Méthode asymptotique numérique présente un outil de calcul très utile pour résoudre numériquement des équations non linéaires. Les approximations tangentes classiques sont remplacées par des séries entières tronquées à un ordre relativement élevé. Le principal avantage des méthodes asymptotiques numériques (MAN) est de permettre un pilotage automatique a posteriori de la longueur de pas de continuation. Ces méthodes génèrent aussi des gains importants en temps de calcul puisqu'une seule inversion permet de décrire un gros morceau de la branche de solutions. La première partie de cet ouvrage s'adresse de manière pédagogique à tous les chercheurs, ingénieurs, enseignants, étudiants intéressés par la résolution d'équations non linéaires (algébriques, différentielles, dérivées partielles) et est illustrée de multiples exemples. La seconde partie concerne plus particulièrement les problèmes issus de la mécanique des milieux continus discrétisés par la méthode des éléments finis. Cet ouvrage est le résultat de quinze années de recherches effectuées sur le mariage des séries asymptotiques et des méthodes numériques.
Page 147 / 263