Record

Ecom Control or Element-Specification Record

T-110 Additional E110 Elements

N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

T-110a E110 Element Data

IMNT1 IMNT2 RLX1 RLY1 RLZ1 RLX2 RLY2 RLZ2

T-120 Additional E120 Elements

N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

T-120a E120 Element Data

SCALE

T-121 Additional E121 Elements

N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

T-121a E121 Element Data

SCALE

T-130 Additional E130 Elements

N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

T-130a E130 Element Data

IMNT1 IMNT2 IMNT3 IMNT4 IMNT5 IMNT6 PLAS1 PLAS2 PLAS3 PLAS4 PLAS5 PLAS6

T-210 Additional E210 Elements

N1 N2 N3 KELT ICROSS XSI ECY ECZ ILIN IPLAS NX USERELT

T-210a E210 Incrementations

INC1 INC2 INC3 INC4

T-250 Additional E250 Elements

N1 N2 N3 KELT ICROSS XSI ECY ECZ ILIN IPLAS NX USERELT

T-250a E250 Incrementations

INC1 INC2 INC3 INC4
A-16 April, 2009 STAGS 5.0 User Manual

Appendix A
T-320 Additional E320 Elements

N1 N2 N3 KELT IWALL ZETA ECZ ILIN IPLAS IANG USERELT NX NY

T-320a E320 X-Direction Incrementations

IX1 IX2 IX3 IX4

T-320b E320 Y-Direction Incrementations

IY1 IY2 IY3 IY4

T-320c E320 Wall Reference Vector

RX RY RZ

T-330 Additional E330 Elements

N1 N2 N3 KELT IWALL ZETA ECZ ILIN IPLAS IANG USERELT NX NY

T-330a E330 X-Direction Incrementations

IX1 IX2 IX3 IX4

T-330b E330 Y-Direction Incrementations

IY1 IY2 IY3 IY4

T-330c E330 Wall Reference Vector

RX RY RZ

T-410 Additional E410 Elements

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX NY

T-410a E410 X-Direction Incrementations

IX1 IX2 IX3 IX4 IX5

T-410b E410 Y-Direction Incrementations

IY1 IY2 IY3 IY4 IY5

T-410c E410 Wall Reference Vector

RX RY RZ

T-411 Additional E411 Elements

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX NY

T-411a E411 X-Direction Incrementations

IX1 IX2 IX3 IX4 IX5
STAGS 5.0 User Manual April, 2009 A-17

Appendix A
T-411b E411 Y-Direction Incrementations

IY1 IY2 IY3 IY4 IY5

T-411c E411 Wall Reference Vector

RX RY RZ

T-480 Additional E480 Elements

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX NY

T-480a E480 Extra Nodes Specification

N5 N6 N7 N8 N9

T-480b E480 X-Direction Incrementations

IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8 IX9 IXU

T-480c E480 Y-Direction Incrementations

IY1 IY2 IY3 IY4 IY5 IY6 IY7 IY8 IX9 IYU

T-480d E480 Wall Reference Vector

RX RY RZ

T-510 Additional E510 Elements

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX

T-510a E510 Extra Node Specification

N5

T-510b E510 Incrementations

IX1 IX2 IX3 IX4 IX5 IXU

T-510c E510 Wall Reference Vector

RX RY RZ

T-710 Additional E710 Elements

N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX

T-710a E710 Extra Nodes Specification

N5 N6 N7

T-710b E710 Incrementations

IX1 IX2 IX3 IX4 IX5 IX6 IX7 IXU
A-18 April, 2009 STAGS 5.0 User Manual

Appendix A
T-710c E710 Wall Reference Vector

RX RY RZ

T-810 E810 PAD Contact Element

N1 N2 N3 N4 N5 N6 N7 N8 KELT ITAB OFFSET NX USERELT

T-810a PAD Element Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9

T-820 General Contact Definition

KELT NSRF NPTS

T-820a E820 Row & Column Contact-Element Specifications

USRF TYPE LI LJ ID NI NJ

T-820b E820 Element-Number Contact-Element Specifications

USRF TYPE I1 I2 INC ID

T-820c Row & Column Contact-Point Specifications

UNITP LI LJ RADIUS TOUCHE NI NJ

T-820d Point-Number Contact-Point Specifications

UNITP I1 I2 INC RADIUS TOUCHE

T-822 Line-Contact Interaction Definition

LINE1 LINE2 IPEN NX INC1 INC2 INC3

T-830 E830 6-Node Sandwich Element Definition

KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

T-830a E830 Lower Face-Sheet Properties

N1 N2 N3 IFABL ZETAL ECZL IPLASL IANGL

T-830b E830 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-830c E830 Upper Face-Sheet Properties

N4 N5 N6 IFABU ZETAU ECZU IPLASU IANGU

T-830d E830 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU
STAGS 5.0 User Manual April, 2009 A-19

Appendix A
T-830e E830 Core Properties

IFABC ZETAC IPLASC IANGC

T-830f E830 Core Reference Vector

RXC RYC RZC

T-830g X-Direction Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9

T-830h Y-Direction Incrementations

J1 J2 J3 J4 J5 J6 J7 J8 J9

T-840 E840 8-Node Sandwich Element Definition

KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

T-840a E840 Lower Face-Sheet Properties

N1 N2 N3 N4 IFABL ZETAL ECZL IPLASL IANGL

T-840b E840 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-840c E840 Upper Face-Sheet Properties

N5 N6 N7 N8 IFABU ZETAU ECZU IPLASU IANGU

T-840d E840 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

T-840e E840 Core Properties

IFABC ZETAC IPLASC IANGC

T-840f E840 Core Reference Vector

RXC RYC RZC

T-840g X-Direction Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

T-840h Y-Direction Incrementations

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

T-845 E845 10-Node Sandwich Transition Element Definition

KELT ILIN INTEG IPEN IEDGE NX NY USER
A-20 April, 2009 STAGS 5.0 User Manual

Appendix A
T-845a E845 Lower Face-Sheet Properties

N1 N2 N3 N4 N5 IFABL ZETAL ECZL IPLASL IANGL

T-845b E845 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-845c E845 Upper Face-Sheet Properties

N6 N7 N8 N9 N10 IFABU ZETAU ECZU IPLASU IANGU

T-845d E845 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

T-845e E845 Core Properties

IFABC ZETAC IPLASC IANGC

T-845f E845 Core Reference Vector

RXC RYC RZC

T-845g E845 X-Direction Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

T-845h Y-Direction Incrementations

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

T-847 14-Node Sandwich Transition Element Definition

KELT ILIN INTEG IPEN IEDGE NX NY USER

T-847a E847 Lower Face-Sheet Properties

N1 N2 N3 N4 N5 N6 N7 IFABL ZETAL ECZL IPLASL IANGL

T-847b E847 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-847c E847 Upper Face-Sheet Properties

N8 N9 N10 N11 N12 N13 N14 IFABU ZETAU ECZU IPLASU IANGU

T-847d E847 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

T-847e E847 Core Properties

IFABC ZETAC IPLASC IANGC
STAGS 5.0 User Manual April, 2009 A-21

Appendix A
T-847f E847 Core Reference Vector

RXC RYC RZC

T-847g X-Direction Incrementations

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

T-847h E847 Y-Direction Incrementations

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15

T-849 E849 18-Node Sandwich Element Definition

KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

T-849a E849 Lower Face-Sheet Properties

N1 N2 N3 N4 N5 N6 N7 N8 N9 IFABL ZETAL ECZL IPLASL IANGL

T-849b E849 Lower Face-Sheet Wall Reference Vector

RXL RYL RZL

T-849c E849 Upper Face-Sheet Properties

N10 N11 N12 N13 N14 N15 N16 N17 N18 IFABU ZETAU ECZU IPLASU IANGU

T-849d E849 Upper Face-Sheet Wall Reference Vector

RXU RYU RZU

T-849e E849 Core Properties

IFABC ZETAC IPLASC IANGC

T-849f E849 Core Reference Vector

RXC RYC RZC

T-849g X-Direction Incrementations

(IX(k), k=1,18) IXC IX1 IX2

T-849h Y-Direction Incrementations

(IY(k), k=1,18) IYC IY1 IY2

T-860 E860 ORACLE Solid Element

KELT NNODES IFAB IANG ILIN IPLAS NX NY

T-860a E860 Solid Element Nodes

(NODE(k), k=1,NNODES) USERELT
A-22 April, 2009 STAGS 5.0 User Manual

Appendix A
T-860b E860 X-Direction Incrementations

(IX(k), k=1,NNODES) IXU

T-860c E860 Y-Direction Incrementations

(IY(k), k=1,NNODES) IYU

T-860d E860 Material Orientation Record

XFX XFY XFZ YFX YFY YFZ

T-881 E881 8-Node Solid Element

KELT IFAB IANG ILIN IPLAS NX NY

T-881a E881 Solid Element Nodes

(NODE(k), k=1,8) USERELT

T-881b E881 X-Direction Incrementations

IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8 IUX

T-881c E881 Y-Direction Incrementations

IY1 IY2 IY3 IY4 IY5 IY6 IY7 IY8 IUY

T-881d E881 Material Orientation Record

XFX XFY XFZ YFX YFY YFZ

 T-882 E882 18-Node Solid Element

KELT IFAB IANG ILIN IPLAS NX NY

T-882a E882 Solid Element Nodes

(NODE(k), k =1,18) USERELT

T-882b E882 X-Direction Incrementations

(IX(k), k=1,18) IXU

T-882c E882 Y-Direction Incrementations

(IY(k), k=1,18) IYU

T-882d E882 Material Orientation Record

XFX XFY XFZ YFX YFY YFZ

T-883 E883 27-Node Solid Element

KELT IFAB IANG ILIN IPLAS NX NY
STAGS 5.0 User Manual April, 2009 A-23

Appendix A
T-883a E883 Solid Element Nodes

(NODE(k), k=1,27) USERELT

T-883b E883 X-Direction Incrementations

(IX(k), k=1,27) IXU 151

T-883c E883 Y-Direction Incrementations

(IY(k), k=1,27) IYU 152

T-883d E883 Material Orientation Record

XFX XFY XFZ YFX YFY YFZ

T-885 E885 20-Node Solid Element

KELT IFAB IANG ILIN IPLAS NX NY

T-885a E885 Solid Element Nodes

(NODE(k), k=1,20) USERELT

T-885b E885 X-Direction Incrementations

(IX(k), k=1,20) IXU

T-885c E885 Y-Direction Incrementations

(IY(k), k=1,20) IYU

T-885d E885 Material Orientation Record

XFX XFY XFZ YFX YFY YFZ

T-900 E9XX User-Defined Element

KELT ID IFAB IANG ILIN IPLAS NX NY NZ

T-900a E9XX User-Element Nodes

(NODE(k), k = 1, NNODES)

T-900b User-Element X-Direction Incrementations

(IX(k), k = 1, NNODES) IXU

T-900c User-Element Y-Direction Incrementation

(IY(k), k = 1, NNODES) IYU

T-900d User-Element Z-Direction Incrementations

(IZ(k), k = 1, NNODES) IZU
A-24 April, 2009 STAGS 5.0 User Manual

Appendix A
T-900e User-Element Material Orientation Vector
XFX XFY XFZ

T-900f User-Element Material Orientation Vectors
XFX XFY XFZ YFX YFY YFZ

T-928 E928 3-Node Curved Beam UEL
KELT ID IFAB IANG ILIN IPLAS NX

T-928a E928 UEL Nodes
N1 N2 N3 N4

T-928b E928 UEL X-Direction Incrementations
IX1 IX2 IX3 IX4 IXU

T-928c E928 UEL floatVariables
Area Iy Iz J Material ShearFactorY ShearFactorZ
ECC(1) ECC(2) SCC(1) SCC(2)

T-940 E940 MIN4 Quadrilateral UEL
KELT ID IFAB IANG ILIN IPLAS NX NY

T-928a E940 UEL Nodes
N1 N2 N3 N4

T-940b E940 UEL X-Direction Incrementations
IX1 IX2 IX3 IX4 IXU

T-940c E940 UEL Y-Direction Incrementations
IY1 IY2 IY3 IY4 IYU

T-940d E940 UEL Material Orientation Vector
XFX XFY XFZ

T-940e E940 UEL Material Orientation Vectors
XFX XFY XFZ YFX YFY YFZ

T-940f E940 UEL floatVariables
UniformPressure(1) UniformPressure(2)

T-940g E940 UEL integerVariables
IntegOrder LoadType
STAGS 5.0 User Manual April, 2009 A-25

Appendix A
Element Units—Loadings, et al.

U-1 Loads Summary

NSYS NICS NAMS NUSS NHINGE NMOMNT NLEAST IPRESS

U-2 Load Set Summary

ISYS NN IFLG

U-3 Load Definition (NN records required)

P LT LD LI LJ LAX NDEFS INC1 INC2 INC3

U-4 Attached Mass

GM NM NDEFS INC

U-5 Uniform Stress State for Eigenanalysis

PNXA PNYA PNXYA PNXB PNYB PNXYB

U-6 Cable Hinge Restraint

IHND HRU HRV HRW NDEFS INC

U-7 Cable Hinge Moment

IMND MSYS RUM RVM RWM NDEFS INC

U-8a Least Squares Loading Summary

NSQR IUNIT IROW ICOL SCALE

U-8b Least Squares Load Definition

P LU LR LC LNDA LNDB LNDINC

V-1 Output Control—Record 1

IPRD IPRR IPRE IPRS IPRP IPRF NSELD NSELS IPRDSP IPRSTR ISL ISS ISD

V-2 Output Control—Record 2

INOD1 INOD2 INODI

V-3 Output Control—Record 3

IELS1 IELS2 IELSI
A-26 April, 2009 STAGS 5.0 User Manual

Appendix A
W-1 Linear-Stiffness Contribution—Record 1
NRDOF NRNOD NRKIJ KLSTF NRDIS NRFOR

W-2a Linear-Stiffness Contribution—Record 2a
IUNIT IROW ICOL JUNIT JROW JCOL

W-2b Linear-Stiffness Contribution—Record 2b
{ (KIJ(m,n), n=1,NRDOF), m=1,NRDOF }

W-2c Linear-Stiffness Contribution—Record 2b
IUNIT(n) IROW(n) ICOL(n) n = 1,2,3, ..., NRNOD
STAGS 5.0 User Manual April, 2009 A-27

Appendix A
Solution Input—BIN File

Summary and Control Parameters

A-1 Case Title

COMMENT

B-1 Analysis Type Definition

INDIC IPOST ILIST ICOR IMPTHE ICHIST IFLU ISOLVR NFABC

B-2 Solver Options

ICPACT ITER IPRIM IPRIS ISAVE

B-3 Gradient Fabrication Specification Records

KFABTP KFB

Computational Strategy Parameters

C-1 Load Multipliers

STLD(1) STEP(1) FACM(1) STLD(2) STEP(2) FACM(2) ITEMP NFIX

C-3 Nonlinear Stress State

NLDS IXEV

C-4 Load Factors

PLDS(i), i=1,NLDS

C-5 Suppress Selected Freedoms

IFIX(i), i=1,NFIX

D-1 Strategy Parameters

ISTART NSEC NCUT NEWT NSTRAT DELX WUND

D-2 Eigenvalue Control

NSEC DELEV IPRINT

D-3 Cluster Definition

NEIG SHIFT EIGA EIGB
A-28 April, 2009 STAGS 5.0 User Manual

Appendix A
E-1 Time Integration—Record 1
TMIN TMAX DT SUP ALPHA BETA GAMMA THOLD

E-2 Time Integration—Record 2
IMPL METHOD IERRF IVELO IFORCE IPA IPB

E-3 Load History—Record 1
CA1 CA2 CA3 CA4 CA5 CA6

E-4 Load History—Record 2
CB1 CB2 CB3 CB4 CB5 CB6

E-5 Weighted Modal Initial Velocity
EIGA IMSTEP IMMODE IMRUN

ET-1 Solution Control
NPATH NEV NSOL IE NFIX LDMAX IUPLDA IUPLDB

The Equivalence Transformation Bifurcation Processor (ET)

ET-1 Solution Control
NPATH NEV NSOL IE NFIX LDMAX IUPLDA IUPLDB
STAGS 5.0 User Manual April, 2009 A-29

Appendix B
2

B

2 B
STAPL Input

Introduction

STAPL is a stand-alone STAGS post-processor that generates PostScript- or pdf-formatted
plots of a complete STAGS model (or a partial STAGS model) in its undeformed or deformed
states—with contour maps of user-selected displacement, strain, stress,... fields that are
superimposed on them as and if appropriate. The original version of STAPL was developed
some years ago as an in-house processor to generate platform-independent, PostScript-
formatted plots for use in verifying STAGS models and for use in visualizing and
understanding results obtained by STAGS for those models. That version of STAPL was
updated to construct PostScript or pdf-formatted output files soon after Adobe’s PDF
technology was developed—and has been updated several times since then. The most recent
enhancements to STAPL have brought it as up-to-date as possible with respect to the current
version of the STAGS program. STAPL is distributed with the STAGS program suite.

Input file

To use the STAPL post-processor, the analyst must first generate a STAGS model by creating
a case.inp input file for it and running STAGS’ s1 program to a successful conclusion with
that input file. STAPL uses the case.sav file that s1 produces as its primary source of
information about the geometry and construction of the model for which one or more plots
are to be generated. The analyst who wants to use STAPL to generate plots that show the
deformed model—with or without contours showing the displacement, strain, stress, or any
other relevant field information—must first obtain those results by running STAGS’ s2
program successfully.
STAGS 5.0 User Manual April, 2009 B-1

Appendix B
Execution and input requirements

To execute STAPL on a UNIX system—for a particular case—the user must navigate to a
“working” directory that must contain information that is required to make any plots and
may contain other information that may be required or used advantageously to make the
plots that the user wants to generate for that case. Positioned in that working directory, the
user must then execute STAPL via the following OS-level command:

% stapl case

where case is the name of the case.

If the analyst only wants STAPL to produce one or more plots that show one or more parts
of the original (undeformed) model, the only file that must be included in the working
directory is the case.sav file that s1 has generated for the case in question. Other files and
scripts may be present in the working directory, but the case.sav file must be included. If the
analyst wants STAPL to produce one or more plots that show deformations, strains, stresses
and/or other field-variable “results” (and/or imperfections and/or eigensolutions), s2’s
case.res (results) and case.rst (indexing) files must also be in his working directory—along
with s2’s case.egv (eigensolutions) file and/or s1’s case.imp (imperfections) file as and
if those files are needed.

In either case, the OS-level stapl case command initiates execution of STAPL for the
case in question. After its initialization operations, the first thing that STAPL does is check
to determine whether or not the analyst’s working directory contains an optional input (text)
file called case.pin.

If the working directory does not contain a case.pin file, then STAPL operates in its interview
mode. In this mode, STAPL prints messages specifying the information that it needs and
waits for the user to respond with appropriate answers before continuing. Operating in its
interview mode, STAPL takes user responses into account and only requests input data that
are appropriate for the case and plotting situation at hand. Operating in this mode, STAPL

generates an annotated case.pin output file that the user can edit and employ with subsequent
(batch-mode) STAPL runs to generate the same kinds of plots with other model components
and/or results. The user who wants to generate a large number of plots should start by
executing STAPL in its interview mode—then use his (or her) favorite text editor to modify
the case.pin file generated in that run to construct new case.pin files for batch-mode
executions of STAPL to generate the additional plots that are wanted. The ins and outs of
B-2 April, 2009 STAGS 5.0 User Manual

Appendix B
STAPL’s interview mode are beyond the scope of this appendix. The interested user is
strongly encouraged to read the “STAPL User Manual” for more information about that.

If the working directory does contain a case.pin file, then STAPL operates in its batch
mode—using that case.pin file (and case.sav and other case.* files, as appropriate) to
generate the plot(s) that case.pin specifies.

The case.pin input requirements for STAPL are described in the pages that follow the next
three paragraphs.

Output files

As noted above, a successful interview-mode execution of STAPL gives the user an
annotated case.pin output text file that can be edited and used for subsequent batch-mode
executions of the program. With any execution of STAPL, the program also generates an
informative (but disposable) case.pout text file that summarizes what STAPL does with the
user’s case.pin, case.sav and case.* results data.

When STAPL is executed successfully, it generates a one-page PostScript-formatted file for
each plot that the analyst requests, or a single pdf-formatted file that contains all of the plots
that STAPL generates during that execution. The output format is specified by the analyst,
as described in the PL-2 record, on page B-5.

The STAPL post-processor does not modify the case.sav, case.res, case.rst, case.egv, case.imp
or any other case.* files that it may need and use to produce the requested plots.
STAGS 5.0 User Manual April, 2009 B-3

Appendix B
PL-1 Case Title

The first thing that STAPL expects (and reads) from the user’s live or scripted input stream is a
plotting-case-title character string called TITLE—which may contain up to but not more than 72
alphanumeric characters. STAPL prints the user’s TITLE string on each plot that it produces.

After this Case Title record, the user can and is encouraged to append comment strings and to
add comment lines to his (or her) input stream to document that input. Comment strings can be
included at the end of any data line by interrupting or terminating the data with a “$” character
and using the remainder of that line for comment material. Comment lines can be included
within or between data records by starting those lines with “C” or “$” as the first non-blank
character. STAPL prints a listing of the complete input file—including any comment records—
at the beginning of the case.pout text output file that STAPL produces for the current execution
of the program.

TITLE

TITLE case title (72 characters or less)

Note: If the User’s TITLE specification has the 4-character ‘3DMF’ string imbedded within it,
STAPL will produce a case.3dmf output file for use with the VIEWER application that is
being developed for examining and doing other exciting things with STAGS models and
solutions.

go to PL-2
B-4 April, 2009 STAGS 5.0 User Manual

Appendix B
PL-2 Post-Processing Summary Record

This record specifies the number of plots that the analyst wants STAPL to generate, the output
format that the analyst wants, and other information that STAPL needs before it can generate the
plot(s) that the analyst desires.

NPLOT IPREP IPRS KDEV KXSTEP

NPLOT number of plots to be generated (see the Note, below)

IPREP solution-data-required flag:

0 - model and solution archive data are both required (default)
1 - model data required; solution data not required

IPRS undeformed-model display flag:

0 - show the undeformed model (as a dashed blue wire frame)
in addition to the deformed model (default)

1 - show the deformed model only

KDEV output-format flag:

0 - generate all plots (one plot per page) in a single, Acrobat
(pdf-formatted) case.pdf output file (default)

1 - generate each plot k as a separate, PostScript-formatted
case.k.ps output file

KXSTEP solution-scale-factor index:

0 - determine scale factors for each solution step independently
of all other steps (default)

> 0 - use scale factors from step # KXSTEP for each solution step
treated in the current STAPL execution

go to PL-3

Note: A STAPL input (PIN) file may contain more than one PL-2 record, for convenience.
All of the input records in the PIN file are read and echoed to the POUT output file, but
STAPL will only process and generate plots for the very first PL-2 record in the PIN file.
STAGS 5.0 User Manual April, 2009 B-5

Appendix B
PL-3 Plot Description Record

This record and the records it requires generates one plot. NPLOT PL-3 records are required.

KPLOT VIEW ITEM STEP MODE IFRNG COLOR ICOMP LAYER FIBR LAY3D FACE

KPLOT primary plot control flag:

0 - plot all or a portion of the undeformed model (default)
- 1 - plot all or a portion of the undeformed model, coloring

the outer surface red and the inner surface blue
1 - plot all or a portion of the deformed model, with a selected

solution projected as its “deformed geometry”
2 - plot all or a portion of the deformed model, with a selected

continuous solution field texture-mapped onto the deformed
surface in color or in grayscale mode

3 - same as 2, when the solution is discontinuous
-3 - plot contours using a continuous solution field, for elements

of the same type—even if their fabrications are different
4 - plot gradient contours on all or a portion of the deformed model,

with a selected continuous gradient field texture-mapped onto
the deformed surface in color or in grayscale mode

5 - same as 4, when the gradient field is discontinuous
6 - reserved for use with STAGS’ VIEWER application

VIEW plot view control flag:

0 - plot the entire model (default)
> 0 - plot only the NUNIT units listed in record PL-4, described below
< 0 - plot only the fabrications listed in record PL-4, described below

ITEM secondary plot control flag:

when KPLOT = 0 — number-plotting option:

ITEM = 0 - do not plot the element, fabrication or node numbers
ITEM = 1 - plot STAGS’ global element number inside each element
ITEM = 2 - plot the User’s element number inside each element
ITEM = 3 - plot the unit number and the user’s element number
ITEM = 4 - only plot the unit number inside each element
ITEM = 5 - plot the fabrication number in each element
ITEM = 6 - plot STAGS’ global node number beside each node
ITEM = 7 - plot the global node numbers with minimum font size
B-6 April, 2009 STAGS 5.0 User Manual

Appendix B
ITEM = 8 - plot the User’s node number beside each node
ITEM = 9 - same as 8, for wire–frame plot(s) of the model
ITEM = 10 - highlight beam elements (with red color and wide lines)

when KPLOT = 1, 2 or 3 or -3 — solution–type flag:

ITEM = 1 - plot a displacement solution
ITEM = 2 - plot a velocity vector
ITEM = 3 - plot an imperfection vector
ITEM = 4 - plot an eigenvector
ITEM = -4 - plot a displacement-differences vector (see MODE, below)

when KPLOT = 2 or 3 or -3 — solution–type flag:

ITEM = 5 - plot stress resultants (see ICOMP, below):

for 2D elements and sandwich–element face sheets:
Nx, Ny, Nxy, Mx, My, Mxy

for 3D elements: ignored

ITEM = 6 - plot strains/curvatures (integrated) (see ICOMP, below):

for 2D elements and sandwich–element face sheets:
Ex, Ey, Exy, Kx, Ky, Kxy

for sandwich–element core components:
Exx, Eyy, Ezz, Eyz, Ezx, Exy

for 3D elements:
Exx, Eyy, Ezz, Eyz, Ezx, Exy (in the fabrication system)

ITEM = 7 - plot stresses (sigf, sigm, sigp), (strains, plane-strains)
(see ICOMP, below):
for 2D elements and sandwich–element face sheets:

Sx, Sy, Sxy
for sandwich–element core components:

Sxx, Syy, Szz, Syz, Szx, Sxy
for 3D elements:

Sxx, Syy, Szz, Syz, Szx, Sxy (in the fabrication system)

ITEM = 8 - plot ply damage percentage (when ICOMP=0, as noted below)
ITEM = 8 - plot plastic strains (when ICOMP=1–3)

ITEM = 9 - plot energy densities
ITEM = 10 - plot temperature gradients
ITEM = 11 - plot element thicknesses
STAGS 5.0 User Manual April, 2009 B-7

Appendix B
ITEM = 12 - plot nternal forces (not operational, yet)

ITEM = 13 - plot external forces (not operational, yet)

ITEM = 14 - plot PFA or UMAT state variable (ICOMP = 1–20)
ITEM = 15 - plot selected ply failure types (see the PL-3c record, below)

STEP load step number (for static analysis, 0 selects the linear solution;
for transient analysis, 0 selects the initial-conditions)

MODE vector selection parameter:

if ITEM = + 4, MODE = eigenvector (mode) number;
if ITEM = – 4, displacement difference from step MODE to step STEP

IFRNG fringe-plot control flag:

0 - use 32 color or grayscale gradations (default)
1 - minimal (16-color) gradation
2 - full fringe plot

COLOR color/scale-control flag:

0 - generate color plot, with maximum to minimum scale
1 - generate color plot, with minimum to maximum scale
2 - generate grayscale plot, with maximum black & minimum white
3 - generate grayscale plot, with maximum white & minimum black

ICOMP tertiary plot control flag (meaningful only when KPLOT = 2 or 3):

0 - plot the solution magnitude (when 1 ITEM 4, above), or

plot the effective stress (when ITEM = 7) (see note, below), or
plot the ply damage percentage (when ITEM = 8)

1 - plot U or NX or EXI or S1F or EPX or EXX or SXX —
depending on ITEM, above

2 - plot V or NY or EYI or S2F or EPY or EYY or SYY —
depending on ITEM

3 - plot W or NXY or EXYI or T12F or EPXY or EZZ or SZZ —
depending on ITEM

≤ ≤
B-8 April, 2009 STAGS 5.0 User Manual

Appendix B
4 - plot RU or MX or KX or S1M or EYZ or SYZ —
depending on ITEM

5 - plot RV or MY or KY or S2M or EZX or SZX —
depending on ITEM

6 - plot RW or MXY or 2KXY or T12M or EXY or SXY —
depending on ITEM

7 - plot the surface normal component (when 1 ITEM 4), or
plot QX or EXZ (when ITEM = 5 or 6), or
plot S1P (principal stress) (when ITEM = 7)

8 - plot QY or EYZ (when ITEM = 5 or 6), or
plot S2P (principal stress) (when ITEM = 7)

9 - plot N1P (principal resultant) (when ITEM = 5), or
plot S3P (principal stress) (when ITEM = 7)

10 - plot N2P (principal resultant) (when ITEM = 5), or
plot mxshr (E840 maximum shear) (when ITEM = 7)

11 - plot N3P (principal resultant) (when ITEM = 5), or
plot EX (total strain at selected fiber location) (when ITEM = 7)

12 - plot EY (total strain at selected fiber location) (when ITEM = 7)

13 - plot EXY (total strain at selected fiber location) (when ITEM = 7)

14 - plot S3F (plane strain at selected fiber location) (when ITEM = 7)

Note: with ITEM = 7, ICOMP = 0, selects effective stresses in the
fabrication (1–3), material (4–6) or principal (7–9) systems

LAYER selection flag for 2D shell-element layer (used when ITEM = 7 or 8):

0 - plot layer # 1 (inner layer), if FIBR < 2
plot layer # NLAY (outer layer), if FIBR = 2

> 0 - plot layer # LAYER (omitted if LAYER > NLAY)

FIBR selection flag for 2D shell-element layer fiber (used when ITEM = 7, 8 or 10):

0 , 1 - plot the inner fiber (minimum z value)
2 - plot the outer fiber (maximum z value)

-1 - plot the inner and outer fibers

≤ ≤
STAGS 5.0 User Manual April, 2009 B-9

Appendix B
LAY3D, FACE layer and face selection flags for sandwich or solid elements:

For E840-sandwich core elements (when face elements are not plotted):

LAY3D = 0 - plot all sandwich core elements (when FACE = -1 or -2)
LAY3D > 0 - plot sandwich core element # LAY3D (in stack)

FACE = -1 - plot E840 core elements, omitting their E410 face sheets
FACE = -2 - E840 core elements, omitting all other elements

For E840-sandwich face elements:

LAY3D - this item is ignored when E840 face elements are plotted

FACE = 0 - plot all of the E410 (inner and outer) face sheets
FACE = 1 - only plot the inner face sheets
FACE = 2 - only plot the outer face sheets

For E88* solid elements (when ITEM = 6 or 7):

LAY3D = 0 - plot all layers of solid elements
LAY3D > 0 - only plot layer # LAY3D

FACE = 0 - plot all of the solid-element surfaces
FACE > 0 - only plot surface # FACE (where 1 FACE 6)

if (KPLOT = 4 or 5) then

go to PL-3a
elseif (KPLOT = 1 and ITEM = 15) then

go to PL-3c
elseif (VIEW 0) then

go to PL-4
else

go to PL-5
endif

Note: For convenience, a STAPL input (PIN) file may contain more than NPLOTS PL-3

records—where NPLOTS is the value that the user specifies for the NPLOT parameter in the
very first PL-2 record in the PIN file. STAPL reads all of the records in the user’s PIN file
(and prints them in its POUT file), but STAPL will only process and generate the first NPLOTS

plots.

≤ ≤

≠

B-10 April, 2009 STAGS 5.0 User Manual

Appendix B
PL-3a Strain Gradient Control Record

This record is read if and only if the KPLOT parameter is 4 or 5 on the PL-3 record.

MODE1 MODE2 MODINC

MODE1 field type or starting index:

0 - displacement gradient or load vector (in which case
the values of MODE2 and MODINC are ignored)

> 0 - first mode number

MODE2 last mode number (must not exceed 24 for shell)

MODINC mode-number increment

if (MODE1 > 0) then
go to PL-3b

else
go to PL-4

endif
STAGS 5.0 User Manual April, 2009 B-11

Appendix B
PL-3b Strain Gradient Coefficient Record

(STGD(i), i = MODE1, MODE2, MODINC)

STGD list of strain gradient coefficients (note: coefficients less than 25
not in this list are set equal to zero)

if ([KPLOT = 2 or 3 or -3] and ITEM = 15) then
go to PL-3c

else
go to PL-4

endif
B-12 April, 2009 STAGS 5.0 User Manual

Appendix B
PL-3c Selected Ply Failure Record

This record is read if and only if the KPLOT parameter is 2 or 3 and the KPLOT parameter is 15
on the PL-3 record.

MATID FLAG

MATID material identifier

0 - plot all elements fabricated with ply-failure-analysis materials

> 0 - plot elements with material # MATID

FLAG failure-mode selection flag:

0 - all failure modes

1 - fiber tensile failure mode

2 - matrix tensile failure mode

3 - inplane shear failure mode (shell elements), or
interlaminal tensile failure mode (solid elements)

4 - transverse (13) failure mode

5 - transverse (23) failure mode

6 - inplane shear failure mode (solid elements)

-1 - fiber compressive failure mode

-2 - matrix compressive failure mode

-3 - interlaminal compressive failure mode (solid elements)

if (VIEW 0) then
go to PL-4

else
go to PL-5

endif

≠

STAGS 5.0 User Manual April, 2009 B-13

Appendix B
PL-4 Model View Record

This record is read if and only if the plot view control flag (VIEW) on record PL-3 is not zero.
With the PL-4 record, the analyst can select a subset of the shell and/or element units in the
complete model to be plotted in the current STAPL plot (when VIEW > 0) or a subset of the
element–fabrication types to be plotted (when VIEW < 0). The magnitude of VIEW must clearly
be less than or equal to the total number of units in the complete model (when VIEW > 0) or the
number of fabrications (when VIEW < 0).

(LIST(j), j=1, | VIEW |)

LIST(j) unit number for shell or element unit to be included in the current plot
(when VIEW > 0), or fabrication number to be included (when VIEW < 0)

go to PL-5
B-14 April, 2009 STAGS 5.0 User Manual

Appendix B
PL-5 Plot Control Record

This record is required for specification of scaling, orientation, and other parameters for the
current STAPL plot.

DSCALE NROTS LWSCALE RNGMIN RNGMAX NUMBRS NFONT

DSCALE scaling factor to be used with solution data, for deformed-model plots:

0 - STAPL sets DSCALE = 0.5 (default value) and scales the
displacement vector by multiplying it by DSCALE times
the maximum dimension of the projected model

> 0 - STAPL scales the displacement vector by multiplying it by
DSCALE times the maximum dimension of the projected mode

< 0 - STAPL scales the displacement vector by multiplying it by
| DSCALE | times the maximum dimension of the projected
mode; the actual deformations are shown if DSCALE = -1.0

NROTS number of PL-6 orientation records required:

0 - STAPL uses its default orientation parameters

> 0 - STAPL reads and uses orientation parameters specified
on the NROTS type PL-6 records following this record

LWSCALE factor to be used in scaling line width (element edges):

0 - use the default line width

> 0 - set the line width to LWSCALE times the default width

- 1 - omit edge lines, except on unit boundaries

- 2 - add wire frame plot of the undeformed model (dashed blue lines)

RNGMIN plot–range scaling factor (see RNGMAX)

RNGMAX plot–range scaling factor:

If RNGMIN = RNGMAX = 0, the range scale for the plot uses the
minimum and maximum values from the solution vector;
if RNGMIN and/or RNGMAX are not zero, the range scale
uses RNGMIN and RNGMAX for its extrema
STAGS 5.0 User Manual April, 2009 B-15

Appendix B
NUMBRS annotation flag, for contour plots:

0 - do not plot element, node or fabrication numbers
 1 - plot STAGS’ global element number inside each element
 2 - plot the User’s element number inside each element
 3 - plot the unit numbers and the User’s element numbers
 4 - only plot the unit numbers on the model
 5 - only plot the fabrication numbers on the model
 6 - plot STAGS’ global node numbers on the model
 7 - plot STAGS’ global node numbers (minimum font size)
 8 - plot the User’s node numbers on the model
 9 - plot the User’s node numbers on a wire-frame model

NFONT font-size specification flag (for element or node numbers):

0 - use STAPL’s default font size
 > 0 - use a font size determined by the NFONT parameter, where:

the font size increases with increasing NFONT and where
NFONT is in the range 1 NFONT 16

if (NROTS > 0) then
go to PL-6

else
follow instructions at end of PL-6

endif

≤ ≤
B-16 April, 2009 STAGS 5.0 User Manual

Appendix B
PL-6 Orientation Records

A record of this type is required for specification of each user-specified orientation (rotation)
operation that STAPL is to perform. Rotations are performed in the order specified by these
records. NROTS (PL-5) PL-6 records must be included here. For more information about this
type of orientation specification, see the “B-1b Sequence of Model Rotations” description on
5-11, in Chapter 5 of this document.

IROT ROT

IROT axis selection flag:

1 - rotate the model by ROT degrees about its current X axis
2 - rotate the model by ROT degrees about its current Y axis
3 - rotate the model by ROT degrees about its current Z axis

ROT rotation angle, in degrees

NPLOT (PL-2) number of plots to be generated

if (less than NPLOT plots have been generated) then

return to PL-3
else

data deck is complete

endif
STAGS 5.0 User Manual April, 2009 B-17

Appendix B
Examples

An interview-mode execution of STAPL for the ACORO test-suite case, with simple “show

me the model” user responses to STAPL prompts, generated the plot shown in Figure B.1:

STAPL also generated the following acoro.pin output text file for this execution:

STAPL Example
 1 1 0 1 $PL-2 NPLOT,IPREP,IPRS,KDEV
 0 0 $PL-3 KPLOT,NUNIT
 0.00000000E+00 0 $PL-5 DSCALE,NROTS

This case.pin file shows (with NROTS=0) that the analyst did not specify the spatial

orientation of the model in this interview-mode run. The plot that STAPL generated used the

program’s default rotation angles to define the orientation of the model and its default color

sequence to show each shell unit in the model in a different color.

Figure B.1 STAPL plot of undeformed ACORO configuration
B-18 April, 2009 STAGS 5.0 User Manual

Appendix B
Seeing that STAPL’s default orientation hides significant parts of the structure, the user

might want to edit the acoro.pin file that STAPL generated in the interview-mode execution,

to specify more suitable rotation angles, as follows:

STAPL Example -- Reoriented configuration
 1 1 0 1 $ PL-2 NPLOT,IPREP,IPRS,KDEV
 0 0 $ PL-3 KPLOT,NUNIT
 0.00000000E+00 3 $ PL-5 DSCALE,NROTS
 1 -80.0 $ PL-6
 2 -25.0 $ PL-6
 3 -15.0 $ PL-6

A batch-mode execution of STAPL after doing that produces the configuration plot that is

shown in Figure B.2:

Encouraged by this success, the intrepid user might modify this second acoro.pin file to use

this improved orientation and other specifications to generate a third plot that shows how

this model is deformed at step 8 of the analysis that he/she has performed—generating the

following acoro.pin file for the next batch-mode STAPL run:

Figure B.2 STAPL plot of reoriented ACORO model
STAGS 5.0 User Manual April, 2009 B-19

Appendix B
STAPL Example -- W Displacements at Step 8
 1 0 1 1 $ PL-2 NPLOT,IPREP,IPRS,KDEV
 2 0 1 8 0 0 0 3 0 2 $ PL-3 KPLOT,NUNIT
 0.00000000E+00 3 $ PL-5 DSCALE,NROTS
 1 -80.0 $ PL-6
 2 -25.0 $ PL-6
 3 -15.0 $ PL-6

Note that this user has chosen to show the w displacement contours in full color on the
deformed configuration. STAPL produces the plot shown in Figure B.3 with this acoro.pin
file:

Note that the deformed shape shown here has the actual displacements scaled by a factor of
6.518—the (0.05 times the maximum dimension of the projected model) value that STAPL

computed when the user set DSCALE equal to zero.

Figure B.3 STAPL plot of ACORO results for step 8

Θ
Θ
Θ x -80.00

y -25.00
z -15.00

8.664E+00

xy

z

STAPL Example -- W Displacements at Step 8
step 8 displacement w contours
PA= 9.54027E+02 PB= 0.00000E+00 PX= 0.00000E+00
solution scale = 0.6518E+01

-3.721E-01

-3.368E-01

-3.015E-01

-2.663E-01

-2.310E-01

-1.958E-01

-1.605E-01

-1.253E-01

-9.004E-02

-5.478E-02

-1.953E-02

 1.572E-02

 5.097E-02

 8.623E-02

 1.215E-01

 1.567E-01
B-20 April, 2009 STAGS 5.0 User Manual

Appendix C
3
C
3 C

PITRANS Input

Introduction

PITRANS is a stand-alone post-processor that was developed years ago to translate STAGS

model and solution data for a particular (user-specified) “case” into formatted input files for
PATRAN and IDEAS programs. PITRANS is rarely (if ever) used for that purpose, these
days; but it is used frequently to generate PATRAN-formatted “neutral” files and/or IDEAS-
formatted “universal” files that contain model and solution information that can be extracted
from those files and used for other purposes. The PITRANS post-processor is distributed
with the STAGS program suite.

Prerequisites

To use PITRANS to translate any STAGS data for the case at hand into PATRAN- or IDEAS-
formatted files, the analyst must first generate a STAGS model by creating a case.inp input
file for that case and by running STAGS’ s1 program successfully with that input file.
PITRANS uses s1’s case.sav output file as its sole source of information about the geometry
and construction of the user’s model. To use PITRANS to generate PATRAN- or IDEAS-
formatted output files that contain or depend upon STAGS’ solution data, the analyst must
also create one or more case.bin input files for STAGS’ s2 program and run s2 successfully
with those input files to perform the analyses that they request. PITRANS uses s2’s case.res
and case.rst output files as its primary sources of information about the solution(s) that
STAGS has generated for the case at hand.

Execution of the program

To execute PITRANS on a LINUX or on a UNIX system, the user must navigate to a “working”
directory that must contain all of the “STAGS” files that PITRANS needs to generate the
STAGS 5.0 User Manual April, 2009 C-1

Appendix C
PATRAN- or IDEAS-compatible output file(s) that he wants. Most frequently, that working
directory must contain s1’s case.sav file and s2’s case.res and case.rst files for the case at
hand. It may also contain other files, but they are not required and are generally ignored.
Positioned in that directory, the user may then execute PITRANS via one or the other of the
following two OS-level commands:

% pitrans

or

% pitrans < case.pix

where case is the name of the case at hand and where case.pix is a text-formatted input
file that the user must have created before executing PITRANS.

Input requirements and output files

The PITRANS program (like STAPL) operates in what we call its “interview” mode—where
it prompts the user for an answer and performs one or more actions in response to that
answer—then prompts the user again (and again, and again) until the user is finished
specifying what he wants the program to do. Unlike the STAPL program, PITRANS does not
construct a “journal” file that records the user’s answers and does not test to determine if a
program-generated or a user-constructed journal (or script) file exists and use it (instead of
the user’s keyboard responses) to read the user’s input for the case at hand. The
adventuresome user can “force” PITRANS to operate in a “batch” mode (of sorts) by
constructing a bare-bones (or a very carefully annotated) text file that contains the answers
that PITRANS expects (and little if anything else) and by executing PITRANS as suggested
in the second OS-level command, above—redirecting the program to seek the answers that
it expects for the questions that it asks from that file instead getting it from the keyboard.
The file name for that “input” file is arbitrary. We are calling it case.pix here and in the
remainder of this Appendix for convenience and consistency.

In any event, PITRANS is fundamentally an interview-mode program. PITRANS prompts the
user to give it the input that it needs, checks the user’s input to determine that it is valid
(and prompts him for it again if it is not), asks for more information (if necessary), and
generates the output that the user requests—following the logic that is shown in the
“navigation” diagram on the following page. The RED items in that “flow” chart represent
“addresses” (resembling statement numbers in FORTRAN and C programs). The BLUE items
represent prompts that direct the user to give PITRANS the input information (data record)
that it needs to do what the user wants it to do, followed by the program’s attempt to read
the user’s answers to those prompts. The upper-case BLACK items in that diagram are the
C-2 April, 2009 STAGS 5.0 User Manual

Appendix C
PX1 specify the Output Format (PX-1 record) FORM
PX2 specify the Stags Case Name (PX-2 record) CASE

PX3 specify the Output Data Option (PX-3 record) ODATA

if (ODATA = ‘M’ or ‘m’) then
go to PX7

elseif (ODATA = ‘V’ or ‘v’) then
go to PX4

elseif (ODATA = ‘I’ or ‘i’) then
go to PX5

elseif (ODATA = ‘S’ or ‘s’) then
go to PX8

elseif (ODATA = ‘Q’ or ‘q’) then
finished !!!

else
go to PX3

endif

PX4 specify the Vector Type (PX-4 record) VTYPE

if (VTYPE = ‘D’ or ‘d’ or ‘V’ or ‘v’ or ‘F’ or ‘f’) go to PX7
go to PX4

PX5 specify the Integrated Stress Type (PX-5 record) STYPE

if (STYPE = ‘S’ or ‘s’ or ‘M’ or ‘m’) go to PX6
go to PX5

PX6 specify the Next Step (PX-6 record) ISTEP

if (ISTEP = ‘Q’) go to PX3
go to PX6

PX7 specify the Model Type (PX-7 record) MTYPE

if (MTYPE ‘F’ or ‘f’ or ‘C’ or ‘c’) go to PX7
if (ODATA = ‘M’ or ‘m’) go to PX3
if (ODATA = ‘V’ or ‘v’) go to PX8

PX8 specify the Next Step (PX-7 record) STEP

if (STEP = ‘Q’) go to PX3
if (ODATA = ‘S’ or ‘s’) go to PX9
go to PX8

PX9 specify the Layer Number (PX-8 record) LAYER

if (LAYER is not valid) go to PX9
if (nr840 > 0 or nr880 > 0) then

PX9a specify the Output Point Location (PX-8a record) SLOC

if (SLOC ‘C’ or ‘c’ or ‘I’ or ‘i’ or ‘N’ or ‘n’) go to PX9a
endif
if (plasx and .not. makeplas) then

PX9b specify Plastic Strains (PX-8b record) IPLAST
endif

PX9c specify Reference Frame (PX-8c record) FRAME
go to PX8

≠

≠

STAGS 5.0 User Manual April, 2009 C-3

Appendix C
user’s answers (the user-specified input parameters)—with the ‘X’ and ‘x’ items indicating
the answers that PITRANS recognizes for the prompt at hand. The lower-case black items in
that diagram are parameters that PITRANS extracts from the STAGS database for the case at
hand or constructs using those parameters and the user’s responses to prompts that PITRANS

has made during the current execution.

PITRANS starts (at PX1 in the navigation chart) by asking the user to specify the “output format”
that he wants the program to use for all of the output files that it generates during the current
run—by printing the following “prompt” to the screen:

Enter output type: (P)ATRAN, (I)DEAS = >

and waiting (where the ‘>’ symbol is) for the user to specify (in the FORM input parameter) that
he wants PITRANS to give him output in PATRAN’s “neutral file” format (in which case he
should answer the prompt with an upper case ‘P’ or a lower case ‘p’ response) or to specify
that he wants PITRANS to give him output in IDEAS’ “universal file” format (in which case he
should answer the prompt with an upper case ‘I’ or a lower case ‘i’ response). If the user’s
answer is anything other than one or the other of those four characters, PITRANS will repeat the
PX1 prompt and wait for the user’s next answer to the same question.

Immediately after getting a valid answer to its first prompt, PITRANS responds (at PX2 in the
navigation chart) by asking the user for the STAGS “case” name for the case at hand—by
printing the following “prompt” to the screen:

Enter Stags Case Name = >

and waiting (where the ‘>’ symbol is) for the user’s answer to that question (the CASE input
parameter) at the PX2 location. PITRANS expects a character string here that identifies the case
at hand and enables PITRANS to gain access to the case.sav (and other) STAGS database files
in the user’s working directory to extract and process the information that the user is about to
request.

Then (at location PX3 in the flow chart) PITRANS continues by asking the user what he wants
the program to do next—by printing the following “prompt” to the screen:

Data: (M)odel only data (nodes, elements, bc, etc)
(V)ector results (displ, veloc, accel, forces)
(I)ntegrated Stresses -or- Mid-Surface Strains
(S)tress and Strains (equivalent nodal values)
(Q)uit making Stags plot files = >

and waiting (where the ‘>’ symbol is) for the user to specify (via the ODATA input parameter)
that he wants PITRANS to give him information about the model (with an ‘M’ or ‘m’ response
to the prompt), or to give him displacement, velocity, or reaction force results from the solution
database (with a ‘V’ or ‘v’ response), or to give him integrated stress or mid-surface strain
results from the solution database (with an ‘I’ or ‘i’ response), or to give him nodal stress or
C-4 April, 2009 STAGS 5.0 User Manual

Appendix C
strain results (with an ‘S’ or ‘s’ response), or to “quit” the current execution of the program
(with a ‘Q’ or ‘q’ response). If the user’s answer is anything other than one or the other of those
ten characters, PITRANS will repeat the PX3 prompt and wait for the user’s next answer to the
same question. If the user’s answer is one of those ten characters (one of those five options),
PITRANS will react in accord with the user’s request (as explained below).

If the user sets ODATA = ‘M’ or ‘m’ at its PX3 control point—to ask for information about the
model—PITRANS will go to its PX7 control point and ask the user to specify that the STAGS
database for the case at hand contains information for the full model (by setting MTYPE = ‘F’ or
‘f’) or to specify that it contains information for a condensed model (by setting MTYPE = ‘C’
or ‘c’). If the user’s answer to the PX7 prompt is anything other than one or the other of those
four characters, PITRANS will repeat the prompt and wait for the user’s next answer to the same
question. If the answer is one of those four characters, PITRANS will give the user a formatted
output file called case.mdl that contains the desired information and will then return to its PX3

control point and prompt the user for his next instruction(s).

If the user sets ODATA = ‘V’ or ‘v’ at the program’s PX3 control point—to ask for displacement,
velocity, or reaction force results from the solution database—PITRANS will go to its PX4

control point and ask the user to specify (via the VTYPE parameter) that he wants the program
to give him displacement results (by setting VTYPE = ‘D’ or ‘d’), or velocity results (by setting
VTYPE = ‘V’ or ‘v’) or reaction forces (by setting VTYPE = ‘F’ or ‘f’). If the user’s answer is
anything other than one or the other of those six characters, PITRANS will repeat the PX4 prompt
and wait for the user’s next answer to the same question. If the user’s answer is one of those six
characters, PITRANS will transfer to its PX7 control point and ask the user to specify that the
STAGS database for the case at hand contains information for the full model (by setting MTYPE

= ‘F’ or ‘f’) or that it contains information for a condensed model (by setting MTYPE = ‘C’ or
‘c’). If the user’s answer to this PX7 prompt is anything other than one or the other of those four
characters, PITRANS will repeat the prompt and wait for the user’s next answer to the same
question. If the answer is one of those four characters, PITRANS will transfer to its PX8 control
point, will display its current “load table” (which contains some or all of the load step, load
factor, time, and “# of modes” information that the user needs to know for the case at hand)
on the screen and save it in a formatted (text) output file called case.step (if it hasn’t already
done so), and will prompt the user to specify (via the STEP input parameter) what he wants the
program to do:

If the user has set STEP = ‘P’ or ‘S’ at PX8, then PITRANS will print information
from another part of the “load table,” then return to PX8 to ask the user what he
wants the program to do next.

If the user has set STEP = N at PX8 (where N is a valid step number for the case at
hand), then PITRANS will extract the (displacement, velocity or reaction force)
results that he wants (for that step number) from the STAGS solutions database
STAGS 5.0 User Manual April, 2009 C-5

Appendix C
and will give it to him in a vector-formatted output file called case.dis.N or
case.vel.N or case.fint.N (depending on VTYPE). After doing that, PITRANS will
return to its PX8 control point to prompt the user for his next instruction(s).

If the user has set STEP = ‘Q’ at PX8, then PITRANS will “quit” its PX8 activities
and will return to the program’s PX3 control point to prompt the user for his next
instruction(s).

If the user sets ODATA = ‘I’ or ‘i’ at the program’s PX3 control point—to ask for integrated
stress or mid-surface strain results from the solution database—PITRANS will go to its PX5

control point and prompt the user to specify that he wants PITRANS to give him integrated
stresses (resultants and moments) (by setting the STYPE input parameter equal to ‘S’ or ‘s’) or
that he wants PITRANS to give him mid-surface strains and curvatures (by setting STYPE = ‘M’
or ‘m’). If the user’s answer is anything other than one or the other of those four characters,
PITRANS will repeat the PX5 prompt and wait for the user’s next answer to the same question.
If the user’s answer is one of those four characters, PITRANS will then go to its PX6 control
point, display its current “load table” on the screen and save it in a formatted (text) output file
called case.step (if it hasn’t already done so), and prompt the user to specify (via the ISTEP

input parameter) what he wants the program to do next:

If the user has set ISTEP = ‘P’ or ‘S’ at PX6, then PITRANS will print information
from another part of the “load table,” then return to PX6 to ask the user what he
wants the program to do next.

If the user has set ISTEP = N at PX6 (where N is a valid step number for the case at
hand) and if he has set STYPE = ‘S’ or ‘s’ at PX5, then PITRANS will extract the
integrated stresses that he wants for step N from the STAGS solutions database and
give them to him in a formatted output file called case.elmI.N—or if he has set
STYPE = ‘M’ or ‘m’ at PX5, then PITRANS will extract the midsurface strains and
curvatures from the database and give them to him in case.elmR.N. After doing
one or the other of those two things, then PITRANS will return to its PX6 control
point to prompt the user for his next instruction(s).

If the user has set ISTEP = ‘Q’ at PX6, then PITRANS will “quit” its PX6 activities
and return to the program’s PX3 control point to prompt the user for his next
instruction(s).

If the user sets ODATA = ‘S’ or ‘s’ at the program’s PX3 control point—to ask for nodal stress
or strain results from the solution database—PITRANS will go to its PX8 control point, will
display its current “load table” on the screen and save it in a formatted (text) output file called
case.step (if it hasn’t already done so), and prompt the user to specify (via the STEP input
parameter) what he wants the program to do next:
C-6 April, 2009 STAGS 5.0 User Manual

Appendix C
If the user has set STEP = ‘P’ or ‘S’ at PX8, then PITRANS will print information
from another part of the “load table,” then return to PX8 to ask the user what he
wants the program to do next.

If the user has set STEP = N at PX8 (where N is a valid step number for the case at
hand), then PITRANS will ask the user for more information, as discussed in the
next three sub-paragraphs:

With a valid step number in hand, PITRANS will go to its PX9 control point
and prompt the user to specify a valid layer number—by setting the LAYER

parameter equal to an integer value (to select a particular layer) or to zero (to
select all layers) for some or all the elements in the model. PITRANS will check
to ensure that LAYER is valid and will return to PX9 if it is not.

Then, with a valid LAYER specification in hand, PITRANS will check the nr840

and nr880 parameters that it retrieves from case.sav to determine whether or not
the user’s model has any sandwich or solid elements in it. If it does, PITRANS
will go to its PX9a control point and prompt the user to specify (via the SLOC input
parameter) that he wants the information that he is requesting for the centroid (if
SLOC = ‘C’), or for the integration points (if SLOC = ‘I’) or for the node points
(if SLOC = ‘N’) of each of the elements for which that information is available. If
the user does not respond to this prompt by setting SLOC equal to one of those
three characters, PITRANS will return to PX9a and prompt him to specify SLOC

again.

Then, with a valid SLOC specification in hand, PITRANS will examine (a) the
plasx parameter that it retrieves from case.sav to determine whether or not
plasticity effects are taken into account in the user’s model and (b) a logical-type
variable called makeplas that PITRANS initializes by making it .false. and
changes under the conditions that are described at the end of this sub-paragraph.
If PITRANS finds that plasticity effects exist and that the user has never
answered or has given a negative answer to the program’s prompt for him to
specify whether or not he wants plastic stains output for a previously selected
load step, PITRANS will pause at its PX9b control point and prompt the user to
specify (via the IPLAST input parameter) whether or not he wants PITRANS to
give him plastic strains output for the current STEP: if the user responds to this
prompt by setting IPLAST = ‘N’, PITRANS will set makeplas = .false. and will not
extract plastic strains information from the solutions database; if the user
responds by not setting IPLAST or by setting it to anything other than ‘N’,
PITRANS will set makeplas = .true. and will extract plastic strains information
from the solutions database.
STAGS 5.0 User Manual April, 2009 C-7

Appendix C
In any event, PITRANS will then go to its PX9c control point, where it will
prompt the user to specify (via the FRAME input parameter) that he wants
PITRANS to generate and give him the information that he wants using each
element’s “material” coordinates reference frame (by setting FRAME = ‘M’) or
that he wants PITRANS to generate and give it to him using each element’s
“fabrication” coordinates reference frame (by not setting FRAME or by setting
it equal to anything other than ‘M’).

Then, with STEP, LAYER & FRAME in hand (and with SLOC & IPLAST also in hand,
if they are needed), PITRANS will extract the nodal stress and strain results (and the
plastic strains, if any) that the user requested from the STAGS solutions database and
give him the nodal stresses in an output file called case.elmT.N.LAYER (and the
plastic strains in a second output file called case.elmP.N.LAYER, if he asked for
them). With that done, PITRANS will return to its PX8 control point and prompt the
user for his next instruction(s).

If the user has set ISTEP = ‘Q’ at PX8, then PITRANS will “quit” its PX8 activities
and return to the program’s PX3 control point to prompt the user for his next
instruction(s).

Last (but far from least), if the user responds to PITRANS’ PX3 prompt by setting ODATA equal
to ‘Q’ or ‘q’, PITRANS will close all active files and terminate the current execution.

Example # 1

In this example, the analyst used PITRANS to generate a PATRAN-compatible displacements
vector for STAGS’ tiny “pcats” test case, demonstrating that it was much easier for him to
generate that output file using PITRANS in its “interview” operating mode than it was for him
to read about how to do so. The following “listing” shows PITRANS’ output to his screen (in
blue type) and his keyboard input into the program (in Red type) when he executed the program
via the OS-level pitrans command in a working directory that contained the pcats.sav model
file and the pcats.res and pcats.rst solution files:

0:
1: [working directory] > pitrans
2:
3: PITRANS - STAGS Plot File Reformat Utility Mar 21, 2002
4: Enter output type: (P)ATRAN, (I)DEAS = Patran
5: Enter Stags Case Name = pcats
6:
7: Data: (M)odel only data (nodes, elements, bc, etc)
8: (V)ector results (displ, veloc, accel, forces)
9: (I)ntegrated Stresses -or- Mid-Surface Strains

10: (S)tress and Strains (equivalent nodal values)
11: (Q)uit making STAGS plot files = Vector
C-8 April, 2009 STAGS 5.0 User Manual

Appendix C
Note that the user’s responses on lines 4, 11, 12 and 13 of this “interview session” are character
strings that have more than a single character in them. PITRANS reads and prints the user’s

12: Data Type: (D)isplacement, (V)elocity, (A)cceleration, Reaction-(F)orces = Displ
13: Enter model type: (F)ull or (C)ondensed: Full
14:
15: the load/time step list has been stored in the file: pcats.step
16:
17: there are 12 loadsteps for this case
18: ===
19: loadstep of initial plastic yield: 8
20:
21: Loadstep Load Factor A Load Factor B time # of modes
22: 0 1.000000E-02 0.000000E+00 0.000000E+00 0
23: 1 1.000000E-02 0.000000E+00 0.000000E+00 0
24: 2 2.000000E-02 0.000000E+00 0.000000E+00 0
25: 3 2.572181E-02 0.000000E+00 0.000000E+00 0
26: 4 3.286878E-02 0.000000E+00 0.000000E+00 0
27: 5 4.301969E-02 0.000000E+00 0.000000E+00 0
28: 6 5.709739E-02 0.000000E+00 0.000000E+00 0
29: 7 7.361708E-02 0.000000E+00 0.000000E+00 0
30: 8 9.189031E-02 0.000000E+00 0.000000E+00 0
31: 9 1.091103E-01 0.000000E+00 0.000000E+00 0
32: 10 1.240358E-01 0.000000E+00 0.000000E+00 0
33: 11 1.280000E-01 0.000000E+00 0.000000E+00 0
34:
35: (P)revious Group, (Q)uit, (S)tart Over or Load-Step No.: 10
36: File: pcats.dis.10 successfully created.
37:
38: there are 12 loadsteps for this case
39: ===
40:
41: Loadstep Load Factor A Load Factor B time # of modes
42: 0 1.000000E-02 0.000000E+00 0.000000E+00 0
43: 1 1.000000E-02 0.000000E+00 0.000000E+00 0
44: 2 2.000000E-02 0.000000E+00 0.000000E+00 0
45: 3 2.572181E-02 0.000000E+00 0.000000E+00 0
46: 4 3.286878E-02 0.000000E+00 0.000000E+00 0
47: 5 4.301969E-02 0.000000E+00 0.000000E+00 0
48: 6 5.709739E-02 0.000000E+00 0.000000E+00 0
49: 7 7.361708E-02 0.000000E+00 0.000000E+00 0
50: 8 9.189031E-02 0.000000E+00 0.000000E+00 0
51: 9 1.091103E-01 0.000000E+00 0.000000E+00 0
52: 10 1.240358E-01 0.000000E+00 0.000000E+00 0
53: 11 1.280000E-01 0.000000E+00 0.000000E+00 0
54:
55: (P)revious Group, (Q)uit, (S)tart Over or Load-Step No.: Q
56:
57: Data: (M)odel only data (nodes, elements, bc, etc)
58: (V)ector results (displ, veloc, accel, forces)
59: (I)ntegrated Stresses -or- Mid-Surface Strains
60: (S)tress and Strains (equivalent nodal values)
61: (Q)uit making STAGS plot files = Q
62: [working directory] >

0:
STAGS 5.0 User Manual April, 2009 C-9

Appendix C
complete answer to most of its prompts, but it only uses the first character (in most cases). The
input descriptions on the preceding pages do not indicate where PITRANS does that, so the
interested reader should rely on the more complete descriptions of the program’s input records
in the “batch mode input requirements” part of this Appendix. The printouts on lines 15 and 36
of this listing informed our user that PITRANS generated two text output files during his
execution of the program—the pcats.step file that contains the same information that the
program printed to the screen on lines 17–33 of the listing (and again on lines 38–53), and the
PATRAN-compatible pcats.dis.10 file that contains the displacement results that he requested
for load step # 10.

Example # 2

In this example, the analyst used PITRANS to generate an IDEAS-compatible output file
containing mid-surface strains and curvatures for the same (pcats) test case—demonstrating
again how much easier it was for him to generate that output using PITRANS in its “interview”
operating mode than it was for him to read about how to do so. The following “listing” shows
PITRANS’ output to his screen (in blue type) and his keyboard input into the program (in Red
type) when he executed the program via the OS-level pitrans command in a working
directory that contained the pcats.sav model file and the pcats.res and pcats.rst solution files:

0:
1: [working directory] > pitrans
2:
3: PITRANS - STAGS Plot File Reformat Utility Mar 21, 2002
4: Enter output type: (P)ATRAN, (I)DEAS = IDEAS
5: Enter Stags Case Name = pcats
6:
7: Data: (M)odel only data (nodes, elements, bc, etc)
8: (V)ector results (displ, veloc, accel, forces)
9: (I)ntegrated Stresses -or- Mid-Surface Strains

10: (S)tress and Strains (equivalent nodal values)
11: (Q)uit making STAGS plot files = Integrated S or M
12: Integrated Type: (S)treses = Resultants & Moments
13: (M)id-Surface Strains & Curvatures = M
14:
15: the load/time step list has been stored in the file: pcats.step
16:
17: there are 12 loadsteps for this case
18: ===
19: loadstep of initial plastic yield: 8
20:
21: Loadstep Load Factor A Load Factor B time # of modes
22: 0 1.000000E-02 0.000000E+00 0.000000E+00 0
23: 1 1.000000E-02 0.000000E+00 0.000000E+00 0
24: 2 2.000000E-02 0.000000E+00 0.000000E+00 0
25: 3 2.572181E-02 0.000000E+00 0.000000E+00 0
26: 4 3.286878E-02 0.000000E+00 0.000000E+00 0
C-10 April, 2009 STAGS 5.0 User Manual

Appendix C
Note that the user’s responses on lines 4 and 11 of this “interview session” are multi-character
strings. For these responses, PITRANS reads and prints the full character string, extracts the first
character from it, and uses that character to determine what the user wants and to do what it has
to do next. Note that this is not the “case” on line 5 (pun intended) where the program assumes
that the user’s case name is whatever he gives the program on that line—all of it. The printouts
on lines 15 and 37 of this listing informed our user that PITRANS generated two output files
during his execution of the program—the pcats.step file that contains the same information that
the program printed to the screen on lines 17–33 of the listing (and again on lines 39–54), and
the IDEAS-compatible pcats.elmR.10 file that contains the mid-surface strain and curvature
results that he requested for load step # 10.

27: 5 4.301969E-02 0.000000E+00 0.000000E+00 0
28: 6 5.709739E-02 0.000000E+00 0.000000E+00 0
29: 7 7.361708E-02 0.000000E+00 0.000000E+00 0
30: 8 9.189031E-02 0.000000E+00 0.000000E+00 0
31: 9 1.091103E-01 0.000000E+00 0.000000E+00 0
32: 10 1.240358E-01 0.000000E+00 0.000000E+00 0
33: 11 1.280000E-01 0.000000E+00 0.000000E+00 0
34:
35: (P)revious Group, (Q)uit, (S)tart Over or Load-Step No.: 10
36: Please wait for additional computation...
37: File: pcats.elmR.10 successfully created.
38:
39: there are 12 loadsteps for this case
40: ===
41:
42: Loadstep Load Factor A Load Factor B time # of modes
43: 0 1.000000E-02 0.000000E+00 0.000000E+00 0
44: 1 1.000000E-02 0.000000E+00 0.000000E+00 0
45: 2 2.000000E-02 0.000000E+00 0.000000E+00 0
46: 3 2.572181E-02 0.000000E+00 0.000000E+00 0
47: 4 3.286878E-02 0.000000E+00 0.000000E+00 0
48: 5 4.301969E-02 0.000000E+00 0.000000E+00 0
49: 6 5.709739E-02 0.000000E+00 0.000000E+00 0
50: 7 7.361708E-02 0.000000E+00 0.000000E+00 0
51: 8 9.189031E-02 0.000000E+00 0.000000E+00 0
52: 9 1.091103E-01 0.000000E+00 0.000000E+00 0
53: 10 1.240358E-01 0.000000E+00 0.000000E+00 0
54: 11 1.280000E-01 0.000000E+00 0.000000E+00 0
55:
56: (P)revious Group, (Q)uit, (S)tart Over or Load-Step No.: Q
57:
58: Data: (M)odel only data (nodes, elements, bc, etc)
59: (V)ector results (displ, veloc, accel, forces)
60: (I)ntegrated Stresses -or- Mid-Surface Strains
61: (S)tress and Strains (equivalent nodal values)
62: (Q)uit making STAGS plot files = Q
63: [working directory] >

0:
STAGS 5.0 User Manual April, 2009 C-11

Appendix C
Input records (for interview- and batch-mode operations)

On this and on the following eleven pages, we give “formal” descriptions of the twelve input
records (user responses) that were referenced in the flow chart on page C-3 and in the Input
requirements and output files discussions part of this Appendix—in the traditional input record
format that is used throughout this and other STAGS user manuals. Some of these records are
required whenever the user executes the PITRANS program, and others are only needed when
the user asks the program to do certain things. All of that will be clear from the description of
each of these records and from the “navigation” instructions that appear at the end of it.

PX-1 Output Format record

The first thing that PITRANS does when the user executes the program is to print a short
program-version header followed by its initial (station PX1) prompt that asks the user to specify
the format that he wants the program to use for all of the output files that it generates for him
during the current execution (where PX1 is the first of the twelve prompt and control addresses
in the flow chart on page C-3). The following PX-1 input record documents the answer—a
character string called FORM that may contain up to but not more than 72 alphanumeric
characters—that PITRANS expects the user to give it in his response to that prompt:

FORM

FORM output format (72 characters or less); see the note, below

Note: PITRANS reads and displays the complete FORM string, extracts the first character
from it, and uses that character to set its internal control parameters to generate all of the
output files that it produces in PATRAN-compatible formatted files (if the first character is
‘P’ or ‘p’) or in IDEAS-compatible formatted files (if the first character is ‘I’ or ‘i’). If
the first character is anything other than one of those four possibilities, PITRANS will
reissue its PX1 control point prompt and wait for the user’s next response to the same
question. Then—after the user’s valid response has been read and processed—PITRANS will
move forward to its next prompt station (and input record).

go to PX-2
C-12 April, 2009 STAGS 5.0 User Manual

Appendix C
PX-2 Stags Case Name record

This record specifies the case name for the case at hand.

CASE

CASE case name (an alphanumeric character string that identifies the case at hand);
see the important Notes, below

Note 1: In PITRANS, the CASE character string is long enough to contain up to (but not
more than) 72 characters. Some analysts who are using PITRANS with cases that have names
that are much shorter than that might be tempted to respond to the program’s PX2 control
station prompt with a short case name followed by one or more blank characters followed
by comments or other things. The PITRANS program is not “smart” enough to realize that
the user might give it a short case name (which cannot contain any blank characters)
followed by other stuff, and it tries to use the entire character string instead of the short
substring that the user wants it to use. Please do not let PITRANS do that.

Note 2: PITRANS will need the case.sav file that s1 generated for the user’s case to produce
any output files for the case at hand—and it will need the case.res and case.rst files that
s2 generated to produce any output files that contain displacements, velocities, reaction
forces, stresses, strains and/or other results that are contained in those files or that must be
generated with information that those files contain. The case.sav file must be present in the
user’s working directory under any circumstances. The case.res and case.rst files must also
be there when they are needed. PITRANS will read each of these files when and if it needs
to do so—but will not change any of them under any circumstances.

Note 3: PITRANS will terminate its execution prematurely (stop) if it does not find the
case.sav file that it expects (and needs) in the user’s working directory. If PITRANS finds
and opens that file successfully, it will move on to its central PX3 control station, where it
expects the user to respond with the following (PX-3) program-control input record.

go to PX-3
STAGS 5.0 User Manual April, 2009 C-13

Appendix C
PX-3 Output Data Option record

This record is requested and read at PITRANS’ central control point—the PX3 control station in
the flow chart on page C-3 to initiate one or another of the program’s data extraction, translation
and output activities—or to quit the PITRANS program. This is where PITRANS displays its

Data: (M)odel only data (nodes, elements, bc, etc)
 (V)ector results (displ, veloc, accel, forces)
 (I)ntegrated Stresses -or- Mid-Surface Strains
 (S)tress and Strains (equivalent nodal values)
 (Q)uit making STAGS plot files = >

prompt and waits for the user’s answer to the what do you want me to do next question that it
poses—via the very first character in his specification of the 72-character-long OPTION answer
string on this input record:

OPTION

OPTION(1:1) primary program-control input parameter:

= ‘M’ or ‘m’ – generate a PATRAN- or an IDEAS-compatible output
file containing information about the STAGS model

= ‘V’ or ‘v’ – generate one or more PATRAN- or IDEAS-compatible
output files that contain displacement, velocity or
reaction force results for the specified load step(s)

= ‘I’ or ‘i’ – generate one or more PATRAN- or IDEAS-compatible
output files that contain integrated stress results for
the specified load step(s)

= ‘S’ or ‘s’ – generate one or more PATRAN- or IDEAS-compatible
output files that contain nodal stress/strain results for
the specified load step(s)

= ‘Q’ or ‘q’ – stop generating output files!!!

if (OPTION(1:1) = ‘M’ or ‘m’) then
go to PX-7

elseif (OPTION(1:1) = ‘V’ or ‘v’) then
go to PX-4

elseif (OPTION(1:1) = ‘I’ or ‘i’) then
go to PX-5

elseif (OPTION(1:1) = ‘S’ or ‘s’) then
go to PX-8

elseif (OPTION(1:1) = ‘Q’ or ‘q’) then
finished!!!

else
go to PX-3

endif
C-14 April, 2009 STAGS 5.0 User Manual

Appendix C
PX-4 Vector Type record

This record is read at PITRANS’ PX4 control station (in the flow chart on page C-3), which
PITRANS reaches if and only if the user has specified that ODATA(1:1) = ‘V’ or ‘v’ on his most
recent PX-3 record.

VTYPE

VTYPE(1:1) vector-type control parameter:

= ‘D’ or ‘d’ – generate one or more PATRAN- or IDEAS-compatible
output files that contain displacement results for the
specified load step(s)

= ‘V’ or ‘v’ – generate one or more PATRAN- or IDEAS-compatible
output files that contain velocity results for the
specified load step(s)

= ‘F’ or ‘f’ – generate one or more PATRAN- or IDEAS-compatible
output files that contain reaction forces for the
specified load step(s)

if (VTYPE(1:1) = ‘D’ or ‘d’) then
go to PX-7

elseif (VTYPE(1:1) = ‘V’ or ‘v’) then
go to PX-7

elseif (VTYPE(1:1) = ‘F’ or ‘f’) then
go to PX-7

else
go to PX-4

endif
STAGS 5.0 User Manual April, 2009 C-15

Appendix C
PX-5 Integrated Stress Type record

This record is read at PITRANS’ PX5 control station, which PITRANS reaches if and only if the
user has specified that ODATA(1:1) = ‘I’ or ‘i’ on his most recent PX-3 record.

STYPE

STYPE(1:1) integrated-stress-type control parameter:

= ‘S’ or ‘s’ – generate one or more PATRAN- or IDEAS-compatible
output files that contain integrated stresses in each
element for the specified load step(s)

= ‘M’ or ‘m’ – generate one or more PATRAN- or IDEAS-compatible
output files that contain mid-surface strains in each
element for the specified load step(s)

if (STYPE(1:1) = ‘S’ or ‘M’ or ‘s’ or ‘m’) then
go to PX-6

else
go to PX-5

endif
C-16 April, 2009 STAGS 5.0 User Manual

Appendix C
PX-6 Next Step record

This record is read at PITRANS’ PX6 control station, which PITRANS reaches if and only if the
user has specified that ODATA(1:1) = ‘I’ or ‘i’ on his most recent PX-3 record and if the user
has specified that STYPE(1:1) = ‘S’ or ‘M’ (or ‘S’ or ‘M’) on his most recent PX-5 record. This
is where the user selects a valid step number from the “load table” for the analysis (or analyses)
that produced the case.res and case.rst files in his working directory. This is a little bit tricky
because the ISTEP input parameter can contain an integer step number (N, say) or a character
string (A, say)—the first of these being the case where the user wants to specify a valid load step
for which he wants output of the type that he requested on his PX-5 record, and the second of
these being the case when he wants to direct PITRANS to do something.

ISTEP = N or A

ISTEP next step number or action string:

= N – generate a PATRAN- or an IDEAS-compatible output file
that contains integrated stresses or mid-surface strains
in each element for load step # N

= A(1:1) = ‘P’ display an earlier section of the “load table” than is
currently being displayed on PITRANS’ output screen

= A(1:1) = ‘S’ display the very first section of the “load table” instead
of the section that is currently being displayed

= A(1:1) = ‘Q’ quit generating integrated stress or mid-surface strains
output files; return to PX3 to prompt and wait for
further instructions,

if (ISTEP = N) then

go to PX-6
elseif (ISTEP = S(1:1) = ‘P’or ‘S’) then

go to PX-6
elseif (ISTEP = S(1:1) = ‘Q’) then

go to PX-3
else

go to PX-6
endif
STAGS 5.0 User Manual April, 2009 C-17

Appendix C
PX-7 Model Type record

This record is read at PITRANS’ PX7 control station, which PITRANS reaches if and only if the
user has specified that ODATA(1:1) = ‘M’ or ‘m’ on his most recent PX-3 record—or if he has
specified that ODATA(1:1) = ‘V’ or ‘v’ there and that he has specified that VTYPE(1:1) = ‘D’ or
‘V’ or ‘F’ (or ‘d’ or ‘v’ or ‘f’) on his most recent PX-4 record. At PX7, PITRANS prompts
the user to specify (via the MTYPE input parameter) that he wants PITRANS to do any
calculations that it needs to do using his STAGS model in the program’s “full model”
computational mode or in the program’s “condensed model” mode when it calculates forces,
stresses and other results. When the user specifies that he wants the “full model” option,
PITRANS will perform its computations keeping nodes that occupy the same locations as other
nodes in-place as “doubled” nodes. When the user specifies that he wants the “condensed model”
option, PITRANS will coalesce each “doubled” node into a single “master” node. This is
important when downstream processors cannot handle “doubled” node situations properly.
STAGS and its utility programs can handle those situations correctly, so it is rarely (if ever)
necessary for STAGS users to choose the “condensed model” option.

PITRANS expects to read the following (Model Type) input record in response to this PX7

prompt:

MTYPE

MTYPE(1:1) model type parameter:

= ‘F’ – perform force, stress and other calculations using
the program’s “full model” computation mode
(the usual situation); or

= ‘C’ – perform force, stress and other calculations using
the program’s “condensed model” mode

if (MTYPE(1:1) = ‘F’ or ‘C’ or ‘f’ or ‘c’) then

if (ODATA(1:1) = ‘M’ or ‘m’) go to PX-3
if (ODATA(1:1) = ‘V’ or ‘v’) go to PX-8

else

go to PX-7

endif
C-18 April, 2009 STAGS 5.0 User Manual

Appendix C
PX-8 Next Step record

This record is read at PITRANS’ PX8 control station, which PITRANS reaches if and only if the
user has specified that

ODATA(1:1) = ‘S’ or ‘s’ on his most recent PX-3 record, or that

ODATA(1:1) = ‘V’ or ‘v’ at PX3, and that VTYPE(1:1) = ‘D’ or ‘V’ or ‘F’ (or ‘d’ or
‘v’ or ‘f’) at PX4, and that MTYPE(1:1) = ‘F’ or ‘C’ (or ‘f’ or ‘c’) at PX7

Under these circumstances, this is where the user selects a valid step number from the “load
table” for the analysis (or analyses) that produced the case.res and case.rst files in his working
directory. The STEP input parameter can contain an integer step number (N, say) or a character
string (A, say)—the first of these being the case where the user wants to specify a valid load step
for which he wants output of the requested type, and the second of these being the case when he
wants to direct PITRANS to do something.

STEP = N or A

STEP next step number or action string:

= N – generate a PATRAN- or an IDEAS-compatible output file
that contains the requested information for load step # N

= A(1:1) = ‘P’ display an earlier section of the “load table” than is
currently being displayed on PITRANS’ output screen

= A(1:1) = ‘S’ display the first section of the “load table” instead
of the section that is currently being displayed

= A(1:1) = ‘Q’ quit generating output files of the requested type

if (STEP = N) then
if (ODATA(1:1) = ‘V’ or ‘v’) go to PX-8
if (ODATA(1:1) = ‘S’ or ‘s’) go to PX-9

elseif (STEP = A(1:1) = ‘P’ or ‘S’) then
go to PX-8

elseif (STEP = A(1:1) = ‘Q’) then
go to PX-3

else
go to PX-8

endif
STAGS 5.0 User Manual April, 2009 C-19

Appendix C
PX-9 Layer record

This record is read at PITRANS’ PX9 control station, which PITRANS reaches if and only if the
user has specified that ODATA(1:1) = ‘S’ or ‘s’ on his most recent PX-3 input record (at PX3)
and that he has selected a valid step number in his most recent PX-8 input record (at PX8). This
is where PITRANS prompts the user to specify the layer number (in the LAYER input parameter)
for which he wants the program to give him the output that he has requested for each laminated
element in the model that has a layer with that number—in which case a valid LAYER number
will be in the range , where maxlayer is the highest layer number in the
model (a parameter that PITRANS determines by examining all of the elements in the model)—
or that he wants the program to give him the output that he has requested at layer number “0”
(i.e., for the top and bottom laminates) in each element:

LAYER

LAYER layer number:

> 0 – generate a PATRAN- or an IDEAS-compatible output file
that contains the requested information for the current load
step for each element that has a layer # LAYER

= 0 generate a PATRAN- or an IDEAS-compatible output file
that contains the requested information for the current load
step for the top and bottom laminates of each element
in the model

if (LAYER is a valid layer number) then

if (or) then

go to PX-9a
elseif (plasx and .not. makeplas) then

go to PX-9b
else

go to PX-9c
endif

else

go to PX-9

endif

1 LAYER maxlayer≤ ≤

nr840 0> nr880 0>
C-20 April, 2009 STAGS 5.0 User Manual

Appendix C
PX-9a Output Point Location record

This record is read at PITRANS’ PX9a control station, which PITRANS reaches if and only if the

user has specified a valid LAYER number in the preceding PX-9 record at the program’s PX9

control point AND if the user’s model contains one or more sandwich or solid elements in it.

This is where PITRANS prompts the user to specify the location(s) at which he wants it to

generate the output that he has requested in each sandwich or solid element for which LAYER is

a valid layer number (when LAYER > 0) or for the top and bottom laminates (when LAYER = 0)—

in the single-character SLOC input parameter that the program expects the user to specify here:

SLOC

SLOC location(s) where output is wanted:

= ‘C’ or ‘c’ – generate output at the centroid of the selected layer(s)

= ‘I’ or ‘i’ – generate output at each integration point of
the selected layer(s)

= ‘N’ or ‘n’ – generate output at each node point of
the selected layer(s)

if (SLOC = ‘C’ or ‘I’ or ‘N’ or ‘c’ or ‘i’ or ‘n’) then

if (plasx and .not. makeplas) then

go to PX-9b

else

go to PX-9c

endif

else

go to PX-9a

endif
STAGS 5.0 User Manual April, 2009 C-21

Appendix C
PX-9b Plastic Strains record

This record is read at PITRANS’ PX9b control station, which PITRANS reaches if and only if the

user has specified a valid output location (SLOC) number in the preceding PX-9a record at the

program’s PX9a control point AND if the user’s model takes plasticity into account AND if

PITRANS’ internal logical variable makeplas is .false. when the user reaches this control point—

where PITRANS asks the user the question “Do you want to examine plastic strains? (y or n)”

and waits for him to respond (via the single-character IPLAST input parameter) on the PX-9b

input record that is described here:

IPLAST

IPLAST do I want plastic strains output???

= ‘N’ or ‘n’ – No, I do not: do not give me a plastic strains
output file for this loading step

≠ ‘N’ or ‘n’ – Yes, I do: please give me a plastic strains output
file for this and for all subsequent load steps;
and do not ask me this question again

Note: PITRANS initializes makeplas to be .false. at the outset of each execution of the program—

and will refrain from extracting plastic strains from the user’s case.res/case.rst database (and

from giving the user output files containing that information) until the user changes makeplas to

be .true. by giving PITRANS anything other than an ‘N’ or ‘n’ response to this PX9b prompt.

go to PX-9c
C-22 April, 2009 STAGS 5.0 User Manual

Appendix C
PX-9c Reference Frame record

This record is read at PITRANS’ PX9c control station, which the program reaches if and only if
the user has selected a valid LAYER number at PX9 (and has specified the SLOC and/or IPLAST

parameters successfully at PX9a and PX9b, as and if necessary). This is where PITRANS asks the
user to specify the (fabrication or material) reference coordinate frame that he wants the program
to use for all of the stress and strain computations has to do in each element, via the single-
character FRAME parameter on the following input record:

FRAME

FRAME Reference coordinate frame:

= ‘M’ or ‘m’ – use the layer’s (or element’s) material
coordinates frame

≠ ‘M’ or ‘m’ – use the layer’s (or element’s) fabrication
coordinates frame

Note: PITRANS sets FRAME = ‘F’ if the user does not set it equal to ‘M’ or ‘m’.

go to PX-8
STAGS 5.0 User Manual April, 2009 C-23

Appendix C
Example # 3

In this example, the analyst decided that he wanted resultants and moments (instead of mid-
surface strains and curvatures) for his pcats test case—at load steps 9, 10 and 11. Not wanting
to plow through another of PITRANS’ painful interview sessions—and remembering what he did
in the second example (above)—he constructed the following pcats.pix “script” file that answer’s
PITRANS’ prompts in the way that he needs to do so to get the output that he wants:

The Red items in this text file are our analyst’s answers to the prompts that he expects PITRANS

to make, and the Black items are in-line comments that he expects the program to ignore. Note
that he has been careful not to put anything other than his case name on the second line of this
input script.

Then, with pcats.sav, pcats.res, pcats.rst and pcats.pix in his working directory, our analyst
executed PITRANS with the following OS-level command:

% pitrans < pcats.pix

When PITRANS was finished with this job, our happy analyst found the following output files
in his working directory:

pcats.step load step table
pcats.elmI.9 IDEAS-compatible resultant & moment results for step # 9
pcats.elmI.10 IDEAS-compatible resultant & moment results for step # 10
pcats.elmI.11 IDEAS-compatible resultant & moment results for step # 11
pcats.sot.0 PITRANS “journal” file for this run

0:
1: I $ PX-1 IDEAS-compatible output desired
2: pcats
3: Integrated S or M $ PX-3 Output Data OPTION
4: R $ PX-5 Resultants and moments
5: 9 $ PX-6 ISTEP = 9
6: 10 $ PX-6 ISTEP = 10
7: 11 $ PX-6 ISTEP = 11
8: Q $ PX-6 Quit specifying steps
9: Q $ PX-3 Quit PITRANS !!!
C-24 April, 2009 STAGS 5.0 User Manual

Appendix K
11

K

11 K
STAGS Shell Surface Differential Geometry

Definition of Basic Differential Geometry Terms

Slope information to be used to generate higher-order shell imperfections can be computed
from the relationships defining the shell surface.* The basic relationships, given in (4.1) on
page 4-8, are repeated here:

 (K.1)

where are branch coordinates of the position vector r of a point defined by
functions of the surface coordinates (see Section 4.2 “Shell Unit” on page 4-8). Such
functions are defined for each of the standard shell surfaces in “Standard Shell Surfaces” on
page 6-2. Slope information required by user-written subroutine DIMP can be expressed as
a function of the bending numbers , , and , which in turn depend on the knowledge
of the Lamé coefficients (the First Fundamental Form) of the shell. It is possible to compute
the Lamé coefficients by differentiation of the functional form provided in “Standard Shell
Surfaces” for each shell unit. Without delving into shell theory, we present here a short
summary of the required information for each STAGS shell type. Only the leading terms are
presented for LAME and the elliptic cylinder (ISHELL = 9). In most situations, the leading
terms involving derivatives of the displacement normal to the surface are sufficient to define
the higher-order imperfection field to better precision than can be measured. The user should
note that the imperfection field for the coordinates (the translations) is always expressed in
units of distance (as opposed to angles or other generalized curvilinear coordinates). One

* See, for example:
Kraus, H., “Thin Elastic Shells,” John Wiley & Sons, Inc., New York, 1967; and/or
Dym, C.L., “Introduction to the Theory of Shells (revised printing),” Hemisphere Publishing Corp.,
New York, 1990; and/or
Vinson, J.R., “The Behavior of Shells Composed of Isotropic and Composite Materials,” Kluwer Aca-
demic Publishers, Dordrecht, 1993; and/or
Struik, D.J., “Lectures on Classical Differential Geometry, second edition,” Dover Publications, Inc.,
New York, 1988

x x X Y,()= y y X Y,()= z z X Y,()=

x y z, ,()

X Y,()

βx βy γ
STAGS 5.0 User Manual April, 2009 K-1

Appendix K
should also note that although for some shell units formulas for the drilling freedom are
included, this is a small quantity that could without harm be set to zero.

Note that in what follows, the perturbed coordinates are labeled , and are always
expressed in the shell coordinate system. The most important coordinate for thin
shell imperfections is , which points in the direction of the shell normal.

Bending Numbers for Arbitrary Shell

Omitting details that can be found in most texts on shell theory or differential geometry, we
define the in-plane bending numbers by the following relationship:

 (K.2)

The comma notation indicates differentiation; for example, .

 is a unit vector pointing in the direction of the outward normal to the shell, and are
the components of the in-plane displacements expressed in a system tangent to the
coordinate lines. This equation applies to arbitrary tangent lines, including those that are not
orthogonal. The user will discover in practice that only the term involving the normal
coordinate will contribute to the imperfection (in fact, it is very difficult to measure
anything else). The drilling freedom can be ignored.

For the shell types orthogonalized by STAGS, the user must express his imperfection
displacements and rotations in the orthogonal system. However, the imperfection
displacements are still expressed as functions of the original surface coordinates. To
express the new direction in terms of the original , we make a change of variables that
orthogonalizes the system, and apply that to (K.2). The final result is

γ

u v w, ,()

X′ Y′ Z′, ,()

w

βi

ζj w j,
n̂ r kj, uk⋅

r k, r k,⋅

k

∑+=

βj
ζj

r j, r j,⋅
---------------------=

r,i i∂
∂r≡

n̂ uk

w

γ

X Y,()

X Y,()
K-2 April, 2009 STAGS 5.0 User Manual

Appendix K
 (K.3)

Again, note that only the terms involving the undeformed surface and the normal coordinate
are important. This fact will be reflected in the next section.

ISHELL = 1 (LAME) Option

This option permits the user to define his own shell type, with the possibility that the tangent
coordinate line do not form an orthogonal set. The Lamé coefficients for an orthogonal
system are defined by the following relationships:

 (K.4)

The comma notation indicates differentiation; for example, .

If the system is not orthogonal, the user is asked to choose which shell coordinate is aligned
with the tangent line (see “LAME Reference Surface Geometry” on page 12-19). If we
assign to be the coordinate selected from the tangent line, then the following relationship
can be derived from (K.3):

 (K.5)

Note that all these quantities are easily computed given (K.1). The bending numbers for
LAME are

β1
n̂ r 11 u1 α1 r 12 cr 11,–,()u2 α2⁄+⁄,[] w 1,+⋅

α1
--=

β2 ξ η ς+ +() α2⁄=

ξ w 2 cw 1,–,=

η n̂ r 12 cr 11,–,[]u1 α1⁄⋅=

ς n̂ r 11 c
2

2r 12, c– r 22,+,[]u2 α2⁄⋅=

c
r,1 r,2⋅
r,1 r,1⋅
-----------------=

α1 r,1 r,1⋅=

α2 r,2 r,2⋅ c r,1 r,2⋅()–=

αi
2

αi gii=

gii r
i

r
i

,⋅,=

r,i i∂
∂r≡

i

αi gii r
i

r
i

,⋅,= =

αj
r

j
r

j

r
i

r
j

,⋅,()2

r
i

r
i

,⋅,
------------------------–,⋅,=
STAGS 5.0 User Manual April, 2009 K-3

Appendix K
 (K.6)

where the value of and range from 1 to 2, and where no summation is implied by
repeated indices.

Flat Plates (ISHELL = 2 or 3)

Please see “RECTANGULAR PLATE” and “QUADRILATERAL PLATE” on page 6-4
for the defining equations. The bending numbers are

 (K.7)

and (this is almost never necessary)

 (K.8)

Annular Plate (ISHELL = 4)

Please refer to “ANNULAR PLATE” on page 6-5 for the notation and defining equations.
The bending numbers are

 (K.9)

where X is the radial position coordinate within the annular plate segment.

βi
w

i
,

αi
--------=

βj
w

j
,

αj
--------=

γ 0=

w
j

, w
j

w
i

r
i

r
j

,⋅,

αi
2

⎝ ⎠
⎜ ⎟
⎛ ⎞

,–,=

i j

βi w
i

,=

γ 1
2
--- v

1
u

2
,–,()=

β1 w
1

,=

β2

w
2

,
X

---------=

γ 1
2
--- v 1

u
2

v–,
X

-----------------–,⎝ ⎠
⎛ ⎞=
K-4 April, 2009 STAGS 5.0 User Manual

Appendix K
Cylinder (ISHELL = 5)

Please refer to “CYLINDER” on page 6-5 for the notation and defining equations. The
bending numbers are

 (K.10)

Cone (ISHELL = 6)

Please refer to “CONE” on page 6-6 for the notation and defining equations. The bending
numbers are

 (K.11)

where the Lamé coefficients are defined by

 (K.12)

Sphere (ISHELL = 7)

Please refer to “SPHERE” on page 6-6 for the notation and defining equations. The bending
numbers are

β1 w
1

,=

β2

w
2

v–,
R

------------------=

γ 1
2
--- v

1

u
2

,
R

--------–,⎝ ⎠
⎛ ⎞=

β1
w 1,
α1

---------=

β2
w

2
, v α1⁄–

α2
----------------------------=

γ 1
2
--- v 1,

α1
-------- u 2,

α2
--------– v ϕtan

α1α2
---------------+⎝ ⎠

⎛ ⎞=

α1 1 ϕcos⁄=

α2 r=
STAGS 5.0 User Manual April, 2009 K-5

Appendix K
 (K.13)

Torus (ISHELL = 8)

Please refer to “TORUS” on page 6-7 for the notation and defining equations. The bending
numbers are

 (K.14)

where the Lamé coefficients are defined by

 (K.15)

Elliptic Cylinder (ISHELL = 9)

This is a special case where the shell coordinates are orthogonalized, as discussed above.
Approximate formulas for the in-plane bending numbers will be given, and the drilling
freedom will be ignored. Please refer to “ELLIPTIC CONE/CYLINDER” on page 6-8
for the notation and defining equations. The bending numbers are

 (K.16)

with constants in (K.16) defined as follows:

β1
w

1
u–,

R
------------------=

β2
w 2 v Xsin–,

R Xsin
-------------------------------=

γ 1
2
--- v

1
,
R

-------- u
2

v Xcos–,
R Xsin

------------------------------–⎝ ⎠
⎛ ⎞=

β1
w 1 u–,

α1
------------------=

β2
w 2 v Xsin–,

α2
-------------------------------=

γ 1
2
--- v 1,

α1
-------- u 2 v Xcos–,

α2
------------------------------–⎝ ⎠

⎛ ⎞=

α1 Rb=

α2 Ra Rb Xsin+=

γ

β1
w 1 cw 2,–,

α1
---------------------------=

β2
w 2,
α2

---------=

γ 0=
K-6 April, 2009 STAGS 5.0 User Manual

Appendix K
 (K.17)

Paraboloid (ISHELL = 10)

Please refer to “PARABOLOID” on page 6-9 for the notation and defining equations. The
bending numbers are

 (K.18)

where the Lamé coefficients are defined by

 (K.19)

Ellipsoid (ISHELL = 11)

Please refer to “ELLIPSOID” on page 6-10 for the notation and defining equations. The
bending numbers are

g22 Xap
2 ϕtan()2 ξ3 2

cos Y
2

Ysin+()=

g12 Y Y ϕtan()2
Xap ξ2

1–()cossin=

g11 1 ϕtan()2 ξ2 2
Y

2
Ycos+sin()+=

c g12 g22⁄=

α1 g11 cg12–=

α2 g22=

β1
w 1,
α1

--------- u
4Ra

2

α1α2()3
--------------------–=

β2
w 2 v α1⁄–,

α2
----------------------------=

γ 1
2
--- v 1,

α1

u 2 v α1α2[]⁄–,
α2

--------------------------------------–⎝ ⎠
⎛ ⎞=

α1 1 η2
+=

α2 R x()=

η
Ra

X Rb+
-----------------=
STAGS 5.0 User Manual April, 2009 K-7

Appendix K
 (K.20)

where the Lamé coefficients are defined by

 (K.21)

Hyperboloid (ISHELL = 12)

Please refer to “HYPERBOLOID” on page 6-11 for the notation and defining equations.
The bending numbers are

 (K.22)

where the Lamé coefficients are defined by

 (K.23)

β1
w 1 uRxRyz α1

2⁄–,
α1

--=

β2
w 2,
α2

--------- v
Rx

α1Ryz
---------------–=

γ 1
2
--- v 1,

α1

u 2 vRyz Xe α1⁄cos–,
α2

--–⎝ ⎠
⎛ ⎞=

α1 Rx
2

Xesin()2
Ryz

2
Xecos()2

+=

α2 Ryz Xesin=

β1
w 1,
α1

--------- u
Ra

4

Rb
2 α2α2()3

---------------------------–=

β2
w 2 v α1⁄–,

α2
----------------------------=

γ 1
2
--- v 1,

α1

u 2 vη α1⁄–,
α2

-------------------------------–⎝ ⎠
⎛ ⎞=

α1 1 η2
+=

α2 R x()=

η
Ra

2
x x1– Rc+()

Rb
2
R x()

--------------------------------------=
K-8 April, 2009 STAGS 5.0 User Manual

Appendix L
12
L
12 L

Design Parameter Derivatives

Displacement gradients

The objective is to determine how the system unknowns change as a function of changes in
model parameters that govern system behavior. The starting point for such an analysis is the
governing equation that determines the system state:

 (L.1)

where f is the nodal residual vector (internal minus external forces), and u are the nodal
displacements and the system unknowns to be determined by application of (L.1). Equation (L.1)
is a statement of Newton’s second law in a very general sense; such a system is usually nonlinear
in its unknowns, and may require sophisticated solution techniques and considerable resources
to solve. The system has a number of independent parameters that determine response, such as
nodal positions and element topology, shell wall fabrication, and material data. In principle, any
of these parameters can change as a design evolves. Our objective is to determine how the system
unknowns change when such design parameters λ change. We assume at the outset that we
have a solution at a given reference state (our current design and environment), and that we wish
to see how these unknowns evolve for small changes in our current system definition. We obtain
the governing equations by differentiating (L.1) to yield

 (L.2)

where is the displacement gradient vector field that we wish to compute, and where a
subscripted comma followed by a variable denotes a derivative with respect to that variable. The
first partial derivative is shorthand for the derivative of the residual with respect to each unknown
in turn, with all others held constant. The second term is the partial derivative of the residual with
respect to the design variable with all other unknowns and parameters held constant; this
derivative is almost always local to each element, i.e., the total derivative is a sum of a
contribution from each element taken independent of all the others. K is the stiffness matrix that
is readily identified with the first partial derivative in (L.2); it is already available in FEM

f u λ,() 0=

∂f u λ,()
∂u

--------------------u λ,
∂f u λ,()

∂λ
--------------------+ 0=

Ku λ, f λ,–=

u λ,
STAGS 5.0 User Manual April, 2007 L-1

Appendix L
software. The second equation in (L.2) consists of a factoring of the stiffness matrix followed by
one or more “solve” operations with right hand sides . Thus, the task is divided neatly into
two independent parts:

• Computation of local partial derivatives of the residual and assembly into .

• The solution of a system of linear equations with the same structure as the normal
“systems matrix” in an ordinary FEM analysis.

The first task can be very complex—especially if element shape, topology, and nodal locations
are involved. For the time being, we shall concentrate on a very important subset of design
variables that yields a simplified analysis. We shall admit for variation all components of a wall
fabrication, such as layer thickness, material orientation angles and material properties. Any
number of such variations can be combined so that a very large class of design gradients can be
computed. It is fortuitous that no matter how complex a fabrication is in a shell analysis, it all
comes down in the end to the ABD matrix that relates reference surface strains and curvatures
to force resultants and moments. Furthermore, the residual is a linear function of the ABD
matrix for the class of problems we are interested in; in what follows, we shall call this matrix
C with components ij. C is symmetric and positive definite, and has either 21 or 24 independent
components depending on the type of element used (the last three are transverse shear terms).
Since the entire response of the system to changes in λ comes from C, we can express as
follows by using the chain rule:

 (L.3)

where we remove the bold face for components of C to emphasize that they are treated one-by-
one. One can see readily that is a linear combination of partials with respect to each individual
member of C. In addition, since the FEM analysis is a strictly linear function of C, one can
compute these partials by setting all the C matrices in the system to zero, and replacing each
component in turn by unity for fabrications affected by the design parameter. One must be
careful to preserve the symmetry of C: unity in the ij slot must be matched by unity in the ji slot.
Subsequently, one has to call a simple internal force calculation to obtain each of the 21 or 24
partials in (L.3). Clearly, if (L.3) holds, then

 (L.4)

f λ,–

f λ,

f λ,

f λ,
∂f
∂λ

∂f

∂Ci j

∂Ci j

∂λ

ij
∑= =

f λ,

u λ, u ij,

∂Cij

∂λ

ij
∑=

Ku ij,
∂f

∂Cij
----------–=
L-2 April, 2007 STAGS 5.0 User Manual

Appendix L
must also be true. The advantage of solving for the independent vectors is that this particular
operation needs to be done only once, no matter what contributes to changes in C. In fact, the
second equation in (L.4) is the only part that has to be done with the full FEM machinery; the
sum in the first of (L.4) can be performed in a post-processing environment. This is how it is
done in STAGS. The user selects the fabrications to vary, computes the 21 or 24 gradient basis
vectors , and stores them away. In a stapl or a star application, these vectors are multiplied
by the coefficients of variation of C with respect to a particular design variable to yield the final
result. The variation coefficients of C can be computed with simple software independent of
STAGS. We have provided an example of such software, called GradC, which is described below.
This GradC program allows linked variation with respect to material properties, layup thickness
and orientation angles. The post-processing operation can be repeated for the variation of any
different design parameter that affects the same C—and this can include a group of C’s that form
multiple fabrications. In that case, there will be a set of basis vectors for each different
fabrication. The user can obtain additional flexibility by assigning more fabrications to the
model, even though they may have the same initial composition.

Strain gradients

Two ingredients are required to compute strain gradients as a function of some design variable
λ. First, we must have the displacement gradients computed from the governing equations (L.2);
this subject was covered in full in the previous section. The second requirement for the strain
variation is the partial derivative or variation of the strain as a function of nodal displacements.
For a linear analysis, this is easy to obtain, since one only has to turn off the nonlinearity in the
strain-displacement relationship, and compute strain as a function of instead of u. This is the
same requirement as that expressed by the formula

 (L.5)

where we have emphasized that B depends only on the undeformed geometry X. For nonlinear
analysis, we would require the relationship

 (L.6)

Unfortunately, this expression is not equivalent to substituting the displacement gradient for the
displacements in the existing strain routines because B itself is a function of the actual
displacements of the problem. This is especially true of corotation software that is applied well
before strains are computed.

ui j

u ij,

u λ,

BL X()u ε=

BNL X u,()u ε=
STAGS 5.0 User Manual April, 2007 L-3

Appendix L
Fortunately, there is an entirely different approach that can be used. We note that the internal
force routines compute the first variation of the energy via

 (L.7)

where we have arranged the stresses into a “vector” defined by a particular element. A
corresponding vector exists for the strains, so that when “engineering” strains are used, the
energy is the inner product of the stress and the strain. The w above are integration weights. If
we examine (L.7) closely, we see that the integral of the gradient we desire is already in place,
so long as we replace the stress vector with a one in the desired slot, and zero elsewhere. For
example, in the E410 arrangement of strains, we have the ordering for the
stresses, and are the corresponding strains. If we wish to obtain , then our
“stress” vector would be zero except for a one for component for each integration point l.
The resulting “internal force” vector provides the integral of the gradient of strain over the
element as a function of a unit variation of a given displacement component. This relationship
holds even in the presence of corotation and projection; in fact, results are improved when both
are applied. The output of the internal force calculation is of course a nodal vector of the same
length and structure as the internal force; we can call this vector the strain gradient coefficient
vector. We summarize these operations by the following:

 (L.8)

where is an array with the same structure as stress, but with unity in position k and zero
elsewhere. Now we see the significance of the subscript k on the force vector: it is the base
variation of strain component k with respect to the displacement field. The integral of the strain
variation with respect to a particular displacement gradient becomes

 (L.9)

where the total derivative can be substituted for the ratio of variations since these variations in u
are restricted to those satisfying the equilibrium equation (L.1). The average (centroidal) gradient
for the element is

δuTfin σ δε()δA∫=

δuT
wlBNL

T σl

l
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

=

Nx Ny Nxy Mx My Mxy, , , , ,

εx
0 εy

0 εxy
0 κx

0 κy
0 κxy

0, , , , , εxy
0

Nxy

fk

fk

σ
k()

ek=

δuTfk σ
k()

δε Ad∫=

δuT
wlBNL

T σ
k()

l
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

=

ek

εk λ, Ad∫
δu
δλ
------⎝ ⎠

⎛ ⎞ T
fk fk

T
u λ,= =
L-4 April, 2007 STAGS 5.0 User Manual

Appendix L
 (L.10)

where A is the area of the element. These calculations can be done with existing software with a
minimum of effort. For values at the integration points, one can set only that component
corresponding to point l to unity. Then the divisor in (L.10) becomes the integration weight
instead of A, and the operations above are repeated for each integration point.

Strain gradients with corotation

The displacement gradient above refers to the deformational displacements in the local element
frame. The inner product (L.10) is valid only when both and are in the same coordinate
frame. However, the displacement gradient available from STAGS is in the usual computational
system. They first must be transformed to the element frame as a variation in total displacements,
and then converted by the corotational projector into the local deformational system:

 (L.11)

where P is the corotational projector, and are the displacements taken from the STAGS archive

and transformed into the element frame. This transforms the product in (L.7) to

 (L.12)

This is the final result needed for display of the strain gradients in the element frame. The usual
transformations apply for display of strain gradients in shell/fabrication coordinate frames.

Gradient computation in STAGS

Let us now summarize how STAGS accomplishes our objective to determine the gradient of the
system displacement unknowns u. First, we must have a solution at the desired load and
boundary environment for the reference design. Most often, such a solution is accomplished by
solving (L.1) at a series of increasing load steps using all the solution tools available in STAGS.
If the user desires to follow with a gradient analysis, he will specify this in the solution *.bin

input file. One can request that the solution will stop at a given set of load steps, and instead of
an eigenanalysis, perform a gradient analysis. Or one can elect the option to compute gradients

εk λ,

εk λ, Ad∫
A

fk
T
u λ,
A

------------= =

wl

fk u λ,

u λ, Pu λ,
E

=

u λ,
E

εk λ,
fk
T
Pu A,

E

A
----------------=
STAGS 5.0 User Manual April, 2007 L-5

Appendix L
at a successful conclusion of the analysis at a given load step. In either case, STAGS will compute

the second equation in (L.4): it will in turn examine the fabrications involved in the gradient

definition, and zero out the C matrix for all non-involved fabrications. For those involved in the

variation, only a given {ij,ji} pair of C matrix components will be nonzero, and their values will

be set to unity. An internal force calculation will be done (our system first variation), and a right

hand side belonging to component ij will be the result. After we have all 21 or 24 independent

right hand sides, we compute their gradient basis vector counterparts with the previously

factored stiffness matrix K. If a current stiffness matrix is not available, one will be computed

and factored. The basis vectors will be archived, along with the gradient of the displacements

with respect to the load, something already required for path-following algorithms. At that point,

S2 has finished its business.

The user now has the option of computing a particular displacement gradient by applying the

first equation in (L.4). Let us for the moment assume that he has at hand the full set of

coefficients of variation of C with respect to his particular choice of design variables. We

currently have an option in stapl to permit the user to input these coefficients as part of his

interview or his.pin input stream. stapl will then sum up the contributions from each gradient

basis vector and display the result. The user also has the option to display the gradient of strain

resulting from this displacement gradient. In addition, one can display the displacement or strain

gradient with respect to load. This latter information can be very revealing to an engineer

wishing to determine what margins exist at a critical load, for instance. The plot will show where

in the structure displacements or strains are most sensitive and perhaps critical in determining the

outcome of a design. Lastly, we have the option of using previously computed eigenvectors as

displacement gradients. In a very real sense, eigenvectors show alternative load paths that might

be important should the stability of the structure go critical. The strain gradients from such an

analysis will point out where strain is most likely to grow if stability is lost.

The GradC Program

For illustrative and reference purposes, a FORTRAN-language program (called GradC) that

computes a C matrix and its partial derivatives is listed in the following paragraphs—along

with 6 subroutines that are called by it and with a FORTRAN header file (gccom.h) that is

used by GradC and most of its subordinate routines. The logic and usage of this program

are discussed after those listings. Output from GradC can be plotted by STAGS’ stapl
processor and used as input for other applications.

u i j,
L-6 April, 2007 STAGS 5.0 User Manual

Appendix L
Main Program (GradC):

**
 Program GradC
**

#include “keydefs.h”

 _implicit_none_

include “gccom.h”
include “pie.h”

 Logical prompt

 pi = 3.141592653589793d0
 dtr = pi/180.d0
 rtd = 180.d0/pi

 tol = 1.e-5

* GET MATERIAL DATA
* =================
10 print 100
20 print 200
 read*, nmat

 if (nmat.le.0) then
 print 300
 stop
 endif

 if (nmat.gt.MAXMAT) then
 print 400, MAXMAT
 goto 20
 endif

 do 30 i=1,nmat
 print 500, i
 read*, e1(i), nu12(i), g12(i), e2(i)
30 continue

* GET LAYER DATA
* ==============
40 print 600
 read*, layers

 if (layers.lt.1 .or. layers.gt.MAXLAYER) then
 print 700, MAXLAYER
 goto 40
STAGS 5.0 User Manual April, 2007 L-7

Appendix L
 endif

 do 60 i=1,layers

50 print 800, i
 read*, imat(i), t(i), angle(i)

 if (imat(i).lt.1 .or. imat(i).gt.nmat) then
 print 900, imat(i)
 goto 50
 endif

60 continue

 print 1000
 read*, ecz

* COMPUTE AND PRINT C MATRIX
* ==========================
 call compcc (e1, nu12, g12, e2, ecz,
 & layers, imat, t, angle, cct)

 print 1100
 call out

* COMPUTE C MATRIX MATERIAL DERIVATIVE
* ====================================
70 if (prompt(‘Compute a C matrix material derivative? ‘)) then

 call MatDeriv
 goto 70

 endif

* COMPUTE C MATRIX THICKNESS DERIVATIVE
* =====================================
80 if (prompt(‘Compute a C matrix thickness derivative? ‘)) then

 call ThickDeriv
 goto 80

 endif

* COMPUTE C MATRIX ANGLE DERIVATIVE
* =================================
90 if (prompt(‘Compute a C matrix angle derivative? ‘)) then

 call AngleDeriv
 goto 90

 endif
L-8 April, 2007 STAGS 5.0 User Manual

Appendix L
* CHECK FOR ANOTHER C MATRIX COMPUTATION
* ======================================
 goto 10

100 format(/’----------------’
 & /’Welcome to GradC’
 & /’----------------’)
200 format(/’Number of materials (zero to exit)? ‘,$)
300 format(/’---------------’
 & /’GradC Completed’
 & /’---------------’)
400 format(‘>>> Number of materials limited to:’,i4)
500 format(‘Material’,i3,’: E1, Nu12, G12, E2? ‘,$)
600 format(/’Number of layers? ‘,$)
700 format(‘>>> Number of layers limited to:’,i4)
800 format(‘Layer’,i4,’: Material, Thickness, Angle? ‘,$)
900 format(‘>>> Bad material number:’,i4)
1000 format(/’Eccentricity? ‘,$)
1100 format(/’C Matrix’/)

 end

Subroutine AngleDeriv:

**
 Subroutine AngleDeriv
**

 _implicit_none_

include “gccom.h”

* COMPUTE C MATRIX ANGLE DERIVATIVE
* =================================
 call zerof (MAXLAYER, dthick)
 call zerof (MAXLAYER, dangle)

 rtol = tol

 do 10 i=1,layers

 print 100, i
 read*, dangle(i)

 if (dangle(i).ne.0) then
 rtol = max(rtol, abs(angle(i))*tol)
 endif
STAGS 5.0 User Manual April, 2007 L-9

Appendix L
10 continue

 print 200

 call LayerDeriv

100 format(‘Layer’,i4,’: dAngle? ‘,$)
200 format(/’C Matrix Angle Derivative’/)

 end

Subroutine LayerDeriv:

**
 Subroutine LayerDeriv
**

 _implicit_none_

include “gccom.h”

* COMPUTE A LAYER (THICKNESS OR ANGLE) DERIVATIVE
* ===

 do 10 i=1,layers
 tp(i) = t(i) + dthick(i) * rtol
 anglep(i) = angle(i) + dangle(i) * rtol
10 continue

 call compcc (e1, nu12, g12, e2, ecz,
 & layers, imat, tp, anglep, cctp)

 do 20 i=1,layers
 tp(i) = t(i) - dthick(i) * rtol
 anglep(i) = angle(i) - dangle(i) * rtol
20 continue

 call compcc (e1, nu12, g12, e2, ecz,
 & layers, imat, tp, anglep, cctm)

 do 30 i=1,21
 cct(i) = (cctp(i)-cctm(i)) / (2.d0*rtol)
30 continue

 call out

 end
L-10 April, 2007 STAGS 5.0 User Manual

Appendix L
Subroutine MatDeriv:

**
 Subroutine MatDeriv
**

 _implicit_none_

include “gccom.h”

 Character eg*3

* COMPUTE C MATRIX MATERIAL (E1, E2, OR G12) DERIVATIVE
* ===

 call zerof (MAXMAT, de1)
 call zerof (MAXMAT, de2)
 call zerof (MAXMAT, dg12)

10 print 100
 read*, mat

 if (mat.lt.1 .or. mat.gt.nmat) then
 print 200, mat
 goto 10
 endif

20 print 300
 read*, eg

 call upper (3,eg,eg)

 if (eg.eq.’E1’) then
 de1(mat) = 1.d0
 print 400
 elseif (eg.eq.’E2’) then
 de2(mat) = 1.d0
 print 500
 elseif (eg.eq.’G12’) then
 dg12(mat) = 1.d0
 print 600
 else
 print 700
 goto 20
 endif

* COMPUTE C MATRIX FINITE DIFFERENCE
* ==================================
 rtol = e1(mat) * tol

 do 30 i=1,nmat
STAGS 5.0 User Manual April, 2007 L-11

Appendix L
 e1p (i) = e1 (i) + de1 (i) * rtol
 e2p (i) = e2 (i) + de2 (i) * rtol
 g12p(i) = g12(i) + dg12(i) * rtol
30 continue

 call compcc (e1p, nu12, g12p, e2p, ecz,
 & layers, imat, t, angle, cctp)

 do 40 i=1,nmat
 e1p (i) = e1 (i) - de1 (i) * rtol
 e2p (i) = e2 (i) - de2 (i) * rtol
 g12p(i) = g12(i) - dg12(i) * rtol
40 continue

 call compcc (e1p, nu12, g12p, e2p, ecz,
 & layers, imat, t, angle, cctm)

 do 50 i=1,21
 cct(i) = (cctp(i)-cctm(i)) / (2.d0*rtol)
50 continue

 call out

100 format(‘Material number? ‘,$)
200 format(‘>>> Bad material number:’,i4)
300 format(‘Derivative with respect to: E1, E2, or G12? ‘,$)
400 format(/’C Matrix E1 Derivative’/)
500 format(/’C MAtrix E2 Derivative’/)
600 format(/’C Matrix G12 Derivative’/)
700 format(‘>>> Enter: E1, E2, or G12’)

 end

Subroutine Out:

**
 Subroutine Out
**

 _implicit_none_

include “gccom.h”

 Integer ij
 Integer j

* -----------------------
 ij(i,j) = i*(i-1)/2 + j
* -----------------------
L-12 April, 2007 STAGS 5.0 User Manual

Appendix L
 do 10 i=1,6
 print 100, (cct(ij(i,j)),j=1,i)
10 continue

100 format(1x,1p6e13.5)

 end

Logical Function Prompt:

**
 Logical Function Prompt(msg)
**

 _implicit_none_

 Character msg*(*)

 Character answer*3
 Logical cmatch

 print 10, msg
 read*, answer

 prompt = cmatch(answer,’Y^ES’)

10 format(/a,$)

 end

Subroutine ThickDeriv:

**
 Subroutine ThickDeriv
**

 _implicit_none_

include “gccom.h”

 call zerof (MAXLAYER, dthick)
 call zerof (MAXLAYER, dangle)

 rtol = tol
STAGS 5.0 User Manual April, 2007 L-13

Appendix L
 do 10 i=1,layers

 print 100, i
 read*, dthick(i)

 if (dthick(i).ne.0) then
 rtol = max(rtol, abs(t(i))*tol)
 endif

10 continue

 print 200

 call LayerDeriv

100 format(‘Layer’,i4,’: dThickness? ‘,$)
200 format(/’C Matrix Thickness Derivative’/)

 end

Fortran Header File gccom.h:

* ====================
* GLOBAL DATA: gccom.h
* ====================

 Integer MAXMAT
 Parameter (MAXMAT = 10)

 Integer MAXLAYER
 Parameter (MAXLAYER = 100)

 float angle (MAXLAYER)
 float anglep(MAXLAYER)
 float cct (21)
 float cctm(21)
 float cctp(21)
 float dangle(MAXLAYER)
 float de1 (MAXMAT)
 float de2 (MAXMAT)
 float dg12(MAXMAT)
 float dthick(MAXLAYER)
 float e1 (MAXMAT)
 float e1p(MAXMAT)
 float e2 (MAXMAT)
 float e2p(MAXMAT)
 float ecz
 float g12 (MAXMAT)
L-14 April, 2007 STAGS 5.0 User Manual

Appendix L
 float g12p(MAXMAT)
 float nu12(MAXMAT)
 float rtol
 float t(100)
 float tol
 float tp(MAXLAYER)

 Common /gccom1/ angle, anglep,
 & cct, cctm, cctp,
 & dangle, de1, de2, dg12, dthick,
 & e1, e1p, e2, e2p, ecz,
 & g12, g12p, nu12, rtol,
 & t, tol, tp

 Integer i
 Integer imat(MAXLAYER)
 Integer layers
 Integer mat
 Integer nmat

 Common /gccom2/ i, imat, layers, mat, nmat

* ============
* END: gccom.h
* ============

Using the GradC Program

The GradC program allows users to compute a C matrix and the partial derivatives of a C
matrix with respect to one of the material properties: E1, E2, and G12, or one of the
laminate properties: thickness and orientation angles. The four logical stages provided by
GradC are shown the following Figure:
STAGS 5.0 User Manual April, 2007 L-15

Appendix L
Logical flow of program GradC.

Computation of a C Matrix

A C matrix is computed during the first stage of the GradC program. As shown in this
Figure, during this stage the user supplies material and fabrication properties for a
composite laminate. For each material in the laminate, the user supplies E1, Nu12, E2, and

Compute C Matrix
1. Read number of materials.
2. For each material, read

E1, Nu12, E2, G12.
3. Read number of layers.
4. For each layer, read

Material, Thickness, Angle.
5. Read eccentricity.
6. Compute C.

Compute Material Derivative
1. Read material number.
2. Derivative with respect to

E1, E2, or G12?
3. Compute dC/dE or dC/dG
4.

Compute Layer Thickness Derivative
1. For each layer, read thickness

difference coefficient (1 or 0).
2. Compute dC/dThickness

Compute Layer Angle Derivative
1. For each layer, read angle difference

coefficient (1, -1, or 0).
2. Compute dC/dAngle

1

2

3

4

L-16 April, 2007 STAGS 5.0 User Manual

Appendix L
G12. This version of GradC permits up to 10 materials to be specified. This limit can be
modified easily by changing the MAXMAT parameter in the gccom.h header file. Laminate
geometry is next given by specifying the thickness and material principle axis orientation
angle for each layer. This version of GradC permits up to 100 layers to be specified. This
limit can be modified easily by changing the MAXLAYER parameter in the gccom.h header
file. Next, the eccentricity of the shell middle surface from the element reference surface, as
defined by the element nodes, is specified. GradC computes a C matrix using these data.

After a C matrix is computed, the user is asked if another C matrix computation is desired.
If the response is yes, then the data just described are entered for another laminate.
Otherwise, the user is moved along to the second stage of GradC.

Computation of a C Matrix Material Partial Derivative

A C matrix material partial derivative is computed during the second stage of the GradC
program. As shown in the Figure, during this stage the user identifies a material (as a
number that identifies one of the materials entered during stage one) and the material
property for the partial derivative. To identify the material property, the user enters one of
the case insensitive values: ‘E1’, E2’, or ‘G12’ (without quotes). Using these data, GradC
computes the partial derivative of the C matrix computed in stage one with respect to the
specified material property.

After a C matrix material partial derivative is computed, the user is asked if another material
partial derivative computation is desired. If the response is yes, then the data just described
are entered to specify another material and material property. Otherwise, the user is moved
along to the third stage of GradC.

Computation of a C Matrix Thickness Partial Derivative

A C matrix thickness partial derivative is computed during the third stage of the GradC
program. As shown in the Figure, during this stage the user identifies each layer that is to
be considered during the derivative computation. If a thickness difference coefficient
(referred to by the code as dThickness) is specified (usually as 1), then the layer thickness
is considered during the derivative computation. However, if a thickness difference
coefficient is specified as 0, then the layer thickness is not considered during the derivative
STAGS 5.0 User Manual April, 2007 L-17

Appendix L
computation. Using these data, GradC computes the partial derivative of the C matrix
computed in stage one with respect to the specified layer thicknesses.

After a C matrix thickness partial derivative is computed, the user is asked if another
thickness partial derivative computation is desired. If the response is yes, then the data just
described are entered to specify another set of thickness difference coefficients. Otherwise,
the user is moved along to the fourth stage of GradC.

Computation of a C Matrix Angle Partial Derivative

A C matrix angle partial derivative is computed during the fourth stage of the GradC
program. As shown in the Figure, during this stage the user identifies each layer that is to
be considered during the derivative computation. If an angle difference coefficient (referred
to by the code as dTheta) is specified (usually as 1 or -1), then the layer angle is
considered during the derivative computation. However, if an angle difference coefficient is
specified as 0, then the layer angle is not considered during the derivative computation.
Using these data, GradC computes the partial derivative of the C matrix computed in stage
one with respect to the specified layer angles.

After a C matrix angle partial derivative is computed, the user is asked if another angle
partial derivative computation is desired. If the response is yes, then the data just described
are entered to specify another set of angle difference coefficients. Otherwise, the user is
moved back to the first stage of GradC.
L-18 April, 2007 STAGS 5.0 User Manual

Appendix X
24
X
24 X

PAT2S

This appendix is not up-to-date vis a viz version 5.0 of the STAGS

program. It is included in this document for reference purposes.

Introduction

The PATRAN to STAGS translator, PAT2S, illustrates the use of the STAR Data Put (DP)
routines. PAT2S creates or updates a STAGS database. After preparation, the database is
suitable input for STAGS’ S2 processor. Figure 4 shows the data flow from a PATRAN neutral
file to a STAGS database. The following paragraphs describe the preparation of a STAGS

database from a PATRAN neutral file.

Input File

The user first generates a PATRAN model. The user names the neutral file, case.pat.i. The user
must also proved a user instruction file, case.usr.i. The user will replace case with a prefix
appropriate for his model. i is an integer, which distinguishes files with the same prefix.
PAT2S opens the case.pat.i or case.usr.i file with the greatest integer suffix. If gaps occur in
the list of integer suffixes, PAT2S opens the last file before the gap occurs.

Execution

The user runs PAT2S in either of the following ways. The user can invoke STAGS’ STP
processor with the case name as a command line argument and, then, choose the PATRAN to
STAGS translator option. The user can also directly invoke PAT2S according to the following
command line example,

% PAT2S case [debug]
STAGS 5.0 User Manual December, 2003 X-1

Appendix X
case is the case name prefix. debug is an optional command line argument. If debug is present,
the file case.sot.i contains a complete ASCII representation of data written into the STAGS

database, case.sav. Look at the section, Output Files, for more information on these PAT2S

output files. However, the ASCII information may be difficult to understand for users not
familiar with the format of the STAGS database. The main purpose of the debug option is to
provide a rough trace of the progress of translation in case of translation error.

User Specific
 Instructions

dpnode()

dpslave()

dpelt()

dppress()
dpline()
dptrac()

dpnload()

dpbcci()
dpadis()
dpitcon()
dpnmass()

dpoutp()

duopen()

inithr()

readpat()

initpcm()

initmat()

duclose()

STAGS Database

PATRAN to STAGS Translator

Figure 4. PATRAN To STAGS Translator.

PATRAN Neutral File
X-2 December, 2003 STAGS 5.0 User Manual

Appendix X
Output Files

PAT2S uses the STAGS Access Routines (STAR) to place data into the STAGS database.
Therefore, the output files for PAT2S are the same output files for STAR. These files include
case.sot.i and case.sav. The prefix, case, and the suffix, i, follow the convention of the input
files. case.sot.i contains diagnostic messages during translation. If the translation from
PATRAN to STAGS is not successful, users should read the end of the case.sot.i file. STAGS’ S2
processor uses the case.sav file as input. case.sav is the model database. In most cases, PAT2S

creates a new case.sav file. However, PAT2S can augment existing case.sav files. Because of
this feature, the user is responsible for keeping copies of old case.sav files before translation.

User Instruction File Format

The user instruction file for PAT2S consists of a sequence of logical free-form input records,
one logical record corresponding to each FORTRAN input list. In the following, a record is
referred to by use of a name, such as “B-1 Element Type Translation”.

A free-form input record contains a number of numerical data fields, each separated by
one of several data terminators, and optional comments, placed after the end of input data
and ignored by the program. There are two types of numerical data fields, integer and
floating point.

• Unless otherwise noted, an entry on a data record is an integer if the variable name
starts with I–N. Otherwise it is to be treated as a floating point number.

• Integer field widths cannot exceed 5 characters, including the optional sign.
 Leading blanks and a terminating character are not counted.

• Floating point numbers must contain a decimal point; an exponent is optional.
The exponent may be in any form allowed by regular FORTRAN “E” type format.
Thus, the following data forms are all equivalent

1450. 1.45E+03 .145+4 1.45E3
STAGS 5.0 User Manual December, 2003 X-3

Appendix X
• Floating-point decimal field widths are unlimited, however floating-point data are
truncated to about 7 or 8 decimal digits.

• A numerical data field may begin with any number of blanks (which are ignored)
and is terminated either with the last column for input data (column 80) or with
one of the following characters:

“ ” blank
“,” comma
“/” slash
“$” dollar sign

• Blanks are ignored everywhere on records containing numerical data, except
when they occur between two numerical data fields; then the first field is
terminated by the blank. Thus input integers or floating point numbers may never
contain embedded blanks.

WARNING: A blank line is not ignored; it produces a single logical record.

• A comma is normally used to terminate a data field when the logical record
contains additional data. Hence, when the last data field on one line is terminated
with a comma, this functions as a continuation character and indicates that the
logical record continues with the next input line. Otherwise, the logical record is
terminated when the end of data on the line is reached. Successive commas on a
line may be used to generate blank values of integer items in a list. For example,
“20,,,10” is equivalent to “20, 0, 0, 10”, which is equivalent to “20 0 0 10”.

• A slash terminates a logical record, and means that any following data field
begins a new logical record. Thus, several logical records may be constructed
with one input line (whereas with the use of commas, several input records might
comprise a single logical record). A slash following a comma prevents
continuation and the comma then functions as a simple terminator.

• A dollar sign in column 1 indicates a comment card.

A dollar sign in any other column signals the end of data on a record and means
that the remaining information on the line is ignored. This space may be used for
comments. A dollar sign may be used also when the data field on a line is
terminated by a comma, i.e., when the logical record continues on the following
input line.
X-4 December, 2003 STAGS 5.0 User Manual

Appendix X
User Instruction File Records

Because STAGS has modeling capabilities which the PATRAN neutral file cannot describe, a
separate set of user instructions must accompany the PATRAN neutral file. The following
pages describe the input records in a User Instruction file, which is subject to the above free
form guidelines.
STAGS 5.0 User Manual December, 2003 X-5

Appendix X
A-1 Case Title

The case title is read on the first line, which may contain any alphanumeric character.
Subsequently any number of comment records can be added provided they begin with a “$” in
column 1. Comments can also be included at the end of a data line, a “$” terminating data, and
the comment following. A list of the complete input file, including any comment records, is
printed at the beginning of all text output files. The user is urged to use this record as a way to
document the analysis.

COMMENT

COMMENT case title

go to B-1
X-6 December, 2003 STAGS 5.0 User Manual

Appendix X
B-1 Element Type Translation

The next set of lines map the shape, nodes, and configuration number in the PATRAN neutral file
(Packet Type 02, Variables IV, NODES, and CONFIG) to a corresponding element type in STAGS.
There is a default set of mappings as indicated below.

NECODE

NECODE Number of user defined element translation records. 0 means use the default. A 0
indicates that the translation will proceed according to the following map:

Shape Nodes Configuration Number STAGS element type
 2 2 0 210
 2 2 1 211
 2 2 2 110
 2 2 3 130
 2 2 4 250
 3 3 0 320
 4 4 0 410
 4 4 1 411
 4 9 0 480
 4 9 1 510
 4 9 2 710

The elements 130 and 250 are not currently supported.

if (NECODE > 0) go to B-1a
else go to C-1
STAGS 5.0 User Manual December, 2003 X-7

Appendix X
B-1a Element Type List

This record is read NECODE times. The following applies only if NECODE is not 0. Each line has
4 integers: ISHAPE, INODES, IPAT, and ISTAGS.

ISHAPE(i) INODES(i) IPAT(i) ISTAGS(i)

ISHAPE(i) PATRAN neutral file (Packet Type 02), variable IV.

INODES(i) PATRAN neutral file (Packet Type 02), variable NODES.

IPAT(i) PATRAN neutral file (Packet Type 02), variable CONFIG.

ISTAGS(i) STAGS element type (e.g. 320, 410, or 480).

go to C-1
X-8 December, 2003 STAGS 5.0 User Manual

Appendix X
C-1 Material Translation

The next record associates a PATRAN material ID (Packet Type 02, variable PID) with a STAGS

material number. This record is currently not active. Material information in the PATRAN neutral
file (Packet type 03) is not translated into STAGS material properties information. The user should
place a 0 for this record.

NMATCD

NMATCD Number of user defined associations between PATRAN material properties and
STAGS material properties. 0 means the PATRAN material ID corresponds to the
STAGS material ID. Since this record is not active, the user should always
enter 0.

if (NMATCD > 0) go to C-1a
else go to D-1
STAGS 5.0 User Manual December, 2003 X-9

Appendix X
C-1a Material List

This record is read NMATCD times. The following applies only if NMATCD is not 0. Each line has
2 integers: MPAT and MSTAGS.

MPAT(i) MSTAGS(i)

MPAT(i) PATRAN neutral file (Packet Type 02), variable PID.

MSTAGS(i) STAGS material ID number.

go to D-1
X-10 December, 2003 STAGS 5.0 User Manual

Appendix X
D-1 Element Property

PATRAN can associate an arbitrary list (Packet Type 04, Variable DATA) of numbers with an
element. PATRAN tags each element with a property ID (Packet Type 02, Variable PID) in order
to establish this association. PAT2S uses the element property ID to specify mount table ID, Cross
Section Table ID, or Wall Fabrication Table ID. The actual mount table, Cross Section Table, or
Wall Fabrication Table occur in subsequent lines of the user instruction file. PAT2S also uses the
PATRAN element property list of numbers to specify the parameters normally specified in the
STAGS T-1a through T-4c records.

NELMCD

NELMCD Number of user defined associations between PATRAN element property ID
and STAGS mount table ID, Cross Section Table ID, or Wall Fabrication Table
ID. If this record contains 0, then the default association is PATRAN element
property ID equals STAGS table ID.

if (NELMCD > 0) go to D-1a
else go to E-1
STAGS 5.0 User Manual December, 2003 X-11

Appendix X
D-1a Element Property List

This record is read NELMCD times. The following applies only if NELMCD is not 0. Each line has
2 integers: IEPAT and IESTAGS.

For mount elements, the PATRAN element property list (Packet Type 04, variable DATA) contains
the following:

MATID, IMNT1,IMNT2, LINKS, RLX1,RLY1,RLZ1, RLX2,RLY2,RLZ2

MATID is the PATRAN material property ID, which PAT2S does not use. PATRAN assigns this
number. The other variables occur in the STAGS T-1a and T-1b input records. The user should
consult the STAGS user manual for the meaning of these entries. For hyperelastic fastener
elements, the PATRAN element property list (Packet Type 04, variable DATA) contains the
following:

MATID, IMNT1,IMNT2,IMNT3,IMNT4,IMNT5,IMNT6

These variables occur in the STAGS T-1C input record. For beam elements, the PATRAN element
property list (Packet Type 04, variable DATA) contains:

MATID, XSI,ECY,ECZ, ILIN,IPLAS

These variables occur in the STAGS T-2 input record. For shell elements, the PATRAN element
property list contains the following:

MATID,UNUSED, ZETA,ECZ, ILIN,IPLAS,INTEG,IPENL,IANG, RX,RY,RZ

The variable, UNUSED, must contain 0. The other variables correspond to fields in the STAGS

T-3a through T-4c records for triangles or quadrilaterals. Users should consult the STAGS User
Manual for the meaning of these records.

The wall reference vector, (RX,RY,RZ), may differ from element to element. Each distinct wall
reference vector requires a distinct Packet Type 04 in the PATRAN neutral file. Because
specifying a wall reference vector in this manner is laborious, PAT2S offers another method to
indicate the wall reference vector. The user triggers this alternate method when IANG=1 and
(RX,RY,RZ)=(0.0,0.0,0.0) in the element property list for triangles and quadrilaterals.

For this alternate method to work the user must do the following. The user first specifies alternate
coordinate systems (Packet Type 05) in PATRAN and, then, associates a particular coordinate
system with a particular element of the model. PATRAN puts the alternate system information in
X-12 December, 2003 STAGS 5.0 User Manual

Appendix X
the coordinate frame data (Packet Type 05). PATRAN projects the x-axis of a Cartesian frame or
the r-axis of a cylindrical or spherical frame onto the plane of the element. This projected axis
is the PATRAN material axis. The θ1 angle in the element data (Packet Type 02) is the angle
between the PATRAN material axis and the vector from node 1 to node 2 of the element. Since
we do not know the algorithm used by PATRAN to determine this material axis, we assume that
this material axis lies in the same plane as the x-y plane of the STAGS element frame. PAT2S

transforms this material axis to the PATRAN global frame. The resulting vector is the wall
reference vector (RX,RY,RZ). Users should consult the PATRAN manual on Mesh Generation for
more information.

IEPAT(i) IESTAGS(i)

IEPAT(i) PATRAN neutral file (Packet Type 02), variable PID.

IESTAGS(i) STAGS mount table ID, Cross Section Table ID,
or Wall Fabrication Table ID.

go to E-1
STAGS 5.0 User Manual December, 2003 X-13

Appendix X
E-1 Load Translation

PATRAN allows two types of element loading: line loads and surface tractions. PATRAN also
allows node forces. In addition to these loads and tractions, STAGS also permits live and dead
pressure. Live pressure remains normal to the deformed surface throughout geometrically
nonlinear deformations. Dead pressure is constant (i.e. normal to the undeformed configuration).
Whereas PATRAN defines element loading in the parametric directions of the parent geometry,
STAGS has five options for defining element distributed load directions:

element-edge coordinates
element-surface coordinates
shell coordinates
global coordinates
element normal

Stags also defines two point load directions:

computational coordinates
global coordinates

In order to resolve these conflicts and to allow full use of STAGS element loading features, we
established rules for interpreting PATRAN distributed loads (Packet Type 06), and PATRAN node
forces (Packet Type 07).

In order to facilitate distributed loading and point force interpretation, we established six load
categories with specific load type and coordinate direction combinations. The load categories
with the associated load types and coordinate directions are the following:

Intrinsic:
line loads in element-edge coordinates
surface tractions in element-surface coordinates
node forces in computational coordinates

shell:
line loads and surface tractions in shell coordinates

global:
line loads and surface tractions in global coordinates
node forces in global coordinates

live:
live pressure in the (element normal) direction

dead:
dead pressure in the (element normal) direction

xe ye ze, ,()

xs ys zs, ,()

X′ Y′ Z′, ,()

xg yg zg, ,()

z′

x'' y'' z'', ,()

xg yg zg, ,()

z′

z′
X-14 December, 2003 STAGS 5.0 User Manual

Appendix X
velocity:
velocity dependent point load.

For the categories live and dead, we treat the , the 3rd load component as the pressure value.
Other load components are irrelevant for those categories.

PATRAN groups distributed loads and node forces into load sets. Each identified by a unique load
set ID (LSID). We use the LSID to categorize distributed loads and point forces according to the
above six types. By default, all load sets are in the intrinsic category, which permits line loads in
element-edge coordinates, surface tractions in element-surface coordinates, and node forces in
computational coordinates. The user instruction file provides a means for independently placing
each load set into one of the other five categories. Each LSID may appear in only one category.

With this background information, we now return to the next records in the user instruction file.
The next lines in the user instruction file are the load specification records.

NSHELL NGLOB NLIVE NDEAD NVELC

NSHELL NSHELL must always equal 0. This option is currently not supported. If
NGLOB, NLIVE, NDEAD, and NVELC are all 0, then PAT2S uses the intrinsic
designation: line loads in element-edge frame, surface tractions in element-
surface frame, node forces in computational frame.

NGLOB NGLOB is the number of IDs considered in the global frame. This number
includes both distributed load set IDs and node forces IDs.

NLIVE NLIVE is the number of IDs considered as live loads. This number includes
only distributed load set IDs.

NDEAD NDEAD is the number of IDs considered as dead loads. This number includes
only distributed load set IDs.

NVELC NVELC is the number of IDs considered as velocity dependent loads. This
number includes only point force set IDs.

if (NGLOB > 0) go to E-1a
else if (NLIVE > 0) go to E-1b
else if (NDEAD > 0) go to E-1c
else if (NVELC > 0) go to E-1d
else go to F-1

z′
STAGS 5.0 User Manual December, 2003 X-15

Appendix X
E-1a Global Frame List

This record is read NGLOB times.

NLGLOB(i)

NLGLOB(i) PATRAN neutral file (Packet Type 06 or 07), variable IV.

if (NLIVE > 0) go to E-1b
else if (NDEAD > 0) go to E-1c
else if (NVELC > 0) go to E-1d
else go to F-1
X-16 December, 2003 STAGS 5.0 User Manual

Appendix X
E-1b Live Load List

This record is read NLIVE times.

NLLIVE(i)

NLLIVE(i) PATRAN neutral file (Packet Type 06), variable IV.

if (NDEAD > 0) go to E-1c
else if (NVELC > 0) go to E-1d
else go to F-1
STAGS 5.0 User Manual December, 2003 X-17

Appendix X
E-1c Dead Load List

This record is read NDEAD times.

NLDEAD(i)

NLDEAD(i) PATRAN neutral file (Packet Type 06), variable IV.

if (NVELC > 0) go to E-1d
else go to F-1
X-18 December, 2003 STAGS 5.0 User Manual

Appendix X
E-1d Velocity Dependent List

This record is read NVELC times.

NLVELC(i)

NLVELC(i) PATRAN neutral file (Packet Type 07), variable IV.

go to F-1
STAGS 5.0 User Manual December, 2003 X-19

Appendix X
F-1 Load System

PATRAN groups load data using an arbitrary number of load sets, which PATRAN identifies by a
unique load set ID (LSID). STAGS organizes loads into two load systems, A and B. In this
context, “load” includes both distributed (element) loads and point (nodal) forces. By default, we
place all loads in load system A. The next user instruction lines allow users to override this
default by permitting them to place each LSID in load system B or to omit each LSID from the
STAGS model.

NSYSB NOMIT

NSYSB NSYSB is the number of IDs indicating use of load system B. Load system A
is the default.

NOMIT NOMIT is the number of IDs omitted from translation.

if (NSYSB > 0) go to F-1a
else if (NOMIT > 0) go to F-1b
else go to G-1
X-20 December, 2003 STAGS 5.0 User Manual

Appendix X
F-1a System B List

This record is read NSYSB times.

NLSYSB(i)

NLSYSB(i) PATRAN neutral file (Packet Type 06 or 07), variable IV.

if (NOMIT > 0) go to F-1b
else go to G-1
STAGS 5.0 User Manual December, 2003 X-21

Appendix X
F-1b Omitted Load List

This record is read NOMIT times.

NLOMIT(i)

NLOMIT(i) PATRAN neutral file (Packet Type 06 or 07), variable IV.

go to G-1
X-22 December, 2003 STAGS 5.0 User Manual

Appendix X
G-1 Constraint Translation

Prescribed nodal displacements are translated from PATRAN node displacements records (Packets
Type 08). PATRAN groups this data using an arbitrary number of constraint sets, each identified
by a unique constraint set ID (CSID). STAGS assembles prescribed nodal displacements into its
two load systems, A and B.

Closely related to prescribed nodal displacements are boundary conditions, which are a set of
degree-of-freedom (DOF) flags indicating the condition of each DOF as free (unconstrained) or
fixed (constrained).

STAGS also recognizes initial conditions, initial displacement, or initial velocity. We make use of
the PATRAN node displacements record to also specify initial displacement or initial velocity.
With these numerous possible interpretations of the PATRAN node displacements record, we
introduce the constraint translation records in the next lines of the user instruction file.

NDBASC NDINCR NINTDS NINTVL

NDBASC NDBASC is the number of IDs indicating basic boundary conditions.

NDINCR NDINCR is the number of IDs indicating incremental
boundary conditions.

NINTDS NINTDS is the number of IDs indicating initial displacement.

NINTVL NINTVL is the number of IDs indicating initial velocity.

if (NDBASC > 0) go to G-1a
else if (NDINCR > 0) go to G-1b
else if (NINTDS > 0) go to G-1c
else if (NINTVL > 0) go to G-1d
else go to H-1
STAGS 5.0 User Manual December, 2003 X-23

Appendix X
G-1a Basic Boundary Condition List

This record is read NDBASC times.

IDBASC(i)

IDBASC(i) PATRAN neutral file (Packet Type 08), variable IV.

if (NDINCR > 0) go to G-1b
else if (NINTDS > 0) go to G-1c
else if (NINTVL > 0) go to G-1d
else go to H-1
X-24 December, 2003 STAGS 5.0 User Manual

Appendix X
G-1b Incremental Boundary Condition List

This record is read NDINCR times.

IDINCR(i)

IDINCR(i) PATRAN neutral file (Packet Type 08), variable IV.

if (NINTDS > 0) go to G-1c
else if (NINTVL > 0) go to G-1d
else go to H-1
STAGS 5.0 User Manual December, 2003 X-25

Appendix X
G-1c Initial Displacement List

This record is read NINTDS times.

IINTDS(i)

IINTDS(i) PATRAN neutral file (Packet Type 08), variable IV.

if (NINTVL > 0) go to G-1d
else go to H-1
X-26 December, 2003 STAGS 5.0 User Manual

Appendix X
G-1d Initial Velocity List

This record is read NINTVL times.

IINTVL(i)

IINTVL(i) PATRAN neutral file (Packet Type 08), variable IV.

go to H-1
STAGS 5.0 User Manual December, 2003 X-27

Appendix X
H-1 Constraint System Translation

PATRAN groups nodal displacements using an arbitrary number of constraint set IDs (CSID).
STAGS organizes constraints into two load systems, A and B. By default, we place all constraints
in load system A. The next user instruction lines allow users to override this default by
permitting them to place each CSID in load system B or to omit each CSID from the STAGS

model.

NDSYSB NDOMIT

NDSYSB NDSYSB is the number of IDs indicating use of load system B. Load system A
is the default.

NDOMIT NDOMIT is the number of IDs omitted from translation.

if (NDSYSB > 0) go to H-1a
else if (NDOMIT > 0) go to H-1b
else go to I-1
X-28 December, 2003 STAGS 5.0 User Manual

Appendix X
H-1a System B List

This record is read NDSYSB times.

IDSYSB(i)

IDSYSB(i) PATRAN neutral file (Packet Type 08), variable IV.

if (NDOMIT > 0) go to H-1b
else go to I-1
STAGS 5.0 User Manual December, 2003 X-29

Appendix X
H-1b Omitted Constraint List

This record is read NDOMIT times.

IDOMIT(i)

IDOMIT(i) PATRAN neutral file (Packet Type 08), variable IV.

go to I-1
X-30 December, 2003 STAGS 5.0 User Manual

Appendix X
I-1 Multipoint Constraint Translation

Multiple interpretation of the PATRAN multipoint constraint record (Packet Type 14) is also
possible. We use the PATRAN multipoint constraint record to specify either a STAGS multipoint
constraint, Lagrangian constraint, or partial compatibility constraint. The next set of lines from
the user instruction file removes the ambiguity of interpreting multipoint constraint records.

NCMPC NCLGC NCPCM NCOMIT

NCMPC NCMPC is the number of multipoint constraint IDs for interpretation as
multipoint constraints.

NCLGC NCLGC is the number of multipoint constraint IDs for interpretation as
Lagrangian constraint.

NCPCM NCPCM is the number of multipoint constraint IDs for interpretation as partial
compatibility constraints.

NCOMIT NCOMIT is the number of multipoint constraint IDs omitted from translation.

if (NCMPC > 0) go to I-1a
else if (NCLGC > 0) go to I-1b
else if (NCPCM > 0) go to I-1c
else if (NCOMIT > 0) go to I-1d
else go to J-1
STAGS 5.0 User Manual December, 2003 X-31

Appendix X
I-1a Multipoint Constraint List

This record is read NCMPC times.

MCMPC(i)

MCMPC(i) PATRAN neutral file (Packet Type 14), variable IV.

if (NCLGC > 0) go to I-1b
else if (NCPCM > 0) go to I-1c
else if (NCOMIT > 0) go to I-1d
else go to J-1
X-32 December, 2003 STAGS 5.0 User Manual

Appendix X
I-1b Lagrangian Constraint List

This record is read NCLGC times.

MCLGC(i)

MCLGC(i) PATRAN neutral file (Packet Type 14), variable IV.

if (NCPCM > 0) go to I-1c
else if (NCOMIT > 0) go to I-1d
else go to J-1
STAGS 5.0 User Manual December, 2003 X-33

Appendix X
I-1c Partial Compatibility Constraint List

This record is read NCPCM times.

MCPCM(i)

MCPCM(i) PATRAN neutral file (Packet Type 14), variable IV.

if (NCOMIT > 0) go to I-1d
else go to J-1
X-34 December, 2003 STAGS 5.0 User Manual

Appendix X
I-1d Omitted Multipoint Constraint List

This record is read NCOMIT times.

MCOMIT(i)

MCOMIT(i) PATRAN neutral file (Packet Type 14), variable IV.

go to J-1
STAGS 5.0 User Manual December, 2003 X-35

Appendix X
J-1 Master-Slave Translation

Since PATRAN cannot specify master-slave node relationships, we use the user instruction file to
establish these relationships between nodes. The next set of lines in the user instruction file is
for master slave relationships.

NMASLAV

NMASLAV NMASLAV is the number of master-slave relationships between nodes.

if (NMASLAV > 0) go to J-1a
else go to K-1
X-36 December, 2003 STAGS 5.0 User Manual

Appendix X
J-1a Master-Slave List

This record is read NMASLAV times.

NSUNT(i) NSNODE(i) NMUNT(i) NMNODE(i)

NSUNT(i) NSUNT(i) is the unit number of the slave node. If NSUNT(i) = 0, then NSNODE(i)

is a global node number.

NSNODE(i) NSNODE(i) is slave node number in the unit. If NSUNT(i) = 0, then slave node
number is a global node number.

NMUNT NMUNT(i) is the unit number of the master node. If NMUNT(i) = 0, then
NMNODE(i) is a global node number.

NMNODE NMNODE(i) is master node number in the unit. If NMUNT(i) = 0, then master
node number is a global node number.

go to K-1
STAGS 5.0 User Manual December, 2003 X-37

Appendix X
K-1 Tables Translation

Because we currently do not translate the material property data records (packet type 03) in
PATRAN to a STAGS database, we use the user instruction file to specify the material properties
of the model. We make use of the format in the B-3, I-1, I-2, I-3, I-3a, I-4a, I-4b, I-4c, I-4d, J-1,
J-2a, J-2b, J-3a, J-3b, K-1, K-2, K-5a, K-5b, and K-5c STAGS input records to specify the material
properties, plasticity, creep, mount element force tables, beam element Cross Section Tables, and
shell Wall Fabrication Tables. Users should consult the STAGS User Manual for more information
on these input records.

NTAM NTAB NTAW NTAP NTAMT

NTAM Refer to record B-3, Data Table Summary, in the STAGS User Manual for the
meaning of these variables.

NTAB

NTAW

NTAP Although this variable is used in record B-3, it has no meaning for PAT2S.
Users should set it to 0.

NTAMT

if (NTAM > 0) go to L-1
else if (NTAB > 0) go to M-1
else if (NTAW > 0) go to N-1
else if (NTAMT > 0) go to O-1
else go to P-1
X-38 December, 2003 STAGS 5.0 User Manual

Appendix X
L-1–L-4 Material Properties

These records are read NTAM times. The subsequent input records are identical with STAGS’ I-1,
I-2, I-3, and I-3a input records which specify the material elastic, plastic, and creep properties.
Users should consult the STAGS User Manual for more information on these input records.

if (NTAB > 0) go to M-1
else if (NTAW > 0) go to N-1
else if (NTAMT > 0) go to O-1
else go to P-1
STAGS 5.0 User Manual December, 2003 X-39

Appendix X
M-1–M-4 Table Information

These records are read NTAB times. The subsequent input records are identical with STAGS’ I-4a,
I-4b, I-4c, and I-4d input records which specify the mount element table information. Users
should consult the STAGS User Manual for more information on these input records.

if (NTAW > 0) go to N-1
else if (NTAMT > 0) go to O-1
else go to P-1
X-40 December, 2003 STAGS 5.0 User Manual

Appendix X
N-1–N-5 Beam Cross Section Properties

These records are read NTAW times. The subsequent input records are identical with STAGS’ J-1,
J-2a, J-2b, J-3a, and J-3b input records which specify the beam cross section information.
Records J-4a and J-4b are not supported by PAT2S. Users should consult the STAGS User Manual
for more information on these input records.

if (NTAMT > 0) go to O-1
else go to P-1
STAGS 5.0 User Manual December, 2003 X-41

Appendix X
O-1–O-5 Shell Wall Properties

These records are read NTAMT times. The subsequent input records are identical with STAGS’ K-1,
K-2, K-5a, K-5b, and K-5c input records which specify the beam cross section information.
Records K-3a, K-3b, K-4a, K-4b, and K-6 are not supported by PAT2S. Users should consult the
STAGS User Manual for more information on these input records.

go to P-1
X-42 December, 2003 STAGS 5.0 User Manual

Appendix X
P-1 Output Control

The final line in the user instruction file is identical to the STAGS V-1 input record, the element
unit output control record. The variables NSELD and NSELS are not active. The user should set
these variables to 0. Users should consult the STAGS User Manual for more information on these
input records.

End of user instructions

Translation Details

The following gives additional details on the translation of a PATRAN neutral file to a STAGS

database. Figure 5 and Figure 6 associate PATRAN data records to STAR put routines. The
user instruction file which directs PAT2S in processing a PATRAN neutral file determines
some of the parameters to these STAR put routines. The tail of each arrow in the figures is
a PATRAN data packet. The head of each arrow point to the associated STAR put routine,
which we used to create an entry in the STAGS database.

Node Data Translation

Figure 5 indicates that the translation of node data (Packet Type 01) also utilizes coordinate
frame information (Packet Type 05). A node references an alternate coordinate frame using
the PATRAN variable, CID (Packet Type 01). The PATRAN alternate coordinate frame is a
rectangular, cylindrical, or spherical frame. This frame serves the same function as the
STAGS branch coordinate frame for shells. This frame determines a node’s computational
frame to global frame transformation. If IV = 0 (Packet Type 05), then PATRAN does not
specify an alternate frame. The nodes’s computational to global frame transformation is the
identity transformation. If IV = 1, then PATRAN specifies a rectangular alternate frame. The
node’s computational to global frame transformation is the variable, R (Packet Type 05). If
IV = 2, then PATRAN specifies a cylindrical frame. The computational frame at the node has
the PATRAN convention with the x-axis as the radial axis, the y-axis as the circumferential
axis, and the z-axis as the axial axis. We construct a transformation from the PATRAN

alternate frame to this computational frame. The node’s computational to global
transformation combines the transformation from computational to alternate frame with the
alternate to global frame transformation in the variable, R. If IV = 3, then PATRAN specifies
STAGS 5.0 User Manual December, 2003 X-43

Appendix X
a spherical frame. The computational frame at the node has the PATRAN convention with the
x-axis as the radial axis, the y-axis as the azimuthal axis, and the z-axis as the longitudinal

Node Data (Packet Type 01)

Element Data (Packet Type 02) Element Properties Data (Packet Type 04)

Coordinate Frames Data (Packet Type 05)

Distributed Load Data (Packet Type 06)

Node Forces Data (Packet Type 07)

Node Displacements Data (Packet Type 08)

Multipoint Constraint Data (Packet Type 14)

dpnode()

dpelt() dpnmass()

dpmpc() dplag() dpprcom()

dpbcci() dpitcon() dpadis()

dpnload()

dppress() dptrac() dpline()

Figure 5. STAR Routines Accessed During PATRAN Neutral File Translation.
X-44 December, 2003 STAGS 5.0 User Manual

Appendix X
axis. We construct a transformation from the PATRAN alternate frame to this computational
frame. The computational to global frame transformation for the node combines the
computational to alternate frame transformation with the alternate to global frame
transformation in the variable, R.

Element Data Translation

Figure 5 indicates that the translation of element data (Packet Type 02) also uses the element
properties information (packet type 04). The description of input record B-1 in the user
instruction file explains the default interpretation of the CONFIG variable (Packet Type 02).
This interpretation maps PATRAN element types to STAGS element types. In the D-1A input
record, we described the necessary information for the DATA field of the element properties
packet (Packet Type 04), which gives attributes of individual elements.

There are a few special elements which the user can describe by a PATRAN neutral file. If
the element shape equals 2, IV = 2 (Packet Type 02), and the element configuration equals

Master Slave Relationships

dpslave() dpprcom()

Material Property, Beam Cross Section, Mount Table, Shell Wall Fabrication

dpmate() dpmatp() dpcreep() dpmotab() dpcross() dpcxgen()

dpcxsub() dpcxrec() dpwalay() dpwagen()

Element Unit Output Control

dpoutp()

Figure 6. STAR Routines Accessed for User Instruction File.
STAGS 5.0 User Manual December, 2003 X-45

Appendix X
7, CONFIG = 7, then the element is an added mass element. The first node in LNODES array
is the location of the added mass and the second entry in DATA (Packet Type 04) is the added
mass value. If IV = 4, NODES = 9, and CONFIG = 1, then the element is the STAGS 510
transition element. If IV = 4, NODES = 9, and CONFIG = 2, then the element is the STAGS 710
transition element. For these two elements, some entries in LNODES have values less then or
equal to 0 in order to reflect node pattern in the transition element. Since these elements are
not part of the standard PATRAN element libraries, interactive use of PATRAN cannot generate
these elements. However, other programs generating PATRAN neutral files can easily
generate a 510 or 710 element entry.

Distributed Load Translation

Depending on the entries in the user instruction file, the translator interprets the distributed
loads (Packet Type 06) in the PATRAN neutral file. If the user instructs PAT2S to interpret a
distributed load as a live pressure, then PAT2S uses only every third component in PDATA.
PAT2S calls the routine dppress. If the user instructs PAT2S to interpret a distributed load as
a dead pressure, then PAT2S uses only every third component in PDATA. PAT2S puts a
distributed line load in the STAGS database with a call to dpline and a distributed surface load
in the STAGS database with a call to dptrac. Although these translation mechanisms are in
place, STAGS S2 processor currently does not recognize distributed traction loads. Any
attempt to interpret distributed surface loads will invoke dptrac. dptrac will then exit with
an error.

Node Displacement Translation

Depending on the entries in the user instruction file, the translator interprets the node
displacement (Packet Type 08) in the PATRAN neutral file. If the user instructs PAT2S to
interpret a node displacement as a basic boundary condition or incremental boundary
condition, then PAT2S ignores the load values in DDATA and uses only the displacement
component flags in ICOMP. The PATRAN convention for the displacement component flags is
0 for free degrees of freedom and 1 for constrained degrees of freedom. The STAGS

convention is the opposite. Therefore, PAT2S changes the contents of the ICOMP variable from
the PATRAN convention to the STAGS convention. The contents of the ICOMP variable adds to
the single point constraint specified by the PSPC variable in the node data packet (Packet
Type 01). PAT2S then calls the routine dpbcci to create an entry in the STAGS database.

If the user instructs PAT2S to interpret a node displacement as an initial displacement or an
initial velocity, PAT2S uses the value in DDATA and calls the routine dpitcon to create an
X-46 December, 2003 STAGS 5.0 User Manual

Appendix X
entry in the STAGS database. PAT2S calls dpadis for the default action of applying a specified
displacement at the node.

Multipoint Constraint Translation

Depending on the entries in the user instruction file, the translator interprets the multipoint
constraint data (Packet Type 14) in the PATRAN neutral file. If the user instructs PAT2S to
interpret a multipoint constraint data set as a Lagrangian constraint, then PAT2S calls the
routine dplag. If the user instructs PAT2S to interpret a multipoint constraint data set as a
partial compatibility constraint, then PAT2S calls the routine dpprcom. The PATRAN

dependent node becomes the STAGS slave node and the PATRAN independent node becomes
the STAGS master node. PAT2S ignores all but the first independent node. If the user does not
provide a translation interpretation, PAT2S’ default action is to translate PATRAN’s multipoint
constraint packet into a STAGS multipoint constraint and by calling the routine, dpmpc.
STAGS 5.0 User Manual December, 2003 X-47

	STAGS User Manual
	Table of Contents
	1 Introduction
	2 Installation and Execution
	3 Getting Started
	4 Fundamentals
	5 Model Input
	6 Model Input—Shell Units
	7 Model Input—Element Units (1)
	8 Model Input—Element Units (2)
	9 Model Input—Element Units (3)
	10 Model Input—Element Units (4)
	11 Solution Input
	12 User-Written Subroutines
	13 User–Defined Elements
	14 The Element Library
	15 Analysis Techniques
	16 Interpretation of Results
	17 Input/Output Files
	A Appendices
	A STAGS Input Record Catalog
	B STAPL Input
	C PITRANS Input
	K STAGS Shell Surface Differential Geometry
	L Design Parameter Derivatives
	X PAT2S

	1 Introduction
	1.1 About this Manual
	1.2 About STAGS
	Analysis and structure types
	Solution algorithms
	Modeling
	Material, wall & stiffener properties
	Loads
	Boundary conditions
	Element library
	Initial geometric imperfections
	User-written subroutines
	User-defined elements

	2 Installation and Execution
	2.1 STAGS Directory Structure (all platforms)
	2.2 UNIX-Based Systems
	2.2.1 Basic UNIX System Requirements
	2.2.2 Installation of STAGS on a UNIX System
	Installing STAGS on a UNIX system
	Initializing STAGS on a UNIX system
	Making STAGS on a UNIX system (as and if necessary)
	Coping with installation errors (as and if necessary)
	Verifying that STAGS operates correctly

	2.2.3 Execution of STAGS on a UNIX System
	Examples
	Examples

	2.3 Linux-Based Systems
	2.3.1 Basic Linux System Requirements
	2.3.2 Installation of STAGS on a Linux System
	Installing STAGS on a Linux system
	Initializing STAGS on a Linux system
	Making STAGS on a Linux system (as and if necessary)
	Coping with installation errors (as and if necessary)
	Verifying that STAGS operates correctly

	2.3.3 Execution of STAGS on a Linux System
	Examples
	Examples

	2.4 Macintosh-Based Systems
	2.4.1 Basic Macintosh System Requirements
	2.4.2 Installation of STAGS on a Macintosh system
	Installing STAGS on a Macintosh system
	Initializing STAGS on a Macintosh system
	Making STAGS on a Macintosh system (as and if necessary)
	Coping with installation errors (as and if necessary)
	Verifying that STAGS operates correctly

	2.4.3 Execution of STAGS on a Macintosh System
	Examples
	Examples

	2.5 Windows-Based Systems
	2.5.1 Basic Windows System Requirements
	2.5.2 Installation of STAGS on a Windows System
	Installing STAGS on a Windows system
	Initializing STAGS on a Windows system
	Making STAGS on a Windows system (as and if necessary)
	Coping with installation errors (as and if necessary)
	Verifying that STAGS operates correctly

	2.5.3 Execution of STAGS on a Windows System

	2.6 Installation Verification

	3 Getting Started
	3.1 Infinite Cylinder Under Hydrostatic Pressure
	3.2 Linear Bifurcation Buckling
	3.3 Large-Deflection Analysis of an Imperfect Cylinder
	3.4 Restarting a Nonlinear Analysis
	3.5 File Systems
	3.6 Input Files
	Linear buckling analysis
	Start nonlinear analysis
	Restart nonlinear analysis

	3.7 Test problems

	4 Fundamentals
	4.1 Coordinate Systems
	4.2 Shell Unit
	4.3 The Element Unit
	4.4 Assembled Structures
	4.5 Boundary Conditions
	4.6 Loads
	4.7 Summary of Modeling Techniques

	5 Model Input
	5.1 Conventions Used in Input-Record Descriptions
	Record ID and title
	Discussion
	Data summary
	Data description
	Where to go from here

	5.2 Example Input-Record Description
	Record ID and title:
	Discussion:
	Data summary:
	E1 U12 G RHO A1 E2 A2

	Data description:
	Where to go from here:

	5.3 Input Format Conventions
	5.4 Summary and Control Parameters
	A-1 Case Title
	COMMENT

	B-1 Analysis Type Definition
	IGRAV ICHECK ILIST INCBC NRUNIT NROTS KDEV

	B-1a Model Unit List
	(IUNIS(i), i = 1, NRUNIT)

	B-1b Sequence of Model Rotations
	IROT ROT

	B-2 General Model Summary
	NUNITS NUNITE NSTFS NINTS NPATS NCONST NIMPFS INERT NINSR NPATX NSTIFS

	B-3 Data Tables Summary
	NTAM NTAB NTAW NTAP NTAMT NGCP

	B-4 Gravitational Acceleration
	GRAV

	B-5 Buckling Mode Imperfections
	WIMPFA IMSTEP IMMODE IMRUN

	B-6 Inertial Loads Summary
	ISYS IA IOM IAL IOPT

	B-6a Inertial Loads — Acceleration
	AX AY AZ

	B-6b Inertial Loads — Angular Velocity
	OMX OMY OMZ

	B-6c Inertial Loads — Angular Acceleration
	ALX ALY ALZ

	B-6d Inertial Loads — Position Vector
	X Y Z

	5.5 Discretization and Connectivity Summary
	F-1 Grid Summary
	(NROWS(i) NCOLS(i) , i = 1, NUNITS)

	F-2 Stiffener Summary
	IUNIT NRGS NSTR

	G-1 Shell Unit Connections
	MUNIT MBOUND NUNIT NBOUND NDEFS INC1 INC2 INC3 INC4

	G-2 Partial Displacement Compatibility
	IU1 IR1 IC1 ID1 IU2 IR2 IC2 ID2 ND1A ND1B INC1 ND2A ND2B INC2 NDEFS

	G-2a Partial Compatibility Incrementations
	JU1 JR1 JC1 JD1 JU2 JR2 JC2 JD2

	G-2c Partial Displacement Compatibility
	IU1 IR1 IC1 IL1 ID1 IU2 IR2 IC2 IL2 ID2 ND1A ND1B INC1 ND2A ND2B INC2

	G-2d Partial Compatibility Looping and Incrementations
	NDEFS JU1 JR1 JC1 JL1 JD1 JU2 JR2 JC2 JL2 JD2

	G-3 Constraint—Record 1
	Constraint-equation method
	Direct-elimination method
	NTERMS NX INC1 INC2 INC3 INC4 INC5

	G-4 Constraint—Record 2
	IU(i) IX(i) IY(i) ID(i) CC(i) IZ(i)

	G-5 Crack Inserted Node Set—Record 1
	NCRACK INNODS INELTS ITEAR ACRIT CTOD ACRITT SAWL SAWT CSCALE IDREC

	G-6 Crack Inserted Node Set—Record 2
	ICOPEN ICUNIT ICROW1 ICCOL1 ICROW2 ICCOL2 JCUNIT JCROW1 JCCOL1 JCROW2 JCCOL2 THETA

	G-7 Crack Inserted Node Set—Record 3
	JETYPE JCUNIT JCROW1 JCCOL1 JCROW2 JCCOL2

	H-1 Element Unit Summary
	NUPT NT1 NT2 NT3 NT4 NT5 IUWP IUWE IUDIMP IUWLE NS5

	5.6 Data Tables
	I-1 Material Properties
	ITAM NESP IPLST ITANST ICREEP IPLANE

	I-2 Material Elastic Properties
	E1 U12 G RHO A1 E2 A2

	I-3 Material Plastic Properties
	(E(i), S(i)), i=1,NESP

	I-3a Material Creep Properties
	ACO BCO M N

	I-4a Mount Element Table Size
	IMNT NRD NRV

	I-4b Relative Displacement Vector
	DISP(j), j = 1, NRD

	I-4c Relative Velocity Vector
	RVEL(i), i = 1, NRV

	I-4d Mount Force Matrix
	FORCE(j), j = 1, NRD

	I-5a GCP Command Record
	COMMAND INFO(j), j = 1, 7

	I-6a Linear Elastic Isotropic GCP Material
	E GNU RHO ALPHA BETA T M

	I-7a Linear Elastic Orthotropic GCP Material
	E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO A1 A2 A3 B1 B2 B3 T M

	I-8a Plane-Strain-Plasticity GCP Material
	E GNU RHO ALPHA BETA T M

	I-9a Mechanical Sublayer Plasticity GCP Material
	E GNU RHO ALPHA NSUBS T

	I-9b Stress-Strain Curve for a Given State
	(E(i),S(i) , i = 1, NSUBS)

	I-10a Linear Orthotropic Elastic Brittle GCP Material
	E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO A1 A2 A3 B1 B2 B3 T M EPS1C EPS1T ESP2C EPS2T EPS6F EPS3C EP...

	I-11a PDLAM GCP Material
	E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO A1 A2 A3 B1 B2 B3 T M XC XT YC SXZ SYZ ALPHA CURET G1C G2C V...

	I-12a ABAQUS UMAT GCP Material
	PROPS(1) PROPS(2) ... PROPS(40)

	I-13a SHM-Membrane GCP Material
	E GNU RHO ALPHA BETA T M PENLTY IWRINK ISTATE

	I-14a Nonlinear Orthotropic Elastic GCP Material
	E1 E2 E3 G12 G13 G23 P12 P13 P23 RHO A1 A2 A3 B1 B2 B3 T M S6666

	I-21a GCP Shell Fabrication Record
	MATID(j) j = NX, NLAYER

	I-21b GCP Shell Integration Points Record
	INTSHL(j) j = NX, NLAYER

	I-21c GCP Shell Layer Thickness Record
	THKSHL(j) j = NX, NLAYER

	I-21d GCP Shell Layer Orientation Record
	ANGSHL(j) j = NX, NLAYER

	I-21e Shear Factor Specification Record
	SCF1 SCF2

	I-22a GCP Solid Fabrication Record
	THICK

	I-22b GCP Solid Fabrication Orientation Record
	ANGLE

	J-1 Cross-Section
	ITAB KCROSS MATB NSUB TORJ SCY SCZ NSOYZ KAPY KAPZ

	J-2a General Cross-Section—Record 1
	BA BIY BIZ BIYZ

	J-2b General Cross-Section—Record 2
	(SOY(i), SOZ(i) , i = 1, NSOYZ)

	J-3a General Subelement Cross-Section
	SA(i) SY(i) SZ(i) SIY(i) SIZ(i) SIYZ(i) ISP(i)

	J-3b Rectangular Subelement Cross-Section
	Y1(i) Y2(i) Z1(i) Z2(i) ISOC(i)

	J-4a Arbitrary Cross-Section—Record 1
	BMA

	J-4b Arbitrary Cross-Section—Record 2
	(CCC(i,j), j=1,4), i=1,4

	K-1 Shell Wall Properties
	ITAW KWALL NLAY NLIP NSMRS SHEAR1 SHEAR2

	K-2 Layered Wall
	MATL TL ZETL LSOL

	K-3a Fiber Reinforced Wall—Record 1
	MATF MATM

	K-3b Fiber Reinforced Wall—Record 2
	TT XX ZETW O

	K-4a Corrugation Stiffened Wall—Record 1
	MATC MATS CT CC CH CD CB

	K-4b Corrugation Stiffened Wall—Record 2
	TS PHI ANC

	K-5a General Wall—Record 1
	TA MAT ITVS

	K-5b General Wall—Record 2
	(CCC(i,j), j = 1, 6), i = 1, 6

	K-5c General Wall—Record 3
	(CTS(i,j), j = 1, 2), i = 1, 2

	K-6 Smeared Stiffener
	ICROSM SPASM ZETSM XSISM ECZSM

	L-1 User Parameters Summary
	NPI NPF

	L-2a Integer Parameters
	USERINT(i), i = 1, NPI

	L-2b Floating-Point Parameters
	USERFLO(i), i = 1, NPF

	5.7 References for Chapter 5

	6 Model Input—Shell Units
	6.1 Geometry
	M-1 Shell Type
	ISHELL IGLOBE NROWS NCOLS NLAYS NFABS

	M-2 Shell Surface Constants
	PROP(i), i=1,8

	M-3 Shell Unit Orientation—Straight-Line Boundary
	NREP NCEP XGEP YGEP ZGEP

	M-4a Shell Unit Orientation—Corner Point 1
	XGC1 YGC1 ZGC1

	M-4b Shell Unit Orientation—Corner Point 2
	XGC2 YGC2 ZGC2

	M-4c Shell Unit Orientation—Corner Point 3
	XGC3 YGC3 ZGC3

	M-4d Shell Unit Orientation—Translation
	XG YG ZG

	M-4e Shell Unit Orientation—Rotation
	XGROT YGROT ZGROT

	M-5 Shell Wall
	IWALL IWIMP ZETA ECZ ILIN IPLAS IRAMP

	M-6 Shell Imperfections
	X1 Y1 XL YL WAMP ID

	M-7a Random Imperfection Shapes
	N1 N2 NI M1 M2 MI KTEST

	M-7b Random Imperfection Amplitudes
	GRAMP RANK EXP

	6.2 Discretization
	Grid Generation
	Mesh Generation
	N-1 Discretization Control
	KELT NNX NNY IRREG IUGRID INTEG IPENL MESH1 MESH2 MESH3 MESH4 KELTX

	N-2 X–Segment Length
	SEGLX(i), i=1,NNX

	N-3 X–Segment Spacing
	NSEGX(i), i=1,NNX

	N-4 X–Coordinate
	X(i), i = 1, NROWS

	N-5 Y–Segment Length
	SEGLY(j), j = 1, NNY

	N-6 Y–Segment Spacing
	NSEGY(j), j = 1, NNY

	N-7 Y–Coordinate
	Y(j), j = 1, NCOLS

	N-8 Mesh Irregularity
	NRW1 NRW2 NCL1 NCL2

	6.3 Discrete Stiffeners
	O-1a Discrete Ring—Record 1
	ICROSS XSI ECY ECZ ILIN IPLAS

	O-1b Discrete Ring—Record 2
	IR JR1 JR2 XR YR1 YR2

	O-2a Discrete Stringer—Record 1
	ICROSS XSI ECY ECZ ILIN IPLAS

	O-2b Discrete Stringer—Record 2
	JS IS1 IS2 YS XS1 XS2

	6.4 Boundary Conditions
	P-1 Boundary Conditions—Record 1
	IBLN(i), i = 1, 4 IBOND

	P-2 Boundary Conditions—Record 2
	ITRA IROT

	P-3 Boundary Conditions—Record 3
	JBLN(i), i = 1, 4

	P-4 Boundary Conditions—Record 4
	JTRA JROT

	6.5 Loads
	Q-1 Loads Summary
	NSYS NICS NAMS NUSS NHINGE NMOMNT NLEAST IPRESS

	Q-2 Load Set Summary
	ISYS NN IFLG

	Q-3 Load Definition
	P LT LD LI LJ LAX NX INC1 INC2 INC3 ILAY

	Q-4 Attached Mass
	GM IRM ICM LAYER NX INC1 INC2 INC3

	Q-5 Uniform Stress State for Eigenanalysis
	PNXA PNYA PNXYA PNXB PNYB PNXYB

	Q-6 Cable Hinge Restraint
	IROW ICOL HRU HRV HRW LAYER NX INC1 INC2 INC3

	Q-7 Cable Hinge Moment
	IROW ICOL MSYS RUM RVM RWM LAYER NX INC1 INC2 INC3

	Q-8a Least Squares Loading Summary
	NSQR IUNIT IROW ICOL SCALE

	Q-8b Least Squares Load Definition
	P LU LR LC LNDA LNDB LNDINC

	6.6 Least-Squares Distributed Line Loads
	Definition of least-squares constraint
	The first variation
	The stiffness matrix
	Using least-squares loading in STAGS

	6.7 Output Control
	R-1 Output Control—Record 1
	IPRD IPRR IPRE IPRS IPRP IPRF NSELD NSELS IPRDSP IPRSTR ISL ISS ISD

	R-2 Output Control—Record 2
	IROWD ICOLD

	R-3 Output Control—Record 3
	IROWS ICOLS

	7 Model Input—Element Units (1)
	7.1 User Points
	S-1 User Points (upts protocol)
	IUPT IUS IRS ICS XG YG ZG IUVW IRUVW IAUX NPTS ILAY

	S-1a User Point Incrementations (upts protocol)
	JUPT JUS JRS JCS Dxg Dyg Dzg

	S-2 Auxiliary Coordinate System (upts protocol)
	XAX XAY XAZ YAX YAY YAZ

	S-3 User Points (user–points protocol)
	IUPT IUS IRS ICS XG YG ZG IUVW IRUVW IAUX NPTS ILAY

	S-3a User Point Incrementations (user–points protocol)
	JUPT JUS JRS JCS Dxg Dyg Dzg

	S-4 Auxiliary Coordinate System (user–points protocol)
	XAX XAY XAZ YAX YAY YAZ

	7.2 Line-to-Line–Contact Specifications
	S-5 Contact-Line Definition
	LINEID UNITID NRECS

	S-5a Contact Line on a Shell Unit
	II JJ NPTS INC

	S-5b Contact Line on an Element Unit
	II NPTS INC

	8 Model Input—Element Units (2)
	8.1 Definition of “Spring” Elements via the Edef Protocol
	T-1 Spring Element
	N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

	T-1a Mount
	IMNT1 IMNT2 RLX1 RLY1 RLZ1 RLX2 RLY2 RLZ2

	T-1b Rigid or Soft Link
	SCALE

	T-1c Generalized Fastener
	IMNT1 IMNT2 IMNT3 IMNT4 IMNT5 IMNT6 PLAS1 PLAS2 PLAS3 PLAS4 PLAS5 PLAS6

	8.2 Definition of “Beam” Elements via the Edef Protocol
	T-2 Beam
	N1 N2 N3 KELT ICROSS XSI ECY ECZ ILIN IPLAS NX USERELT

	T-2a Beam Incrementations
	INC1 INC2 INC3 INC4

	8.3 Definition of Triangle Elements via the Edef Protocol
	T-3 Triangular Shell
	N1 N2 N3 KELT IWALL ZETA ECZ ILIN IPLAS IANG USERELT

	T-3a Wall Reference Vector
	RX RY RZ

	8.4 Definition of “Quadrilateral” Elements via the Edef Protocol
	T-4 Quadrilateral Shell
	N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT

	T-4a Extra Nodes
	NODE(i), i=5,n

	T-4b Wall Reference Vector
	RX RY RZ

	8.5 Definition of “Other” Elements via the Edef Protocol
	T-5 Contact, Sandwich, and Solid Element Flags
	N810 N820 N822 N830 N840 N845 N847 N849 N880

	Contact elements
	T-6 E810 PAD Contact Element
	N1 N2 N3 N4 N5 N6 N7 N8 KELT ITAB OFFSET NX USERELT

	T-6a PAD Element Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9

	T-7 General Contact Definition
	KELT NSRF NPTS

	T-7a E820 Row & Column Contact-Element Specifications
	USRF TYPE LI LJ ID NI NJ

	T-7b E820 Element-Number Contact-Element Specifications
	USRF TYPE I1 I2 INC ID

	T-7c Row & Column Contact-Point Specifications
	UNITP LI LJ RADIUS TOUCHE NI NJ

	T-7d Point-Number Contact-Point Specifications
	UNITP I1 I2 INC RADIUS TOUCHE

	T-8 Line-Contact Interaction Definition
	LINE1 LINE2 IPEN NX INC1 INC2 INC3

	Sandwich elements
	T-9 E830 6-Node Sandwich Element Definition
	KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

	T-9a E830 Lower Face-Sheet Properties
	N1 N2 N3 IFABL ZETAL ECZL IPLASL IANGL

	T-9b E830 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-9c E830 Upper Face-Sheet Properties
	N4 N5 N6 IFABU ZETAU ECZU IPLASU IANGU

	T-9d E830 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-9e E830 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-9f E830 Core Reference Vector
	RXC RYC RZC

	T-9g E830 X-Direction Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9

	T-9h E830 Y-Direction Incrementations
	J1 J2 J3 J4 J5 J6 J7 J8 J9

	T-10 E840 8-Node Sandwich Element Definition
	KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

	T-10a E840 Lower Face-Sheet Properties
	N1 N2 N3 N4 IFABL ZETAL ECZL IPLASL IANGL

	T-10b E840 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-10c E840 Upper Face-Sheet Properties
	N5 N6 N7 N8 IFABU ZETAU ECZU IPLASU IANGU

	T-10d E840 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-10e E840 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-10f E840 Core Reference Vector
	RXC RYC RZC

	T-10g E840 X-Direction Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

	T-10h E840 Y-Direction Incrementations
	J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

	T-11 E845 10-Node Sandwich Transition Element Definition
	KELT ILIN INTEG IPEN IEDGE NX NY USER

	T-11a E845 Lower Face-Sheet Properties
	N1 N2 N3 N4 N5 IFABL ZETAL ECZL IPLASL IANGL

	T-11b E845 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-11c E845 Upper Face-Sheet Properties
	N6 N7 N8 N9 N10 IFABU ZETAU ECZU IPLASU IANGU

	T-11d E845 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-11e E845 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-11f E845 Core Reference Vector
	RXC RYC RZC

	T-11g E845 X-Direction Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

	T-11h E845 Y-Direction Incrementations
	J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

	T-12 E847 14-Node Sandwich Transition Element Definition
	KELT ILIN INTEG IPEN IEDGE NX NY USER

	T-12a E847 Lower Face-Sheet Properties
	N1 N2 N3 N4 N5 N6 N7 IFABL ZETAL ECZL IPLASL IANGL

	T-12b E847 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-12c E847 Upper Face-Sheet Properties
	N8 N9 N10 N11 N12 N13 N14 IFABU ZETAU ECZU IPLASU IANGU

	T-12d E847 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-12e E847 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-12f E847 Core Reference Vector
	RXC RYC RZC

	T-12g E847 X-Direction Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

	T-12h E847 Y-Direction Incrementations
	J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15

	T-13 E849 18-Node Sandwich Element Definition
	KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

	T-13a E849 Lower Face-Sheet Properties
	N1 N2 N3 N4 N5 N6 N7 N8 N9 IFABL ZETAL ECZL IPLASL IANGL

	T-13b E849 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-13c E849 Upper Face-Sheet Properties
	N10 N11 N12 N13 N14 N15 N16 N17 N18 IFABU ZETAU ECZU IPLASU IANGU

	T-13d E849 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-13e E849 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-13f E849 Core Reference Vector
	RXC RYC RZC

	T-13g E849 X-Direction Incrementations
	(IX(k), k=1,18) iXC iX1 iX2

	T-13h E849 Y-Direction Incrementations
	(IY(k), k=1,18) IYC IY1 IY2

	Solid elements
	T-14 E880-Family Solid Element
	KELT IFAB IANG ILIN IPLAS NX NY

	T-14a E880 Solid Element Nodes
	(NODE(k), k=1,NPTS) USERELT

	T-14b E880 X-Direction Incrementations
	IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8 IUX

	T-14c E880 Y-Direction Incrementations
	IY1 IY2 IY3 IY4 IY5 IY6 IY7 IY8 IUY

	T-14d E880 Material Orientation Record
	XFX XFY XFZ YFX YFY YFZ

	9 Model Input—Element Units (3)
	T-100 Ecom Control or Element-Specification Record
	9.1 Definition of “Spring” Elements via the Ecom Protocol
	T-110 Additional E110 Elements
	N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

	T-110a E110 Element Data
	IMNT1 IMNT2 RLX1 RLY1 RLZ1 RLX2 RLY2 RLZ2

	T-120 Additional E120 Elements
	N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

	T-120a E120 Element Data
	SCALE

	T-121 Additional E121 Elements
	N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

	T-121a E121 Element Data
	SCALE

	T-130 Additional E130 Elements
	N1 N2 N3 KELT NX INC1 INC2 INC3 USERELT INC4

	T-130a E130 Element Data
	IMNT1 IMNT2 IMNT3 IMNT4 IMNT5 IMNT6 PLAS1 PLAS2 PLAS3 PLAS4 PLAS5 PLAS6

	9.2 Definition of “Beam” Elements via the Ecom Protocol
	T-210 Additional E210 Elements
	N1 N2 N3 KELT ICROSS XSI ECY ECZ ILIN IPLAS NX USERELT

	T-210a E210 Incrementations
	INC1 INC2 INC3 INC4

	T-250 Additional E250 Elements
	N1 N2 N3 KELT ICROSS XSI ECY ECZ ILIN IPLAS NX USERELT

	T-250a E250 Incrementations
	INC1 INC2 INC3 INC4

	9.3 Definition of Triangular Elements via the Ecom Protocol
	T-320 Additional E320 Elements
	N1 N2 N3 KELT IWALL ZETA ECZ ILIN IPLAS IANG USERELT NX NY

	T-320a E320 X-Direction Incrementations
	IX1 IX2 IX3 IX4

	T-320b E320 Y-Direction Incrementations
	IY1 IY2 IY3 IY4

	T-320c E320 Wall Reference Vector
	RX RY RZ

	T-330 Additional E330 Elements
	N1 N2 N3 KELT IWALL ZETA ECZ ILIN IPLAS IANG USERELT NX NY

	T-330a E330 X-Direction Incrementations
	IX1 IX2 IX3 IX4

	T-330b E330 Y-Direction Incrementations
	IY1 IY2 IY3 IY4

	T-330c E330 Wall Reference Vector
	RX RY RZ

	9.4 Definition of Quad Elements via the Ecom Protocol
	T-410 Additional E410 Elements
	N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX NY

	T-410a E410 X-Direction Incrementations
	IX1 IX2 IX3 IX4 IX5

	T-410b E410 Y-Direction Incrementations
	IY1 IY2 IY3 IY4 IY5

	T-410c E410 Wall Reference Vector
	RX RY RZ

	T-411 Additional E411 Elements
	N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX NY

	T-411a E411 X-Direction Incrementations
	IX1 IX2 IX3 IX4 IX5

	T-411b E411 Y-Direction Incrementations
	IY1 IY2 IY3 IY4 IY5

	T-411c E411 Wall Reference Vector
	RX RY RZ

	T-480 Additional E480 Elements
	N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX NY

	T-480a E480 Extra Nodes Specification
	N5 N6 N7 N8 N9

	T-480b E480 X-Direction Incrementations
	IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8 IX9 IXU

	T-480c E480 Y-Direction Incrementations
	IY1 IY2 IY3 IY4 IY5 IY6 IY7 IY8 IX9 IYU

	T-480d E480 Wall Reference Vector
	RX RY RZ

	T-510 Additional E510 Elements
	N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX

	T-510a E510 Extra Node Specification
	N5

	T-510b E510 Incrementations
	IX1 IX2 IX3 IX4 IX5 IXU

	T-510c E510 Wall Reference Vector
	RX RY RZ

	T-710 Additional E710 Elements
	N1 N2 N3 N4 KELT IWALL ZETA ECZ ILIN IPLAS INTEG IPENL IANG USERELT NX

	T-710a E710 Extra Nodes Specification
	N5 N6 N7

	T-710b E710 Incrementations
	IX1 IX2 IX3 IX4 IX5 IX6 IX7 IXU

	T-710c E710 Wall Reference Vector
	RX RY RZ

	9.5 Definition of Contact Elements via the Ecom Protocol
	T-810 E810 PAD Contact Element
	N1 N2 N3 N4 N5 N6 N7 N8 KELT ITAB OFFSET NX USERELT

	T-810a PAD Element Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9

	T-820 General Contact Definition
	KELT NSRF NPTS

	T-820a E820 Row & Column Contact-Element Specifications
	USRF TYPE LI LJ ID NI NJ

	T-820b E820 Element-Number Contact-Element Specifications
	USRF TYPE I1 I2 INC ID

	T-820c Row & Column Contact-Point Specifications
	UNITP LI LJ RADIUS TOUCHE NI NJ

	T-820d Point-Number Contact-Point Specifications
	UNITP I1 I2 INC RADIUS TOUCHE

	T-822 Line-Contact Interaction Definition
	LINE1 LINE2 IPEN NX INC1 INC2 INC3

	9.6 Definition of Sandwich Elements via the Ecom Protocol
	T-830 E830 6-Node Sandwich Element Definition
	KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

	T-830a E830 Lower Face-Sheet Properties
	N1 N2 N3 IFABL ZETAL ECZL IPLASL IANGL

	T-830b E830 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-830c E830 Upper Face-Sheet Properties
	N4 N5 N6 IFABU ZETAU ECZU IPLASU IANGU

	T-830d E830 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-830e E830 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-830f E830 Core Reference Vector
	RXC RYC RZC

	T-830g X-Direction Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9

	T-830h Y-Direction Incrementations
	J1 J2 J3 J4 J5 J6 J7 J8 J9

	T-840 E840 8-Node Sandwich Element Definition
	KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

	T-840a E840 Lower Face-Sheet Properties
	N1 N2 N3 N4 IFABL ZETAL ECZL IPLASL IANGL

	T-840b E840 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-840c E840 Upper Face-Sheet Properties
	N5 N6 N7 N8 IFABU ZETAU ECZU IPLASU IANGU

	T-840d E840 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-840e E840 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-840f E840 Core Reference Vector
	RXC RYC RZC

	T-840g X-Direction Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

	T-840h Y-Direction Incrementations
	J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

	T-845 E845 10-Node Sandwich Transition Element Definition
	KELT ILIN INTEG IPEN IEDGE NX NY USER

	T-845a E845 Lower Face-Sheet Properties
	N1 N2 N3 N4 N5 IFABL ZETAL ECZL IPLASL IANGL

	T-845b E845 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-845c E845 Upper Face-Sheet Properties
	N6 N7 N8 N9 N10 IFABU ZETAU ECZU IPLASU IANGU

	T-845d E845 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-845e E845 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-845f E845 Core Reference Vector
	RXC RYC RZC

	T-845g E845 X-Direction Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

	T-845h Y-Direction Incrementations
	J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

	T-847 14-Node Sandwich Transition Element Definition
	KELT ILIN INTEG IPEN IEDGE NX NY USER

	T-847a E847 Lower Face-Sheet Properties
	N1 N2 N3 N4 N5 N6 N7 IFABL ZETAL ECZL IPLASL IANGL

	T-847b E847 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-847c E847 Upper Face-Sheet Properties
	N8 N9 N10 N11 N12 N13 N14 IFABU ZETAU ECZU IPLASU IANGU

	T-847d E847 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-847e E847 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-847f E847 Core Reference Vector
	RXC RYC RZC

	T-847g X-Direction Incrementations
	I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

	T-847h E847 Y-Direction Incrementations
	J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15

	T-849 E849 18-Node Sandwich Element Definition
	KELT ILIN INTEG IPEN NX NY USERC USER1 USER2

	T-849a E849 Lower Face-Sheet Properties
	N1 N2 N3 N4 N5 N6 N7 N8 N9 IFABL ZETAL ECZL IPLASL IANGL

	T-849b E849 Lower Face-Sheet Wall Reference Vector
	RXL RYL RZL

	T-849c E849 Upper Face-Sheet Properties
	N10 N11 N12 N13 N14 N15 N16 N17 N18 IFABU ZETAU ECZU IPLASU IANGU

	T-849d E849 Upper Face-Sheet Wall Reference Vector
	RXU RYU RZU

	T-849e E849 Core Properties
	IFABC ZETAC IPLASC IANGC

	T-849f E849 Core Reference Vector
	RXC RYC RZC

	T-849g X-Direction Incrementations
	(IX(k), k=1,18) IXC IX1 IX2

	T-849h Y-Direction Incrementations
	(IY(k), k=1,18) IYC IY1 IY2

	9.7 Definition of Solid Elements via the Ecom Protocol
	T-860 E860 ORACLE Solid Element
	KELT NNODES IFAB IANG ILIN IPLAS NX NY

	T-860a E860 Solid Element Nodes
	(NODE(k), k=1,NNODES) USERELT

	T-860b E860 X-Direction Incrementations
	(IX(k), k=1,NNODES) IXU

	T-860c E860 Y-Direction Incrementations
	(IY(k), k=1,NNODES) IYU

	T-860d E860 Material Orientation Record
	XFX XFY XFZ YFX YFY YFZ

	T-881 E881 8-Node Solid Element
	KELT IFAB IANG ILIN IPLAS NX NY

	T-881a E881 Solid Element Nodes
	(NODE(k), k=1,8) USERELT

	T-881b E881 X-Direction Incrementations
	IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8 IUX

	T-881c E881 Y-Direction Incrementations
	IY1 IY2 IY3 IY4 IY5 IY6 IY7 IY8 IUY

	T-881d E881 Material Orientation Record
	XFX XFY XFZ YFX YFY YFZ

	T-882 E882 18-Node Solid Element
	KELT IFAB IANG ILIN IPLAS NX NY

	T-882a E882 Solid Element Nodes
	(NODE(k), k =1,18) USERELT

	T-882b E882 X-Direction Incrementations
	(IX(k), k=1,18) IXU

	T-882c E882 Y-Direction Incrementations
	(IY(k), k=1,18) IYU

	T-882d E882 Material Orientation Record
	XFX XFY XFZ YFX YFY YFZ

	T-883 E883 27-Node Solid Element
	KELT IFAB IANG ILIN IPLAS NX NY

	T-883a E883 Solid Element Nodes
	(NODE(k), k=1,27) USERELT

	T-883b E883 X-Direction Incrementations
	(IX(k), k=1,27) IXU

	T-883c E883 Y-Direction Incrementations
	(IY(k), k=1,27) IYU

	T-883d E883 Material Orientation Record
	XFX XFY XFZ YFX YFY YFZ

	T-885 E885 20-Node Solid Element
	KELT IFAB IANG ILIN IPLAS NX NY

	T-885a E885 Solid Element Nodes
	(NODE(k), k=1,20) USERELT

	T-885b E885 X-Direction Incrementations
	(IX(k), k=1,20) IXU

	T-885c E885 Y-Direction Incrementations
	(IY(k), k=1,20) IYU

	T-885d E885 Material Orientation Record
	XFX XFY XFZ YFX YFY YFZ

	9.8 Definition and Utilization of User Elements
	9.8.1 The User–element definition process
	Directives for User element definitions
	Example of User element definition
	Directives for User property set definitions
	Examples of User property set definitions
	Notes for User property set definition examples
	Subroutines facilitating User element implementations

	9.8.2 Utilization of User element(s) in STAGS
	T-900 E9XX User-Defined Element
	KELT ID IFAB IANG ILIN IPLAS NX NY NZ

	T-900a E9XX User-Element Nodes
	(NODE(k), k = 1, NNODES)

	T-900b User-Element X-Direction Incrementations
	(IX(k), k = 1, NNODES) IXU

	T-900c User-Element Y-Direction Incrementations
	(IY(k), k = 1, NNODES) IYU

	T-900d User-Element Z-Direction Incrementations
	(IZ(k), k = 1, NNODES) IZU

	T-900e User-Element Material Orientation Vector
	XFX XFY XFZ

	T-900f User-Element Material Orientation Vectors
	XFX XFY XFZ YFX YFY YFZ

	T-928 E928 3-Node Curved Beam UEL
	KELT ID IFAB IANG ILIN IPLAS NX

	T-928a E928 UEL Nodes
	N1 N2 N3 N4

	T-928b E928 UEL X-Direction Incrementations
	IX1 IX2 IX3 IX4 IXU

	T-928c E928 UEL floatVariables
	Area Iy Iz J Material ShearFactorY ShearFactorZ ECC(1) ECC(2) SCC(1) SCC(2)

	T-940 E940 MIN4 Quadrilateral UEL
	KELT ID IFAB IANG ILIN IPLAS NX NY

	T-940a E940 UEL Nodes
	N1 N2 N3 N4

	T-940b E940 UEL X-Direction Incrementations
	IX1 IX2 IX3 IX4 IXU

	T-940c E940 UEL Y-Direction Incrementations
	IY1 IY2 IY3 IY4 IYU

	T-940d E940 UEL Material Orientation Vector
	XFX XFY XFZ

	T-940e E940 UEL Material Orientation Vectors
	XFX XFY XFZ YFX YFY YFZ

	T-940f E940 UEL floatVariable
	UniformPressure(1) UniformPressure(2)

	T-940g E940 UEL integerVariables
	IntegOrder LoadType

	10 Model Input—Element Units (4)
	10.1 Element unit loadings
	U-1 Loads Summary
	NSYS NICS NAMS NUSS NHINGE NMOMNT NLEAST IPRESS

	U-2 Load Set Summary
	ISYS NN IFLG

	U-3 Load Definition
	P LT LD LI LJ LAX NDEFS INC1 INC2 INC3

	U-4 Attached Mass
	GM NM NDEFS INC

	U-5 Uniform Stress State for Eigenanalysis
	PNXA PNYA PNXYA PNXB PNYB PNXYB

	U-6 Cable Hinge Restraint
	IHND HRU HRV HRW NDEFS INC

	U-7 Cable Hinge Moment
	IMND MSYS RUM RVM RWM NDEFS INC

	U-8a Least Squares Loading Summary
	NSQR IUNIT IROW ICOL SCALE

	U-8b Least Squares Load Definition
	P LU LR LC LNDA LNDB LNDINC

	10.2 Output Control
	V-1 Output Control—Record 1
	IPRD IPRR IPRE IPRS IPRP IPRF NSELD NSELS IPRDSP IPRSTR ISL ISS ISD

	V-2 Output Control—Record 2
	INOD1 INOD2 INODI

	V-3 Output Control—Record 3
	IELS1 IELS2 IELSI

	10.3 Linear-Stiffness Contributions
	W-1 Linear-Stiffness Contribution—Record 1
	NRDOF NRNOD NRKIJ KLSTF NRDIS NRFOR

	W-2a Linear-Stiffness Contribution—Record 2a
	IUNIT IROW ICOL JUNIT JROW JCOL

	W-2b Linear-Stiffness Contribution—Record 2b
	((KIJ(m,n), n=1,NRDOF), m=1,NRDOF)

	W-3 Linear-Stiffness Contribution—Record 3
	IUNIT(n) IROW(n) ICOL(n) n = 1,2,3, ..., NRNOD

	11 Solution Input
	11.1 Solution Options
	11.2 Summary and Control Parameters
	A-1 Case Title
	COMMENT

	B-1 Analysis Type Definition and High-Level-Control Data
	INDIC IPOST ILIST ICOR IMPTHE ICHIST IFLU ISOLVR NFABC

	B-2 Solver Options
	ICPACT IITER IPRIM IPRIS ISAVE

	B-3 Gradient Fabrication Specification Records
	KFABTP KFB

	C-1 Load Multipliers
	STLD(1) STEP(1) FACM(1) STLD(2) STEP(2) FACM(2) ITEMP NFIX

	C-3 Nonlinear Stress State
	NLDS IXEV

	C-4 Load Factors
	PLDS(i), i = 1, NLDS

	C-5 Suppress Selected Freedoms
	IFIX(i), i = 1, NFIX

	D-1 Strategy Parameters
	ISTART NSEC NCUT NEWT NSTRAT DELX WUND

	D-2 Eigenvalue Control
	NSEC DELEV IPRINT

	D-3 Cluster Definition
	NEIG SHIFT EIGA EIGB

	E-1 Time Integration—Record 1
	TMIN TMAX DT SUP ALPHA BETA GAMMA THOLD

	E-2 Time Integration—Record 2
	IMPL METHOD IERRF IVELO IFORCE IPA IPB

	E-3 Load History—Record 1
	CA1 CA2 CA3 CA4 CA5 CA6

	E-4 Load History—Record 2
	CB1 CB2 CB3 CB4 CB5 CB6

	E-5 Weighted Modal Initial Velocity
	EIGA IMSTEP IMMODE IMRUN

	ET-1 Solution Control
	NPATH NEV NSOL IE IGNORE LDMAX IUPLDA IUPLDB

	11.3 The Equivalence Transformation Bifurcation Processor (ET)
	Simple branch switching
	ET-1 Solution Control
	NPATH NEV NSOL IE IGNORE LDMAX IUPLDA IUPLDB

	12 User-Written Subroutines
	12.1 Input/Output Data Conventions
	Data types
	Input/output methods
	parameter lists
	argument lists
	common blocks

	12.2 Subroutine Specifications
	Subroutine structure
	Common blocks
	Data description
	CROSS Beam Cross Section Properties
	DIMP Imperfections by Discrete Values
	FORCET Load Factor History for Transient Analysis
	LAME Reference Surface Geometry
	TEMP Thermal Loading
	UCONST Lagrange Constraints
	UPRESS Pressure Loading
	USRDGD Material Degradation Model
	USRELT Elements
	USRFAB User-Specified Material & Fabrication Properties
	USRFPF Failure Model
	USRLD General Loading
	USRPT Nodes
	WALL Shell Wall Fabrication Properties

	12.3 Example Problem

	13 User–Defined Elements
	13.1 Introduction
	13.2 User Element Definition Directives
	Example of User element definition
	Notes about this User element definition example

	13.3 User Property Set Definition Directives
	Example # 1 of User property set definition
	Example # 2 of User property set definition

	13.4 User Element Model–Definition Routines
	Top–level model–definition routines

	13.5 User Element Model–Analysis Routines
	13.6 User Element Post-Processing Routines
	13.7 FORTRAN– and C–Language Utility Routines
	13.8 Uniform Beam Example
	Model- and User-element definition operations
	User Element Definition Routines
	User beam pre-variation definition routine—UelPvDef900
	User beam internal force vector definition routine—UelFiDef900
	User beam material stiffness matrix definition routine—UelKmDef900
	User beam strain vector definition routine—UelStrainDef900
	User beam stress vector definition routine—UelStressDef900
	User beam strain printing definition routine—UelPrintStrainDef900
	Beam stress printing definition routine—UelPrintStressDef900
	Analysis and Results

	14 The Element Library
	14.1 Organization
	14.2 Algorithm for Determining the Element Frame
	14.3 “Spring” Elements
	E110 Mount element
	E120 Rigid link element
	E121 Soft link element
	E130 Generalized fastener element

	14.4 “Beam” Elements
	E210 Beam element
	E250 Planar boundary condition element

	14.5 Shell and Mesh-Transition Shell Elements
	E320 Triangular shell element
	E330 Triangular shell element
	E410 4–Node quadrilateral shell element
	E411 4–Node quadrilateral shell element
	E480 9–Node quadrilateral shell element
	E510 and E710 Quadrilateral mesh-transition shell elements
	Example: Aircraft Panel Quarter Model with Crack in Refined Region

	E330 Triangular mesh-transition shell elements

	14.6 Sandwich and Mesh-Transition Sandwich Elements
	E830 6–Node sandwich element
	Sandwich element internal force and material and geometric stiffness matrices
	Sandwich element displacement and displacement gradient calculations
	Displacement at the bond line between sandwich core and face sheet

	E840 8–Node sandwich element
	E849 18–Node sandwich element
	E845 and E847 mesh-transition sandwich elements

	14.7 Solid Elements
	E881 8-Node ANS solid element
	E882 18-Node solid element
	E883 27-Node solid element
	E885 20-Node displacement-based solid element

	14.8 Contact Elements
	E810 Pad contact element
	Force and stiffness computations

	E820 General contact element
	Determination of contact status
	Force and stiffness computations

	E822 Line contact element

	15 Analysis Techniques
	15.1 Modeling Strategy
	15.2 Solution Strategy
	Linear static analysis
	Eigenvalue analysis
	Nonlinear static analysis
	Transient analysis

	15.3 Progressive Failure Solution Strategy
	Modeling
	Choosing solution strategy parameters
	Maintaining equilibrium
	Recommended guidelines

	16 Interpretation of Results
	16.1 Shell Results
	16.2 Beam Results
	Transformation of beam resultants
	Axial stress and strain
	Torsional shear
	Flexural shear
	Combined shear

	16.3 Evaluating Solution Quality
	16.4 Interpreting Diagnostic Messages
	16.5 Overcoming Difficulties
	Linear static analysis
	Eigenvalue analysis
	Nonlinear static analysis
	Transient analysis

	17 Input/Output Files
	17.1 Description of I/O Files
	17.2 Summary of I/O File Requirements
	s1—Model processor
	s2—Solution processor
	stapl—Plotting processor
	stp—STAGS translator/postprocessor

	Appendices
	A STAGS Input Record Catalog
	B STAPL Input
	Introduction
	Input file
	Execution and input requirements
	Output files
	PL-1 Case Title
	TITLE

	PL-2 Post-Processing Summary Record
	NPLOT IPREP IPRS KDEV KXSTEP

	PL-3 Plot Description Record
	KPLOT VIEW ITEM STEP MODE IFRNG COLOR ICOMP LAYER FIBR LAY3D FACE

	PL-3a Strain Gradient Control Record
	MODE1 MODE2 MODINC

	PL-3b Strain Gradient Coefficient Record
	(STGD(i), i = MODE1, MODE2, MODINC)

	PL-3c Selected Ply Failure Record
	MATID FLAG
	PL-4 Model View Record
	(LIST(j), j=1, | VIEW |)

	PL-5 Plot Control Record
	DSCALE NROTS LWSCALE RNGMIN RNGMAX NUMBRS NFONT

	PL-6 Orientation Records
	IROT ROT

	Examples

	C PITRANS Input
	Introduction
	Prerequisites
	Execution of the program
	Input requirements and output files
	Example # 1
	Example # 2
	Input records (for interview- and batch-mode operations)
	PX-1 Output Format record
	FORM

	PX-2 Stags Case Name record
	CASE

	PX-3 Output Data Option record
	OPTION

	PX-4 Vector Type record
	VTYPE

	PX-5 Integrated Stress Type record
	STYPE

	PX-6 Next Step record
	ISTEP = N or A

	PX-7 Model Type record
	MTYPE

	PX-8 Next Step record
	STEP = N or A

	PX-9 Layer record
	LAYER

	PX-9a Output Point Location record
	SLOC

	PX-9b Plastic Strains record
	IPLAST

	PX-9c Reference Frame record
	FRAME

	Example # 3

	K STAGS Shell Surface Differential Geometry
	Definition of Basic Differential Geometry Terms
	Bending Numbers for Arbitrary Shell

	L Design Parameter Derivatives
	Displacement gradients
	Strain gradients
	Strain gradients with corotation
	Gradient computation in STAGS
	The GradC Program
	Using the GradC Program
	Computation of a C Matrix
	Computation of a C Matrix Material Partial Derivative
	Computation of a C Matrix Thickness Partial Derivative
	Computation of a C Matrix Angle Partial Derivative

	X PAT2S
	Introduction
	Input File
	Execution
	Output Files
	User Instruction File Format
	User Instruction File Records
	A-1 Case Title
	COMMENT

	B-1 Element Type Translation
	NECODE

	B-1a Element Type List
	ISHAPE(i) INODES(i) IPAT(i) ISTAGS(i)

	C-1 Material Translation
	NMATCD

	C-1a Material List
	MPAT(i) MSTAGS(i)

	D-1 Element Property
	NELMCD

	D-1a Element Property List
	IEPAT(i) IESTAGS(i)

	E-1 Load Translation
	NSHELL NGLOB NLIVE NDEAD NVELC

	E-1a Global Frame List
	NLGLOB(i)

	E-1b Live Load List
	NLLIVE(i)

	E-1c Dead Load List
	NLDEAD(i)

	E-1d Velocity Dependent List
	NLVELC(i)

	F-1 Load System
	NSYSB NOMIT

	F-1a System B List
	NLSYSB(i)

	F-1b Omitted Load List
	NLOMIT(i)

	G-1 Constraint Translation
	NDBASC NDINCR NINTDS NINTVL

	G-1a Basic Boundary Condition List
	IDBASC(i)

	G-1b Incremental Boundary Condition List
	IDINCR(i)

	G-1c Initial Displacement List
	IINTDS(i)

	G-1d Initial Velocity List
	IINTVL(i)

	H-1 Constraint System Translation
	NDSYSB NDOMIT

	H-1a System B List
	IDSYSB(i)

	H-1b Omitted Constraint List
	IDOMIT(i)

	I-1 Multipoint Constraint Translation
	NCMPC NCLGC NCPCM NCOMIT

	I-1a Multipoint Constraint List
	MCMPC(i)

	I-1b Lagrangian Constraint List
	MCLGC(i)

	I-1c Partial Compatibility Constraint List
	MCPCM(i)

	I-1d Omitted Multipoint Constraint List
	MCOMIT(i)

	J-1 Master-Slave Translation
	NMASLAV

	J-1a Master-Slave List
	NSUNT(i) NSNODE(i) NMUNT(i) NMNODE(i)

	K-1 Tables Translation
	NTAM NTAB NTAW NTAP NTAMT

	L-1–L-4 Material Properties
	M-1–M-4 Table Information
	N-1–N-5 Beam Cross Section Properties
	O-1–O-5 Shell Wall Properties
	P-1 Output Control

