From:
Till J. W. Wagner and Dominic Vella, “The ‘sticky elastica’: delamination blisters beyond small deformations”, Soft Matter, No. 4, 2013
ABSTRACT: We consider the form of an elastic loop adhered to a rigid substrate: the ‘Sticky Elastica’. In contrast to previous studies of the shape of delamination ‘blisters’, the theory developed accounts for deflections with large slope (i.e. geometrically nonlinear). Starting from the classical Euler Elastica we provide numerical results for the dimensions of such blisters for a variety of end–end confinements and develop asymptotic expressions that reproduce these results well, even up to the point of self-contact. Interestingly, we find that the width of such blisters does not grow monotonically with increased confinement. Our theoretical predictions are confirmed by simple desktop experiments and suggest a new method for the measurement of the elastocapillary length for deformations that cannot be considered small. We discuss the implications of our results for applications such as flexible electronics.
Page 168 / 360