From:
D. Qian, G. J. Wagner and W. K. Liu, “Mechanics of Carbon Nanotubes”, App. Mech. Rev., 55 (2002) 495-533, DOI: 10.1115/1.1490129
ABSTRACT: Soon after the discovery of carbon nanotubes, it was realized that the theoretically predicted mechanical properties of these interesting structures–including high strength, high stiffness, low density and structural perfection–could make them ideal for a wealth of technological applications. The experimental verification, and in some cases refutation, of these predictions, along with a number of computer simulation methods applied to their modeling, has led over the past decade to an improved but by no means complete understanding of the mechanics of carbon nanotubes. We review the theoretical predictions and discuss the experimental tech- niques that are most often used for the challenging tasks of visualizing and manipulating these tiny structures. We also outline the computational approaches that have been taken, including ab initio quantum mechanical simulations, classical molecular dynamics, and continuum mod- els. The development of multiscale and multiphysics models and simulation tools naturally arises as a result of the link between basic scientific research and engineering application; while this issue is still under intensive study, we present here some of the approaches to this topic. Our concentration throughout is on the exploration of mechanical properties such as Young’s modulus, bending stiffness, buckling criteria, and tensile and compressive strengths. Finally, we discuss several examples of exciting applications that take advantage of these properties, including nanoropes, filled nanotubes, nanoelectromechanical systems, nanosensors, and nanotube-reinforced polymers. This review article cites 349 references.
Page 39 / 76