Link to Index Page

Professor Alexander Duester

School of Mechanical Engineering
Technical University of Hamburg (TUHH), Germany

Research Interests:
Coupled problems: Fluid-structure interaction, electro-thermo-mechanical coupling; Nonlinear finite element methods; Finite cell method; Numerical homogenization methods

Selected Publications (For more see the link Prof. Alexander Duester):
A. Duester, E. Rank, G. Steinl and W. Wunderlich, “A combination of an h- and a p-version of the finite element method for elastic-plastic problems”, European Conference on Computational Mechanics (ECCM ’99), August 31-September 3, Munich, Germany, 1999
A. Duester. High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Lehrstuhl fuer Bauinformatik, Fakultaet fuer Bauingenieur- und Vermessungswesen, Technische Universitaet Muenchen, http://www.inf.bv.tum.de/duester, 2001. 

A. Duester, H. Broeker, and E. Rank. The p-version of the finite element method for three-dimensional curved thin walled structures. International Journal for Numerical Methods in Engineering, 52:673–703, 2001.
Ernst Rank, Henrike Broeker, Alexander Duester and Vera Nuebel, “High order solid elements for thin-walled structures: No tricks? – No Crimes!”, Trends in Computational Structural Mechanics, W.A. Wall, K.U. Bletzinger and K. Schweizerhof (Editors), CIMNE, Barcelona, Spain 2001
A. Duester, A. Niggl and E. Rank, “Thermo-elastic computations of geometrically non-linear three-dimensional thin-walled continua based on high order finite elements”, Fifth World Congress on Computational Mechanics (WCCM V), July 7-12, 2002, Vienna, Austria, H.A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner (Editors)

E. Rank, A. Niggl and A Duester, “A high-order finite element approach to non-linear thin-walled solids”, Publisher and date not given in the pdf file; most recent reference is dated 2003
A. Düster, S. Hartmann and E. Rank. p-FEM applied to finite isotropic hyperelastic bodies. Comput. Methods Appl. Mech. Engrg., 192: 5147-5166, 2003
A. Duester, H. Broeker, H. Heidkamp, U. Heißerer, S. Kollmannsberger, R. Krause, A. Muthler, A. Niggl, V. Nuebel, M. Ruecker, and D. Scholz. AdhoC 4 – User’s Guide. Lehrstuhl fuer Bauinformatik, Technische Universitaet Muenchen, 2004. 

B.A. Szabo ́, A. Duester, and E. Rank. The p-version of the Finite Element Method. In E. Stein, R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics, volume 1, chapter 5, pages 119–139. John Wiley & Sons, 2004.


Page 313 / 462