Laboratory for the Study of Microstructures and of the Mechanics of Materials (LEM3)
University of Lorraine, France
Selected Publications (For more see the link Prof. E.M. Daya):
Daya E, Potier-Ferry M (2001) A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput Struct 79(5):533–541
E.-M. Daya, M. Potier-Ferry, A shell finite element for viscoelastically damped sandwich structures, Rev. Eur. Elém. Finis, vol. 11, pp. 39–56, 2002.
Daya, E.M., Jeblaoui, K., Potier-Ferry, M., 2003. A two scale method for modulated vibration modes of large, nearly repetitive, structures. Comptes Rendus Mecanique 331, 443–448.
Daya E M, Azrar L, Potier-Ferry M. An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams. J Sound Vib, 2003, 271(3): 789–813
Duigou L, Daya EM, Potier-Ferry M (2003) Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells. Comput Methods Appl Mech Eng 192(11):1323–1335
Boutyour E H, Daya EM, Michel P. A harmonic balance method for the non-linear vibration of viscoelastic shells. C. R. Mecanique, 334, 68–73, 2006.
Hu H, Belouettar S, Daya EM, et al. Evaluation of kinematic formulations for viscoelastically damped sandwich beam modeling. J Sandw Struct Mater. 2006;8:477–495
Y. Koutsawa, E.-M. Daya, Static and free vibration analysis of laminated glass beam on viscoelastic supports, Int. J. Solid. Struct., vol. 44, no.25–26, pp. 8735–8750, 2007
Hu, H.; Belouettar, S.; Potier-Ferry, M.; and Daya, El M., “Review and Assessment of Various Theories for Modeling Sandwich Composites”, Composite Structures, vol. 84, 2008, pp. 282-292.
S. Belouettar, L. Azrar, E.M. Daya, V. Laptev, and M. Potier-Ferry, Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach, Comput. Struct., vol. 86, pp. 386–397, 2008.
Y. Koutsawa, I. Charpentier, E.-M. Daya, and M. Cherkaoui, A generic approach for the solution of nonlinear residual equations. Part I: The Diamant toolbox, Comput. Method. Appl. Mech. Eng., vol. 198, no. 3–4, pp. 572–577, 2008.
Y. Koutsawa, M. Haberman, E.-M. Daya, and M. Cherkaoui, Multiscale design of a rectangular sandwich plate with viscoelastic core and supported at extents by viscoelastic materials, Int. J. Mech. Mater. Des., vol. 5, no. 1, pp. 29–44, 2009.
H. Hu, S. Belouettar, M. Potier-Ferry, E.M. Daya, “Multi-scale modeling of sandwich structures using the Arlequin method Part I: Linear modeling”, Finite. Elem. Anal. Des., 45 (2009), pp. 37-51
F. Abdoun, L. Azrar, E.-M. Daya, M. Potier-Ferry, Forced harmonic response of viscoelastic structures by an asymptotic numerical method, Comput. Struct., vol. 87, no. 1–2, pp. 91–100, 2009
H. Boudaoud, E.M. Daya, S. Belouettar, L. Duigou, and M. Potier-Ferry, Damping analysis of beams submitted to passive and active control, Eng. Struct., vol. 31, pp. 322–331, 2009
Bilasse M, Charpentier I, Daya EM, Koutsawa Y (2009) A generic approach for the solution of nonlinear residual equations. Part II: homotopy and complex nonlinear eigenvalue method. Comput Methods Appl Mech Eng 198(49):3999–4004
Page 277 / 462