Numerical Engineering of Mechanical Systems
Laboratoire des Sciences de l’Information et des Systèmes (LSIS), Lille, France
Research Interests:
Vibrations, nonlinear dynamics, coupled and smart systems & structures
Selected Publications:
S. Bilbao, O.Thomas, C. Touzé, and M. Ducceschi. Conservative numerical methods for the full von Kármán plate equations. Numerical Methods for Partial Differential Equations, March 2015
S. Neukirch, A. Goriely, and O. Thomas. Singular inextensible limit in the vibrations of post-buckled rods : Analytical derivation and role of boundary conditions. Journal of Sound and Vibration, 333(3) :962–970, 2014
M. Monteil, C. Touzé, O. Thomas, and S. Benacchio. Nonlinear forced vibrations of thin structures with tuned eigenfrequencies : the cases of 1:2:4 and 1:2:2 internal resonances. Nonlinear Dynamics, 75(1-2) :175–200, 2014
A. Lazarus, O. Thomas, and J.-F. Deü. Finite elements reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elements in Analysis and Design, 49(1) :35–51, 2012
C. Touzé, O. Thomas, and M. Amabili. Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. International Journal of Non-linear Mechanics, 46(1) :234–246, 2011
A. Lazarus and O. Thomas. A harmonic-based method for computing the stability of periodic solutions of dynamical systems. Comptes Rendus Mécanique, 338(9) :510–517, 2010
O. Thomas, L. Nicu, and C. Touzé. Flambage et vibrations non-linéaires d’une plaque stratifiée piézoélectrique. Application à un capteur de masse MEMS. Mécanique & Industries, 10 :311–316, 2009
C. Camier, C. Touzé, and O. Thomas. Non-linear vibrations of imperfect free-edge circular plates and shells. European Journal of Mechanics A/Solids, 28(3) :500–515, 2009
C. Touzé, C. Camier, G. Favraud, and O. Thomas. Effect of imperfections and damping on the type of nonlinearity of circular plates and shallow spherical shells. Mathematical Problems in Engineering, 2008 :ID 678307, 2008
C. Touzé, M. Amabili, and O. Thomas. Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Computer Methods in Applied Mechanics and Engineering, 197(21-24) :2030–2045, 2008
O. Thomas and S. Bilbao. Geometrically non-linear flexural vibrations of plates : in-plane boundary conditions and some symmetry properties. Journal of Sound and Vibration, 315(3) :569–590, 2008
O. Thomas, C. Touzé, and É. Luminais. Non-linear vibrations of free-edge thin spherical shells : experiments on a 1:1:2 internal resonance. Nonlinear Dynamics, 49(1-2) :259–284, 2007
C. Touzé and O. Thomas. Non-linear behaviour of free-edge shallow spherical shells : effect of the geometry. International Journal of non-linear Mechanics, 41(5) :678–692, 2006
O. Thomas, C. Touzé, and A. Chaigne. Non-linear vibrations of free-edge thin spherical shells : modal interaction rules and 1:1:2 internal resonance. International Journal of Solids and Structures, 42(11-12) :3339–3373, 2005
A. Chaigne, C. Touzé, and O. Thomas. Nonlinear vibrations and chaos in gongs and cymbals. Acoustical Science and Technology, 26(5) :403–409, 2005
C. Touzé, O. Thomas, and A. Huberdeau. Asymptotic non-linear normal modes for large amplitude vibrations of continuous structures. Computers and Structures, 82(31-32) :2671–2682, 2004
C. Touzé, O. Thomas, and A. Chaigne. Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. Journal of Sound Vibration, 273(1-2) :77–101, 2004
O. Thomas, C. Touzé, and A. Chaigne. Asymmetric non-linear forced vibrations of free-edge circular plates, part 2 : experiments. Journal of Sound and Vibration, 265(5) :1075–1101, 2003
C. Touzé, O. Thomas, and A. Chaigne. Asymmetric non-linear forced vibrations of free-edge circular plates, part 1 : theory. Journal of Sound and Vibration, 258(4) :649–676, 2002
Page 27 / 250