Link to Index Page

Professor Giovanni Romano

Dept. of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy

Selected Publications:
Book:
G. Romano, Scienza delle Costruzioni, Hevelius Edizioni, 2002.
Journal Articles, etc.:
Romano, G. , 1971, “ Potential Operators and Conservative Systems,” 14th Polish Solid Mechanics Conference, Kroscienko, Poland, Sept. 11, pp. 141–146.
Giovanni Romano, “On the energy criterion for the stability of continuous elastic structures”, Meccanica, September 1975
G. Romano, M. Diaco, and C. Sellitto, Trends and Applications of Mathematics to Mechanics, Chapter in Tangent Stiffness of Elastic Continua on Manifolds, pp. 155–184, Springer Verlag, 2002
Romano G., Diaco M., Romano A., Sellitto C.: When and why a nonsymmetric 
tangent stiffness may occur, XVI AIMETA Congress of theoretical and applied 
mechanics, Ferrara (Italy) Sept. 9-12 (2003). 

Romano, G., Diaco, M., Sellitto, C.: Tangent stiffness of elastic continua on man
ifolds, Recent Trends in the Applications of Mathematics to Mechanics, Ed. G. 
Romano, S. Rionero, Springer Verlag, Berlin (2004). 

Romano, G., Diaco, M., Romano, A., Sellitto, C.: Tangent stiffness of a Timoshenko 
beam undergoing large displacements, Recent Trends in the Applications of Mathematics to Mechanics, Ed. G. Romano, S. Rionero, Springer Verlag, Berlin (2004). 

G. Romano and M. Diaco, “A functional framework for applied continuum mechanics”, in New Trends in Mathematical Physics, pp 193-204, 2005
G. Romano, R. Barretta, and C. Sellitto, “On the evaluation of the elastoplastic tangent stiffness”, pp. 1118–1121 in VIII International Conference on Computational Plasticity (Barcelona), 2005.

G. Romano, M. Diaco, and R. Barretta, “Continuum mechanics: A Differential Geometric Approach”, Research report, Dept. of Structural Engineering, Univ. of Naples Federico II, 2005.
Giovanni Romano and Carmen Sellitto, “Tangent stiffness of polar shells undergoing large displacements”, Chapter in Trends and Applications of Mathematics and Mechanics, pp 203-214, September 2006
G. Romano, M. Diaco, and R. Barretta, “A geometric approach to the algorithmic tangent stiffness”, pp. 121–129 in III European Conference on Computational Mechanics (Lisbon), 2006.

Giovanni Romano, Carmen Sellitto and Raffaele Barretta, “Nonlinear shell theory: A duality approach”, Journal of Mechanics of Materials and Structures, Vol. 2, No. 7, 2007
Romano, G., Mantini, G., Garlo, A. D., D'Amico, A., Falconi, C., and Wang, Z. L., 2011, “Piezoelectric Potential in Vertically Aligned Nanowires for High Output Nanogenerators,” Nanotechnology, 22(46), pp. 465401.
Romano, G., Barretta, A. and Barretta, R. [2012] “On torsion and shear of Saint-Venant beams,” European Journal of Mechanics A/Solids 35, 47–60.
Giovanni Romano and Raffaele Barretta, “Geometric issues in non-linear computational mechanics”, Publisher and date not given in the pdf file. The most recent reference is dated 2011.
Romano G, Barretta R, Diaco M. Micromorphic continua: non-redundant formulations. Continuum Mechanics and Thermodynamics. 2016; 28(6):1659-1670.

Romano G, Barretta R (2017) Nonlocal elasticity in nanobeams: the stress-driven integral model. Int J Eng Sci 115:14–27
Romano, G.; Barretta, R.; Diaco, M.; de Sciarra, F.M. Constitutive boundary conditions and paradoxes in 
nonlocal elastic nanobeams. Int. J. Mech. Sci. 2017, 121, 151–156.
Romano G, Barretta R (2017) Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos Part B 114:184–188
Romano G, Barretta R, Diaco M (2017) On nonlocal integral models for elastic nano-beams. Int J Mech Sci 131–132:490–499
Romano, G., Luciano, R., Barretta, R., Diaco, M.: Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Contin. Mech. Thermodyn. 30, 641–655 (2018)

Page 183 / 336