Link to Index Page

Buckling of axially compressed frangible joint typical of those used in rockets for the separation of booster stages

From:
David Bushnell (Lockheed Palo Alto Research Laboratory, Palo Alto, California), "Stress, buckling and vibration of hybrid bodies of revolution", Computers & Structures, Vol. 7, No. 4, August 1977, pp 517-537

ABSTRACT: The analysis is applicable to bodies of revolution composed of thin shell segments, thick segments and discrete rings. The thin shell segments are discretized by the finite difference energy method and the thick or solid segments are treated as assemblages of 8-node isoparametric quadrilateral finite elements of revolution. Suitable compatibility conditions are formulated through which these dissimilar segments are joined without introduction of large spurious discontinuity stresses. Plasticity and primary or secondary creep are included. Axisymmetric prebuckling displacements may be moderately large. The nonlinear axisymmetric problem is solved in two nested iteration loops at each load level or time step. In the inner loop the simultaneous nonlinear equations corresponding to a given tangent stiffness are solved by the Newton-Raphson method. In the outer loop the plastic and creep strains and tangent stiffness are calculated by a subincremental procedure. The linear response to nonaxisymmetric loading is obtained by superposition of Fourier harmonics. Many examples are given to demonstrate the scope of the computer program, BOSOR6, derived from the analysis and to illustrate certain stress concentration effects in shell-type structures which cannot adequately be treated with use of thin shell theory.

Page 5 / 216