Link to Index Page

Isaac Elishakoff, etal., Carbon Nanotubes and Nanosensors: Vibration, Buckling, Impact, ISTE, Wiley, 2012

The other authors (in addition to Isaac Elishakoff) are: Demetris Pentaras, Kevin Dujat, Claudia Versaci, Giuseppe Muscolino, Joel Storch, Simon Bucas, Noel Challamel, Toshiaki Natsuki, Yingyan Zhang, Chien Ming Wang and Guillaume Ghyselinck

Description:
The main properties that make carbon nanotubes (CNTs) a promising technology for many future applications are: extremely high strength, low mass density, linear elastic behavior, almost perfect geometrical structure, and nanometer scale structure. Also, CNTs can conduct electricity better than copper and transmit heat better than diamonds. Therefore, they are bound to find a wide, and possibly revolutionary use in all fields of engineering.
The interest in CNTs and their potential use in a wide range of commercial applications; such as nanoelectronics, quantum wire interconnects, field emission devices, composites, chemical sensors, biosensors, detectors, etc.; have rapidly increased in the last two decades. However, the performance of any CNT-based nanostructure is dependent on the mechanical properties of constituent CNTs. Therefore, it is crucial to know the mechanical behavior of individual CNTs such as their vibration frequencies, buckling loads, and deformations under different loadings. This title is dedicated to the vibration, buckling and impact behavior of CNTs, along with theory for carbon nanosensors, like the Bubnov-Galerkin and the Petrov-Galerkin methods, the Bresse-Timoshenko and the Donnell shell theory.

Contents:
1.Introduction.
2.Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes.
3.Free Vibrations of the Triple-Walled Carbon Nanotubes.
4.Exact Solution for Natural Frequencies of Clamped-Clamped Double-Walled Carbon Nanotubes.
5.Natural Frequencies of Carbon Nanotubes Based on a Consistent Version of Bresse-Timoshenko Theory.
6.Natural Frequencies of Double-Walled Carbon Nanotubes Based on Donnell Shell Theory.
7.Buckling of a Double-Walled Carbon Nanotube.
8.Ballistic Impact on a Single-Walled Carbon Nanotube.
9. Clamped-Free Double-Walled Carbon Nanotube-Based Mass Sensor.
10. Some Fundamental Aspects of Non-local Beam Mechanics for Nanostructures Applications.
11. Surface Effects on the Natural Frequencies of Double-Walled Carbon Nanotubes.
12. Summary and Directions for Future Research.

About the Authors:
Prof. Isaac Elishakoff, Florida Atlantic University, USA.
Dr. Demetris Pentaras, Cyprus University of Technology, Cyprus.
Ing. Kevin Dujat and Ing. Simon Bucas, IFMA – French Institute for Advanced Mechanics, France
Dr. Claudia Versaci and Prof. Giuseppe Muscolino, University of Messina, Italy
Dr. Joel Storch, Touro College, USA
Prof. No_l Challamel, INSA de Rennes, France
Prof. Toshiaki Natsuki, Shinsu University, Japan
Dr. Yingyan Zhang, University of Western Sydney, Australia
Prof. Chien Ming Wang, National University of Singapore, Singapore
Ing. Guillaume Ghyselinck, Ecole des Mines d’Al_s, France

Page 190 / 263